
An Integrated Architecture for Future Car Generations

P. Peti, R. Obermaisser
Vienna University of Technology

Austria
{php,ro}@vmars.tuwien.ac.at

F. Tagliabo, A. Marino, S. Cerchio
Centro Ricerche Fiat

Orbassano, Italy
{fulvio.tagliabo,reti1,stefano.cerchio}@crf.it

Abstract

Depending on the physical structuring of large distrib-
uted safety-critical real-time systems, one can distinguish
federated and integrated system architectures. The DE-
COS architecture combines the complexity management
advantages of federated systems with the functional inte-
gration and hardware benefits of an integrated approach.
This paper investigates the benefits of the DECOS inte-
grated system architecture as an electronic infrastructure
for future car generations. The shift to an integrated ar-
chitecture will result in quantifiable cost reductions in the
areas of system hardware cost and system development.

In the paper we present a current federated Fiat car
E/E architecture and discuss a possible mapping to an in-
tegrated solution based on the DECOS architecture. The
proposed architecture provides a foundation for mixed-
criticality integration with both safety-critical and non
safety-critical subsystems. In particular, this architec-
ture supports applications up to the highest criticality
classes (10−9 failures per hour), thereby taking into ac-
count the emerging dependability requirements of by-wire
functionality in the automotive industry.

1. Introduction

One can distinguish two classes of systems for dis-
tributed applications, namely federated and integrated
systems. In a federated system, each application sub-
system has its own dedicated computer system, while
an integrated system is characterized by the integra-
tion of multiple application subsystems within a single
distributed computer system. Federated systems have
been preferred for ultra-dependable applications due
to the natural separation of application subsystems,
which facilitates fault-isolation and complexity man-
agement.

Integrated systems, on the other hand, promise mas-
sive cost savings through the reduction of resource du-
plication. In addition, integrated systems permit an

optimal interplay of application subsystems, reliabil-
ity improvements with respect to wiring and connec-
tors, and overcome limitations for spare components
and redundancy management. An ideal future system
architecture would thus combine the complexity man-
agement advantages of the federated approach, but would
also realize the functional integration and hardware ben-
efits of an integrated system [7, p. 32]. The challenge
is to devise an integrated architecture that provides a
framework with generic architectural services for inte-
grating multiple application subsystems within a sin-
gle, distributed computer system, while retaining the
error containment and complexity management bene-
fits of federated systems.

There is a steady increase in electronics in automo-
tive systems in order to meet the customer’s expecta-
tion of a car’s functionality. Cars are no longer simple
means of transportation but rather need to convince
customers with respect to design, performance, driving
behavior, safety, infotainment, comfort, maintenance,
and cost. In particular during the last decade, elec-
tronic systems have resulted in tremendous improve-
ments in passive and active safety, fuel efficiency, com-
fort, and on-board entertainment. In combination with
a “1 Function - 1 Electronic Control Unit (ECU)” de-
sign philosophy that is characteristic for federated ar-
chitectures, these new functionalities have led to elec-
tronic systems with large numbers of ECUs and a het-
erogeneity of communication networks.

However, in order to satisfy the industrial demands
on performance, dependability and cost with respect
to a large variety of different car platforms, the cur-
rent state-of-the-art system development methodology
is heavily imposed to be reviewed, because of

• the strong competition among the carmakers;

• the requirement to continuously improve comfort
functionality with stringent time-to-market con-
straints;

• the introduction of by-wire vehicle control and
those functions introduced following normative



pressure (e.g., fuel consumptions);

• a demand of greater versatility of the vehicle, con-
ceived in a new view about modularity and stan-
dardization.

In particular, a low number of ECUs offers signif-
icant benefits with respect to architecture complex-
ity, wiring, mounting, hardware cost and many others.
Thus, a reduction of the number of ECUs is of great in-
terest.

It is the objective of this paper to present the DE-
COS integrated architecture for dependable embedded
control systems for future automotive systems. This in-
tegrated architecture is based on a time-triggered core
architecture and a set of high-level services that sup-
port the execution of newly developed and legacy ap-
plications across standardized technology-invariant in-
terfaces. Rigorous encapsulation guarantees the inde-
pendent development, seamless integration, and oper-
ation without unintended mutual interference of the
different application subsystems. The integrated archi-
tecture offers an environment to combine both safety-
critical and non safety-critical subsystems within a sin-
gle distributed computer system. The architecture ex-
ploits the encapsulation services to guarantee that soft-
ware faults cannot propagate from non safety-critical
subsystems into subsystems of higher criticality.

In this paper, we map a present automotive in-
frastructure onto the DECOS architecture and elab-
orate on the respective benefits, such as independent
development, the assignment of integration responsi-
bility, and an optimized use of resources through ar-
chitectural gateway services. In order to maximize the
economic impact, we propose a portable architecture
that can be deployed in all segments of the car manu-
facturer (segment from A to E and also for luxury cars).
Thereby a reduction of cost due to the increase in vol-
ume is expected. To achieve the required flexibility and
portability, the architecture is be based on general pur-
pose hardware and a modular software concept allow-
ing to protect the intellectual property of vendors.

This paper is structured as follows. Section 2 gives
an overview of the DECOS integrated architecture, pre-
senting the main underlying concepts. In Section 3, we
discuss the current state-of-the-art of automotive ar-
chitectures. The mapping to an integrated solution is
the focus of Section 4. The discussion presented in Sec-
tion 5 evaluates the integrated architecture based on
prevalent E/E automotive trends.

2. The DECOS Integrated Architecture

The DECOS architecture [13] offers a framework
for the development of distributed embedded real-time
systems integrating multiple Distributed Application

Subsystems (DASs) with different levels of criticality
and different requirements concerning the underlying
platform. Structuring rules guide the designer in the
decomposition of the overall system both at a func-
tional level and for the transformation to the physical
level. In addition, the DECOS integrated architecture
aims at offering to system designers generic architec-
tural services, which provide a validated stable base-
line for the development of applications.

2.1. Functional System Structuring

Until now, the introduction of structure and hi-
erarchical relationships represents the only promis-
ing approach for understanding complex systems with
large numbers of parts and interactions between these
parts [26, chap. 8]. This insight applies to all techni-
cal systems and in particular to the mastering of large,
complex real-time computer systems. The complexity
of a large real-time computer system can only be man-
aged, if the overall system can be decomposed into
nearly-independent subsystems with linking interfaces
that are precisely specified in the value and time do-
main [14]. Near-independence is the ability of a sub-
system to serve its purpose independently from the de-
tailed structure of other subsystems, i.e. only based on
the specification of the linking interfaces of the subsys-
tems.

For the provision of application services at the con-
trolled object interface, the real-time computer system
is divided into a set of nearly-independent subsystems,
each providing a part of the computer system’s over-
all functionality. We denote such a subsystem as a Dis-
tributed Application Subsystem (DAS), since the imple-
mentation of the corresponding functionality will most
likely involve multiple components that are intercon-
nected by an underlying communication system. The
implementation as a distributed system is a prerequi-
site for establishing fault-tolerance by redundantly per-
forming computations at separate components that fail
independently. Furthermore, a distributed solution be-
comes a necessity, when the resource requirements of
the application providing the subsystem’s functional-
ity exceed the available resources of a single compo-
nent.

An example for a DAS in the automotive domain
is the steer-by-wire subsystem. With steer-by-wire [8]
the transmission of the wheel rotation to a steering
movement of the front wheel is performed with the
help of electronically controlled actuators at the front
axle. The main advantages in comparison with conven-
tional steering systems are improvements with respect
to crashworthiness, weight, and interior design.

In analogy to the structuring of the overall system,



we further decompose each DAS into smaller units
called jobs. A job is the basic unit of work that em-
ploys the communication system for exchanging infor-
mation with other jobs, thus working towards a col-
lective goal. The interface between a job and the com-
munication system is denoted as a port. Depending on
the data direction, one can distinguish input ports and
output ports. A job employs input ports for exploit-
ing the services of other jobs, while output ports en-
able a job to provide its own services. Every job has ac-
cess to its relevant transducers, either directly via the
controlled object interface or via a communication sys-
tem with known temporal properties.

2.2. Physical System Structuring

During the development of an integrated system the
functional elements must be mapped to the physical
building blocks of the platform. These building blocks
are clusters, physical networks, components and parti-
tions. A cluster is a distributed computer system that
consists of a set of components interconnected by a
physical network. A component is a self-contained com-
putational element with its own hardware (processor,
memory, communication interface, and interface to the
controlled object) and software (application programs,
operating system) [14], which interacts with its envi-
ronment by exchanging messages across Linking In-
terfaces (LIFs). The behavior of a component can be
specified in the domains of value and time. Compo-
nents are the target of job allocation and provide en-
capsulated execution environments denoted as parti-
tions for jobs. Each partition prevents temporal inter-
ference (e.g., stealing processor time) and spatial in-
terference [22] (e.g., overwriting data structures) be-
tween jobs. In the DECOS architecture, a component
can host multiple partitions and host jobs that can be-
long to different DASs.

2.3. Architectural Services

Generic architectural services separate the applica-
tion functionality from the underlying platform tech-
nology in order to facilitate reuse and reduce design
complexity. This strategy corresponds to the concept
of platform-based design [25], which proposes the in-
troduction of abstraction layers, which facilitate refine-
ments into subsequent abstraction layers in the design
flow.

The DECOS architectural services depicted in Fig-
ure 1 are such an abstraction layer. The specification
of the architectural services hides the details of the un-
derlying platform, while providing all information re-
quired for ensuring the functional and meta-functional

C1 Predictable Message 
Transport

C2 Fault-Tolerant       
Clock Synchronization

C3 Strong Fault Isolation
C4 Consistent Diagnosis 

of Failing Nodes

Time-Triggered 
Architecture

Encapsulation, Virtual 
Networks, Diagnosis,...

JobJobJobJob JobJob JobJobJobJob

Time-Triggered 
Core Architecture

Hiding of implementation details from 
the application, thereby extending the 

range of implementation choices
(e.g. TTP/C, Time-Triggered Ethernet)

Figure 1. The DECOS Integrated System Archi-
tecture

(dependability, timeliness) requirements in the design
of a safety-critical real-time application. The architec-
tural services serve as a validated stable baseline that
reduces application development efforts and facilitates
reuse, because applications build on an architectural
service interface that can be established on top of nu-
merous platform technologies.

In order to maximize the number of platforms and
applications that can be covered, the DECOS archi-
tectural service interface distinguishes a minimal set of
core services and an open-ended number of high-level
services that build on top of the core services. The
core services include predictable time-triggered mes-
sage transport, fault tolerant clock synchronization,
strong fault isolation, and consistent diagnosis of failing
components through a membership service. The small
number of core services eases a thorough validation
(e.g., permitting a formal verification), which is crucial
for preventing common mode failures as all high-level
services and consequently all applications build on the
core services. Any architecture that provides these core
services can be used as a core architecture [23] for the
DECOS integrated distributed architecture. An exam-
ple of a suitable core architecture is the Time-Triggered
Architecture (TTA) [11].

Based on the core services, the DECOS integrated
architecture realizes high-level architectural services,
which are DAS-specific and constitute the interface for
the jobs to the underlying platform. Among the high-
level services are virtual network services and encap-
sulation services. On top of the time-triggered physical



network, different kinds of virtual networks can be es-
tablished and each type of virtual network can exhibit
multiple instantiations (see Figure 1). The encapsula-
tion services ensure spatial and temporal partitioning
for virtual networks in order to obtain error contain-
ment and control the visibility of exchanged messages.

3. Today’s Automotive Architectures

To give an impression of the complexity and the
amount of electronics in today’s luxury cars take for
example the electronic infrastructure of a Fiat car de-
picted in Figure 2. The distributed ECUs of each fed-
erated cluster of the car are interconnected via
communication networks with different protocols
(e.g., Controller Area Network (CAN) [21], Local In-
terconnect Network (LIN) [17]), physical layers,
bandwidths (10 kbps–500kbps), and dependability re-
quirements.

The Body Control cluster as well as the Telematic
Info cluster, are typically implemented via a low speed
CAN bus (125kbps), while the Dynamic Vehicle Con-
trol cluster is implemented via a high speed CAN bus
(500kbps). The Infotelematic system also uses a high
speed CAN to exchange camera and video informa-
tion. These multiple federated clusters are intercon-
nected with a central gateway inside the Body Com-
puter, allowing controlled data exchange between the
Dynamic Vehicle Control cluster and the Body Control
cluster, and access to the On-Board Diagnosis (OBD)
system of each ECU. For on-board diagnosis either a
dedicated serial line interconnects the ECUs or the di-
agnostic protocol is executed via the low speed CAN
network.

Each of these clusters consists of nodes that are typ-
ically dedicated to a single job. This is frequently re-
ferred to as “1 Function - 1 ECU” design strategy.
In combination with the need to adapt products to
emerging trends and customer requests, manufactures
are forced to steadily increase the number of deployed
ECUs in order to improve the functionality of the car.
For example, Fiat cars contain up to 40 ECUs. How-
ever, this trend of increasing the number of ECUs is
coming to its limits, because of complexity, wiring,
space and weight restrictions. For example, electrical
connections are considered to be one of the most impor-
tant failure causes in automotive systems. Field data
from automotive environments has shown that more
than 30% of electrical failures are attributed to con-
nector problems [28]. With an average cost of 30-50
Euros per ECU this high number of ECUs bears sig-
nificant potential for cost reduction.

3.1. System Integration

During system integration significant efforts are
caused by unanticipated interactions between subsys-
tems provided by different vendors. The sharing of
communication resources in today’s cars across dif-
ferent subsystems (e.g., systems based on the CAN
protocol) makes it hard to fully test the functional-
ity of a subsystem in isolation as it will be integrated in
the car. As a consequence, there is the need for a com-
prehensive integration test by the car manufacturer
to determine possible mutual interference of sub-
systems. In contrast, a system architecture with
rigorous operational interface specification [14] and er-
ror containment can avoid the introduction of mutual
interference during system integration. Such a tempo-
rally composable architecture [12] exhibits the benefit
of dramatically decreasing integration costs, be-
cause the validity of test certificates from suppliers is
not invalidated during system integration.

3.2. Complexity Control

Each subsystem (e.g., engine control, brake assis-
tant) possesses a functional complexity that is inherent
to the application. The functional complexity of a sub-
system when implemented on a target system is dra-
matically increased in case the architecture does not
prevent unintended architecture-induced side effects at
the communication system. Since federated systems
employ a dedicated computer system for each subsys-
tem, the complexity of the system is lower compared to
the integrated systems approach. The absence of inter-
actions and dependencies between subsystems reduces
the cognitive complexity to a manageable level. In to-
day’s cars we do not find a totally federated architec-
ture nor an integrated one. In fact, the economic pres-
sure in the automotive industry requires system design-
ers to utilize the available communication resources for
more than one subsystem without protecting the re-
sources from mutual interference. For a deeper under-
standing consider an exemplary scenario with two sub-
systems. If the two subsystems share a common CAN
bus [21], then both subsystems must be analyzed and
understood in order to reason about the correct be-
havior of any of the two subsystems. Since the mes-
sage transmissions of one subsystem can delay mes-
sage transmission of the other DAS, arguments con-
cerning the correct temporal behavior must be based
on an analysis of both subsystems. In a totally feder-
ated system, on the other hand, unintended side effects
are ruled out, because the two subsystems are assigned
to separate computer system.



Dynamic Vehicle Control

Gateway

Body Control

C
 -C

A
N

B - CAN

Telematic Info

Telematic
Info

Television
capture

Camera TV

CAN for 
infotelematic

Body Computer 

Diagnosis
Serial Line

Engine 
Control

Automatic 
Gear

Adaptive
Cruise Control

Parking Brake

External 
lighting

positioning 

Break
Assistant

Clima

Door 
driver

side coltrol

Door 
passenger

side control

Instrument 
cluster

Passive Entry

Driver seat

Passenger seat

Diagnosis
Access for 

low speed CAN

Internal mirror
and internal light

Pneumatic 
Pressure
Sensor

Rain sensor

Lock siren

Proprietary
B

us

Immobilizer

G
PS,G

SM

CD
Changer

Wiper

Vehicle stability 
sensor

Angle steering 
sensor

Hi-Fii
Amplifier

Security, Sensoring

Steering wheel
sensor

Lock/Unlock
Steering wheel

Drive 
assistant

Airbag 

Trunk

Figure 2. The Electronic Infrastructure of a Fiat Car

4. An Architecture for Future Car Gen-
erations

This section describes the proposed integrated ar-
chitecture for future car generations. We start by dis-
cussing a hybrid top-down/bottom-up design strategy,
improving the currently prevalent ECU-centric devel-
opment process. The decomposing during the process
results in a set of DASs. Thereafter, we elaborate on
the DASs of a hypothetical future car and its consti-
tuting gateways. Finally, we show the physical struc-
ture of the integrated system.

4.1. Design Flow

The design flow of automotive distributed systems
can be decomposed into three phases, the requirement
analysis, the subsystem design, and the system inte-
gration phase [6] (see also Figure 3). As described
in [20, 24] an ECU-centric design process prevails in the
automotive industry. Such a bottom up process, how-
ever, bears significant drawbacks such as resource du-
plications, local instead of global quality-of-service op-
timization, and exponential growth in terms of system
integration costs. Furthermore, the number of the de-
ployed ECUs steadily increases to satisfy recent market

trends and the customer’s demand for new functional-
ity.

The DECOS architecture, by contrast, also supports
a top-down design approach. During the requirement
analysis the system integrator captures the require-
ments of the overall system (i.e. the car electronics)
and decomposes the system into nearly-independent
subsystems (i.e. DASs). The requirement analysis pro-
vides the foundation for all later design stages. Here,
the overall functionality of the system is specified and
subsystems are identified to enable an independent de-
velopment of DASs. As depicted in Figure 3 the result
of this design phase is a set of DASs that comprise the
electronic infrastructure of the car.

The structuring of the overall application function-
ality into DASs is guided by the following principles:

1. Functional Coherence. A DAS should provide a
meaningful application service (e.g., brake-by-wire
service of a car) to its users at the controlled ob-
ject interface. By associating with a DAS an appli-
cation service that is relevant in the actual appli-
cation context, the mental effort in understanding
the various application services is reduced. An ap-
plication service can be analyzed by solely consid-
ering the jobs of the DAS, the interactions to the
controlled object and the gateways to other DASs
(inter-DAS interfaces). In particular, it is not nec-



DAS

Job Job

DAS

Job Job

DAS

Job Job

DAS

Job Job

SYSTEM
INTEGRATION

REQUIREMENT
ANALYSIS

SPECIFICATION
OF EACH DAS

SPECIFICATION
OF EACH DAS

SPECIFICATION
OF EACH DAS

SPECIFICATION
OF EACH DAS

SYSTEM SPECIFICATION

Functional 
Design

Decomposition
           &
Detailed Design 

Vi
rtu

al
Ga

te
wa

ys

In
te

r-
D

A
S 

In
te

rf
ac

e

Virtual Gateways

In
te

r-
D

A
S 

In
te

rf
ac

e

DAS 
DESIGN

PortsPorts Ports PortsPortsPortsPorts Ports

o Input vs. Output
o ET vs. TT

o Input vs. Output
o ET vs. TT

o Input vs. Output
o ET vs. TT

o Input vs. Output
o ET vs. TT

Figure 3. Design Flow

essary to possess knowledge about the internal be-
havior of DASs, other than the one providing the
application service that is of interest.

2. Common Criticality. In general, the realization
of safety-critical services is fundamentally differ-
ent from the design of non safety-critical services.
While the first incorporate fault-tolerance func-
tionality and focus on maximum simplicity to fa-
cilitate validation and certification, the latter are
usually characterized by a larger amount of func-
tionality and the requirement of flexibility and re-
source efficiency. The integrated architecture takes
this difference into account by distinguishing be-
tween safety-critical and non safety-critical DASs
along with dedicated architectural services.

3. Infrastructure Requirements. A DAS pos-
sesses common requirements for the underlying in-
frastructure. A single virtual network is employed
for exchanging message within the DAS. Conse-
quently, common requirements (e.g., with respect
to dependability, bandwidth and latency re-
quirements, flexibility) are a prerequisite for
deciding on a particular virtual network pro-
tocol (e.g., time-triggered or event-triggered)
and a corresponding configuration (e.g., band-
width).

Whenever significant differences in the above as-
pects are present, such as missing functional coherence
or differences with respect to the infrastructure require-
ments, a DAS is split into smaller DASs for resolving
these mismatches.

This divide and conquer principle can only be re-
alized if the dependencies between DASs are made ex-

plicit in order to avoid hidden interactions (e.g., via the
controlled object) that may prevent a seamless system
integration. These DASs are then assigned and inde-
pendently developed by different vendors. In general,
each vendor may also depend on subcontractors to de-
liver the subsystem.

In order to ensure correct system integration the
specification of inter-DAS relationships is of high im-
portance. Inter-DAS interfaces as indicated in Figure 3
are used to specify common information within DASs
(e.g., sensor information), possible interrelationships
via the controlled object, and meta-functional aspects.
This way, resources can be shared among DASs, thus
avoiding resource duplication by eliminating sensors or
using redundant sensory information to improve de-
pendability.

The DAS design is typically performed by different
vendors with expert knowledge in particular applica-
tion domains (e.g., infotainment, braking systems). In-
dependent development of a DAS allows to adopt the
benefits of the federated systems design approach to
be incorporated into the integrated systems design ap-
proach.

Finally, the system integrator needs to unify the
separately developed subsystems into the overall sys-
tem. System integration unites the separately devel-
oped subsystems into the overall system. An integrated
system approach must provide solutions that reduce
integration time and efforts (and consequently reduce
integration costs). Smooth system integration is only
possible, if the inter-DAS interfaces have been precisely
specified and all vendors have performed implementa-
tions adhering to these interface specifications. During
system integrations three main tasks need to be per-
formed by the system integrator: the physical alloca-
tion of the jobs (of all DASs) to partitions taking de-
pendability and resource constraints into account, the
configuration of the virtual communication networks,
and the realization of the virtual and physical gate-
ways in order to provide emerging services.

4.2. Integrated System Structure of Car

In this subsection, we map the introduced electronic
infrastructure of today’s cars onto the DECOS inte-
grated architecture. In addition, we replace state-of-the
art powertrain domain functionality by by-wire sub-
systems to emphasize the suitability of the proposed
DECOS architecture for mixed-criticality applications
(i.e. safety-critical and non safety-critical applications).
We split up the existing domains (e.g., powertrain,
body) into smaller DASs. Smaller DASs are a key ele-
ment to achieve the DECOS goals with respect to com-



Internal 
Mirror and 

Light

Interior DAS

Clima

Driver
Door 

Passenger
Door 

Driver Seat Passenger 
Seat Lock Alarm

Lock/Unlock
Steering 
Wheel

Steering DAS (by-wire) Braking DAS (by-
wire)

FT Steering 
Angle Sensor 

1

FT Steering 
Actuator 

1

Brake 
Assistant

Parking
Brake

Brake
Left Front

Brake
Right Front

Brake
Left Back

Brake
Right Back

Powertrain DAS (by-wire)

Engine 
Control

Automatic 
Gear

Adaptive 
Cruise 

Controller 1

Vehicle Dynamics DAS
Yawrate/

Lateral Acc.
Sensor

Radar 1Camera 1

Passive Safety DAS

Airbag 
Driver

FT Steering 
Actuator 

2

FT Steering 
Actuator 

3

FT Steering 
Angle Sensor 

2

FT Steering 
Angle Sensor 

3

Yawrate/
Lateral Acc.

Sensor

Radar 2Camera 2

Airbag
Passenger

Side
Airbag

Side
Airbag

Adaptive 
Cruise 

Controller 2

FT Pedal 
Sensor 1

FT Pedal 
Sensor 2

FT Pedal 
Sensor 3

Energy and 
Powermanagement DAS 

Alternator
Voltage 

Regulation

BAS

Battery
Management

Voltage
Conversion 

Management

Start and 
Stop

Function

Virtual Time-Triggered Network Virtual Time-triggered Network

Keyless 
Entry Trunk

Virtual Time-Triggered Network

Virtual Time-Triggered Network Virtual Time-Triggered NetworkVirtual Event-Triggered Network

Virtual Time-Triggered Network

Instrument 
Cluster

Info DAS

Telematic 
Info CD Changer

Navigation TV

Camera Hi-Fi 
Amplifier

Driver Control DAS
Steering 
Wheel 

Buttons

External Lighting 
DAS

Light
Positioning 

Left

RadioDVD

Light
Positioning

Right

Virtual Event-Triggered Network

Virtual Time-Triggered Network

Virtual Event-Triggered Network

Figure 4. The Distributed Application Subsystems of the Integrated Automotive System

plexity management, independent development and er-
ror containment.

As described in Section 2.1, a DAS represents a
nearly-independent subsystem [26, chap. 8], because
it can be understood independently from the detailed
structure of other DASs, i.e. only based on the specifi-
cation of the jobs of the DAS and the gateways to other
DASs. The controlled export of information through
gateways enables the designer to abstract from the jobs
in other DASs, considering only the link specification
of the gateways [18].

The DECOS architecture encapsulates DASs both
at the level of the communication activities (through
encapsulated virtual network services [19]) and at the
level of the computational activities (partitions in ap-
plication computers [13]). Therefore, a design fault in
a DAS (e.g., a job with a babbling idiot failure [10])
cannot affect the communication resources (e.g., band-
width, guarantee of latencies) and computational re-
sources (e.g., CPU time) available to other DASs. Nat-
urally, the finer the subdivision into DASs, the more ef-
fective the encapsulation through the architecture be-
comes.

In a federated architecture, which assigns each DAS
to its own dedicated computer system, a strategy with
a large number of small DASs would not be feasi-
ble due to the cost resulting from increasing resource
duplication (via separate networks and ECUs). How-
ever, in our proposed integrated architecture, the re-
sulting larger number of DASs does not induce a larger
number of physical networks and ECUs. Each DAS is
provided as a virtual network on top of the physical
time-triggered network of the core architecture. Simi-
larly, the virtual gateways (see Section 4.3) for coupling
DASs do not induce any additional ECUs and connec-
tors.

Based on this line of reasoning, we introduce a finer
granularity of DASs compared to the domains of to-

day’s automotive architectures (see Figure 4):

• Steering DAS. With steer-by-wire the transmis-
sion of the wheel rotation to a steering move-
ment of the front wheel is performed with the
help of electronically controlled actuators at the
front axle. The main advantages in comparison
with conventional steering systems are improve-
ments with respect to crashworthiness, weight, and
interior design.

• Powertrain DAS. The functionality of this DAS
includes engine control, automatic gear control,
and adaptive cruise control.

• Braking DAS. The braking DAS comprises the
brake-by-wire functionality. Brake-by-wire sys-
tems remedy deficiencies of conventional hy-
draulic braking systems, such as aging of brak-
ing fluids, difficulties in routing of pipes, and
the inconvenient feedback during ABS brak-
ing. Brake-by-wire systems incorporate brake
power assist, vehicle stability enhancement con-
trol, parking brake control, and tunable pedal
feel.

• Vehicle Dynamics DAS. In the vehicle dynam-
ics DAS all sensory information that is relevant
for controlling the dynamics of the vehicle is cap-
tured. By exporting these real-time images to the
other DASs of the system the problem of resource
duplication can be significantly reduced. In addi-
tion, sensor-fusion algorithms [5] can combine the
measurements of different sensors to obtain more
accurate real-time images.

• Energy DAS. The main purpose of this DAS is
the optimization of the power distribution (elec-
trical energy and power management techniques)
for conserving the power available in the vehicle.



• Passive Safety DAS. The passive safety DAS in-
tends to keep the passengers in the car and effec-
tively decelerates the occupants in order to mini-
mize harm in case of a crash.

• Driver Control DAS. In every car the instru-
ments inform the driver about the current status
of the car. It is the task of this DAS to update
the instruments according to the information pro-
vided by the other DASs of the car. Furthermore,
the commands of the driver derived from the but-
tons on the steering wheel are processed and dis-
seminated to the respective DASs.

• Interior DAS. This DAS comprises the body
electronics of the passenger compartment and ac-
cesses fieldbus network, such as those embedded
in the doors and seats of the car. The functional-
ity of this DAS includes the control of the doors
(e.g., mirrors, window lifters), the seats (e.g., seat
adjustment, the position memory), the climate
control, and the lighting of the passenger compart-
ment. Furthermore, this DAS ensures that only au-
thorized persons have access to the car.

• Info DAS. Car drivers are no longer satisfied with
cars being simple means of transportation. To-
day’s luxury cars include GPS navigation systems,
DVD players and high-end audio systems. In addi-
tion, voice control and hands-free speaker phones
relieve the driver from concentrating on multime-
dia devices instead of traffic.

• External Lighting DAS. The external lighting
DAS controls the rear lights of the car, as well as
the position of the adaptive forward lighting.

The communication infrastructure provided to these
DASs depends on the respective criticality and regular-
ity of the communication activities. Time-triggered vir-
tual networks handle the communication exchanges of
all safety-critical and safety-relevant DASs. It has be-
come widely accepted that safety-critical automotive
applications employ the time-triggered control para-
digm [23], because this control paradigm permits to
guarantee a deterministic behavior of all safety-related
message transmissions even at peak-load. In addition to
hard real-time performance time-triggered control also
supports temporal composability and facilitates the re-
alization of fault-tolerance mechanisms. For this reason
the communication infrastructure for the steer-by-wire,
the brake-by-wire, the powertrain, the vehicle dynam-
ics, the passive safety and the external lighting DAS
are time-triggered virtual networks [19].

Event-triggered virtual networks, on the other hand,
are the communication infrastructure of choice for
those DASs having less stringent dependability re-
quirements. Here, the flexibility and the efficient use

of resources is more important than the determinism
provided by the time-triggered control paradigm. For
this reason, the jobs of the interior, power manage-
ment, driver control, and infotainment DAS are in-
terconnected by respective event-triggered virtual net-
works [19] in the presented architecture.

4.3. Gateways

By splitting the overall functionality of the car into
multiple DASs the need for a coupling of individual
DASs emerges. The presented architecture supports
gateways as a generic architectural services for the in-
terconnection of DASs. Gateways have significant ad-
vantages with respect to the elimination of resource
duplication and the tactic coordination of application
subsystems. In a large automotive system, different ap-
plication subsystems typically depend on the same or
similar sensory inputs and computations. Gateways al-
low to exploit system-wide redundancy of sensor in-
formation in order to increase reliability or reduce re-
source duplication. In addition, gateways permit the
coordination of DASs in order to improve quality of
control.

In the DECOS integrated architecture, we sharply
distinguish between architecture level and application
level. Based on this differentiation, we can identify two
choices for the construction of a gateway. A hidden
gateway performs the interconnection of virtual net-
works at the architecture level. Generic architectural
services – although parameterized by the application
requirements – are transparent to the jobs at the ap-
plication level. A visible gateway, on the other hand,
performs the interconnection at the application level.

A virtual gateway [18] interconnects two virtual net-
works of two respective DASs by forwarding informa-
tion contained in the messages received at the input
ports of one virtual network onto the output ports to-
wards the other virtual network.

In general, the semantic and operational properties
of the input ports at one virtual network can be dif-
ferent to the semantic and operational properties of
the output ports at the other virtual network. The re-
sulting property mismatch [4] is resolved by the gate-
way by performing transformations on the information
passing through the gateway. For syntactic transforma-
tions, the gateway requires a description of the syntac-
tic format (i.e. the data types) of the messages pass-
ing through the gateway and rules for transforming the
different syntactic transformations into each other. If
the DASs interconnected by the gateway exhibit dif-
ferent operational specification styles [14], the gateway
requires additional buffering functionality for the ex-
change of information between virtual networks with



Airbag 
Driver

Airbag 
Pass.

Virtual
Gateway

Virtual
Gateway

Yawrate/
Lateral Acc.

Sensor
FT Pedal
Sensor 3

Clima Driver
Door

LIN LEFT DOOR CLUSTER

Virtual Event-Trigged 
Network of the Interior DAS

Window 
Lifter 

Module

Mirror 
Module

Anti-
Puddle 
Lighting

Door 
Lock 

Module

Switch 
Panel

LIN RIGHT DOOR CLUSTER

Window 
Lifter 

Module

Mirror 
Module

Anti-
Puddle 
Lighting

Door 
Lock 

Module

Switch 
Panel

Physical 
LIN

Gateway

Physical 
LIN

Gateway

Vehicle Dynamics  DAS Passive Safety DAS

Virtual
Gateway

Engine 
Control

Automatic
Gear

Powertrain DAS Interior DAS

Figure 5. Physical and Virtual Gateways of the Interior DAS

varying rigidity of temporal specifications. For exam-
ple, such a scenario occurs, if one DAS operates time-
triggered and the second DAS operates event-triggered.

In addition, virtual gateways ensure encapsulation
by using a filtering specification in the value and tem-
poral domain in order to restrict the redirection of mes-
sages through the gateway. In general, only a fraction
of the information exchanged at one virtual network
will be required by jobs connected to the virtual net-
work at the other side of the gateway. By restricting
the redirection through the gateway to the informa-
tion actually required by the jobs of the other DAS, the
gateway not only improves resource efficiency by sav-
ing bandwidth of unnecessary messages, but also facil-
itates complexity control.

In addition to the interconnection of virtual net-
works, the presented integrated architecture offers ar-
chitectural gateway services for interacting with the en-
vironment via physical gateways. In general, the inter-
action of the computer system with the controlled ob-
ject and the human operator can occur either via a di-
rect connection to sensors and actuators or via a field-
bus network. The latter approach simplifies the instal-
lation – both from a logical and a physical point of view
– at the expense of increased latency of sensory infor-
mation and actuator control values.

Since the prevalent low-cost fieldbus protocol in the
automotive domain is LIN [17], the proposed architec-
ture supports physical LIN gateways, each acting as
a master for the slaves of the physical LIN bus. Fig-
ure 5, which exemplifies the role of hidden gateways in
the functional structure of the future automotive archi-
tecture, depicts two of these LIN gateways for the inter-
connection of the interior DAS with the LIN fieldbusses
located at the front doors. The driver door job and pas-
senger door job exchange information with the actua-
tors and sensors in the doors in order to control door
locks, window lifters, mirrors, and anti-puddle light-
ing.

In addition, Figure 5 also contains virtual gateways
for the interconnection of virtual networks. The interior

DAS constructs real-time images capturing the state of
the passenger compartment of the vehicle (e.g., status
of the doors, seats, lighting, climate control) that are
also important to other DASs. For example, the driver’s
weight as measured at a seat is an important parame-
ter for the passive safety DAS in order adapt air bags to
different passengers (e.g., children). The current tem-
perature inside and outside the car, which is captured
by the climate control subsystem, is another example
for a real-time entity that is significant beyond the in-
terior DAS. Temperature measurements are an essen-
tial input for physical models of sensors in other DASs
(e.g., powertrain DAS) and permit to improve the pre-
cision and plausibility of sensory information.

Adversely, other DASs need to be able to control
body electronics in the interior DAS. In hazardous sit-
uations, e.g., after the detection of a potential crash as
indicated by yaw rate and lateral acceleration sensors
(e.g., during skidding and emergency braking), the ve-
hicle dynamics DAS causes the tensioning of seat-belts,
realigning of seats to a safer positions.

4.4. Physical System Structure

The mapping from the functional to the physical sys-
tem structure needs to assign jobs to ECUs and virtual
networks to the time-triggered physical core network.
As exemplified in Figure 6, each ECU can host mul-
tiple jobs of different DASs. For instance consider the
ECU located in the left front of the car. On this ECU
one of the three jobs comprising the steering Triple
Modular Redundancy (TMR) system and the job pro-
viding the braking service of the left front tire are lo-
cated. Furthermore, the job controlling adaptive for-
ward lighting and the camera system of the left side
are scheduled on this component. In order to tolerate
arbitrary single component failures it is mandatory to
devise a mapping of jobs to ECUs in a way, that re-
dundant jobs are not hosted on the same ECU.

Similarly, the physical core network is the basis for
multiple virtual networks. In order to achieve the de-



ECU

ECU ECU

ECU

ECU

ECUECUECU

Star
Coupler

Star
Coupler

Time-Triggered
Core Network

LIN Fieldbus

External 
Rear 
Lights

External 
Rear 
Lights

Trunk
Control

Battery 
A

Battery 
B

Driver 
Door

Passenger 
Door

Back
Door

Back
Door

Door 
Passenger

Passenger 
Seat

Brake 
Assistant

Brake
Left Front

Battery 
Management

Instrument 
Cluster

FT Steering 
Actuator 1

Adaptive 
Cruise 

Controller 1

FT Pedal 
Sensor 1

FT Pedal 
Sensor 2

Light 
Positioning

Left
Camera 1

Engine 
Control

Automatic 
Gear

FT Steering 
Actuator 

2
Radar 1

Figure 6. Physical System Structure

pendability requirements of safety-critical DASs, the
physical core network relies on two central guardians [2]
for achieving fault isolation even in case of arbitrary
ECU failure modes. Fault injection experiments have
shown that for ultra-dependable applications restric-
tions concerning the failure modes of ECUs are unjus-
tified [1].

Another prerequisite for safety-critical applications
is the accumulation and generation based on dual bat-
tery solutions. A redundant power supply scheme pro-
vides the foundation for fault-tolerant energy supply
of safety-critical by-wire functionality also in case of a
failure of one power supply network.

In addition, Figure 6 shows the role of gateways in
the physical structure of a car. Physical LIN gateways
connect physical LIN clusters to the integrated system,
e.g., the LIN fieldbus within the doors of the cars are
connected to the ECUs located in the center of the car.

5. Discussion

This section summarizes the main benefits of the in-
troduced integrated automotive architecture and high-
lights the major design decisions. We will show that the
proposed architecture is inline with prevalent architec-
tural trends, such as reuse of functionality across dif-
ferent car segments and introduction of safety-critical
applications.

5.1. Economic Benefits

Present day automotive systems follow a federated
philosophy with different types of automotive net-
works [15]. The multitude of communication protocols
is a result of the different requirements with respect

to functionality, dependability, and performance of the
automotive DASs, such as the infotainment DAS, the
comfort DAS, or the powertrain DAS.

In contrast to these federated architectures, the inte-
grated architecture for future automotive systems pre-
sented in this paper allows to share network and com-
ponent resources among different DASs in order to
evolve beyond a “1 Function – 1 ECU” strategy and
achieve a significant reduction in the overall number of
ECUs. With an average cost of 40 Euro per ECU in to-
day’s cars and 0.2 Euro per wire, the total hardware
cost of a federated automotive system with 40 ECUs
and 800 wires is about 1800 Euro. If we assume that the
number of ECUs will be reduced to 30 nodes and the
number of wires to 500 in the integrated system, with
an increased average cost per ECU of 50 Euro, then to-
tal hardware cost is reduced by 200 Euro per car.

5.2. Complexity

A minimal complexity, i.e. a minimal mental effort
to analyze and understand a system, is one of the most
important design drivers of the presented integrated ar-
chitecture. Today, the unmanaged complexity of sys-
tems is the major cause of design faults. Complex-
ity increases the likelihood of serious, yet latent, design
flaws [9, p. 39]. In [16, p. 131] it is stated that complex-
ity of software and hardware causes a non linear increase
in human-error induced design faults. High system com-
plexity also prolongs development, which is detrimen-
tal to a company’s economic success, because today’s
business realities demand a short time-to-market. In
addition, complexity complicates validation and certi-
fication as state-of-the-art formal verification tools are
limited in the size of a design that they can handle.

In order to manage complexity, the presented in-
tegrated architecture enables designers to proceed in
such a way as if they were realizing DASs in a feder-
ated system. A DAS along with the corresponding com-
munication resources (virtual networks) and computa-
tional resources (partitions in components) is encap-
sulated and interactions between DASs are limited to
the exchange of messages via precisely specified hidden
gateways. Similar to a federated architecture, the in-
tegrated architecture decouples each DAS from other
DASs. Each DAS possesses a dedicated encapsulated
virtual network. A virtual network is private for a DAS,
i.e. other DASs cannot perceive or effect the exchanged
messages other than those being explicitly exported via
a gateway. By exercising this strict control over the
interactions between DASs, only the behavior of the
DAS’s virtual network and the behavior of gateways is
of relevance when reasoning about a DAS. The mes-
sage transmissions on other virtual networks can be



abstracted from. Similarly, each job executes in a cor-
responding partition, which forms an encapsulated ex-
ecution environment with guaranteed component and
network resources. The activities of jobs executing on
the same component cannot affect the component and
network resource that are available to other jobs in the
component.

By not only supporting error containment between
DASs, but error containment between jobs within a
DAS, the integrated architecture exceeds the error con-
tainment capabilities of most federated systems. Fur-
thermore, the integrated architecture offers generic ar-
chitectural services as a base line for application devel-
opment, thus decreasing the functionality that must be
realized at the application level. Such a slimmer appli-
cation is easier to comprehend and leaves less room for
software design faults. Only the interface between the
architecture and the application is visible to the appli-
cation developer, while the realization of the architec-
tural services remains hidden.

5.3. Dependability

Carmakers are on the verve of deploying by-wire
technology to improve the functionality of the vehicle
that goes beyond traditional hydraulic and mechanic
systems. This trend requires the deployed E/E archi-
tectures to meet the requirement for ultra-high depend-
ability [27] (a maximum failure rate of 10−9 critical fail-
ures per hour is demanded). Today’s technology does
not support the manufacturing of electronic devices
with failure rates low enough to meet these reliabil-
ity requirements. Since ECU failure rates are in the or-
der of 10−5 to 10−6, ultra-dependable applications re-
quire the system as a whole to be more reliable than
any one of its ECUs. This can only be achieved by uti-
lizing fault-tolerant strategies that enable the contin-
ued operation of the system in the presence of ECU
failures [3].

For this reason, the integrated automotive architec-
ture is based on a time-triggered base architecture with
a fault-tolerant and deterministic communication sys-
tem. The consistent distributed state with respect to
a global sparse time base is the basis for active redun-
dancy, such as TMR. Replicated star couplers use the
a priori knowledge about the points in time of commu-
nication activities to contain timing message failures,
thus offering fault isolation even with arbitrary ECU
failure modes [1]. In addition, the proposed architec-
ture offers redundancy of the power nets, supported by
electrical energy management techniques for the gener-
ation, the distribution, and the accumulation of power.

Furthermore, by decreasing the number of ECUs
and physical networks, the integrated automotive ar-

chitecture offers increased reliability by minimizing the
number of connectors and wires. Field data has shown
that a significant amount of electrical failures are at-
tributed to connector problems.

5.4. Flexibility

A newly developed E/E architectures is expected
to be deployable on different car segments and mod-
els. Consequently, the reuse of applications in a modu-
lar way is of critical importance. This issue also has an
impact on “Tier 1 system suppliers” that need to adapt
their subsystem design according to this trend. The us-
age of validated and possibly certified application soft-
ware in combination with standard physical ECUs on
different models and segments of vehicles will lead to
advantages in terms of increased volume, multi-supplier
management, and multi-platform management. In ad-
dition, not only software modules but complete elec-
tronic subsystems can be made available for different
vehicle platforms. This strategy also eases the design
choices for the interior of the car, due to the freedom of
decoupling application software from a particular phys-
ical node. The integrated automotive architecture pro-
vides a high degree of freedom in the allocation of jobs
to ECUs and supports the migration of jobs between
ECUs (constrained by dependability requirements).

6. Conclusion

Future car generations require computer architec-
tures to accommodate the need for mixed criticality
applications, i.e. supporting applications with ultra-
high dependability requirements as well as applications
where flexibility and resource efficiency is of primary
concern (e.g., comfort electronics). The introduced DE-
COS architecture establishes such an infrastructure
and also enables physical integration by combining
multiple DASs and virtual networks within a single dis-
tributed real-time computer system. Thus, the archi-
tecture reduces the number of different networks and
protocols.

The proposed integrated architecture exhibits flexi-
bility and supports reuse of application software across
different car segments. The key element for this flexibil-
ity, as well as for complexity management and the inde-
pendent development of subsystems, are small DASs.
Instead of the typical domain oriented system struc-
ture, we show that we can subdivide the overall func-
tionality of a car into smaller DASs, each equipped with
dedicated architectural services. By transforming a to-
day’s automotive system onto the future E/E architec-
ture, we have demonstrated the feasibility of the inte-
grated architecture for a future automotive system.



Acknowledgments

This work has been supported by the European IST
project DECOS under project No. IST-511764.

References

[1] A.Ademaj,H. Sivencrona,G.Bauer, and J.Torin. Eval-
uation of fault handling of the time-triggered architec-
ture with bus and star topology. In Proceedings of the
2003 International Conference on Dependable Systems
and Networks, pages 123–132, June 2003.

[2] G. Bauer, H. Kopetz, and W. Steiner. The central
guardian approach to enforce fault isolation in a time-
triggered system. In Proceedings of the 6th Interna-
tional Symposium on Autonomous Decentralized Sys-
tems (ISADS 2003), pages 37–44, Pisa, Italy, Apr. 2003.

[3] R. Butler, J.L.Caldwell, and B. Vito. Design strat-
egy for a formally verified reliable computing platform.
In Proceedings of the 6th Annual Conference on Com-
puter Assurance (COMPASS) Systems, pages 125–133,
Gaithersburg, MD, USA, June 1991. NASA Langley
Res. Center.

[4] C. Jones et al. Final version of the DSoS conceptual
model. DSoS Project (IST-1999-11585), Dec. 2002.

[5] W. Elmenreich. Sensor Fusion in Time-Triggered Sys-
tems. PhD thesis, Technische UniversitätWien, Institut
fürTechnische Informatik,Treitlstr. 3/3/182-1, 1040Vi-
enna, Austria, 2002.

[6] P. Giusto, A. Ferrari, L. Lavagno, J.-Y. Brunel,
E. Fourgeau, and A. Sangiovanni-Vincentelli. Automo-
tive virtual integration platforms: why’s, what’s, and
how’s. In Proceedings of the IEEE International Con-
ference on Computer Design: VLSI in Computers and
Processors, pages 370–378, Sept. 2002.

[7] R. Hammett. Flight-critical distributed systems: de-
signconsiderations [avionics]. IEEEAerospace andElec-
tronic Systems Magazine, 18(6):30–36, June 2003.

[8] H. Heitzer. Development of a fault-tolerant steer-by-
wire steering system. Auto Technology, 4:56–60, Apr.
2003.

[9] S. Johnson and R. Butler. Design for validation. IEEE
Aerospace and Electronic Systems Magazine, 7(1):38–
43, Jan. 1992.

[10] H. Kopetz. Real-Time Systems, Design Principles for
Distributed Embedded Applications. Kluwer Academic
Publishers, Boston, Dordrecht, London, 1997.

[11] H. Kopetz and G. Bauer. The time-triggered architec-
ture. IEEE Special Issue on Modeling and Design of Em-
bedded Software, Jan. 2003.

[12] H. Kopetz and R. Obermaisser. Temporal composabil-
ity. Computing & Control Engineering Journal, 13:156–
162, Aug. 2002.

[13] H. Kopetz, R. Obermaisser, P. Peti, and N. Suri. From
a federated to an integrated architecture for depend-
able embedded real-time systems. Technical Report 22,
Technische Universität Wien, Institut für Technische
Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria,
2004.

[14] H. Kopetz and N. Suri. Compositional design of RT sys-
tems: A conceptual basis for specification of linking in-
terfaces. In Proceedings of the 6th IEEE International
Symposium on Object-Oriented Real-Time Distributed
Computing, pages 51–60, May 2003.

[15] G. Leen and D. Heffernan. Expanding automotive elec-
tronic systems. Computer, 35(1):88–93, Jan. 2002.

[16] N. Leveson. Software safety: why, what, and how. ACM
Comput. Surv., 18(2):125–163, 1986.

[17] LIN Consortium. LIN Specification Package Revision
2.0, Sept. 2003.

[18] R. Obermaisser, P. Peti, and H. Kopetz. Virtual gate-
ways in thedecos integratedarchitecture. InProceedings
of the Workshop on Parallel and Distributed Real-Time
Systems 2005 (WPDRTS). IEEE, Apr. 2005.

[19] R. Obermaisser, P. Peti, and H. Kopetz. Virtual net-
works in an integrated time-triggered architecture. In
Proceedings of the Tenth IEEE International Work-
shop on Object-oriented Real-time Dependable Systems
(WORDS2005), Feb. 2005.

[20] G. Reichart and M. Haneberg. Key drivers for a future
systemarchitecture in vehicles. InConvergence Interna-
tional Congress, Detroit, MI, USA, October 2004. SAE.

[21] Robert Bosch Gmbh, Stuttgart, Germany. CAN Speci-
fication, Version 2.0, 1991.

[22] J. Rushby. Partitioning for avionics architectures: Re-
quirements, mechanisms, and assurance. NASA Con-
tractor Report CR-1999-209347, NASA Langley Re-
search Center, June 1999. Also to be issued by the FAA.

[23] J. Rushby. A comparison of bus architectures for safety-
critical embedded systems. Technical report, Computer
Science Laboratory, SRI International, Sept. 2001.

[24] A. Saad and U. Weinmann. Intelligent automotive
system services: Requirements, architectures and im-
plementation issues. In Convergence International
Congress, Detroit, MI, USA, October 2004. SAE.

[25] A. Sangiovanni-Vincentelli. Defining platform-based
design. EEDesign of EETimes, February 2002.

[26] H. Simon. The Sciences of the Artificial. MIT Press,
1996.

[27] N. Suri, C. Walter, and M. Hugue. Advances In Ultra-
Dependable Distributed Systems, chapter 1. IEEE Com-
puter Society Press, 10662 Los Vaqueros Circle, P.O.
Box 3014, Los Alamitos, CA 90720-1264, 1995.

[28] J. Swingler and J. McBride. The degradation of road
tested automotive connectors. InProceedings of the 45th
IEEE Holm Conference on Electrical Contacts, pages
146–152, Pittsburgh, PA, USA, Oct. 1999. Dept. of
Mech. Eng., Southampton Univ.


