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An integrated approach to topology, sizing,
and shape optimization⋆

M. Zhou, N. Pagaldipti, H.L. Thomas, Y.K. Shyy

Abstract Topology optimization has become very pop-
ular in industrial applications, and most FEM codes have
implemented certain capabilities of topology optimiza-
tion. However, most codes do not allow simultaneous
treatment of sizing and shape optimization during the
topology optimization phase. This poses a limitation on
the design space and therefore prevents finding possible
better designs since the interaction of sizing and shape
variables with topology modification is excluded. In this
paper, an integrated approach is developed to provide the
user with the freedom of combining sizing, shape, and
topology optimization in a single process.

Key words structural optimization, topology optimiza-
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1

Introduction

Sizing, shape, and topology optimization are the major
ingredients of the technology of structural optimization.
Sizing and shape optimization capabilities have been
available since the late 1980s in popular FEM software
applications such as MSC/NASTRAN (MSC Software
1999) and ANSYS (1999). Specialized structural opti-
mization software such as GENESIS (VMA Engineer-
ing 1999) also emerged subsequently, utilizing more ad-
vanced approximation technology for enhancing overall
efficiency. This development has led to a steady increase
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in industrial application of optimization technology in the
past decade. A notable phenomenon seen in recent years
is the fast growth of the application of topology optimiza-
tion, especially in the automobile industry, largely owing
to its significant impact in creating more efficient design
concepts at the preliminary design stage. Existing struc-
tural optimization software applications mentioned above
have added some basic topology optimization capabili-
ties as a complementary tool to their existing sizing and
shape optimization capabilities. At the same time, special
topology optimization codes such as Altair OptiStruct
(Altair Engineering 1999) have also appeared in this fast-
growing field. In general, specialized optimization codes,
although equipped with fewer analysis capabilities than
general FEM codes, offer more features and higher effi-
ciency for optimization. The reasons for this are twofold:
(1) highly specialized codes are typically smaller and
therefore more flexible for incorporating the latest de-
velopments than general codes, and (2) for specialized
codes, highest priority is devoted to its core technology of
optimization.
To date, topology optimization has been performed

separately while sizing and shape optimization can be
combined into a single process. This separation of top-
ology optimization may be due to the fact that it is usu-
ally used as a tool for finding efficient design concepts
at the early design stage, whereas sizing and shape op-
timization are tools for detailed design at a later stage.
However, feedback from industrial users have shown that,
even at the stage of conceptual study, it may be de-
sirable to consider the interaction of some key sizing
and shape parameters with topology optimization. For
example, one might want to optimize the thickness of
a base plate and simultaneously try to locate stiffening
ribs using topology optimization. Also, the contour shape
of the plate may be optimized as well during the opti-
mization of the rib pattern. For such design problems, an
integrated approach not only allows the freedom of find-
ing better designs by taking into account the interaction
of sizing, shape, and topology variables, but it also helps
achieve this goal more efficiently within a single iterative
process.
In this paper, this integrated optimization problem is

mathematically formulated in a general fashion, which
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allows the consideration of multiple constraints involv-
ing all types of responses. Owing to the large number
of design variables, local constraints such as stress con-
straints are not considered for structural parts that in-
volve topological design variables. Advanced approxima-
tion techniques based on intermediate responses and in-
termediate variables are applied in the implementation of
the iterative process. To further enhance the efficiency of
the design process, the approximation formulation of the
intermediate responses corresponding to a specific con-
straint or the objective function are adapted based on
the iteration history among linear, reciprocal, and con-
vex approximations. Another key objective of this work is
to provide an assessment of state-of-the-art advanced ap-
proximation technologies and create a highly efficient im-
plementation within the commercial structural optimiza-
tion code Altair OptiStruct. While OptiStruct has been
a specialized product for topology optimization only, this
development extends it into a general structural opti-
mization tool with the unique feature of allowing users
to combine sizing and shape optimization with topology
optimization.

2

Optimization problem

The general optimization problem can be stated mathe-
matically as follows:

Minimize f(X)

Subject to gj(X)− g
U
j � 0 , j = 1, . . . ,M

xLi ≤ xi ≤ x
U
i , i= 1, . . . , N,

(1)

where f(X) represents the objective function, gj(X) and
gUj represent the j-th constraint response and its up-
per bound, respectively, M is the total number of con-
straints, xi is the i-th design variable, and x

L
i and x

U
i

represent its lower and upper bounds, respectively. The
total number of design variables isN . In the problem con-
sidered in this paper, the design variables include: (1) siz-
ing variables that define the cross-sectional dimensions of
1-D elements (rods and beams) and 2-D elements (plates
and shells); (2) shape variables that define the shape vari-
ation of existing boundaries; and (3) topology variables
that define the generalized material distribution allowing
topological changes to the structure. The objective func-
tion and design constraints can be any of the following
responses: volumes or weights of structural parts, com-
pliance, eigenfrequencies, displacements, and stresses. An
equation utility has also been developed that allows users
to formulate any custom response using the supported re-
sponses and design variables (Altair Engineering 1999).
Owing to numerical difficulties, stress constraints could
not be applied to the structural domain for topology
optimization.

Shape variations in this work are defined as a linear
combination of predefined vectors of shape perturbation:

Z(X) = Z0+
K
∑

i=1

xiPVi, (2)

where Z is the vector of nodal coordinates, Z0 is the vec-
tor of nodal coordinates at the initial design, PVi is the
i-th grid perturbation vector, and K is the total number
of shape design variables. Note that the vector Z must
also include internal nodes of the finite element mesh in
order to avoid mesh distortion. This approach is easy
to implement since it needs neither remeshing capabil-
ity nor a mesh smoothing algorithm during the iterative
process. However, it may encounter mesh distortion for
large shape changes. The literature on shape optimiza-
tion is very extensive, and reviews can be found in sur-
vey articles and some recent papers (see, e.g., Haftka and
Grandhi 1986; Ding 1986; Kikuchi et al. 1986; Chang and
Choi 1992; Yang et al. 1992; Schramm and Pilkey 1993;
Schleupen et al. 1995). An overview of sizing optimiza-
tion can be found in textbooks and review articles (see,
e.g., Schmit 1981; Vanderplaats 1982; Haftka and Gürdal
1992; Kirsch 1993).
Topology design variables are parameters of mi-

crostructures in the homogenization approach (Bendsøe
and Kikuchi 1988; Allaire and Kohn 1993; and Olhoff
et al. 1998) or the material density ρi of each element in
the density approach termed SIMP (Bendsøe 1989; Zhou
and Rozvany 1991). An overview of topology optimiza-
tion can be found in the book by Bendsøe (1995) and the
review article by Rozvany et al. (1995). To achieve a 0/1
density distribution, the following power law penalization
is used for the density approach

K̄i(ρ) = ρ
p
iKi, (3)

where K̄i and Ki represent the penalized and nonpe-
nalized stiffness matrices, respectively. The parameter p
is the penalization factor, which typically takes values be-
tween 2 and 4. Special numerical difficulties associated
with topology optimization such as checkerboarding and
mesh dependency have been addressed in the literature
(for an overview see Sigmund and Petersson 1998). An ef-
ficient approach to checkerboard and minimum member
size control has been developed and implemented recently
by Zhou et al. (2001) in Altair OptiStruct (Altair Engin-
eering 1999). This technique highly enhances the manu-
facturability of solutions.

3

Approximation formulations

The general approach to the optimization problem in
Eq. 1 is the approximation concept approach pioneered
by Schmit and Farshi (1974). In this approach, the op-
timization problem is solved by solving a series of ex-
plicit approximate problems. The overall efficiency of
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this approach is determined by the accuracy of the ap-
proximation. Typical approximation formulations used in
structural optimization are linear approximation shown
in Eq. 4, reciprocal approximation in Eq. 5 (Schmit and
Farshi 1974), and convex approximation in Eq. 6 (Haftka
and Starnes 1976):

g̃j(X) = gj0+
N
∑

i=1

∂gj
∂xi
(xi−xi0) (4)

g̃j(X) = gj0−
N
∑

i=1

∂gj
∂xi
x2i0

(

1

xi
−
1

xi0

)

(5)

g̃j(X) = gj0+
N
∑

i=1

∂gj
∂xi
cji(xi−xi0)

with cji = 1 if
∂gj
∂xi
≥ 0 ; cji =

xi0
xi

if
∂gj
∂xi
< 0. (6)

The formulation in terms of mixed variables in Eq. 6
is also termed conservative approximation since it has
been shown by Haftka and Starnes (1976) that this for-
mulation gives a more conservative approximation of the
constraint compared with both linear and reciprocal ap-
proximations. Because this approximation is convex and
separable, it is used to create an efficient dual method by
Fleury and Braibant (1986).
Advanced approximation techniques developed in the

late 1980s utilize the use of intermediate variables and
intermediate responses to enhance the quality of approx-
imation (Vanderplaats and Salajegheh 1989; Zhou 1989;
Canfield 1990; Zhou and Xia 1990; Vanderplaats and
Thomas 1993; Zhou and Thomas 1993). For sizing prob-
lems, the intermediate variables are the following cross-
sectional properties:

Yi = (A, I1, I2, J,NSM)
T
i for beams

Yi = (t,D, ts, NSM)
T
i for shells,

where A is the cross-sectional area, and I1, I2, and J
are moments of inertia of the i-th beam properties. NSM
stands for nonstructural mass. t, D, and ts are, respec-
tively, the thickness, bending stiffness, and shear thick-
ness of the i-th shell properties. The above intermediate
variables Y can be explicitly expressed as functions of
sizing variables X, i.e., Y =Y(X). The quality of the
approximation of displacements has been shown to be
highly enhanced when reciprocal approximation is formu-
lated in terms of intermediate variablesY:

g̃j(X) = g̃j(Y(X)) = gj0−
N
∑

i=1

∂gj
∂yi
y2i0

(

1

yi
−
1

yi0

)

. (7)

It can be shown that the above approximation is ex-
act for statically determinate structures. For stress con-
straints, the relevant element forces, termed intermediate
responses herein, are approximated as follows:

F̃k(X) = F̃k(Y(X)) = Fk0+
N
∑

i=1

∂Fk
∂yi
(yi−yi0). (8)

Then the approximate stresses are recovered using ex-
act stress recovery relationships:

g̃j(X) = g̃j(X, F̃(Y(X))). (9)

Note that alternative stress approximations of equal
quality can be found in Zhou and Xia (1990) and Zhou
and Thomas (1993). Such approximation formulations
have been shown to greatly enhance the approximation
quality. It is easy to see that this approximation is exact
for statically determinate structures since no force redis-
tribution occurs.
Canfield (1990) showed that the quality of the approx-

imation of an eigenvalue can be enhanced by approximat-
ing its modal strain energy and modal kinetic energy in
the Rayleigh’s quotient as intermediate responses:

µ̃k(X) = (ω̃k(X))
2 =
Ũk(Y(X))

T̃k(Y(X))
. (10)

Canfield applied reciprocal approximation to the
modal strain energy Uk and linear approximation for the
modal kinetic energy Tk.
The general trend for appropriate selection of linear

or reciprocal variable space for the approximation of a re-
sponse type can be observed by studying the behavior of
the analysis equations. For example, reciprocal interme-
diate variables are most suited for the approximation of
displacements. However, since a simple separable approx-
imation cannot fully capture the high nonlinearity and
complexity of the exact response function, such general
rules may not apply to a specific response. Therefore, the
choice of the “best” approximation formulation among
Eqs. 4–6 could be quite heuristic for an individual re-
sponse. Thomas (1996) introduced an adaptive approach
to selecting the appropriate approximation in the form of
Eqs. 4–6 along with the iterative process. This approach
has been shown to further improve the efficiency of the
optimization process. Note that for shape design vari-
ables, no intermediate variables are used in this work.
The advanced approximation techniques summarized

herein are implemented in the Altair OptiStruct code
for the integrated problem covering sizing, shape, and
topology optimization. Note that many approximation
approaches that are well suited for other types of opti-
mization problems are not mentioned in this paper. For
a review, see the paper by Barthelemy and Haftka (1993).

4

Sensitivity analysis

Discrete sensitivity analysis directly formulated on the
basis of the discrete finite element formulation is used. An
overview of sensitivity analysis can be found in textbooks
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and review papers (see, e.g., Haftka and Adelman 1993;
Haftka and Gürdal 1992; Kirsch 1993). For static analy-
sis, responses such as displacements, stresses, and forces
can be expressed as a function of the displacement vector
U as follows:

Rj(Y) =Q
T
j U. (11)

The derivatives of the response can be expressed as:

∂Rj
∂yi
=
∂QTj
∂yi
U+QTj

∂U

∂yi
. (12)

From the stiffness equation

KU=P, (13)

whereK is the stiffness matrix andP the load vector, the
following equation can be derived for the calculation of
the displacement sensitivities:

K
∂U

∂yi
=
∂P

∂yi
−
∂K

∂yi
U. (14)

In Eq. 14, the vector ∂U/∂yi can be interpreted as
the displacement vector corresponding to a load vector
P̄i =

∂P
∂yi
−
∂K
∂yi
U, where P̄i is termed the pseudoload vec-

tor. ForNy intermediate variables,Ny pseudoload vectors
need to be solved for each loading case to calculate the
derivatives of any number of responses.
Substitution of Eq. 14 into Eq. 12 yields the following

expression:

∂Rj
∂yi
=
∂QTj
∂yi
U+ ŪTj

(

∂P

∂yi
−
∂K

∂yi
U

)

, (15)

with

KŪj =Qj . (16)

The method using Eq. 15 for sensitivity analysis is
called the adjoint method. The vectors Ūj and Qj are
called the adjoint displacement vector and the adjoint
load vector, respectively. The solution of one adjoint vec-
tor is needed for calculating the derivatives of each re-
sponse. For NR responses involved in the approximate
problem, the total number of adjoint load vectors is NR,
which is independent of the number of design variables.
It is easy to see that for a specific load case the ad-

joint method is more efficient than the direct method if
NR related to this load case is smaller than Ny, and vice
versa. Both methods are implemented in OptiStruct, and
the favorable one is automatically selected according to
this rule.
For sensitivity with respect to shape design variables,

the so-called semianalytical method is used. In this ap-
proach, the derivatives of the stiffness matrix are calcu-
lated using central finite differences as follows:

∂K

∂xi
=
K(xi+∆xi)−K(xi−∆xi)

2∆xi
. (17)

It has been shown that very large errors can occur
whenthismethodisused.Thisphenomenonhasstimulated
intensive research effort in revealing the reasons for the
errors and developing methods to eliminate them (see,
e.g., Barthelemy and Haftka 1993; Olhoff et al. 1993).

5

Iterative scheme

The overall iterative scheme is shown in the flowchart in
Fig. 1. For the optimization of the explicit approximate
problem, two optimizers are used in OptiStruct. The op-
timizer CONMIN is an implementation of the method of
feasible directions by Vanderplaats (1973), and the opti-
mizer CONLIN is an implementation of the dual method
based on convex separable approximations developed by
Fleury (1989). Because of the use of intermediate vari-
ables for the approximation formulation, the approximate
problem involves, in general, functions that are noncon-
vex and nonseparable. Therefore, an inner iteration loop
has to be implemented to solve the approximate problem
iteratively using the CONLIN optimizer, as suggested by
Zhou (1990) and Zhou and Xia (1989).

Fig. 1 Flowchart of the optimization process
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The method of feasible directions is very robust; how-
ever, it is not efficient for problems with a large number
of design variables. Since the number of design variables
is usually large for design problems involving topology
and/or topography optimization (Voth 1999; Altair En-
gineering 1999), the CONLIN optimizer is selected a pri-
ori for such problems. Otherwise, the CONLIN optimizer
is only selected if the number of constraints is signifi-
cantly smaller than the number of design variables. To-
pography optimization is a special shape optimization
tool developed by Voth (1999) for optimizing bead pat-
terns of shell structures. Shape design variables are gen-
erated in an automatic fashion using the bead minimum
width, draw height, and draw angle defined by the user.

6

Numerical examples

Two numerical examples are presented to illustrate the
capabilities of the optimization procedure.
Example 1 – Twist plate optimization: A steel plate of

dimension 50×100mm is fixed at two adjacent corners
(short side) and loaded with two equal and opposite out-
of-plane forces (of magnitude 1 N) at the other two cor-
ners. The Young’s modulus E is 200000N/mm2. The
plate is modeled using 5000 uniform, square shell elem-
ents of dimension 1×1mm. The compliance for this load-
ing condition is minimized. Seven optimization studies
were conducted.
The first optimization study is a pure shape optimiza-

tion of the twist plate. The shape design variables are
automatically generated by the bead generation capabil-
ity of OptiStruct (Altair Engineering 1999; Voth 1999).
The bead parameters are: bead minimum width 15mm,
draw angle 60◦, and draw height 5 mm. The plate thick-
ness is fixed at 1 mm. The optimal shape is shown in
Fig. 2. The optimizer successfully reduces the compliance
from its initial value of 0.09636 to 0.01314 in 21 itera-
tions. The volume of the plate increases from 5000mm3

to 5606mm3. However, the compliance has been reduced
to only 13.6% of that of the flat plate. In the next six opti-
mization studies, this final volume is imposed as an upper
bound constraint.
The second optimization study is a pure topological

optimization of the twist plate. The topological design
variables are the material densities of the elements in
the plate model. The maximum plate thickness is set to
3mm, and the base plate thickness is zero. Checkerboard
control (Altair Engineering 1999) is turned on during the
optimization. The optimal topology is shown in Fig. 3.
The optimizer reduces the compliance to a final value of
0.01217 in 23 iterations. The upper bound volume con-
straint is active.
The third optimization study is a small variant of the

second in that the base plate thickness during the top-
ology optimization is set to 0.3 units. The optimal top-
ology is shown in Fig. 4. This topology is very similar to

the one corresponding to a base plate thickness of zero
obtained from the previous study. This is because the
optimal load path for the twist plate for this particular
loading is clearly determined. The final compliance value
is 0.01557 (24 iterations), about 28% higher than the fi-
nal compliance value from the zero base plate thickness
optimization. This is because the rib size in this case is
thinner than that obtained in the previous study, owing
to less material being available for forming ribs.
The fourth and fifth optimization studies are a com-

bined contour and topology optimization of the twist
plate. The base plate thickness is set to zero, and the
maximum plate thickness is 3 units. The fifth optimiza-
tion study has minimum member size control (Zhou et al.
1999; Altair Engineering 1999) turned on. The minimum
member size is set to 5 units (size of five element widths in
this model). Figure 5 shows the final density distribution
and contour of the plate corresponding to the fourth opti-
mization study. Figure 6 shows the final density distribu-
tion and contour corresponding to the fifth optimization
study with minimum member size control. The final com-
pliance values are 0.00778 (30 iterations) and 0.00690 (51
iterations), respectively. Clearly, the integrated topology
and contour optimization yields stiffer designs than the
pure contour and pure topological optimization studies.

Fig. 2 Contour of the twist plate – pure contour optimization

Fig. 3 Density distribution of the twist plate – pure topology
optimization (base plate thickness = 0)
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Fig. 4 Density distribution of the twist plate – pure topology
optimization (base plate thickness = 0.3 mm)

The minimum member size control takes more iterations
to converge but consolidates the rib patterns and elimi-
nates some of the thinner members obtained in the study
without this control, thereby improving the stiffness as
well as the manufacturability of the final design. Mini-
mum size control does not affect the final contours signifi-
cantly, as seen from the similarity of Figs. 5 and 6.
The sixth and seventh optimization studies differ from

the fourth and the fifth in that the base plate thickness is

Fig. 5 Density distribution (top) and contour (bottom) of
the twist plate – contour + topology optimization (base plate
thickness = 0, no minimum member size control for topology
optimization)

Fig. 6 Density distribution (top) and contour (bottom) of
the twist plate – contour + topology optimization (base plate
thickness = 0, with minimum member size control for top-
ology optimization)

set to 0.3 units. Figure 7 shows the final density distribu-
tion and contour of the plate corresponding to the sixth
optimization study. Figure 8 illustrates the final topology
and contour corresponding to the seventh optimization
study with minimum member control. The final compli-
ance values are 0.00862 (24 iterations) and 0.00847 (62
iterations), respectively. Several important observations
must be made from these results. The final contours ob-
tained from these two studies (Figs. 7 and 8), though
similar to each other, are quite different from those ob-
tained in the previous two studies (Figs. 5 and 6). Indeed,
the final contours are closer to that obtained in the first
study (Fig. 2). This difference in contours is attributed
to the structural stiffness obtained from the presence of
the base plate. The density distributions (Figs. 7 and 8)
are quite similar, unlike the previous two studies (Figs. 5
and 6). This is because the base plate takes up about one
third of the available material (based on the upper bound
volume constraint). Because of the limited material avail-
able, thinner ribs are not formed and minimum member
control does not change the topology significantly.
Example 2 – Oil pan optimization: A steel oil pan,

used to collect the engine oil from an automobile, is
designed for minimum volume of the structure. Lower
bound constraints of 10 Hz, 10 Hz, 12Hz, and 15 Hz
are imposed on the first four eigenfrequencies, respec-
tively, for the purpose of noise reduction. The pan
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is 200mm wide and 500mm long and has two lev-
els of depths, 75 mm and 150mm, respectively. The
Young’s modulus E is 200 000N/mm2, and the dens-
ity is 7.87×10−6 kg/mm3. The oil pan is modeled using
2392 shell elements and is fixed at eight points along
the lip of the pan (Fig. 9). The lip has a thickness of
0.7mm and is defined as nondesign domain. The initial
design has a shell thickness of 0.18mm and a volume of
56 434.6mm3. The first four eigenfrequencies of the initial
design are 1.48Hz, 1.499Hz, 1.631Hz, and 1.973Hz, re-
spectively, which implies that the frequency constraints
are severely violated in the initial design. Six optimiza-
tion studies were conducted.
The first optimization study is a pure contour shape

optimization. The bead parameters are: bead minimum
width 125mm, draw angle 60◦, and draw height 10mm
(Altair Engineering 1999). The plate thickness is fixed at
0.18mm. The iterative process converged after 77 itera-
tions. The final contour shape is shown in Fig. 10. The
four first eigenfrequencies of the final design are 10.00Hz,
10.25Hz, 12.09Hz, and 14.483Hz, respectively. Only the
fourth constraint has a 1.1% constraint violation. The
volume of the final design is 55 688.4mm3. The initial
design has highly violated constraints, and much of the
optimization effort goes into recovering these violated
constraints.

Fig. 7 Density distribution (top) and contour (bottom) of
the twist plate – contour + topology optimization (base plate
thickness = 0.3 mm, no minimummember size control for top-
ology optimization)

Fig. 8 Density distribution (top) and contour (bottom) of
the twist plate – contour + topology optimization (base plate
thickness = 0.3 mm, no minimummember size control for top-
ology optimization)

The second optimization study is a pure topology
optimization. The maximum plate thickness is set to
3.0mm, and the base plate thickness is 0.1mm. The it-
erative process converged after 35 iterations. The dens-
ity distribution of the final design is shown in Fig. 11.
The four first eigenfrequencies of the final design are
9.99Hz, 10.01Hz, 12.26Hz, and 14.98Hz, respectively.
Constraints 1 and 4 are marginally violated (0.1% each).
The volume of the final design is 125 373mm3.
The third optimization study is a combined contour

and sizing optimization of the oil pan. The plate thick-

Fig. 9 Finite element model of the oil pan
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Fig. 10 Contour shape of the oil pan – pure contour opti-
mization

ness of the shell elements in the design domain is used
as the sizing variable. Its initial value is 0.18mm, and its
lower and upper bounds are set to 0.1mm and 2.0mm,
respectively. The bead parameters are the same as those
used in the first study. The iterative process converged
after 68 iterations. The final thickness is 0.1424mm. The
final contour shape is shown in Fig. 12. The four first
eigenfrequencies of the final design are 10.46Hz, 10.53Hz,
12.01Hz, and 14.95Hz, respectively. Only the fourth fre-
quency constraint is violated by 0.3%. The volume of the
final design is 48 149.1mm3. This particular case study il-
lustrates the advantage of having the freedom to integrate
sizing and shape variables in the optimization loop over
a pure shape optimization.
The fourth optimization study is a combination of siz-

ing and topology optimization. As in the third study,
the plate thickness of the elements in the design do-
main is used as the sizing design variable. Its initial value
is 0.18mm, and its lower and upper bounds are set to
0.1mm and 3.0mm, respectively. The iterative process
converged after 36 iterations. The density distribution
of the final design is shown in Fig. 13. The first four
eigenfrequencies of the final design are 9.98Hz, 10.02Hz,
12.34Hz, and 14.93Hz, respectively. The first constraint
and the fourth constraint are marginally violated (0.2%

Fig. 11 Density distribution of the oil pan – pure topology
optimization

Fig. 12 Contour shape of the oil pan – contour + sizing op-
timization

and 0.5%, respectively). The volume of the structure is
128 280mm3. Note that this design is somewhat similar to
the design from the second study.
The fifth optimization study is a combination of the

contour optimization and the topology optimization de-
scribed in studies 1 and 2, respectively. The iterative pro-
cess converged after 68 iterations. The density distribu-
tion and the contour shape of the final design are shown in
Fig. 14. The four first eigenfrequencies of the final design
are 10.91Hz, 11.32Hz, 12.99Hz, and 14.98Hz, respec-
tively. Except for the fourth frequency constraint, which
is marginally violated (0.1%), all the constraints are well
satisfied. The volume of the final design is 45 080mm3.
The sixth optimization study is combination of siz-

ing, contour, and topology optimization. The iterative
process converged after 80 iterations. The density and
contour distributions are shown in Fig. 15. The first four
eigenfrequencies of the final design are 11.45Hz, 11.47Hz,
13.87Hz, and 14.99Hz, respectively. All constraints are
successfully recovered with only the fourth constraint
having a marginal 0.1% constraint violation. The volume
of the final design is 57 078.3mm3, and the final plate
thickness is 0.543mm.
A comparison of the six studies reveals that the com-

bination of contour and topology optimization gave the

Fig. 13 Density distribution of the oil pan – topology + siz-
ing optimization
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Fig. 14 Density distribution (top) and contour shape (bot-
tom) of the oil pan – contour + topology optimization

Fig. 15 Density distribution (top) and contour shape (bot-
tom) of the oil pan – contour + topology optimization

best result. Although the combination of sizing, contour,
and topology optimization represents the maximum de-
sign freedom, its final volume is higher than the study
without the sizing variable. The reason is that, in general,
there exist a large number of local optima for such com-
plicated problem formulations. Since the gradient-based
optimization algorithms could only converge to a local
optimum, the final results should always be assessed with
a critical view.

7

Concluding remarks

The integration of sizing, shape, and topology optimiza-
tion in a single iterative process has been studied in this
work. This unique capability has been created within the
commercial code Altair OptiStruct during the process of
extending it into a general structural optimization tool
that provides sizing, shape, and topology optimization
capabilities. Emphasis has been placed on integrating
state-of-the-art techniques that enhance the overall effi-
ciency of the optimization process. Advanced approxima-
tion techniques, which have been discussed in detail, play
a central role in this regard. The feasibility of combining
topology optimization with sizing and shape optimization
has been studied with numerical examples. Promising re-
sults have been obtained for the examples considered.
The ability to combine different types of optimization

variables provides increased freedom for concept study.
However, caution needs to be exercised when different
types of design variables are considered simultaneously.
Since the freedom of design choice increases under the
integrated treatment of different types of design vari-
ables, the feasible domain of the design spacemay become
highly nonconvex, resulting in the existence of a large
number of local optima. Therefore, the resulting design
should be assessed with a critical view. In general, exper-
imenting with different combinations of design variables
could help understand the behavior of a specific design
problem.
Note also that a user-friendly graphic interface for

OptiStruct has been developed with Altair HyperMesh
(Altair Engineering 2000). Within this modeling environ-
ment, the user can interactively set up the details of the
optimization problem such as design variable selection,
objective function, and design constraint definitions.
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