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Abstract

Background: Cancer and other disorders are due to genomic lesions. SNP-microarrays are able to measure
simultaneously both genotype and copy number (CN) at several Single Nucleotide Polymorphisms (SNPs) along
the genome. CN is defined as the number of DNA copies, and the normal is two, since we have two copies of
each chromosome. The genotype of a SNP is the status given by the nucleotides (alleles) which are present on the
two copies of DNA. It is defined homozygous or heterozygous if the two alleles are the same or if they differ,
respectively. Loss of heterozygosity (LOH) is the loss of the heterozygous status due to genomic events.
Combining CN and LOH data, it is possible to better identify different types of genomic aberrations. For example, a
long sequence of homozygous SNPs might be caused by either the physical loss of one copy or a uniparental dis-
omy event (UPD), i.e. each SNP has two identical nucleotides both derived from only one parent. In this situation,
the knowledge of the CN can help in distinguishing between these two events.

Results: To better identify genomic aberrations, we propose a method (called gBPCR) which infers the type of
aberration occurred, taking into account all the possible influence in the microarray detection of the homozygosity
status of the SNPs, resulting from an altered CN level. Namely, we model the distributions of the detected
genotype, given a specific genomic alteration and we estimate the parameters involved on public reference
datasets. The estimation is performed similarly to the modified Bayesian Piecewise Constant Regression, but with
improved estimators for the detection of the breakpoints.
Using artificial and real data, we evaluate the quality of the estimation of gBPCR and we also show that it outper-
forms other well-known methods for LOH estimation.

Conclusions: We propose a method (gBPCR) for the estimation of both LOH and CN aberrations, improving their
estimation by integrating both types of data and accounting for their relationships. Moreover, gBPCR performed
very well in comparison with other methods for LOH estimation and the estimated CN lesions on real data have
been validated with another technique.

Background
Although most of the human genome is identical among

individuals, there are about 10 million single nucleotide

polymorphisms (SNPs) which distinguish us [1]. SNPs

are single base-pair loci where the nucleotides can

assume two possible values (called alleles) among the

four bases (thymine, adenine, cytosine, guanine). In gen-

eral, since we have two copies of each chromosome, the

genotype at any SNP can be: AA, BB or AB, where

A and B represent the two alleles. Moreover, a SNP can

be classified as homozygous (i.e., AA or BB) or

heterozygous (i.e., AB), whether or not its genotype

consists of two equal alleles. Cancer and several human

diseases are caused by genomic aberrations, which can

affect the homozygous status and/or the DNA copy

number (the normal copy number, CN, is two since we

have two copies of each chromosome, except for the

chromosomes X and Y). The former type of aberrations

is often displayed by unusual long stretches of homozy-

gous SNPs, called loss of heterozygosity (LOH) region.

The latter type of aberrations consists in genomic

regions with DNA copy number different from two.

In general, LOH can arise by several mechanisms, such

as deletions and germ-line or somatic recombinations.

When the LOH occurs without a change in copy number,
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it is referred to as copy-neutral LOH (or sometimes run

of homozygosity, ROH). In the past, copy-neutral LOH

regions were usually explained as a consequence of an

uniparental disomy event (UPD), see [2]. Recently, long

homozygous segments have also been detected in gen-

omes of normal individuals, supporting the hypothesis

that some copy-neutral LOH segments might represent

autozygosity (see, for example, [3-5]). In the literature, it

has been shown a relationship between some tumors and

both types of aberrant events (see, for example, [6-8]).

Uniparental disomy (UPD) occurs when both homolo-

gues of a part of a chromosome are inherited from only

one parent. It can be divided in: uniparental isodisomy

(when the two copies are two replicates of one homolo-

gue of one parent) and the uniparental heterodisomy

(when both homologues are inherited from the same

parent). Because of meiotic recombination, a mixture of

both events is also possible, and similar events can also

happen during the mitosis. Moreover, in cancer cells,

the uniparental isodisomy can also occur when a homo-

logue of a part of a chromosome is lost and the remain-

ing homologue is duplicated. The autozygosity describes

a situation where the homologues are identical by des-

cendent (IBD), because they are inherited from a com-

mon ancestor. Inbreeding is usually uncommon because

of laws and social conventions, but it does occur in

small isolated populations.

SNP microarrays are able to measure simultaneously

both the DNA copy number and the genotype at each

SNP position considered [9]. We call LOH data the

homozygous status of the SNPs deduced from the geno-

typing data. By integrating the information given by

both LOH and copy number data, we can better identify

several types of lesions of the genome (regarding combi-

nations of both DNA copy number and LOH aberra-

tions). For example, when one copy of a chromosomal

segment is deleted, we usually detect a long stretch of

homozygous SNPs (since the genotype calling algorithm

is unable to distinguish between the presence of only

one copy and the presence of two equal copies), but the

same homozygous status can also occur for other rea-

sons, such as uniparental disomy. In this situation, the

knowledge of both types of data can lead to the correct

interpretation of the phenomenon, while with only one

type of data it would not be possible. Another example

is when an amplified genomic segment is present: if one

of the two copies of the segment is highly amplified,

then even the heterozygous SNPs will be likely detected

as homozygous, because the DNA quantity of one allele

is much higher than the other one. In this case again,

the integration of both types of data is able to better

identify the dosage of the DNA aberration.

Many methods have been developed for the estimation

of the copy number profile (see, for example, [10-14])

and others for the discovery of LOH regions from the

genotyping data, without distinguishing if they are

caused by either the loss of one copy or other genomic

events like uniparental disomy or autozygosity (see, for

example, [15,16]). To the best of our knowledge, only

one method integrates these two types of data for the

estimation of both copy number aberrations and copy-

neutral LOH regions and it uses a hidden Markov

model (HMM) [17]. Other statistical procedures use the

information regarding both the total and the allelic copy

number to infer these kind of lesions (for example,

[18-24]) and some of these algorithms are available only

for the analysis of data coming from Illumina Beadar-

rays. Finally, in [25] the authors describe an HMM with

the same purpose, which employs the allelic copy num-

ber data from a tumor sample and the genotyping data

from the matched normal sample.

Here, we propose a method which estimates the copy

number changes and the copy-neutral LOH regions at

the same time, using both LOH and DNA copy number

data. The estimation procedure consists of a Bayesian

piecewise constant regression, thus we call our algo-

rithm genomic Bayesian Piecewise Constant Regression

(gBPCR). Our model is more general than [17], since

the latter cannot be applied to data, whose DNA sample

come from a mixture of cell populations (which is

usually the case for samples of patients affected by can-

cer). Moreover, the algorithm in [17] needs the specifi-

cation of some parameters by the user and is sensitive

to their values.

Our method was implemented in R and is freely avail-

able at http://www.idsia.ch/~paola/gBPCR/ or in Addi-

tional file 1. Furthermore, an R package will be soon

available.

Methods
Because of the complexity of the biological model, we

first describe a preliminary simplified model (called

Model 1), which only estimates the copy number events

exploiting the relationship between copy number and

LOH data. Therefore, it does not identify copy-neutral

LOH regions (called IBD/UPD regions), which are due

to events like uniparental disomy, and it does not distin-

guish the normal regions from the gained one (because

we suppose that the capability of detection of the homo-

zygous status is the same in these two types of regions).

In the subsequent subsections, we add to the model the

detection of copy-neutral LOH regions (Model 2) and of

gained ones (Model 3). Therefore, the explanation is

structured in the following way:

• Model 1: relationship between LOH and copy

number data to detect copy number changes (apart

from the gained regions);
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• Model 2: addition to Model 1 of the IBD/UPD

region detection (i.e. determination of copy-neutral

LOH regions);

• Model 3: addition to Model 2 of the gained region

detection.

Each of the three models is contained in the subse-

quent. The final model (Model 3) represents our algo-

rithm for the estimation of both copy number changes

and copy-neutral LOH regions and we call it genomic

Bayesian Piecewise Constant Regression (gBPCR).

Model 1: relationship between LOH and copy number

data

Although in nature the copy number is an integer, the

raw copy number values detected by the microarray are

usually continuous values, due to technical procedures.

Moreover, the samples often contain also a percentage

of normal cells.

It is common practice to treat copy number data in a

log2ratio scale (where the ratio is defined with respect

to a normal reference dataset) which makes the errors

approximately normally distributed. Then, the copy

number profile is estimated as a piecewise constant

function (i.e. the genome is divided in regions of con-

stant copy number), where the levels assume real values.

For the purpose of our model, we estimate this profile

by mBPCR, which is a Bayesian piecewise constant

regression procedure [14]. It has been shown in [14]

that this method outperformed well-known other meth-

ods on several datasets.

Commonly, in biomedical/cancer research, after esti-

mating the log2ratio profile, the copy number aberra-

tions are defined as those regions with values outside an

interval around zero (notice that, in the log2ratio scale,

zero represents CN = 2, i.e. a normal copy number).

Often, the interval is a statistical confidence interval

computed on the basis of the samples of the whole

dataset.

In Model 1, our aim is to classify better the copy

number changes, trying to reduce the number of false

positives, by exploiting the relationship between copy

number and LOH data.

Mathematical model of the biology mechanism

The aim of Model 1 is to obtain a better estimation of the

true underlying copy number events, using both the

information given by copy number and LOH data. In a

genomic region, a copy number event is defined as a par-

ticular class of copy number values. The definition of the

categories into which the copy number values are divided

will follow from the description of the LOH data.

For the purpose of better identifying the copy num-

ber events, we can consider two classes of SNP

values: Heterozygosity (Het) and Homozygosity

(Hom). Thus, the LOH data are deduced from the

genotyping data, by mapping the genotypes AA and

BB into Hom and the genotype AB into Het, for all

SNPs. The genotype calling algorithm (e.g. BRLMM

[26]) is unable to distinguish between a homozygosity

due to the presence of two equal nucleotides or the

one due to the loss or high amplification of one of

them. Hence, the presence of heterozygosity can

ensure that the copy number is normal or gained

with a high probability, while the homozygosity can

be due to different events. It follows that there are

only four relevant classes of copy number events that

can be distinguished by looking at the LOH data.

Therefore, if we call Z i
 the random variable which

represents a copy number event at SNP i , it can

assume only the following values:

• Z i
 = 2, when CN > 4 (amplification);

• Z i
 = 0, when 1 < CN ≤ 4 (normal or gain);

• Z i
 = -1, when CN = 1 (loss);

• Z i
 = -2, when CN = 0 (homozygous deletion).

The homozygous deletion corresponds to the loss of

both copies of a genomic region. Ideally, the genotype

calling algorithm should detect a NoCall genotype at

the corresponding SNP position (i.e. it should not be

able to identify the genotype of the SNP). Although not

common, since cancer DNA samples usually contain a

mixture of normal and tumor cells (with also different

cancer cell subpopulations), the information given by

the NoCall genotype can be used to better distinguish

between a mono-allelic deletion and a bi-allelic (homo-

zygous) deletion.

Therefore, three different LOH variables are present

in the model: the true homozygous status in normal

cells (XN), the homozygous status in abnormal cells

(X), which is the consequence of copy number changes

(in Model 1 we do not consider other biological

events), and the homozygous status detected by the

genotype calling algorithm (Y). The components of the

first two random vectors can assume only values in 
= {Het, Hom} and  * = {∅, Het, Hom}, respectively,

and we suppose that they are independently distributed

as Bernoulli random variable. The components of Y

can assume values in  = {NoCall, Het, NHet} (NHet

stands for “not heterozygous”, since the genotype call-

ing algorithm cannot distinguish between two equal

nucleotides, i.e. homozygosity, and the loss of one

copy).

A summary of the model can be found in Figure 1

and a summary of the notations is in Table 1. Ideally, at

each SNP i, the homozygous status in abnormal cells Xi
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is completely determined, given the corresponding value

in normal cells X i
N and the occurred copy number

event Z i
 , by the following relations:
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Nevertheless, the homozygous status of abnormal cells

estimated by the genotype calling algorithm (Yi) is

affected by several sources of errors.

Hypothesis of the model

The genome of cancer cells can be divided in subregions

where the copy number is constant. Since we divided

the copy number values in four classes (i.e. the copy

number events), we can also consider regions with the

same copy number event.

Let us consider a genomic region where the micro-

array measures the DNA copy number and the geno-

type at n SNP loci. Then, from the previous

discussion, the vector of the copy number events at

all positions Z   = ( , , )Z Z n1 can be seen as a piece-

wise constant function. This function consists of k0
intervals with the same copy number event and with

boundaries 0 0
0

1
0

1
0 0

0 0
= < < < =−t t t t nk k, , so that

Z Z Zt t pp p
  

− + = = =
1

0 01 , for all p = 1, ..., k0. To esti-

mate this function we use a Bayesian piecewise con-

stant regression method, which determines the

number of segments k0, the boundaries ( t t k0
0 0

0
, , )

and the copy number events Z = ( , , )Z Z k1 0
 .

For any sample, we assume to have the homozygous

status detected by the genotype calling algorithm

(Y) and the profile of the log2ratio of the copy number

estimated by mBPCR. The estimated log2ratio profile

consists of k̂ cn intervals with boundaries
ˆ ˆ , ˆ ,..., ˆ

ˆt cn cn cn

k

cnt t t ncn= = =( )0 0 1 and levels of the seg-

ments
m ∈

∧

 k
cn

(mp
 is the estimated log2ratio in the

pth interval, for p k cn= 1, , ). This estimated profile is

used only to define the prior distribution of the ran-

dom vector Z (see Subsubsection “Z prior definition”),

while the LOH data Y are used to infer Z (the scheme

of the algorithm is in Figure 2). Notice that we do not

suppose to know XN, i.e. the homozygous status in

normal cells. Moreover, we assume that, given the true

value of the homozygous status in normal cells XN and

the copy number event Z at each position, the LOH

data points { }Yi i
n
=1 are independent, since their values

depend only on both noise and genotype detection

errors.

Figure 1 Scheme of Model 1. The vector X of the homozygous
status of all SNPs in abnormal cells is completely determined, given

the vector XN of their homozygous status in normal cells and the

vector Z of their corresponding copy number events. Using this

relationship among X, XN and Z , we can estimate Z , given the
observations Ycn and Y (respectively, the raw log2ratio of the copy

number and the homozygous status in abnormal cells detected by

the genotype calling algorithm) and by specifying the prior

distribution of XN. The observations Ycn are used to defined the
prior distribution of Z in the Bayesian model.

Table 1 Notations

Het heterozygous

Hom homozygous

NHet not heterozygous (is used when we cannot distinguish between
two equal nucleotides, i.e. homozygosity, and the loss of one
copy)

 {Het, Hom}

 * {ø, Het, Hom}

 {Het, NHet, NoCall}

XN true genotypes in normal cells ( X i
N
Î  )

X true genotypes in abnormal cells (Xi Î  *)

Y genotypes detected by the genotype calling algorithm (Yi Î  )

Ycn raw copy number data

Z copy number events/aberrations

U occurrence of copy-neutral LOH (i.e. IBD/UPD event)

W IBD/UPD & copy number aberrations
({W i

 = w} = { Z zi
 = , U i

 = u} for some w, z, u)

cn all copy number information (both raw data and estimated
profile by mBPCR)

p vector of posterior probabilities to be a breakpoint (for all SNP
positions)
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The model implies that, given k0 and t0, the posterior

distribution of Z is

p k

p y X x Z zi i
N

p p

xi t

t

p

k

p

p

( , , )

( | , )

(

z y t|

 P

0
0

11 1
0

0
0

∝ = =

⋅

∈= +=
∑∏∏

− 

XX x Z zi
N

p p= =) ( ),P

and thus, if we condition only with respect to the

LOH data y, the posterior becomes

p
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where  and k n, are the domains of k and t,

respectively (they will be defined later).

To specify the model (see Figure 1), we need to define

the likelihood, i.e. the conditional distribution of Y, given

Z and XN. To model it, we take into account all the varia-

bility that can affect the genotype detection, such as: the

polymerase chain reaction (PCR) amplification, the pre-

sence of different cancer cell subpopulations or normal

cells, and the amplification of only one copy. For example,

the probabilities P( | , )Y NHet X Het Zi i
N

i= = = 0
and P( | , )Y Het X Hom Zi i

N
i= = = 0 are not zero,

because of the error in the genotype detection even in

case of a normal DNA sample. The probabilities

P( | , )Y Het X Het Zi i
N

i= = = − 2 and P( | , )Y NHet X Hom Zi i
N

i= = = − 2

are related to the detection errors due to the presence of

normal cells and/or different types of cancer cell

subpopulations, or to PCR amplification errors, while

P( | , )Y NHet X Het Zi i
N

i= = = 2 is related to the errors

that can be due to the amplification of only one

allele. Also P( | , )Y Het X Het Zi i
N

i= = = − 1 and

P( | , )Y NHet X Het Zi i
N

i= = = − 2 account for the errors

that can be due to the presence of cell subpopulations.

The set of conditional probabilities

{ ( | , ), , , , , , }P Y y X x Z z y x zi i
N

i= = = ∈ ∈ = − −   2 1 0 2
are considered as parameters of the model. To quantify

them, we needed paired normal-cancer samples, since

they are related to the probability of detecting a certain

homozygous status in a cancer cell, given the corre-

sponding one in a normal cell of the same patient and

under some copy number event. Therefore, to compute

maximum likelihood estimates of these parameters, we

used 13 samples from an available cancer dataset con-

sisting of breast cancer cell lines [27,28] (see Section S.1

in Additional file 2, for further explanations).

To complete the Bayesian model, we need to define

the prior distributions of the other random variables.

For the parameters K and T, we consider distributions

similar to the ones used in mBPCR [14]:

P K k
k

k k k
k

P K k
n

k

k

( ) max

max ( )
, ,

( | ) ,

= =
+

+
∈

= = =
−
−











∈

1 1

1

1

1

1



T t t ,, ,n

Figure 2 Scheme of the algorithm corresponding to Model 1. The graph shows the algorithm for the inference of Model 1. The scheme of

gBPCR (i.e. Model 3) can be obtained by substituting p(z|k, t, y) with p(w|k, t, y) and by estimating w instead of z.
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where  = {1,..., kmax} and k n, is a subspace of

0
1k+ such that t0 = 0, tk = n and tq Î {1,..., n - 1} for

all q = 1,..., k - 1, in an ordered way and without

repetitions.

The prior probabilities of heterozygosity of the SNPs

{ ( )}P X Heti
N

i
n= =1 are the frequencies of heterozygosity

computed on the samples of the matched race in the

HapMap project [3,29]. They are usually provided by

the manufacturer in the documentation related to the

microarray used. In Section “Results and Discussion”,

the microarray mostly employed is the GeneChip

Human Mapping 250K NspI (Affymetrix, Santa Clara,

CA, USA).

Z prior definition

The only prior that we have not yet defined is the one

of Z. While the estimated levels of the log2ratio profile

are continuous variables, Z classifies the copy number

as discrete events. Then, the major problem consists in

mapping the continuous values into the discrete values

of Z, i.e. in defining a partition of the log2ratio values

such that each interval corresponds to a particular copy

number event.

In the literature, most methods determine a confi-

dence interval around zero (which corresponds to CN =

2) and then consider all the log2ratio values above this

interval as gains and all values below as losses (see, for

example, [30,31]). This method is not suitable in our

case, since we want to classify also the events {CN = 0}

and {CN > 4}. Looking at the histogram of the estimated

log2ratio values (see, for example, in Figure 3 the histo-

gram derived from the 14 HIV lymphoma cell lines in

[32]), we can see that they have a multimodal density

with peaks corresponding to CN = 1, CN = 2 and CN =

{3, 4}. Sometimes, we can even separate the peaks of

CN = 3 and CN = 4. Similarly to [33], we model this

density as a mixture of normal distributions (a way to

estimate this mixture density can be found in Section

S.2 in Additional file 2). Once the parameters of the

density are estimated, we can define a function to map

the log2ratio values into the copy number event values:

f x
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x
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where ˆ , ˆ cn cn
2( ) are, respectively, the estimated

mean and variance of the normal distribution corre-

sponding to CN = cn.

From the definition of fLOGtoZ, for all p = 1,..., k̂cn
, we

define the prior distribution of Zp as:

P( P

P( P

Z M cn
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where cn represents all copy number information

(both raw data and estimated profile by mBPCR) and

Mp is the random variable representing the log2ratio

value in the pth segment. From the mBPCR model,

given cn, Mp is normally distributed with mean m̂p and

variance V̂p where ( m̂p , V̂p ) are the posterior mean

and variance of Mp estimated by mBPCR, respectively.

The estimation

To estimate the piecewise constant profile of the copy

number events, we define the estimators of k0 (the num-

ber of segments) and t0 (the boundaries) similarly to the

ones in the mBPCR method [14]:

K p k cn
k


01 =

∈
arg max ( | , ),


Y (2)

T Y Y
t


BinErrAk p q

p
k n

T t cn k p k cn= = ′
′∈ =∧

arg max ( | , , ) ( | , ).
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
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1

P

nn( , )
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′ −

==

−

∑∑∑
∧

t k

k

k

q

k q 1

21

101

(3)

Namely, T BinErrAk corresponds to the k
∧

01
positions

which have the highest posterior probability to be a

breakpoint. The main differences with respect to

mBPCR are in the prior over K and in the estimation of

K. Instead of using a uniform prior and an estimator

which minimizes the posterior expected squared error,

Figure 3 Example of a histogram of estimated log2ratio levels.
The graph shows the histogram of the mBPCR estimated log2ratio

levels of the profiles of 14 HIV lymphoma cell lines in [32].
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here we consider a prior similar to 1/k2 and an estima-

tor which minimizes the 0-1 error, in order to reduce

the false discovery rate (FDR) in case of few segments.

Another difference with respect to mBPCR consists in

the level estimation. While in the copy number model

the levels were continuous random variables, now they

assume categorical values. Hence, they are estimated

separately (as before) with the MAP estimator instead of

the posterior expected value,

Z Z z k cnp

z
p

 = =
∈ − −

∧ ∧

arg max ( | , , , ),
{ , , , }2 1 0 2

P Y t (4)

for p = 1,..., k
∧ , where t

∧ and k
∧ are any estimate of t0

and k0, respectively. For the computation of all the pos-

terior probabilities involved, we used dynamic program-

ming as described in Section S.3 in Additional file 2.

Let us define yij = (yi+1, ..., yj), representing the LOH

data points in the interval [i + 1, j], and Kij as the ran-

dom variable which represents the number of segments

in the interval [i + 1, j]. Using Bayes’ Theorem and the

independence of the LOH data points belonging to dif-

ferent segments, the probability in Equation (4), given

the LOH data y, can be written as,

P

P

( | , , , )

( | , , ,
,

,

Z z k cn

Z z t t K

p

p t t
p p t t

p p
p p

=

= =
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∧
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∧ ∧
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y
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1
11 ==

=
= =∧ ∧

∧ ∧

∧
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∧
−

∧ ∧
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t
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P
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y
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p
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∧
∧ ∧

∧

∧
−

∧ ∧

∧
−

∧ ∧

−

−

=

⋅ =

1

1

1 1

 P 11 1, , ).t p cn∧ =

(5)

Therefore, if the boundary estimator misses a clear

boundary between t p

∧

−1
and t p

∧ , then the probability at

the denominator of Equation (5) could be zero and thus

the level would not be estimated. The best way to pre-

vent this event consists in using a good estimator for

the boundaries.

Previously, in [14] we found that the boundary estima-

tor T BinErrAk is an estimator with a high sensitivity, but

medium FDR. The problem of this estimator is the fol-

lowing. The vector p of the posterior probabilities to be

a breakpoint at each point of the sample usually repre-

sents a multimodal function with maxima at the break-

point positions, but often in a neighborhood of each

maximum there are other points with high probability

because of the uncertainty (see Figure 4). Hence, if we

take the first k
∧

01
points with the highest probability

(according to the definition of T BinErrAk ), we could take

points in the neighborhood of the higher maxima and

not some maxima with a lower probability (see Figure

4). As a consequence, if k0 was estimated with its exact

value then the sensitivity of the T BinErrAk would be

lower. In this case, we could lose important breakpoints

so that the denominator in Equation (5) would become

zero. In practice, K 01 often slightly overestimates k0,

because of the high noise of the data, and thus this phe-

nomenon should not happen, but to prevent even this

rare case we searched for a way to improve the estima-

tion of the boundaries.

Since commonly the vector of the posterior probabil-

ities shows clearly the position of the breakpoints in

correspondence to the maxima, we estimate the number

of the segments and the breakpoints with the number of

peaks and the locations of their maxima, respectively

(see Section S.4 in Additional file 2). Essentially, the

algorithm for the determination of the peaks, after

applying a kernel method to reduce the noise of the

function, uses two thresholds: one for the determination

of the peaks (thr1) and one for the definition of the

values close to zero (thr2). Therefore, we will denote

the corresponding estimators by K Peaks thr thr


, ,1 2
and

T Peaks thr thr, ,1 2
.

In Section “Results and Discussion”, we will consider

several pairs of thresholds and we will apply the corre-

sponding estimators to simulated data, in order to deter-

mine the best paired thresholds and to compare their

performance with T BinErrAk . We will also compare

T BinErrAk with T Joint , another boundary estimator

described in [14].

Model 2: addition of the IBD/UPD region detection

LOH data are used in biology not only to better identify

regions of loss and amplifications, but, especially, to

detect regions of copy-neutral LOH, which can be

Figure 4 Example of estimated posterior probabilities to be a

breakpoint. The graph shows, for each probe, the estimated

posterior probability to be a breakpoint on a sample of dataset B.
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identified by unusual long stretches of homozygous

SNPs, with normal copy number. In Section “Back-

ground”, we explained that this type of aberrations can

be a consequence of UPD (either uniparental isodisomy

or heterodisomy) or autozygosity (IBD regions). From

the description of these genomic events, it follows that

the uniparental isodisomy and the IBD regions can be

detected because they appear as a long sequence of

homozygous SNPs with a low probability to occur, while

the uniparental heterodisomy consists in a sequence of

both homozygous and heterozygous SNPs as in a nor-

mal condition. Therefore, without the genotypes of the

parents, from SNP data we can only detect the unipar-

ental isodisomy (iUPD) and the IBD segments. In the

following, we will consider only these two events, refer-

ring to them as IBD/UPD events.

Since an IBD/UPD event, by definition, only exists in

regions of normal copy number (CN = 2), the only

probabilities which are affected by the presence of this

event are those involving {Z = 0}. Therefore, we define

the following sets of conditional probabilities

{ ( | , , ), , }P Y y X x Z U y xi i
N

i i= = = = ∈ ∈ 0 0   and

{ ( | , ), }P Y y Z U yi i i= = = ∈ 0 1  , where the variable

U i
 indicates if an IBD/UPD event occurred at SNP i (if

it happened U i
 = 1, otherwise U i

 = 0). We can notice

that, given {U i
 = 0, Z i

 = 0}, the distribution of Yi is

equal to the conditional distribution with respect to

{ Z i
 = 0} in Model 1, since the latter was modeled with

no possibility of an IBD/UPD event. Instead, in case of

an IBD/UPD event, we do not need to condition with

respect to X i
N , since, in case of a somatic iUPD event,

the genotype of an iUPD region is independent of the

homozygous status of the same region in a normal cell.

Otherwise, in case of autozygosity or germ line iUPD,

the genotypes of normal and abnormal cells are the

same and it makes no sense to condition one to the

other.

In the new framework, we define the vector of the

aberration events at n SNP loci as W   = ( , , )W W n1 ;

here the aberrations regard both copy number changes

and IBD/UPD regions. Each component W i
 of the vec-

tor assumes values: -3 ( Z i
 = 0 and U i

 = 1, i.e. IBD/

UPD event), -2 ( Z i
 = -2, i.e. homozygous deletion), -1

( Z i
 = -1, i.e. loss), 0 ( Z i

 = 0 and U i
 = 0, i.e. normal

state or gain), 2 ( Z i
 = 2, i.e. high amplification); a gra-

phical representation of the model is given in Figure 5.

As previously, we can divide the genome in intervals

corresponding to the same aberration event, i.e the pro-

file of the aberrations consists of k0 intervals, with

boundaries 0 0
0

1
0

1
0 0

0 0
= < < < < =−t t t t nk k , so that

W W Wt t pp p
  

− + = = =
1

0 01 : , for all p = 1, ..., k0. The esti-

mation procedure is similar to the one of Model 1. The

estimators of k0 and t0 are the same and, given k
∧ and

t
∧ (any estimate of k0 and t0, respectively), we estimate

the aberration events in each interval with their MAP

estimators,

W W w k cnp
w

p
 = =

∈ − − −

∧ ∧

arg max ( | , , , ),
{ , , , , }3 2 1 0 2

P Y t (6)

for p = 1,..., k
∧ . Notice that, for w = -2, -1, 2, the pos-

terior probability P(Wp = w|Y, t
∧ , k

∧ , cn) is equal to P

(Zp = w|Y, t
∧ , k

∧ , cn), while for w = -3, 0 we have,

P

P P

( | , , , )

( | , , , , ) ( )

W k cn

Z U k cn U

p

p p p

= −

= = = =

∧ ∧

∧ ∧

3

0 1 1

Y t

Y t

(7)

P

P P

( | , , , )

( | , , , , ) ( ),

W k cn

Z U k cn U

p

p p p

=

= = = =

∧ ∧

∧ ∧

0

0 0 0

Y t

Y t

(8)

Figure 5 Scheme of Model 2 and 3. The vector W of aberration
events represents the lesions derived from both IBD/UPD events

( U ) and copy number event ( Z ), at each SNP position. The

vector X of the homozygous status of all SNPs in abnormal cells is

completely determined, given the vector XN of their homozygous
status in normal cells and the vector W of their corresponding

aberration events. Using this relationship among X, XN and W , we

can estimate W , given the observations Ycn and Y (respectively,

the raw log2ratio of the copy number and the homozygous status
in abnormal cells detected by the genotype calling algorithm) and

by specifying the prior distributions of U and XN. The observations

Ycn are used to defined the prior distribution of Z in the Bayesian
model.
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and we assume that P(Up = 1) =: pupd, for all p = 1,...,

k
∧ .

Both { ( | ), }P Y y W yi i= = − ∈ 3  and pupd are para-

meters of the model. For the maximum likelihood esti-

mation of { ( | ), }P Y y W yi i= = − ∈ 3  , we used 11 IBD/

UPD regions previously found by us on 5 samples of

patients with hairy cell leukemia [34] and on the B-cell

lymphoma cell line KARPAS-422. All regions were

detected by dChip [16] and their width was between 3

Mb and 100 Mb (covering from 300 to 9800 SNPs), so

that they were large enough to be really considered

IBD/UPD regions (for further explanations, see Section

S.1 in Additional file 2).

Values for the parameter pupd
We expect the prior probability of an IBD/UPD event to

be low. In order to estimate the order of magnitude of

this parameter, we considered two studies on IBD

regions: [6] and [3]. In the former, they considered as

IBD regions only stretches of at least 50 homozygous

SNPs (with at maximum 2% of heterozygous) longer

than 4 Mb and the platform used was the Affymetrix

GeneChip Human Mapping 50K Array. In the latter, a

denser microarray was used and the stretches consid-

ered were longer than 1 Mb (with at least 50 probes) or

longer than 3 Mb. Using the data of the former paper

(only the normal samples), we estimated pupd ≈ 1.7·10-3.

Instead, with the data of the latter, we estimated pupd ≈

1.5·10-3 considering all regions greater than 1 Mb, while

pupd ≈ 1.46·10-4, considering only the regions greater

than 3 Mb. The differences in the estimated values are

due to the different resolution of the technologies used

(in fact, in the former the number of SNPs used was

58,960, while in the latter it was 3,107,620). Moreover,

the probability depends on the minimum length allowed

for these regions. The wider the regions are, the higher

is the probability that the regions represent “abnormal-

ities” and the lower becomes the probability of their

occurrence (so that pupd is lower). Therefore, in the fol-

lowing applications (see Section “Results and Discus-

sion”), we will use two values: pupd = 10-3 and pupd =

10-4.

Another possible way to solve the problem could be to

assign a prior distribution to pupd (for example, a uni-

form distribution over its range) and integrate it out in

the equations of the model.

Model 3: addition of the gained region detection

In the description of Model 1, we explained our

assumption that there is no difference in the genotype

detection between a normal or gained region. Therefore,

in Model 1 (and in Model 2), we defined a single class

for the normal or gained regions. But, for the biological

studies, it is relevant to distinguish these two copy num-

ber events and this distinction is based essentially on

the estimated copy number (since there is no difference

in the distribution of the detected genotypes, due to the

previous discussion). As a consequence, the probability

of Yi given a normal (i.e. { Z i
 = 0}) or gained copy num-

ber (i.e. { Z i
 = 1} = {W i

 = 1}) is the same,

P

P

P

( | , )

( | , )

( | ,

Y y X x Z

Y y X x Z

Y y Z U

i i
N

i

i i
N

i
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p
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i i upd+ = = = = −P  0 0 1

We also need to define two distinct prior probabilities

for the normal copy number and the gain event. Simi-

larly to its previous definition, for all p k cn= 1, , , the

new prior of Zp is given by,

P( P
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In the following, Model 3 (which is the complete

model) will be called genomic Bayesian Piecewise

Constant Regression (gBPCR).

Adjustment of the parameters related to NoCall

The probabilities {P(Yi = NoCall| X i
N = x, W i

 = w), x

Î  , w = -3, -2, -1, 0, 2} are related to the detection of

NoCalls under some conditions. Generally, the presence

of NoCalls is not only due to diffculties of the genotype

calling algorithm in the detection of the genotype (tech-

nical noise) but also to the noise of the sample because

of differences in the quality of extracted DNA. There-

fore, we need to adjust the estimated values of these

parameters on the basis of the sample noise.

Since usually the NoCall rate (i.e. percentage of

NoCalls in the sample) increases with the noise of the

sample, we assume that, given { X i
N = x, W i

 = z}, the

probability of detecting a NoCall at SNP i in sample s is

proportional to a parameter px,z (which depends on the

technical noise) by a factor θs (which depends on the

sample noise),

P( | , , ) .,Y NoCall X x W z s pi i
N

i x z s= = = ≈  (9)

If we condition over the values of X i
N and estimate P

( X i
N = Het) = 1/2 for a generic SNP i (by considering a
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uniform distribution over the four possible combinations

of alleles AA, AB, BA, BB), we can compute the NoCall

rate in regions with copy number event z in the follow-

ing way,

P

P

P

( | , )

( | , , )

(

Y NoCall W z s

Y NoCall X Het W z s

X He

i i

i i
N

i

i
N
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= = = =
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


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i i
N

i

i
N

)

( | , , )

( )

+ = = =
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P

P


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+
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pHet z pHom z
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N
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N
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 



P P

2
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Therefore, by applying Equations (9) and (11), for any

pair of samples (Sample 1 and 2), we can write the con-

ditional probability of NoCall, given { X i
N = x, W i

 = z},

in Sample 1 in terms of the corresponding probability in

Sample 2,

P( | , , )

( )

,

, ,
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(12)

In the following, we will denote the sample to esti-

mate with s = 1 and the reference sample with s = 2.

Using Equation (12), the values of the parameters

related to NoCall detection are adjusted for Sample 1,

P

P
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∧

= = = =

= = =

( | , , )
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( |
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 1

1

2

,, , ),W z si
 = = 2

for z = -2, -1, 0, 2, where r1(z) and r2(z) are an esti-

mate of the NoCall rate in regions with copy number

event z, for Sample 1 and 2, respectively. By applying

Equation (10) with P( X i
N = Het) = 1/2, r2(z) can be

computed from the estimated values of P(Yi =

NoCall| X i
N = Het, W i

 = z) and P(Yi = NoCall| X i
N =

Hom, W i
 = z)

r z

Y NoCall W z s

Y NoCall X Het W

i i

i i
N

i

2

2

1

2
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z s
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( | , , )),

2

2P 

for z = -2, -1, 0, 2. r1(z) is the frequency of NoCall in

regions with copy number event z of Sample 1, for z =

-2, -1, 0, 2.

The estimated value of the probability P(Yi =

NoCall|W i
 = -3) is adjusted in a different way. On the

reference samples, we found, as expected, that

P

P

P

∧

∧

∧

= = −

= = = =

+

( | )

( ( | , )

(

Y NoCall W

Y NoCall X Het W

Y
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
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0

0P

that is, the NoCall rate in IBD/UPD regions is

approximately equal to the NoCall rate in normal

regions. Therefore,

P
∧

= = − = =( | , ) ( ).Y NoCall W s ri i
 3 1 01

In Section “Results and Discussion”, we will compare

the estimations resulting from gBPCR with and without

the adjustment of these parameters.

Results and Discussion
In this section, we apply gBPCR to both artificial and

real data. First, we compare the boundary estimators

(described in the previous section) on data simulated by

using Model 1. Then, we evaluate the detection of IBD/

UPD regions on the artificial dataset of [35], in compari-

son with three well-known methods for LOH estima-

tion. Using the same data, we also show the difference

in the estimation when adjusting the parameters. Finally,

we show the performance of gBPCR, when applied to

real data.

With the current implementation, on a computer with

dual CPU (AMD Opteron 250, 2.4 GHz) and 4 GB

RAM, the algorithm needed almost two days to estimate

the profile of an Affymetrix GeneChip Mapping 250K

NspI sample (using kmax = 50). Nevertheless, the com-

putations can be performed by chromosome (and by

arm for the longest chromosomes), reducing the
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computational cost. In any case, an optimized version of

the code will be soon available.

Comparison of the breakpoint estimators on simulated

data

In Section “Methods”, we have described several possi-

ble boundary estimators: T BinErrAk , T Joint and

T Peaks thr thr, ,1 2
. The last one actually defines a class of

estimators which depend on the values of the thresholds

thr1 and thr2. We tried several pairs of the following

types of thresholds:

• “005” := max(0.005, quantile of p at 0.95)

• “01” := max(0.01, quantile of p at 0.95)

• “01_90” := max(0.01, quantile of p at 0.90)

• “mad” := median(p) + 3 * mad(p)

where mad is the median absolute deviation and p is

the vector of posterior probabilities to be a breakpoint.

All these thresholds derive from different definitions of

which probability values are to be considered significant.

We assessed the quality of all the estimators of k0 and

t0 considered, by applying them on two artificial datasets

(called datasets A and B), each of 100 samples. We used

as prior probabilities of heterozygosity the frequencies

of heterozygosity (in the CEU population of the Hap-

Map project [29]) given by the annotation file of the

Affymetrix GeneChip Mapping 250K NspI microarray.

Just for illustrative purpose and because of limited com-

putational time, we considered only the SNPs of a single

chromosome (chromosome 22), hence the number of

data points in each sample is n = 2520. Since our com-

plete model (Model 3) does not provide a realistic way

to simulate IBD/UPD regions and the identification of

gained regions depends mainly on copy number data,

the samples were generated using Model 1.

Simulation description

Since the Model 1 assumes to know the estimated copy

number profile given by mBPCR, for both datasets, we

fixed the estimated segment number k̂ cn = 15, the esti-

mated boundaries t̂ cn = (0, 27, 31, 161, 273, 585, 633,

1006, 1050, 1054, 1309, 1607, 1754, 2100, 2432, 2520)

(generated uniformly random given k̂ cn = 15) and the

prior distribution of Z (see Supplementary Table S.1 in

Additional file 2, for dataset A, and Table 2, for dataset

B). The profiles of the samples in dataset A should be

estimated easily, since in each segment the prior distri-

bution of Z is quite peaked.

Given the previous parameters ( k̂ cn , t̂ cn and the Z

prior) and the estimated values of the other parameters

of the model, we used the following steps to generate

each LOH sample:

1. we generated a true profile of the homozygous

status in normal cells XN, by using the prior prob-

abilities of heterozygosity, described previously;

2. we generated a true copy number event profile Z ,

by using the prior distribution of Z (notice that in

some cases the final profile can have less than 15

segments, since, if consecutive segments have the

same copy number value, then they are joined

together);

3. given the true copy number event profile and the

profile of the homozygous status in normal cells, we

generated Y (the profile of the homozygous status in

cancer cells detected by the genotype calling algo-

rithm), by using the conditional probability distribu-

tions of Model 1.

Results of the comparisons

To evaluate the performance of the estimators, we com-

puted several error measures regarding the estimation of

the number of segments (0-1, absolute and squared

errors), the boundary estimation (binary error, sensitivity

and false discovery rate, FDR) and the profile estimation

(sum of squared distance, SSQ, sum 0-1 error, sensitivity

and FDR for all copy number events). The explanation

of these error measures can be found in Section S.5 in

Additional file 2.

By applying the pairs of estimators ( K 01 , T Joint ),

( K 01 , T BinErrAk ), and ( K Peaks Peaks
 

, , , ,,005 005 005 005T ) to

dataset A, the latter two appeared the best performing

methods with respect to the error measures considered

(see for example Table 3).

Based upon these results, we decided to not apply the

estimators ( K 01 , T Joint ) on dataset B and to try other

paired thresholds for T Peaks thr thr, ,1 2
, in order to reduce

the FDR of the boundary estimation. By looking globally

at the results of all error measures (see Table 3, Supple-

mentary Tables S.2-S.5 and Supplementary Figures

S.2 and S.3 in Additional file 2), we can suggest

Table 2 Prior distribution of Z in the simulated dataset B.

segment

prior I II III IV V VI VII VIII IX X XI XII XIII XIV XV

P(Zp = 2) 0 0.1 0 0.1 0.5 0.1 0 0 0.1 0.5 0 0.1 0.5 0.1 0

P(Zp = 0) 0.1 0.6 0.1 0.6 0.4 0.6 0.1 0.1 0.6 0.4 0.1 0.6 0.4 0.6 0.1

P(Zp = -1) 0.6 0.3 0.6 0.3 0.1 0.3 0.6 0.4 0.3 0.1 0.6 0.3 0.1 0.3 0.6

P(Zp = -2) 0.3 0 0.3 0 0 0 0.3 0.5 0 0 0.3 0 0 0 0.3
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the use of the following pairs of estimators:

( K Peaks Peaks
 

, , , ,,01 01 01 01T ), ( K Peaks mad Peaks mad
 

, , , ,,01 01T ) or

( K Peaks mad Peaks mad
 

, , , ,,01 01T ). Moreover, from the study of

the behavior of ( K Peaks mad Peaks mad
 

, , , ,,01 01T ) and

( K Peaks mad Peaks mad
 

, , , ,,01 01T ), we can understand the role

of the two thresholds in our algorithm for the determi-

nation of the maxima in a multimodal function (see Sec-

tion S.4 in Additional file 2). The threshold thr1 is used

to decide which points belong to the same peak: all the

points, between two regions of points below thr1, are

considered in the same peak. Hence, with a low thresh-

old, more points are considered belonging to the same

peak and thus we can eliminate lot of false breakpoints

(like in ( K Peaks mad Peaks mad
 

, , , ,,01 01T )). But, at the same

time, if two true peaks are close, then it is possible that

they are considered as only one peak, losing a true

breakpoint (low sensitivity). Instead, the threshold thr2
is used to choose which estimated breakpoints are sig-

nificant for the regression, i.e. if their posterior probabil-

ities are to be considered different from zero. Therefore,

using a lower value of thr2, we select a higher number

of breakpoints obtaining a higher percentage of both

false ones (high FDR) and true ones (high sensitivity, as

in ( K Peaks mad Peaks mad
 

, , , ,,01 01T )).

A detailed description of the results obtained in the

comparison is in Section S.5 in Additional file 2.

Comparisons on simulated data with LOH regions

In order to evaluate the IBD/UPD detection of gBPCR,

we applied it to simulated data of [35]. These data are

based on three real samples of the HapMap dataset (see

[1]), obtained with the Affymetrix GeneChip Mapping

250K NspI. For each sample and signal to noise ratio

(SNR) value, the authors simulated two profiles: one

with regions of copy-neutral LOH and one with regions

of loss. In both cases the number of regions was 50 and

their width ranged from 20 SNPs to a whole chromo-

some. The values of SNR considered were 5, 2 and 1.25.

Therefore, the total number of samples was 18, because

for each normal sample we had two LOH profiles and

three SNR values. The authors simulated the noise and

the aberrations at probe level intensity saving the data

in .CEL file format, thus we used BRLMM [26] to

extract the genotyping data and CNAT 4.01 [36] for the

raw copy number data.

Similar to [35], the estimation of gBPCR was com-

pared with the ones given by three well-known methods

in the field: dChip [16], CNAT 4.01 [36] and PennCNV

[24]. The evaluation has been done by computing the

true positive rate (TPR) and the false positive rate

(FPR), i.e. the proportion of SNPs inside the LOH

regions that are correctly identified (as belonging to a

LOH region) and the proportion of SNPs outside these

segments that are wrongly identified (as belonging to

them), respectively. We used ( K Peaks Peaks
 

, , , ,,01 01 01 01T ),

( K Peaks mad Peaks mad
 

, , , ,,01 01T ) or ( K Peaks mad Peaks mad
 

, , , ,,01 01T )

as paired estimators of the number of segments and the

boundaries, and either pupd = 10-3 or pupd = 10-4 mas

the prior probability of IBD/UPD.

Since CNAT does not consider the NoCall SNPs

(called non-informative SNPs) for the estimation of the

LOH profile, we compared the TPR and FPR computed

using only either the informative or the non-informative

SNPs (see Supplementary Figures S.4, S.5, S.6 and S.7 in

Additional file 2).

Overall, all versions of gBPCR behaved similarly on

these data and they outperformed PennCNV, CNAT

and dChip. Moreover, dChip failed to give a good esti-

mation in presence of high noise, while PennCNV did

not detect almost any LOH aberration. Four examples

of profile estimation in samples with SNR = 1.25 (high

noise) are shown in Figure 6 (their corresponding LOH

Table 3 Comparison among the breakpoint estimators with respect to error measures regarding copy number

aberration detection

dataset method sum 0-1 err SSQ SSQ n/

( K 01 , T BinErrAk ) 51.53 86.08 0.19

A ( K 01 , T Joint ) 146.91 596.78 0.49

( K Peaks Peaks
 

, , , ,,005 005 005 005T ) 91.99 345.64 0.37

( K 01 , T BinErrAk ) 421.79 1226.59 0.70

( K Peaks Peaks
 

, , , ,,005 005 005 005T ) 110.39 287.21 0.34

( K Peaks Peaks
 

, , , ,,01 01 01 01T ) 109.39 286.15 0.34

B ( K TPeaks Peaks
 

, _ , _ , _ , _,01 90 01 90 01 90 01 90 ) 141.65 370.78 0.38

( K TPeaks mad mad Peaks mad mad
 

, , , ,, ) 154.56 424.2 0.41

( K Peaks mad Peaks mad
 

, , , ,,01 01T ) 109.39 286.15 0.34

( K Peaks mad Peaks mad
 

, , , ,,01 01T ) 111.75 283.77 0.34

The table shows some error measures regarding the copy number event estimation obtained with several methods on datasets A and B. While ( K 01 , T BinErrAk )

outperforms the other methods on dataset A, on B it obtains a poor estimation of the copy number events in comparison with the other methods. On dataset B,

the methods which achieve the lowest errors are: ( K Peaks Peaks
 

, , , ,,01 01 01 01T ), ( K Peaks Peaks
 

, , , ,,005 005 005 005T ), ( K Peaks mad Peaks mad
 

, , , ,,01 01T ) and ( K Peaks mad Peaks mad
 

, , , ,,01 01T ).
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data are plotted in Supplementary Figure S.8 in Addi-

tional file 2). Regarding the copy-neutral LOH estima-

tion, all methods (apart from PennCNV) were able to

identify the aberrations, but sometimes dChip divided

the biggest lesions into small regions of aberration (e.g.

the plot at the bottom right-hand side of Figure 6).

Instead, only gBPCR and CNAT were usually able to

detect LOH regions due to deletions. In this case,

CNAT divided the biggest aberrations in small regions

of LOH, losing part of the lesions. In Figure 6, we can

also appreciate the differences in the estimation of the

regions of gain between gBPCR and PennCNV. In both

examples with regions of loss (the plots at the top and

at the bottom left-hand side), the segments outside the

losses represent gains. gBPCR failed to identify only one

of these lesions, instead PennCNV did not recognize

almost any of them (for thoroughness, we plotted also

the copy number events, estimated by the HMM meth-

ods implemented in dChip and CNAT, in Supplemen-

tary Figure S.9 in Additional file 2). In the next section,

by applying gBPCR to a real dataset from [23], we will

be able to discuss its performance in the identification

of genomic gains, depending on the copy number of the

alleles (e.g. CN = 4 and both alleles have CN = 2 or one

allele has CN = 1 and the other CN = 3).

Finally, we also evaluated the effect of the adjustment

of the model parameters related to the NoCall detection

(see Section “Methods”), using the same data. At low or

medium noise, no significant differences in the goodness

of the estimation could be observed (see, for example,

Supplementary Figure S.10 in Additional file 2). Instead,

in presence of high noise, the FPR regarding the IBD/

Figure 6 Examples of profile estimation. The plot shows four examples of chromosomic profile estimation in samples with SNR = 1.25 (high
noise). The version of gBPCR employed was the one which uses ( K Peaks Peaks

 
, , , ,,01 01 01 01T ) and pupd = 10-4. As notations: 1 corresponds to

gain, 0 to normal status, -1 to loss. IBD/UPD regions and unspecified LOH regions are depicted with values close to zero. All methods (apart

PennCNV) are able to identify the copy-neutral LOH regions, but sometimes dChip divides the biggest lesions in small ones. Only gBPCR and

CNAT are able to detect LOH regions due to deletions and in this case CNAT divides the biggest aberrations into small regions of LOH.
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UPD detection without the adjustment of the model

parameters was close to one. In fact, in this situation a

segment with normal copy number is more often classi-

fied as IBD/UPD, since the NoCall rate is higher and,

without the correction, the IBD/UPD segments are

allowed to contain a higher percentage of NoCalls with

respect to the normal ones. Instead, with the adjust-

ment, all types of regions are allowed to have a higher

number of NoCalls in proportion to the noise, obtaining

a less biased estimation.

In conclusion, we suggest to use ( K Peaks Peaks
 

, , , ,,01 01 01 01T )

or ( K Peaks mad Peaks mad
 

, , , ,,01 01T ) with pupd = 10-4, due to their

good results obtained on the non-informative SNPs. A

detailed description of all the results is in Section S.6 in

Additional file 2.

Application to real data

In this subsection, we show the behavior of gBPCR on

three real datasets. The first dataset consisted of eight

paired cancer samples of patients affected by chronic

lymphocytic leukemia (CLL), which then developed in

diffuse large B-cell lymphoma (DLBCL), see [37,38]. For

two patients we had also a third sample, thus the total

number of samples was 18. The second dataset con-

sisted of 18 patients affected by CLL, see [39]. For both

of these datasets, genome-wide DNA profiles were

obtained using the GeneChip Human Mapping 250K

NspI (Affymetrix, Santa Clara, CA, USA). The genotype

calls were calculated with BRLMM [26] using 46 Cauca-

sian normal female samples of the HapMap Project as

reference samples and the raw copy number data were

retrieved using CNAT 4.01 [36]. In [37-39], the copy

number of some genomic regions was also measured

with fluorescent in situ hybridization (FISH). Therefore,

on these regions we compared the copy number event

estimated by gBPCR with the copy number measured by

FISH. Moreover, since samples coming from the same

patient should present the same copy-neutral LOH

regions (the germ line ones) for the majority of the gen-

ome, we used the two patients with three samples to

evaluate the IBD/UPD detection of gBPCR.

The third dataset was a dilution series of the CRL-

2324 breast cancer cell line from [23]. The series com-

prised 12 samples, corresponding to the following per-

centages of tumor content: 0, 10, 14, 21, 23, 30, 34, 45,

47, 50, 79, 100. The genome-wide DNA profiles were

obtained using Illumina 370K BeadChips. The authors

preprocessed the data with BeadStudio software (Illu-

mina Inc.) and we used both the genotyping and logRra-

tio data available at [40]. In [23], the authors chose eight

genomic aberrations and compared the estimation given

by their method (called BAFsegmentation) with the ones

of the following algorithms: dChip [16], PennCNV [24],

QuantiSNP [20] and SOMATICs [18]. Thus, we

compared the estimations of these genomic regions

given by gBPCR with the ones given by the previous

methods. We also used these data to evaluate the per-

formance of gBPCR in the detection of gains, for differ-

ent values of the allelic copy numbers.

Based on the previous results on simulated data, for

the analysis of these real data, we used:

( K Peaks Peaks
 

, , , ,,01 01 01 01T ), as paired estimators of the

number of segments and the boundaries, and pupd =

10-4 as prior probability of IBD/UPD.

Results regarding the identification of the copy number

changes in CLL samples

We recall that an individual cancer sample can repre-

sent a mixture of neoplastic and normal cells. Moreover,

the tumor cells themselves do not represent a geneti-

cally homogeneous population, since individual genetic

lesion might be present in only a fraction of the cells. In

fact, Figure 7 shows that the log2ratio values corre-

sponding to normal, gain, loss regions are sufficiently

well separated only when the copy number changes are

borne in at least 60% of the cells of the DNA sample.

As a consequence, we aim to detect the copy number

changes borne in at least the 60% of the cells, otherwise

we cannot ensure that the identified aberrations are true

and not due to the noise of the microarray data (the

noise is so high that aberrations borne in only a small

percentage of cells can be seen as noise and viceversa).

To detect aberrations in even less cell content, it is

Figure 7 Example of copy number event classification. The plot

shows the estimated log2ratio values (given by mBPCR), as function
of the estimated percentage of cells bearing the aberration (given

by FISH). The aberrations considered in the graph were identified by

FISH on 18 patients of [37,38], for a total of 133 interrogated

genomic regions. The copy number changes are classified as loss,
gain or normal, using the results given by the FISH. For the normal

regions, we set the percentage as 100%. The estimated log2ratio is

the one of the genomic region interrogated by FISH. We can
observe that only the aberrations borne in at least 60% of the cells

are clearly separated.
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sufficient to change the prior of Z with thresholds closer

to zero. In practice, the prior of Z influences more the

discovery of the gains than the one of the other copy

number events, because the determination of gains

depends mainly on the estimated log2 ratio values

(rather than the LOH data).

In the samples considered for the comparison, we had a

total of 169 regions measured by FISH (which provides

also an estimate of the percentage of cells bearing the

aberration): 38 regions were gains or losses in at least 60%

of the cells (called detectable aberrations), 33 were gains

or losses in less than 60% (called less detectable aberra-

tions) and 98 were identified as normal segments. Regard-

ing the detectable aberrations, only two copy number

events were not identified by our algorithm. One loss was

not found, because the estimated log2ratio was very close

to zero, and the other, because of a different percentage of

Het SNPs from what was expected by our algorithm. We

discovered 13 of the 33 less detectable copy number

changes and we also detected two of the 98 normal seg-

ments as aberrations, but one of these copy number

changes was equal to the one discovered in the same

region of the paired sample, thus it was likely to be true.

Instead, by simply using the thresholds of the prior of

Z on the profiles estimated by mBPCR for the classifica-

tion of the copy number events (similarly to what is

usually done), we detected one alteration less than what

found by gBPCR and other 5 normal regions were seen

as aberrations.

For the analysis of the results, we have to consider

that the samples used for FISH came from peripheral

blood, for the CLL samples, and from paraffn embedded

tissues or lymph node, for the DLBCLs. Because of the

consequently different cell content, in the former case,

the results are better estimated. Moreover, the samples

used for microarray and FISH might not be exactly the

same, hence the percentage of cells which carry the

aberrations can be different and a discordance between

the two techniques is possible. Thus, gBPCR performed

well in estimating the copy number changes on these

samples.

Results regarding IBD/UPD region detection in CLL samples

For the evaluation of the IBD/UPD region detection, we

considered the two patients with three samples. For the

first patient (called Patient 1), we had: one matched nor-

mal DNA sample extracted from peripheral blood gran-

ulocytes (called Sample 1.1), one sample from neoplastic

cells at CLL phase (called Sample 1.2) and the last one

from neoplastic cells at DLBCL phase (called Sample

1.3). For the second patient (Patient 2), we had: one

sample from neoplastic cells at CLL phase (called Sam-

ple 2.1), one at DLBCL phase (called Sample 2.2) and

the last one from neoplastic cells at a further progres-

sion of the DLBCL (called Sample 2.3).

Applying gBPCR to the three samples of Patient 1, we

found that the number of aberrations in each sample

increased with the progression of the disease. The lower

number of segments discovered in Sample 1.1 could

also be due to a higher NoCall rate in comparison to

the other samples. The same happened for Sample 2.3

of Patient 2.

We compared the IBD/UPD segments found in the

three samples of each patient and we divided them into

three classes (see Supplementary Table S.6 in Additional

file 2):

• equal regions: segments that are exactly the same

in two or three samples;

• overlapping regions: segments that are common in

at least two samples but do not have the same

boundaries;

• single sample regions: the remaining segments.

Then, we defined the number of distinct regions as

the sum of all these regions and the number of validated

ones as the sum of all types of regions except the single

sample regions. The proportions of equal and overlap-

ping regions were similar in the two patients and the

validated regions were 73% of the distinct regions

detected in Patient 1 and 79% of the distinct regions in

Patient 2. The single sample regions were about the 21%

of the distinct regions in Patient 2, but the majority of

them had length less than 50 SNPs. Instead, since the

samples of Patient 1 belonged to different stages of the

disease, in this patient we found a higher number of sin-

gle sample regions and most of them were wider than

50 SNPs. In fact, the majority of these regions was

detected in Sample 1.3, thus they were likely to be

somatic.

Results regarding the identification of genomic aberrations

in the dilution series

In [23], the authors observed that the BeadStudio nor-

malization produced copy number profiles which were

centered differently as the tumor content decreased and,

as a consequence, many algorithms wrongly assigned

the type of genetic aberration. Therefore, they evaluated

the methods by considering only if they found any aber-

ration in the eight regions considered, without looking

at the type of aberration.

Due to this variation in centering the normal copy

number, we estimated the histogram of the estimated

log2ratio values (which is used for the definition of the

prior of Z), separately by using only samples with simi-

lar tumor content. Nevertheless, this shrewdness was

not suffcient to well distinguish the peaks of the histo-

gram in some cases.

For all samples, we computed the sensitivity in detect-

ing the eight aberrations considered in [23]. For each of
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them, the calculations were done in two ways: by look-

ing if gBPCR found any aberration (like in [23]) and by

looking if it found the correct lesion (see Supplementary

Figures S.11 and S.12 in Additional file 2). By comparing

the results obtained by gBPCR using the first type of

sensitivity with the ones given by the other methods in

Figure 7 of [23], we can observe that gBPCR outper-

formed dChip and PennCNV and often also QuantiSNP.

Sometimes it also performed better than BAFsegmenta-

tion and SOMATICs in the detection of the regions of

gain. Moreover, occasionally gBPCR had a non-zero sen-

sitivity in the normal sample, because it detected small

IBD/UPD regions. By looking at the results obtained by

gBPCR with the second type of sensitivity, we can notice

that the correct aberration was usually detected in sam-

ples with at least 60% of tumor content and the sensitiv-

ity was still often higher than the one of dChip and

PennCNV.

Finally, we computed the sensitivity of gBPCR for

eight regions of gain, to evaluate its performance

depending on the value of the copy number of the

alleles. For all eight lesions, the total copy number was

four. Instead, the minor allele copy number (maCN , i.

e. the copy number of the allele less frequent in a nor-

mal population) changed from two to zero. The selec-

tion of these regions of gain was based on the

estimated genomic profile of CRL-2324, provided by

The Cancer Genome Project at the Wellcome Trust

Sanger Institute and available at [41]. For each aberra-

tion, the sensitivity was computed in two ways: by

looking if the region was identified as a gain and by

looking if it was detected as either a gain or an IBD/

UPD segment (see Supplementary Figure S.13 in Addi-

tional file 2).

The differences between the two types of sensitivity

were observed for some percentages of tumor content, in

gains with maCN = 2 or maCN = 0. Regarding the

lesions with maCN = 2, a small part of the gain was iden-

tified as IBD/UPD region in few cases with a small per-

centage of tumor content. This phenomenon was due to

the presence of a high percentage of homozygous SNPs

with copy number close to the normal copy number. For

the same reason, the whole gain 6q22.31 (maCN = 0) was

identified as an IBD/UPD region at 100% and 79% per-

centages of tumor content and the same happened also

for a part of 6q15 (maCN = 0) at 79%. As we explained

in Section “Method”, the detection of the gains highly

depends on the copy number value. Thus, if the copy

number of a region of gain is close to the normal value, it

is identified as either normal or IBD/UPD, depending on

the homozygous status of the SNPs inside it. Therefore,

the performance of gBPCR depends mainly on the quality

of the copy number data and not on the value of the copy

number of the alleles.

Conclusions
We have derived a new algorithm (called gBPCR) for

the simultaneous estimation of copy number changes

and IBD/UPD regions, by using both copy number and

genotyping data. To the best of our knowledge, only one

other algorithm exists which uses the same input data

for the same purpose [17], but it does not appear appro-

priate for data coming from a DNA sample of a mixture

of cell populations (like cancer DNA samples).

Our model takes into account the errors due to both the

microarray procedure and the biological processes that lead

to aberrations affecting the DNA copy number and the

homozygous status. Because of the complexity of the algo-

rithm and the high noise of the real data, we introduced

new estimators to improve the detection of the breakpoints.

On the basis of the results on simulated data, we selected

the best performing one: ( K Peaks Peaks
 

, , , ,,01 01 01 01T ).

On the artificial dataset of [35] (and especially in sam-

ples with high noise), gBPCR outperformed three well-

known methods which estimate regions of LOH: dChip

[16], CNAT [36] and PennCNV [24]. We also tested

gBPCR on real data. On 36 CLL samples [37-39], we

found a high agreement between the copy number

changes estimated by gBPCR and the ones obtained by

FISH (used as reference). Moreover, on two patients

with three samples we could validate at least 73% of the

identified IBD/UPD segments. On the samples of the

CRL-2324 dilution series of [23], we showed that in

samples with at least 60% of tumor content, gBPCR was

able to detect the genomic aberrations, while with less

tumor content only some aberrations could be seen.

Moreover, on these data gBPCR outperformed dChip

[16] and PennCNV [24] and sometimes QuantiSNP

[20]. Since other methods (SOMATICs [18] and BAF-

segmentation [23]), which use the allelic copy number

information, seemed to perform well, as future work we

intend to add also this useful information in our model.

Availability and requirements
Project name: gBPCR.

Project home page: http://www.idsia.ch/~paola/

gBPCR/.

Operating systems: the software should run in Linux,

Mac-OS or Windows. Tests were performed on Win-

dows and Linux systems.

Programming language: R.

Other requirements: none.

Licence: GNU GPL.

Any restrictions to use by non-academics: none.
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Additional material

Additional file 1: gBPCR source code. This zipped file contains the
source code of the gBPCR algorithm in R, including help files, sample
data and examples.

Additional file 2: Supplementary material. This file contains: 1) the
description of the estimation of the parameters of the likelihood, 2) the
explanation of the estimation of density of the estimated log2ratio levels,
3) explicit formulae of some quantities employed in the dynamic
programming used to implement our method, 4) the explanation of an
algorithm for the determination of the maxima of a multimodal function,
5) detailed description of the results obtained on simulated data, 6)
some supplementary tables and 7) some supplementary figures.
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