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Abstract

The competition on clients attention requires sites
to update their content frequently. As a result, a
large percentage of web pages are semi-dynamic, i.e.,
change quite often and stay static between changes.
The cost of maintaining consistency for such pages
discourages caching solutions. We suggest here an in-
tegrated architecture for the scalable delivery of fre-
quently changing hot pages. Our scheme enables sites
to dynamically select whether to cyclically multicast a
hot page or to unicast it, and to switch between mul-
ticast and unicast mechanisms in a transparent way.
Our scheme defines a new protocol, called httpm. In
addition, it uses currently deployed protocols, and dy-
namically directs browsers seeking for a URL to multi-
cast channels, while using existing DNS mechanisms.
Thus, we enable sites to deliver content to a growing
number of users at less cost and during denial of ser-
vice attacks, while reducing load on core links. We
report simulation results that demonstrate the advan-
tages of the integrated architecture, and its significant
impact on server and network load, as well as clients
delay.

1 Introduction

The efficient and timely delivery of web content is
one of the most important challenges in today’s Inter-
net industry and research community. Sites need to
cut delays while delivering content to a large number
of users. This need, along with the high costs of band-
width at the Internet core, drives the large sites to use
caching and content delivery networks (CDNs) [13,4].
However, in their competition to attract users to return,
sites alter content more frequently than before. Infor-
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mation and objects stored on web servers change quite
frequently, often every few minutes (e.g., news flashes,
bids, stock quotes) [14]. Recent studies suggested that
caches or CDNss are responsible for not more than 50%
of the content delivered to users [20, 26].

The question that arises is which type of objects
change often, and what is the access pattern to highly
changed objects. Breslau at al. [6] determined that
page request distribution follows a Zipf-like distribu-
tion, but found a weak correlation between access fre-
quency and the rate of change. Douglis at al. [14]
found that 16.5% of resources that were accessed at
least twice were modified every time they were ac-
cessed, and almost half of the text/html resources
changed on each access after the first. [21] found that
a large part of users requests, and over half of the re-
peated requests, are to modified files. Access pattern
to files follows, as reported in many papers, a Zipf-like
distribution [6, 14, 18, 21]. Moreover, the alpha pa-
rameter, as seen by the server, is larger than previously
reported, and is in the range of 1.4 - 1.6. This implies,
for instance, that just the top 2% of documents account
for 90% of the accesses. They also found that the pop-
ularity of hot pages tends to be stable over time scale
of days.

In this paper we target this phenomenon by pre-
senting an architecture that enables sites to deliver fre-
quently changing information to (an almost) unlimited
number of users, in an efficient and scalable manner.
Our architecture targets the top 2% hottest pages of
busy sites, which account for the majority of accesses
[21]. At the heart of the architecture is a dynamic dis-
tribution selection mechanism that enables the server
to identify an increase in demand and to activate cyclic
multicast delivery for high demand pages before the



site performance decreases. When demand abates our
mechanism reverts to unicast delivery. We show how
this scheme can be transparently integrated into the
current web operation mode in a transparent way, re-
quirinng a simple plug-in at the client side. We supply
mechanisms based on current DNS to dynamically di-
rect browsers seeking URLs to multicast channels. To
do so, we define a new protocol specifier, called httpm,
which replaces the http protocol specifier for the po-
tential hot pages.

The integrated architecture model is designed in a
way that requires minimal changes to current architec-
tures, and relies mainly on existing mechanisms. For
the deployment of our architecture we suggest two dif-
ferent schemes, which are based on existing building
blocks. We use the digital fountain protocol [7] that
offers an excellent tradeoff between transmission time
and efficiency, for reliable data multicast. Into this
protocol we integrate a feedback mechanism based on
[5], which enables the site to estimate the size of a
hot page multicast group. Both schemes are altered
to handle the multicast of dynamically changing con-
tent. Our simulation results show that when switching
from the unicast of a hot page to the multicast mech-
anism, the load on the server decreases significantly,
while both the throughput and the goodput clients ex-
perience increase, and may arrive to 4 times the data
received in the HTTP model. In the Integrated archi-
tecture clients experience a much lower delay than in
the HTTP architecture. In addition, the load on core
links decreases, thus enabling TCP users to receive
better performance.

2 Integrated Architecture Description

The integrated WWW architecture was designed to
allow a smooth transition from TCP based connections
to a multicast based mechanism for uncachable hot
pages. The architecture is based on a dynamic selec-
tion mechanism, which determines which of the hot
pages should be multicast, based on inputs received
from both the relevant TCP connection requests and
UDP feedback information mechanism.

2.1 Server Side

The site is responsible for maintaining the hot page
selection and multicast mechanisms. It predetermines
a list of pages which are candidates for becoming hot
pages. These pages are given the httpm protocol pre-
fix. This list is quasi-static (e.g., Krishnan et al. [18,
Fig. 12] showed that the list of popular entities is quite
stable, in a medium size site they examined) and thus
can be predetermined by the site’s administrators off-
line. The list can be edited to reflect the relatively slow

changes in the popularity of pages, which may demand
configuring new entries or deleting existing ones at the
DNS.
The dynamic selection mechanism is activated for
each of the potential hot pages. It processes the num-
ber of incoming connection requests for them. Once
a threshold has been crossed for one of the pages, the
server begins the process of moving it to the multicast
mechanism. It then notifies the DNS of the new ad-
dress for the appropriate entry.
Once the page is multicast, new connection requests
for it are answered with a 3xx HTTP response. This re-
sponse indicates which multicast address to join, and
specifies the needed plug-in. The response has to be
determined as part of the HTTP protocol specification.
When the page is multicast, the server periodically
estimates the size of its multicast group. When the
estimation drops below a predefined threshold, the site
distribution selection mechanism reverts the page from
cyclic multicast back to unicast, and notifies the DNS
of the new address, the server IP address. While mul-
ticast is beneficial for periods of high load, an estima-
tion of the amount of needed resources at other times
show it is less beneficial ([2]). Unnecessary edge links
are loaded due to the propagation time of prune mes-
sages. This unnecessary load at edge networks impacts
the performance other clients, and therefore should be
avoided when possible. It is clear that at high load
times, multicast is better than concurrent unicast.
Switching a page from multicast to unicast requires
an overlap period, in which existing members of the
group finish receiving the page while new joiners are
directed to unicast. Therefore, the page is still multi-
cast for a few more rounds, and then a diversion code,
which can be recognized by the client browser, is mul-
ticast for another period. In this last step the multicast
group is terminated.

2.1.1 Existing Building Blocks
For the multicast mechanism we incorporate two ex-
isting building blocks. The digital fountain [7] pro-
vides an efficient multicast mechanism. Reliability is
achieved without the use of feedback messages from
clients, and at minimal costs. The digital fountain re-
quires an encoding system at the sending side, i.e., the
site, and a decoding mechanism at the receiving side,
i.e., the client. In the scheme, a page F;, which con-
sists of a set of k packets, is encoded into a set of k + ¢
packets, such that £ of which are redundant, to a total
of n. All n packets are sent cyclically over time.

The second building block we use is based on the
feedback control mechanism presented by [5], origi-
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Figure 1. The Site Distribution Selection Mechanism

nally intended for multicast video distribution. It re-
quires all participants of a multicast group to generate
a random key of 16 bits. The sender sends its key, and
awaits an answer from receivers with a matching key.
Each period the key is sent with mask of increasing
length, until an answer is obtained. Answers also con-
tain the state of the net as perceived by receivers, for
rate control mechanisms and timing.

2.1.2 Site Distribution Selection Mechanism
As can be seen in Figure 1, the dynamic selection

mechanism (DSM) is part of the site’s software, which
determines whether hot pages are unicast or multicast.
The DSM is given the following parameters: List of
potential hot pages: This list is predetermined by the
site’s administrators. (As a result of the quasi-static
nature of the list).

Unicast to multicast threshold: This threshold is actu-
ally the number of simultaneous connections that the
site cannot tolerate for any one page, and would rather
carry the expenses of the multicast delivery. For ex-
ample, let us assume that it takes an average of 2 sec-
onds to deliver a hot page, when the server is not over-
loaded and the net is not congested. (For simplicity,
we assume the page requires only one connection, as
is specified in HTTP1.1). If, during a minute time, the
server receives 300 requests for that page, then it has
to reserve 10 simultaneous connections throughout the
minute for the delivery of this page only. We formalize
this discussion in the following way: Let A; be the av-
erage time estimated for any one connection to a page
P;. Let us define the number of requests to F, in the
j the period of time (typically a minute) by R/. Let T;
be the connection threshold, set by the site administra-
tors, for page F;. Let S7 = R! - A,.

Then, the following conditions should be met, for the
DSM to decide to multicast page B;: Threshold

kel0.m]:SI7F >

Monotonically non-decreasing
kef0.m—1]:8%>g/*1

The range k£ € 0..m determines the number of peri-
ods, in which the conditions above should hold. This
interval is needed to determine a pattern, rather than a
momentary deviation in requests rate. For example, let
m = 3. In this case we get that during 3 consecutive
periods (minutes) there was a raise in demand for page
P;, and the demand was above the threshold, 7;;
Multicast to unicast threshold: This threshold is the
number of connections that the site can tolerate for a
hot page P;. When this threshold is met during several
consecutive estimations done at the DSM, and each
time the size of the multicast group decreases, then
the DSM switches the page from the cyclic multicast
scheme to the HTTP unicast one. As discussed above,
this switch is done to decrease potential unnecessary
overhead encountered at the edges at low load times.
The DSM obtains the data it needs from two
sources: One is the HTTP connections requests, and
the other is a counting feedback mechanism. Ob-
taining the number of requests per hot page is rather
straight forward, and involves simple lookup mecha-
nisms. To obtain an estimation of the size of the group,
a feedback mechanism based on [5] is activated. This
mechanism is part of the multicast mechanism, and
will be detailed there.
We assume here that as long as IPv6 is not embedded,
multicast addresses constitute a precious resource, that
might be rather expensive. Therefore, a site will be
able to acquire, either due to the price or due to regu-
lations, only a limited amount of such addresses, and
share them between its current hot pages. Thus, even
in the absence of high maintenance costs for multicast,
a site will be able to use multicast only for a small sub-
set of its pages.



2.1.3 The Multicast Mechanism

Since pages change dynamically, a page which is cur-
rently transmitted may change on disk. A major re-
quirement in our scheme is to incorporate the change
as fast as possible, as users rather have an up-to-date
version, if one exists. For this purpose, the header of
each multicast packet contains a continuous bit. When
a page changes on disk, the new version of the page is
multicast in the following round, and the bit is toggled.
The decoder at the clients side assemblies packets with
the same value in the continuous bit. If a change is de-
tected, then the decoder discards all packets obtained
so far, and starts assembling the packets again, until
it can reconstruct the page. Since a change in content
occurs only when a new round of the cyclic multicast
begins, one bit is sufficient. In our suggested scheme
the site uses only one channel per page. The site en-
codes the page for some initial loss rate (for example
10%) and sets the digital fountain’s stretch factor ac-
cordingly. The encoded information is sent in a rate
calculated to match the slowest client possible. Once
in a few rounds, the feedback mechanism is activated.
The mechanism is used to estimate both the size of the
group (for the DSM) and the current loss rate in the
net. Since data is transmitted at a low rate, no rate
control mechanism is needed.

The packets in this round contain: The key field, which
consists of 16 bits, and contains a randomly selected
set of 16 bits; The mask field, which is a byte long,
and specifies the number of masks bits in the key. The
value of the mask field is determined by the increase in
requests rate exhibited at the DSM for this page. Let
RM =Max R/, j € 7. Then, the value of the mask
field is logRM .

If no answer was received during this round, the mask
field is incremented by one, and the new mask field is
sent in the next round. The process repeats until an-
swers are obtained.

The client’s decoder, upon receiving a packet contain-
ing these two fields, randomly picks a key of 16 bits. If
the first mask digits are the same as in the site’s key, it
counts the exact number of packets it needs to recon-
struct the page, and delivers this information back to
the site, along with the read value of the mask field.
The site then estimates the size of the group from the
number of responses obtained for a round, according
to the mask field reported. It can also estimate the con-
gestion along the way to the users by the number of
packets received until the page could be reconstructed.
If this number is bigger than the number of packets
sent in a cycle, then the stretch factor is incremented,

thus increment the amount of encoding information
sent.

2.2 Client Side

Browsers at the client side require an additional
plug-in. This plug-in identifies an htzpm address, and
acquires its IP address from the DNS. The plug-in then
determines whether the address is a server’s IP or a
multicast address. In the case it is a multicast address,
the client joins the multicast group, and activates a de-
coder, that decodes packets received using the digital
fountain scheme. During the decoding process, control
information sent along with the packets is processed,
and the plug-in acts upon it. For further details, includ-
ing details on A#tpm address resolution, see [12].

3 Simulation Results

In this section we show how our architecture affects
performance for both clients and sites. Other works
[9, 8] examined the efficiency of multicast at the
network level. Our objective is to provide a first order
understanding of both the throughput seen by clients
and the load on the server at peak times. We use the
ns-2 [1] network simulator, which accepts Internet-
like random topologies with a power law relationship
of the node degree (based on [16]). We simulated a
WAN network as a network of Autonomous Systems
(AS’s). Each AS represents either a 10 Mbps LAN or
a 56Kbps dial-up line switch with active web clients.
Dial-up line switches have very low connectivity. A
web server is located in one of the backbone ASs,
connected through a dedicated router, and supports a
large number of concurrent connections. The server
has seven available Web pages of different sizes and
popularity. Further details on the simulation and our
results that do not appear here due to lack of space can
be obtained at [12].

We categorize our results by three criteria:
Goodput: The amount of data bytes sent by the server
vs. the amount of data bytes received by the users.
Figure 2 show the amount of data sent and received in
both architectures.In order to increase the load in the
Integrated model, the users request pages at 4 times
the rate of users in the HTTP model. The results show,
that in the HTTP model, the higher the load, relatively
less data is received, up to 30% less received than sent
at peak times. In the Integrated model, on the other
hand, even at peak periods, the users receive up to 4
times the data sent by the server.

Server Load: The server load is obtained from sev-
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eral different statistics. First, we examine the ratio be-
tween established connections and available out chan-
nels (i.e., ports). Obviously, the server is overloaded
when there are awaiting established connections in the
queue, and all out channels are busy. Other criteria are
the amount of dropped connections from the connec-
tion request queue, as well as the rate of establishing
connections. Our results show, as can be seen in fig-
ures 3 , 4 that when the hot pages are multicast, the
server load decreases dramatically.

Clients Seen Delay: We measured here the delay per-
ceived by clients in both architectures as a function
of time, while increasing the load with time until we
saturate the server. The results show quite clearly
that clients in the Integrated model receive these pages
much faster than in the HTTP model. Figure 3 shows
the amount of time it takes users in both architectures
to receive pages 6 and 7, the hot pages that are multi-
casted in the integrated architecture. The results show
quite clearly that clients in the Integrated model re-
ceive these pages much faster than in the HTTP model.
Furthermore, it is beneficial to multicast these pages
even if the server is not loaded. As the load increases,
our results show that the delay a user suffers in the
HTTP model can be 4 times the delay in the Integrated

model. Additional results we obtained proved that our
Integrated Architecture saves extra delay imposed by
the TCP flow control mechanism, that adapts to a con-
gested network. We also concluded, that one of the
reasons for the degradation in performance seen by
clients at peak times is the congestion in core links.
The closer the link is to the server, the more congested
it can become. Although the TCP congestion control
mechanism tries to limit the effect of such peak times,
by exhibiting a social behavior, the effect on both the
site and the client is big. The site retransmits an exten-
sive amount of packets until the TCP slow start mech-
anism takes effect, while the client experiences degra-
dation in performance. The use of multicast mecha-
nism for the delivery of hot pages, reduces both the
traffic on core links, and the load on the server. Clients
which connect by http at such times receive better ser-
vice, and the amount of retransmission decreases sig-
nificantly.

4 Conclusions

Frequently changing web content requires the use
of new mechanisms for its scalable delivery. Our
integrated architecture enables the efficient and scal-
able delivery of such content. Its main advantage is



its simplicity and transparency to users. Our results
show that it allows sites to serve a growing amount
of users at times of peak in load without experiencing
performance degradation. Users delay decreases sig-
nificantly, and both goodput and throughput quadru-
ple. An important conclusion from our simulations is
that, many times, performance degradation is due to
increased load on core links. This increase is caused
from the large amount of concurrent connections to
sites, all aimed to get the exact same information. The
result is congested links, which have the immediate
effect of increasing the load on both the sites and the
links in the short run because of retransmissions. Our
scheme solves this problem by using multicast at such
times, thus enabling economical use of core links.
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