
An integrated concurrency and core-ISA architectural
envelope definition, and test oracle, for IBM POWER

multiprocessors

Kathryn E. Gray1 Gabriel Kerneis1∗ Dominic Mulligan1 Christopher Pulte1 Susmit Sarkar2 Peter Sewell1

1University of Cambridge ∗(during this work) 2University of St Andrews

ABSTRACT
Weakly consistent multiprocessors such as ARM and
IBM POWER have been with us for decades, but their
subtle programmer-visible concurrency behaviour re-
mains challenging, both to implement and to use; the
traditional architecture documentation, with its mix of
prose and pseudocode, leaves much unclear.
In this paper we show how a precise architectural

envelope model for such architectures can be defined,
taking IBM POWER as our example. Our model spec-
ifies, for an arbitrary test program, the set of all its
allowable executions, not just those of some particular
implementation. The model integrates an operational
concurrency model with an ISA model for the fixed-
point non-vector user-mode instruction set (largely au-
tomatically derived from the vendor pseudocode, and
expressed in a new ISA description language). The key
question is the interface between these two: allowing
all the required concurrency behaviour, without over-
committing to some particular microarchitectural im-
plementation, requires a novel abstract structure.
Our model is expressed in a mathematically rigor-

ous language that can be automatically translated to
an executable test-oracle tool; this lets one either inter-
actively explore or exhaustively compute the set of all
allowed behaviours of intricate test cases, to provide a
reference for hardware and software development.

1. INTRODUCTION

1.1 Problem
Architecture definitions provide an essential inter-

face, decoupling hardware and software development,
but they are typically expressed only in prose and pseu-
docode documentation, inevitably ambiguous and with-
out a tight connection to testing or verification; they do

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
MICRO-48, December 05-09, 2015Waikiki, HI, USA
Copyright is held by the authors. Publication rights licensed to ACM.
ACM 978-1-4503-4034-2/15/12...$15.00
DOI: http://dx.doi.org/10.1145/2830772.2830775 .

not exist as precise artifacts. This is especially prob-
lematic for the concurrency behaviour of weakly consis-
tent multiprocessors such as ARM and IBM POWER,
where programmer-visible microarchitectural optimisa-
tions expose many subtleties: the traditional docu-
mentation does not define precisely which programmer-
observable behaviour is (and is not) allowed for con-
current code; the definitions are not executable as test
oracles for pre-silicon or post-silicon hardware testing;
they are not executable as an emulator for software test-
ing; and they are not mathematically rigorous enough
to serve as a foundation for software verification. In-
stead, one has an awkward combination of those PDF
documents, vendor-internal “golden” simulation models
(sometimes in the form of large C/C++ codebases),
manually curated test-cases, and software emulators
such as gem5 [1] and QEMU [2].
We argue instead that what is needed, for any ar-

chitecture, is a definitive architectural envelope spec-
ification, precisely defining the range of allowed be-
haviour for arbitrary code. Such a specification should
have many desirable properties: it should be mathe-
matically rigorous, readable, clearly structured, sound
with respect to the vendor intent, sound with re-
spect to existing implementations (allowing all exper-
imentally observable behaviour, modulo errata), avoid
over-commitment to particular microarchitectural im-
plementation choices, have a clear computational intu-
ition, and be executable as a test oracle, to enumerate,
check or explore the allowed behaviour of test cases, and
hence to serve as a reference.
We show here how this can be achieved for a substan-

tial fragment of the IBM POWER architecture.

1.2 Context
We build on previous work by Sarkar et al. [3, 4],

who describe an architectural model for IBM POWER
concurrency. That model is expressed in an abstract
microarchitectural style, to give a clear computational
intuition without committing to particular microarchi-
tectural choices. There is a storage subsystem model
that maintains a state of all the memory writes and
barriers seen, the coherence relations among them that
have been established so far (as a strict partial order),
and the list of writes and barriers propagated to each
thread; this abstracts from the microarchitectural de-

����

����
�
�
�
�

�
�
�
�

��������
��������

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

Power 2.06B
XML

Sail
Power 2.06B

Power 2.06B
Lem (Sail AST)

semantics
Thread

Lem

semantics
Storage

Lem

semantics
System

Lem

OCaml, CSS, JS

Text UI
Web UI

executions

Binary frontend

Harness

a.out

ELF model
Lem

Power 2.06B
Framemaker

Sail interpreter
Lem

Sail typecheck

parse, analyse, patch

ISA model Litmus frontend

OCaml
Litmus parser

Concurrency model

test.litmus

Framemaker export

Figure 1: Overview

tails of any particular cache protocol and storage hier-
archy. Then there is a model for each hardware thread
that maintains a tree of in-flight and committed instruc-
tion instances, expressing the programmer-visible as-
pects of out-of-order and speculative computation; this
abstracts from pipeline and local store queue microar-
chitecture. Together these form an abstract machine
with a state and transitions.
That model has been experimentally validated

against several generations of POWER implementations
(G5, 5, 6, 7, and 8), comparing the model behaviour
with that of production or pre-silicon hardware, on
hand-written litmus tests and on tests produced by the
diy tool of Alglave and Maranget [5], using the Litmus
test harness [6]. It has been validated intensionally by
extensive discussion with a senior IBM architect (clar-
ifying the intended concurrency model in the process);
it has been validated mathematically by using it in a
proof that C/C++11 concurrency [7] can be correctly
compiled to POWER [8, 4]; and the tool has been used
by Linux-kernel software developers [9]. This work (to-
gether with related research on axiomatic models [10])
has also discovered errata in a number of multiprocessor
implementations of POWER and ARM architectures,
both pre- and post-silicon (ARM concurrency is broadly
similar to POWER, though not identical).
However, that previous model makes many major

simplifying assumptions. In particular, it includes only
a tiny fragment of the POWER instruction set, and
even that is given only an ad hoc semantics and only
at an assembly level; and it does not handle mixed-size
memory and register accesses. Effectively, it only de-
fines the architectural behaviour for simple litmus-test
programs, not of more general code.

1.3 Contribution
In this paper we show how a precise architectural en-

velope model for a weakly consistent architecture can
be defined, integrating a concurrency model (extending
that of [3]) with an architectural model for all of the
fixed-point non-vector user-mode instruction set. Do-
ing this in a way that achieves all the desirable proper-

ties mentioned above requires several new contributions,
which we summarise here and detail below.

Concurrency/ISA Model Interface The most fun-
damental question we address is what the interface be-
tween the concurrency model and ISA semantics should
be (§2). For a single-threaded processor one can regard
instructions simply as updating a global register and
memory state. The same holds for a sequentially con-
sistent (SC) multiprocessor, and TSO multiprocessor
behaviour (as in x86 and Sparc) requires only the addi-
tion of per-thread store buffers. But for weakly consis-
tent multiprocessors such as IBM POWER and ARM,
some aspects of out-of-order and speculative execution,
and of the non-multi-copy atomic storage subsystem,
are exposed to the programmer; we cannot use a simple
state-update model for instructions. We explain this,
and discuss what is required instead, with a series of
concurrent POWER examples. There has been a great
deal of work on modelling weakly consistent processors,
e.g. [11, 12, 13, 14, 15, 16, 17, 18, 19], but none that we
are aware of deals with these issues with the interface
to the instruction semantics.

Sail ISA Description Language Architecture de-
scriptions of instruction behaviour are traditionally ex-
pressed in a combination of prose and of pseudocode
that looks like it is written in a sequential imperative
language (of abstract micro-operations such as assign-
ments to registers, arithmetic operations, etc.). They
are also relatively large, with hundreds-to-thousands of
pages of instruction description, and it is important that
they be accessible to practising engineers. To achieve
this, permitting instruction descriptions to be expressed
in that familiar imperative style while simultaneously
supporting the structure we need for integration with
the concurrency model, we introduce a new instruction
description language (IDL), Sail (§3). Sail has a pre-
cisely defined and expressive type system, using type
inference to check pseudocode consistency while keeping
instruction descriptions readable. It currently supports
a concrete syntax similar to the POWER pseudocode
language (front-ends tuned to other conventions are also
possible in future).

ISA Description Tied to Vendor Documentation
The vendor specification for the POWER architecture
is provided as a PDF document [20] produced from
Framemaker sources. To keep our ISA model closely
tied to that description, we took an XML version ex-
ported by Framemaker and wrote a tool that extracts
and analyses the instruction descriptions from it, pro-
ducing Sail definitions of the decoding and instruction
behaviour, and auxiliary code to parse and pretty-print
instructions (§4). The vendor pseudocode is less consis-
tent than one might hope (unsurprisingly, as it has not
previously been mechanically parsed or type-checked),
so producing a precise Sail definition required dealing
with ad hoc variations and patching the results.

Extended Concurrency Model Scaling up the pre-
vious concurrency model of Sarkar et al. to this larger

ISA also revealed previously unconsidered architectural
questions, of just what behaviour should be allowed in
various concurrent cases, which we investigated in dis-
cussion with architects and with ad hoc testing (§2, §5).

Test-Oracle Tool To produce a useful tool from our
model, building on the previous ppcmem tool [3], we use
Lem to automatically generate executable OCaml code
from the mathematical model. We combine this with a
front-end for litmus tests, using boilerplate code gener-
ated from the XML, and with a front-end based on a
formal model of the ELF executable format, to be de-
scribed elsewhere. That gives us a tool, with command-
line and web interfaces1, for interactively or exhaus-
tively exploring the architecturally allowed behaviour
of small (but possibly highly intricate) concurrent test
cases (§6).

Validation We validate that our model is a sound de-
scription of POWER hardware, i.e. that the envelope
of behaviour it defines includes the experimentally ob-
servable behaviour of implementations, by comparing
model and implementation for a range of sequential and
concurrent tests (§7). Our discussion with the vendors
also provides some assurance that the model captures
the architectural intent on various points. Experimental
testing can never provide complete assurance, of course,
and we intend to maintain and refine the model.

An overview of our system is in Fig.1, showing the
formally specified components (in Lem and Sail), the
vendor descriptions we start from for the ISA model
(in Framemaker and the derived XML), and the sur-
rounding parsing and harness code (in OCaml). The
key internal interface is that between the ISA and Con-
currency models.

1.4 Limitations
This is, to the best of our knowledge, the first

mathematically rigorous architectural model of weakly-
consistent multiprocessor behaviour that is integrated
with a substantial instruction-set model. But many
important limitations remain: it handles only non-
write-through cacheable coherent memory, and we do
not consider exceptions and interrupts, floating point,
instruction-cache effects, or supervisor features (includ-
ing page table manipulation). Given those limitations,
our tool provides an emulator for concurrent programs,
but our focus is on making it architecturally complete,
not on performance (or on performance modelling). We
compile our mathematical definitions to executable code
in a deliberately straightforward fashion, without opti-
misation, to maintain confidence that we are execut-
ing the definition, and finding all executions of concur-
rent programs is combinatorially challenging. The tool
should therefore be seen as a reference for small-but-
intricate test programs (for hardware testing, and as
found in implementations of OS synchronisation primi-
tives and concurrent data structures), not as an emula-
tor for production-scale code.

1
http://www.cl.cam.ac.uk/~pes20/ppcmem2

1.5 Background: rigorous Lem specification
To express our model in a way which is both

mathematically precise and executable, we use the
Lem tool [21]. Lem provides a lightweight lan-
guage of definitions, of types and pure functions,
that can be seen both as mathematical definitions
and as executable pure functional programs; the tool
typechecks them and (subject to various constraints)
can export to executable OCaml code, proof assis-
tant definitions for Coq, HOL4, and Isabelle/HOL,
and typeset LaTeX. The Lem type system and li-
brary include unbounded and bounded integers, tuples
t1*..*tn, records <|l1:t1,..,l2:tn|>, function types
t1->t2, sets set t, maps map t1 t2, and user-defined
types, with top-level ML-style polymorphism. The
expression language combines normal pure functional-
programming features (functions, pattern-matching,
etc.) together with simple higher-order logic, includ-
ing bounded quantification and set comprehensions.

2. THE ISA/CONCURRENCY INTERFACE
Modern multiprocessor implementations embody

many sophisticated microarchitectural optimisations,
and weakly consistent multiprocessor architectures
make a choice to let some consequences of those be
observable to programmers; they trade off what is ar-
guably a more complex programming model for benefits
in speed, power, simplicity, or verifiability. To make a
precise architectural envelope model we have to iden-
tify and specify exactly what the intended range of al-
lowed behaviour is, and these observable weakly con-
sistent phenomena impact the structure of the model
in interesting ways. At one extreme, we cannot simply
model instructions as atomically updating a global reg-
ister and memory state, in the way that a sequential or
sequentially consistent concurrent emulator might do,
as that would not be sound with respect to actual im-
plementations (it would not admit all their observable
behaviour). But our architectural model should also in-
volve as little implementation detail as possible, both
for simplicity and to be independent of any particular
implementation. The details of some particular pipeline
or storage hierarchy (as needed for correctness or per-
formance evaluation of an implementation) would not
make a a good definition of an architecture.
In this section we show how various weakly consistent

phenomena impact the interface between the modelling
of instructions and that of the concurrency behaviour,
describing how we can permit the right envelope of be-
haviour while remaining as abstract as possible.

2.1 Constraints from observable behaviour

2.1.1 No single program point
We recall aspects of experimentally observed be-

haviour that inform our design choices, reusing notation
and test naming conventions from previous work [3, 4].
First, we have observable out-of-order and speculative
execution, as in the MP+sync+ctrl litmus test below.
The execution of interest is on the right, with reads-

from (rf), sync, and control-dependency edges between
memory events; the POWER assembly, with initial and
final state that identifies that execution, is on the left
for reference. Here Thread 0 writes some data to x and
then sets a flag y, with a strong sync barrier between
to keep those two in order as far as any other thread
is concerned. Thread 1 reads the flag and then, after
a conditional branch, the data. It is architecturally al-
lowed and observable in practice for the load of x to be
satisfied speculatively (reading 0 from the initial state),
before the conditional branch is resolved by a load of
y=1 from Thread 0’s write.

MP+sync+ctrl POWER
Thread 0 Thread 1

stw r7,0(r1) # x=1 lwz r5,0(r2) # r5=y
sync # sync cmpw r5,r7 # if r5=1
stw r8,0(r2) # y=1 beq L

...
L:
lwz r4,0(r1) # r4=x

Initial state: 0:r1=x, 0:r2=y, 0:r7=1,
0:r8=1, 1:r1=x, 1:r2=y, 1:r7=1, x=0
Allowed: 1:r5=1, 1:r4=0

Test MP+sync+ctrl: Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

rf
ctrl

rf

sync

This means that an operational model that permits all
architecturally allowed behaviour cannot simply exe-
cute the instructions of each hardware thread one-by-
one in program order. Instead, as in Sarkar et al. [3],
we maintain a tree of in-flight instruction instances for
each hardware thread, branching at conditional branch
or calculated jump points, and discarding un-taken sub-
trees when branches become committed. For example:

i1 i2 i3 i4 i5

i6

i8

i7

i9

i10

i13

i11 i12

(committed instructions boxed)

2.1.2 No per-thread register state
In a sequential, SC, or TSO model, one can treat reg-

isters simply as a per-thread map from architected regis-
ter names to values, examined and updated on register
reads and writes. But in a pipelined implementation
many instructions can be in flight, and concurrency can
make microarchitectural shadow registers and register
renaming indirectly programmer-observable, as in the
MP+sync+rs example below (a message-passing vari-
ant of Adir et al. [17, Test 6]). Here the three uses of
r5 on Thread 1 do not prevent the second read being
satisfied out-of-order (e.g. the first two uses of r5 on
Thread 1 might involve one shadow register while the
third usage might involve another). This is observable
on some ARM and POWER processors.

MP+sync+rs POWER
Thread 0 Thread 1

stw r7,0(r1) # x=1 lwz r5,0(r2) # r5=y
sync # sync mr r6,r5 # r6=r5
stw r8,0(r2) # y=1 lwz r5,0(r1) # r5=x
Initial state: 0:r1=x, 0:r2=y, 0:r7=1,
0:r8=1, 1:r1=x, 1:r2=y, x=0
Allowed: 1:r6=1, 1:r5=0

This means that a sound model cannot simply have
a per-thread register state. Instead, when an instruc-
tion needs to do a register read, we have to walk back

through its program-order (po) predecessors in the tree
to find the most recent one that has written to that reg-
ister, and take the value from there. We also have to
check that there are no po-intervening instructions that
might write to that register (and block until otherwise
if so), which means that we have to be able to pre-
calculate their register-write footprints. Two POWER
instructions (lswx and stswx) have data-dependent reg-
ister footprints; for these we pre-calculate an upper
bound that we refine after the XER register read that
determines them.

2.1.3 Register self-reads
Many instructions have pseudocode that reads from

one of their own register writes. To simplify the defi-
nition of when register reads should block, we rewrite
them to use a local variable instead. This gives the use-
ful property that for most instructions the register-read
and register-write footprints can be calculated statically
from its opcode fields, and that it will dynamically read
and write exactly once to each element of those.

2.1.4 Dependencies and register granularity
In POWER, dependencies between instructions aris-

ing from register-to-register dataflow are architecturally
significant (shadow registers notwithstanding), as they
guarantee local ordering properties that concurrent con-
texts can observe, and that are used in idiomatic code.
Address and data dependencies create local ordering
between memory reads and writes, while control de-
pendencies do so only in some circumstances (allowing
implementations to speculate branches but not to ob-
servably speculate values). Processor architectures typ-
ically have a more-or-less elaborate structure of register
names and aliases. For example, POWER includes 32
64-bit general-purpose registers, GPR[0]..GPR[31] (de-
noted ri in assembly) and a 32-bit condition register
CR (with bits indexed 32..63) that is partitioned into
4-bit subfields CR0..CR7; those bits are also referred to
with individual flag names LT, EQ, etc. All this must
be supported in the pseudocode, but the more impor-
tant semantic question is the architectural granularity
of mixed-size register accesses: a precise model has to
define when writing to one part of a register and read-
ing from another constitutes a dependency. The choice
is observable in tests such as MP+sync+addr-cr below:
Thread 0 is just the same two message-passing writes,
while Thread 1 has a putative dependency chain in-
volving a write to CR3 followed by a read form CR4. The
final state of 1:r6=1, 1:r5=0 is observable in implemen-
tations, telling us that a sound architectural model can-
not treat CR as a single unit.

MP+sync+addr-cr POWER
Thread 0 Thread 1

stw r7,0(r1) # x=1 lwz r5,0(r2) # r5 = y
sync # sync mtocrf cr3,r5 # cr3 = 4 bits of r5
stw r8,0(r2) # y=1 mfocrf r6,cr4 # set 4 bits of r6 = cr4

xor r7,r6,r6 # r7 = r6 xor r6
lwzx r8,r1,r7 # r8 = *(&x + r7)

Initial state: 0:r1=x, 0:r2=y, 0:r7=1,
0:r8=1, 1:r1=x, 1:r2=y, x=0
Allowed: 1:r6=1, 1:r5=0

Related experiments show that dependencies through
individual bits of CR are respected, as are dependencies
through adjacent bits of the same CRn field, so we could
treat CR either as a collection of 4-bit fields or as 32 1-bit
fields. The vendor documents are silent on this ques-
tion, but the latter seems preferable: it allows the most
hardware implementation variation; we do not believe
that code in the wild relies on false-register-sharing de-
pendencies (though of course it is hard to be sure of
this); and it is mathematically simplest. We follow this
choice for all register accesses, with a general definition
that assembles the value for a register read by reassem-
bling fragments of the most recent writes (in POWER,
the GPR registers are always fully written).
It is also important that interactions via the current

instruction address (CIA) do not give rise to dependen-
cies in the model, as that would prevent out-of-order
execution. The POWER instruction descriptions read
and write two pseudoregisters, CIA and NIA, which are
not architected registers; our thread model treats those
specially.

2.1.5 Reading from uncommitted instructions
For out-of-order execution to work, we clearly have to

let instructions read from register writes of po-previous
instructions that are not yet finished, just as in im-
plementations register values might be forwarded from
instructions before they are retired.
But we also have to let po-later instructions read from

the memory writes of earlier instructions in specula-
tive paths. The POWER architecture states that writes
are not performed speculatively but, while speculative
writes are never visible to other threads, they can be
forwarded locally to program-order-later reads on the
same thread. The PPOCA variant of MP below shows
that this forwarding is observable to the programmer.
Here f is address-dependent on e, which reads from the
write d, which is control-dependent on c. One might ex-
pect that chain to prevent read f binding its value before
c does, but in fact the write d can be forwarded directly
to e within the thread while d, e, and f are all still spec-
ulative (before the branch of the control dependency on
c is resolved). This is intended to be architecturally
allowed and it is observable in practice; it means that
the model must expose uncommitted writes to po-later
instructions.

PPOCA POWER
Thread 0 Thread 1

stw r7,0(r1)# x=1 lwz r5,0(r2) # r5=y
sync # sync cmpw r5,r7 # if r5=1
stw r8,0(r2)# y=1 beq L

...
L:
stw r7,0(r3) # z=1
lwz r6,0(r3) # r6=z
xor r6,r6,r6 # r6=r6 xor r6
lwz r4,r6,r1 # r4=*(&x+r6)

Initial state: 0:r1=x, 0:r2=y, 0:r7=1,
0:r8=1, 1:r1=x, 1:r2=y, 1:r3=z, 1:r7=1,
x=0, z=0
Allowed: 1:r5=1, 1:r4=0

Test PPOCA: Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

e: R[z]=1

f: R[x]=0

d: W[z]=1
rf

ctrl

rf

addrrf

sync

2.1.6 Non-atomic intra-instruction semantics for
register reads

The previous examples showed that we need to be
able to dynamically analyse the register and memory
writes of an instruction that is partially executed but
not yet committed, but so far one might imagine that
one could model each instruction atomically moving
between three states: not started, fully executed but
not committed, and committed. The following exam-
ple shows that this is not the case, even for instructions
that do just one memory write: we have to be able
to see that the memory footprint of an instruction be-
comes determined after only some of its register reads
have been satisfied, in order to know that po-later in-
structions will definitely be to different addresses and
hence can be executed out-of-order (before all the reg-
ister reads of the first instruction are resolved) without
violating coherence.
Without the middle writes of the example (b and

e), one has a plain ‘LB’ test, which is intended to
be architecturally allowed for POWER and ARM. The
LB+datas+WW variant has extra writes, to two dif-
ferent addresses, inserted in the middle of each thread.
These middle writes are merely data-dependent on the
first reads, not address-dependent, so even before the
reads have been satisfied, the middle writes can be
known to be to different addresses to the last writes on
each thread. In some implementations this lets those
writes go ahead out-of-order and be read from by the
reads on the other thread. If instead those middle writes
were address-dependent on the first reads (as in a test
LB+addrs+WW, not shown), then before those reads
are satisfied the middle writes would not be known to be
to different addresses to the last writes on each thread,
and the last writes could not go ahead. The former is
observable on some ARM processors; the latter is not.
For the current POWER server processors, no LB vari-
ant is observable.

LB+datas+WW POWER
Thread 0 Thread 1

lwz r5,0(r1) # r5=x lwz r6,0(r2) # r6=y
stw r5,0(r3) # z=r5 stw r6,0(r4) # w=r6
stw r9,0(r2) # y=1 stw r9,0(r1) # x=1
Initial state: x=0, y=0,
0:r1=x, 0:r2=y, 0:r3=z, 0:r9=1,
1:r1=x, 1:r2=y, 1:r4=w, 1:r9=1
Allowed: 0:r5=1, 1:r6=1

Test LB+datas+WW: Allowed

Thread 0

a: R[x]=1

b: W[z]=1

c: W[y]=1

d: R[y]=1

Thread 1

e: W[w]=1

f: W[x]=1

data

po

data

po

rf rf

A write instruction typically has a register read that
supplies the data to be written and one or more register
reads that are used to compute the address to be writ-
ten, e.g. as in pseudocode below for the stw RS,D(RA)

instruction used for those middle writes. This calculates
an effective address EA from register RA and instruction
field D before reading the data from register RS and do-
ing the memory write.

(bit[64]) b := 0;

(bit[64]) EA := 0;

if RA == 0 then b := 0 else b := GPR[RA];

EA := b + EXTS (D);

MEMw(EA,4) := (GPR[RS])[32 .. 63]

To permit LB+datas+WW, after the address register
reads can be resolved (i.e., after the program-order-
previous instructions that write those registers have
produced values for them, whether or not they have
been committed), we have to be able to compute the
write address, even if the data register reads cannot yet
be resolved, so that later instructions that might have
been to the same address can go ahead. In contrast,
whether the data register reads can be resolved has no
effect on later instructions. Hence:

1. It would be unsound to block the middle writes un-
til their entire register-read footprint is available,
as that would block the later writes.

2. It would be sound to interpret the pseudocode in a
dataflow style, or to rewrite it with explicit intra-
instruction concurrency, but that would introduce
unnecessary nondeterminism.

3. It would be sound to interpret the pseudocode as
written sequentially, as the address reads are be-
fore the data reads (but it would not be if they
were reversed).

We adopt the last alternative, but note that this means
we have to be able to dynamically recalculate the poten-
tial memory read and write footprint of an instruction
in progress, after some but not all of its register reads
are resolved.

2.1.7 Undefined values
Instruction descriptions often leave some register bits

explicitly undefined, e.g. for some flag bits, or 32 bits
of the result register in POWER multiply-word instruc-
tions. There are several possible interpretations of this.
One could: (a) make a nondeterministic choice at as-
signment time (if stable, or when read, if not); (b)
feed in the concrete values from an observed hardware
or simulator trace; (c) work over lifted bits, 0, 1, or
undef; or (d) work with symbolic bit values and accu-
mulate constraints on them. Option (a) is mathemati-
cally attractive and suitable for testing software above
the model, but would make it combinatorially infeasible
to find all allowed behaviours even for small examples,
and likewise infeasible to compare our emulator results
against actual hardware. Option (b) could be attractive
for conformance testing vs. an existing simulator. Op-
tion (d) is also combinatorially challenging, especially if
any such bits are used in addresses. We currently sup-
port (c), allowing undefined bits in register and memory
values (to support testing against actual hardware) but
not in address or instruction-field values (as that would
make semantic exploration infeasible). This is reflected
in the interface to the ISA semantics.

2.2 The ISA semantics interface
From the above, we can see that there is (so far) no

need for intra-instruction parallelism in the model. We
have to be able to execute multiple instructions from
a thread concurrently, and to represent partially exe-
cuted instructions (instructions cannot be regarded as

atomic transactions, though they sometimes do need
to be aborted or restarted). But their individual pseu-
docode can be interpreted sequentially, taking care with
the sequencing of register reads leading to addresses vs
those leading to data. The interface to an executing
instruction has to expose its register and memory read
and write events, together with memory barrier events.
Other instruction instances in a thread have to be able
to make progress while one is blocked waiting for a reg-
ister read or memory read to be satisfied. It has to be
possible to forward from a po-previous memory write in
the same thread that has not yet been committed.
We also saw that it is necessary to be able to dynami-

cally calculate the possible memory read and write foot-
print of a partially executed instruction instance, ana-
lyzing its future behaviour, and we have to know which
pending register reads can affect those footprints.
This can all be achieved most simply, and with a tight

connection to a readable pseudocode description of in-
structions, by a deep embedding of a formally defined
pseudocode language (or instruction description lan-
guage, IDL) into the generic Lem mathematical meta-
language in which our model is written; such an em-
bedding represents the typed instruction description as
a Lem term of a Lem type for the IDL AST. We describe
our Sail IDL in the next section. It is given semantics
with a Sail interpreter, defined in Lem, and that inter-
preter has a simple interface to the rest of the model,
with types as below (slightly condensed for presenta-
tion).

type instruction_state

type outcome =

| Read_mem of address*size*(memval -> instruction_state)

| Write_mem of address*size*memval*instruction_state

| Barrier of barrier_kind*instruction_state

| Read_reg of reg_slice*(regval -> instruction_state)

| Write_reg of reg_slice*regval*instruction_state

| Internal of instruction_state

| Done

val interp : instruction_state -> outcome

val decode : context

-> opcode -> instruction_or_decode_error

val initial_state : context

-> instruction -> instruction_state_or_error

The interpreter works over a type instruction_state
which is abstract as far as the rest of the model is con-
cerned. The main interp function takes a single in-
struction state and executes it for one step, to produce
an outcome. This is a labelled union type in which the
memory and register read cases include an instruction-
state continuation, abstracted on the value that should
be supplied by the rest of the model. This lets us decou-
ple the behaviour of a single instruction from the rest
of the system (other instructions can execute while that
continuation is saved).
There are also functions to decode an opcode to an

instruction (an element of an instruction-set abstract-
syntax type, and to create an initial instruction state

union ast member (bit[5],bit[5],bit[14]) Stdu

function clause decode

(0b111110

: (bit[5]) RS

: (bit[5]) RA

: (bit[14]) DS

: 0b01

as instr) =

Stdu (RS,RA,DS)

function clause execute (Stdu (RS, RA, DS)) =

{ EA := GPR[RA] + EXTS (DS : 0b00);

MEMw(EA,8) := GPR[RS];

GPR[RA] := EA }

function clause invalid (Stdu (RS, RA, DS)) =

(RA == 0)

Figure 2: Example instruction description, in vendor documentation and in Sail, showing the close
correspondence between the two for execute and decode

from that; these are parameterised by a context which
is essentially the complete ISA definition.
To calculate the potential register and memory foot-

prints of an instruction (from either its initial state or
a partially executed state) we can simply run the inter-
preter exhaustively, feeding in a distinguished unknown

value to the continuations for any reads; the interpreter
operations treat unknown similarly to undef. It can also
calculate the register reads that feed into memory ad-
dresses by doing this with dynamic taint tracking.

3. SAIL: ISA DEFINITION LANGUAGE
To express the mass of individual instruction descrip-

tions, we need an instruction definition language that
(1) supports the interface in the previous section, in-
cluding the interp, decode, and initial_state func-
tions and the analysis of the potential footprints and
dependencies of partially executed instructions, (2) is
mathematically precise, and (3) is readable by engineers
familiar with the existing vendor documentation. There
has been a great deal of previous work using domain-
specific IDLs and proof assistants to describe instruc-
tion behaviour: for emulation, generation of compiler
components, test generation, formal verification of com-
pilers and of hardware, etc. [22]. Emulators such as
gem5 [1] and QEMU [2] each have their own internal
descriptions of instruction behaviour. On the more for-
mal side, notable recent examples include the work of
Fox [23] for ARM in his L3 IDL, and Goel et al. [24]
for x86 in ACL2. Some of these are both precise and
readable (and some rather complete), but to the best
of our knowledge none addresses instruction behaviour
in the context of weakly consistent multiprocessors and
the issues of the previous section. Accordingly, we have
developed a new IDL, Sail, for the purpose. Sail com-

prises a language, with a formally defined type system,
and a tool that parses and typechecks ISA definitions,
exporting them to a type-annotated Lem AST, and an
interpreter (written in Lem) that executes them.
We illustrate Sail with an example instruction de-

scription in Fig. 2 (stdu, one of the simplest of the
several hundred instructions we consider). On the left
is the vendor documentation, while on the right are
Sail definitions of a clause of the abstract-syntax type
ast of instructions (Stdu, with three bitvector fields),
a clause of the decode function, pattern-matching 32-
bit opcode values into that abstract-syntax type, and a
clause of the execute function, defining the instruction
behaviour, and a clause of the invalid predicate, iden-
tifying invalid instructions. Sail supports conventional
imperative code, with access to memory (the write to
MEMw) and registers (the reads and writes of GPR[·]),
instruction fields from the AST value (RS, RA, DS), lo-
cal variables (EA), sequencing, conditionals, and loops.
The Sail interpreter produces outcomes for register and
memory accesses, and for memory barriers, as described
in the previous section.
We equip the language with an expressive type sys-

tem to check consistency and detect errors in Sail defini-
tions. Many POWER instructions (especially the vector
instructions) involve elaborate manipulation of bitvec-
tors, with computed indices and lengths, and registers
are indexed from various start-index values. To check
these we use a type system in which types can be de-
pendent on simple arithmetic expressions. In particu-
lar, for any type t, start index s, length l, and direction
d, Sail has a type vector<s,l,d,t> of vectors of t, and
the start index and length can be computed, e.g. from
instruction fields and loop indices. In general type-
checking in such a system quickly becomes undecidable,

with numeric constraints involving addition, multiplica-
tion, and exponentiation, but the constraints that arise
in practice for our ISA specification are simple enough
(e.g. 0 ≤ 2n + m, given n ≥ 0 and m ≥ 0) that they
can be handled by an ad hoc solver. Sail type construc-
tors (including user-defined types) and functions can be
parametric in types, in natural-number values, and in
directions. In the POWER description indices increase
along a bitvector, from MSB to LSB, while other ar-
chitectures use the opposite convention; this direction
polymorphism lets us use either style directly, without
error-prone translation and sharing the same library of
basic operations. Sail function types can be annotated
by sets of effects, to identify whether they are pure or
can have register or memory side-effects, and there is
also simple effect polymorphism. To keep Sail defini-
tions readable, we use type inference and some limited
automatic coercions (between bits, bitvectors of length
1, and numbers; from bit vectors to unsigned numbers;
and between constants and bit vectors), so very few type
annotations are needed — none in the right-hand side
of Fig. 2 except for the sizes of the instruction opcode
fields in the decode function.
All this lets us have definitions of decoding and

behaviour that are simultaneously precise and close
enough to the vendor pseudocode to be readable, as
Fig. 2 shows.

4. FROM VENDOR DOCUMENT TO SAIL
Given a metalanguage for instruction description, one

could produce a description for an existing architecture
manually, reading the existing prose+pseudocode doc-
umentation and rendering it into the IDL. This gives
the flexibility to refactor the definition, e.g. with an eye
to particular proofs in the work of Fox [23] and to fast
symbolic evaluation in that of Goel et al. [24]. Some-
times one may have to follow this manual approach:
the existing documentation varies widely in how rigor-
ously defined and how complete the instruction descrip-
tions are, from something reasonably precise for ARM
through to something much less so for x86, and in any
case for some purposes such refactoring is essential. But
ISA definitions are moderately large (100s to 1000s of
pages), making this an error-prone and tedious task,
and the result is less tightly coupled to the original than
one might like: it may not be readable by practicing en-
gineers, and it may be hard to update to a new version
of the vendor specification.
The obvious alternative is to try to automatically ex-

tract all the information one can, doing as little manual
patching as possible. This has been done for a sequen-
tial ARM description by Shi et al. [25], from PDF to a
model complete enough to boot a kernel and theorem-
prover definitions in Coq.
For POWER, the vendor pseudocode is in between

those mentioned above in rigour, looking reasonably
precise at first sight, and so an automatic extraction
seems feasible and worthwhile. It is maintained inter-
nally as a Framemaker document, publicly released as
PDF. Neither is intended to be easily parsed, and so we

worked instead from an alternative XML export pro-
vided by IBM from the Framemaker source. We wrote
a tool that extracts instruction descriptions automati-
cally from this, stores them in an intermediate format
suitable for analyses, and produces a Sail model for
decoding and executing instructions, as well as helper
OCaml code to parse, execute and pretty-print litmus
tests. Some instructions needed additional patching,
e.g. for the setting of arithmetic flags, which are de-
scribed in the manual in prose, not in pseudocode, and
for a few errors in the pseudocode.
The tool has to deal with many irregularities in the

XML to pull out the main blocks shown on the left of
Fig. 2 (instruction name, form, mnemonic, binary rep-
resentation, pseudocode, and list of special registers al-
tered) and parse the pseudocode into a simple untyped
grammar. The powerful type inference that Sail pro-
vides makes it simple to generate Sail code from this.

4.1 Current Status
We focus mainly on the user-mode Branch Facility

and Fixed-Point Facility instructions of the POWER
ISA User Instruction Set Architecture [20]. In the ver-
sion we worked from, these include 154 normal user in-
structions; we currently extract decoding information
and instruction pseudocode for all of these, and we de-
scribe our test generation and validation for them in
§7 (these instruction counts refer to the underlying in-
structions as identified in the documentation, e.g. the
four add, add., addo, and addo. variants of Add are
counted together as one). There are 5 system-call and
trap instructions, which are not in our scope, in those
chapters. We also handle memory barriers: the sync,
lwsync, eieio, and isync instructions from Chapter 4
of Book II: POWER ISA Virtual Environment Architec-
ture; for these the instruction semantics simply signals
the corresponding event to the concurrency model.
The remaining user ISA for server implementations

comprises the vector, floating-point, decimal floating-
point, and vector-scalar floating-point instructions. We
extract decoding information for almost all of these,
and pseudocode for many of the vector instructions, but
specifying floating-point operations is a major topic in
itself [26, 27, 28], not in our scope here.
All this produces approximately 8500 lines of Sail,

defining the Sail AST, decoding, and execution for 270
instructions, and around 17 000 lines of OCaml code to
parse, pretty-print, and manipulate assembly instruc-
tions.
During development we were provided with an up-

dated version of the XML export; it required less than
two days of work to adapt the extraction process (de-
spite various changes to XML tags), suggesting that this
could be maintained over time and that in principle it
could be gradually integrated into a vendor workflow.

5. THE CONCURRENCY MODEL
Looking back at the Fig. 1 overview, Sections 2, 3,

and 4 have described the left-hand block: our ISA model
and its interface. We now describe the concurrency

model, with respect to that of our starting point [3].
The thread semantics is adapted throughout to han-

dle mixed-size register accesses and the model of in-
struction behaviour from §2.2, and also to maintain an
explicit tree of in-flight instructions.
For mixed-size memory accesses the thread model

also decomposes misaligned and large (vector) writes
into their architecturally atomic units. POWER is a
non-multicopy-atomic architecture: two writes by one
thread to different locations can become visible to two
other threads in opposite orders. This is an observable
consequence of the storage hierarchy and cache protocol
microarchitecture of implementations, but our model
abstracts from those details; it maintains an explicit
description of the memory writes (and barriers) that
have been propagated to each hardware thread, and of
the coherence commitments between writes that have
been established so far. The decomposition allows the
atomic units of an ISA memory write to be separately
propagated to other threads.
Handling mixed-size memory access requires a further

change to the storage subsystem model: there are now
coherence relationships between overlapping writes with
distinct footprints (their address/size pairs).
For concreteness, we show the Lem type of our new

storage subsystem state below. It is a record type, with
fields containing various sets, relations, and functions.
For example, the coherence field is a binary relation
over write, a type of memory write events. This too is
a record type (not shown), containing a unique id, an
address and size, and a memory value (a list of bytes of
lifted bits).

type storage_subsystem_state = <|

threads: set thread_id;

writes_seen: set write;

coherence: rel write write;

events_propagated_to: thread_id -> list event;

unacknowledged_sync_requests: set barrier;|>

The storage subsystem model can take transitions be-
tween such states, to accept a new write or barrier from
a thread, to send a response to a read request, to prop-
agate a write or barrier to a new thread, to acknowl-
edge a sync barrier to its originating thread when the
relevant events have propagated to all threads, and to
establish new coherence commitments. The details of
our model lie in the preconditions and resulting states
of such transitions. We cannot include them here, for
lack of space (the interpreter and concurrency model
are around 4300 and 2800 non-comment lines of speci-
fication), but we intend to make them available online.
From the type and transitions described above, though,
one can see that the model is abstracting from particu-
lar microarchitecture but can still be directly related to
implementation behaviour. For example, some model
coherence-commitment transitions will correspond to
one write winning a race for cache-line ownership.
The corresponding type for the model of each thread

is essentially a tree of instruction instances, each of
which can take transitions for register writes or reads,
for making a memory write locally visible, satisfying a
memory read by locally forwarding from such a write,

committing a memory write or barrier to the storage
subsystem, issuing a memory read request, satisfying a
memory read from the storage subsystem, or an inter-
nal step; the thread can also fetch a new instruction
instance at any leaf of its tree. To relate to the inter-
preter interface we saw earlier, the abstract micro-op
state of an instruction is an element of:

type micro_op_state =

| MOS_plain of instruction_state

| MOS_pending_mem_read of

read_request * (memval -> instruction_state)

| MOS_potential_mem_write of

(list write) * instruction_state

storing the continuation provided by the interpreter in
the memory-read case. An instruction instance com-
bines this with the statically analysed footprint data,
obtained by running the interpreter exhaustively, and a
record of the register and memory reads and writes the
instruction has performed (cleared if the instruction is
restarted).
At present we treat instruction and data memory

separately, not having investigated the interactions be-
tween concurrency and instruction-cache effects. In-
struction fetches read values from a fixed instruction
memory, decode them (if possible) using the Sail decode
function, as in Fig. 2, and use the exhaustive interpreter
to analyse their register footprint and potential next
fetch addresses. The exhaustive interpreter is also used
as necessary to re-analyse the possible future memory
footprint of partially executed instructions.
The complete state of the model simply collects these

components together:

type system_state = <|

program_memory: address -> fetch_decode_outcome;

initial_writes: list write;

interp_context: Interp_interface.context;

thread_states: map thread_id thread_state;

storage_subsystem: storage_subsystem_state;

idstate: id_state; model: model_params; |>

with a function to enumerate all the possible transitions
of a system state:

val enumerate_transitions_of_system :

system_state -> list trans

val system_state_after_transition :

system_state -> trans -> system_state_or_error

6. THE TOOL, WITH ELF AND LITMUS
FRONT-ENDS

To make an executable tool from our mathematical
model, following Fig. 1, we use the §4 extraction tool to
generate a Sail definition of our POWER ISA fragment
and Sail to typecheck that and translate into a Lem def-
inition which we link with the concurrency model. Lem
typechecks both and translates into executable OCaml.
We link that with an OCaml test harness for ex-

ploring the system-state transitions and with two front-
ends: one to parse litmus tests such as the §2 examples,
and another to parse statically linked Power64 ELF ex-
ecutable binaries. The former is based on the herdtools

Storage subsystem state:

writes seen = { W 0x0000000000001050(x)/4=0x00000001,

W 0x0000000000001040(y)/4=0x00000000,

W 0x0000000000001050(x)/4=0x00000000}

coherence = { W 0x0000000000001050(x)/4=0x00000000 -> W 0x0000000000001050(x)/4=0x00000001 }

events propagated to:

Thread 0: [W 0x0000000000001040(y)/4=0x00000000,

W 0x0000000000001050(x)/4=0x00000000,

W 0x0000000000001050(x)/4=0x00000001]

Thread 1: [W 0x0000000000001040(y)/4=0x00000000, W 0x0000000000001050(x)/4=0x00000000]

4 Propagate write to thread: W 0x0000000000001050(x)/4=0x00000001 to Thread 1

unacknowledged Sync requests = {}

Thread 0 state:

instruction: 0 ioid: 6 address: 0x0000000000050000 stw RS=7 RA=1 D=0

regs_in: {GPR7[32..63], GPR1} regs_out: {} NIAs: {succ}

committed memory writes: W 0x0000000000001050(x)/4=0x00000001

remaining micro-operations:

| ()

local variables: EA=0b0...01000001010000, b=0b0...01000001010000

0 (0:6) Finish

1 (0:6) Fetch from address 0x0000000000050004 sync L=0

Thread 1 state:

instruction: 0 ioid: 4 address: 0x0000000000051000 lwz RT=5 RA=2 D=0

regs_in: {GPR2} regs_out: {GPR5} NIAs: {succ}

remaining micro-operations:

| GPR[to_num (RT)] := (0b00000000000000000000000000000000 : MEMr (EA,4))

local variables: EA=0b0...01000001000000, b=0b0...01000001000000

2 (1:4) Memory read request from storage R 0x0000000000001040(y)/4

instruction: 1 ioid: 5 address: 0x0000000000051004 cmp BF=0 L=0 RA=5 RB=7

regs_in: {XER.SO, GPR5[32..63], GPR7[32..63]} regs_out: {CR[32..35]} NIAs: {succ}

remaining micro-operations:

| a := EXTS (64,(GPR[5])[32 .. 63]);

| b := EXTS (64,(GPR[to_num (RB)])[32 .. 63])

| if a < b then c := 0b100 else if a > b then c := 0b010 else c := 0b001;

| CR[4*BF+32 .. 4*BF+35] := c : [XER.SO]

local variables: b=0b0...0, a=0b0...0

3 (1:5) Fetch from address 0x0000000000051008 bc BO=12 BI=2 BD=1 AA=0 LK=0

This shows a state for the first MP+sync+ctrl example of §2.1, from the user interface of our tool (lightly edited
for presentation). This state is reachable after 44 non-internal transitions, and the possible next transitions are
underlined and highlighted in green; in the web interface they are clickable. The delta from the previous state is
highlighted in red. Finished instruction instances are shown in a more condensed form, but there are none in this
state. For each instruction, the remaining Sail abstract microoperations are shown in blue. Memory events (the
writes and reads of x and y shown in the §2.1 execution diagram) are shown in cyan.
On Thread 0 the write x=1 (in full, W 0x0000000000001050(x)/4=0x00000001) of the first stw has just been committed
to the storage subsystem, and in the storage subsystem state it is coherence-after an initial-state write, but it has
not yet been propagated to Thread 1. The sync can be fetched, but it will not be propagatable to Thread 1 until
that first write is.
On Thread 1 the first lwz and cmp are both executing. The former can read y from memory, and if that is done now
(before the Thread 0 write of y=1 has been committed and propagated to Thread 1) it will get the zero from the
initial state write. The cmp is blocked on a register read from GPR[5] waiting for the lwz to write to it. Thread 1
continues with a bc conditional branch; that fetch transition is already enabled, and after that fetch the final load
lwz could also be fetched, and indeed also speculatively satisfy its read of x immediately, though it could not be
committed until the branch is. The regs_in, regs_out, and NIAs static-analysis data for the cmp show how its precise
register footprint has been calculated, including particular subfields and bit-ranges of XER, CR, and GPR registers.

Figure 3: A tool screenshot with a system state and currently enabled transitions for MP+sync+ctrl

front-end of Maranget et al. [29], using assembly pars-
ing and pretty-printing code produced by our extrac-
tion tool from the XML POWER definition. The lat-
ter uses a mathematical model of the ELF file format,
also written in Lem. Parsed binaries are checked for
static linkage and conformance with the Power64 ABI
before their loadable segments are identified and loaded
into the tool’s code memory. Names of global variables,
their addresses in the executable memory image, and
their initialisation values are also extracted to initialise
the tool’s data memory and the user-interface symbol
pretty-printer. Text and web interactive user interfaces
show the current state and enabled transitions; the user
can select any of those, automatically skip internal tran-
sitions, run sequentially, or (resources permitting) do an
exhaustive search. Fig. 6 gives a tool screenshot, show-
ing a model state and its enabled transitions.

7. TEST GENERATION AND VALIDATION
We validate our model in several ways. For the se-

quential behaviour of instructions, we generate random
single-instruction tests and compare the behaviour of
the model (run in sequential mode) against that of a
POWER 7 server (allowing the hardware to exhibit ar-
bitrary values where the model has undef bits). For con-
current behaviour, we use a range of concurrent litmus
tests, running the model in exhaustive concurrent mode
and checking the set of results for each test includes
those previously found by testing hardware (POWER
G5, 6, 7, and 8) using the litmus tool [6]. Experimen-
tal testing can never give complete assurance, of course,
and we expect to evolve the model over time, but these
results establish a reasonable level of confidence that
our model is sound with respect to the behaviour of
POWER hardware implementations. Assessing com-
pleteness is harder, as it is essentially a question of the
architectural intent of the vendor or designer, which
has not previously been expressed precisely — enabling
that is the point of our work. But our discussion with
IBM staff also serves to validate that our model cap-
tures the vendor architectural intent for a number of
specific points. To the best of our knowledge our tool
is complete, allowing all the behaviour that they intend
to be allowed, except for certain exotic cases of unde-
fined behaviour or computed branches, which would be
combinatorially infeasible to enumerate.
In more detail, for sequential testing we wrote a tool

to automatically generate assembly tests for each in-
struction supported by the model, for interesting partly-
random combinations of machine state and instruction
parameters, and taking care with branches and suchlike.
Each test can be run either in the model or on actual
hardware, logging the register values and relevant mem-
ory state before and after execution of the instruction in
question, then we compare those logfiles (up to undef).
These tests are standard ELF binaries produced with
GCC (so this also exercises our ELF front-end).
Tests are generated largely automatically, from the

Sail names and inferred types of instruction fields, the
inferred Sail effect annotation (stating whether the in-

struction does register and memory reads or writes),
and the vendor ISA description [20, §1.6.28] of how in-
struction fields are used and what registers or mem-
ory locations an instruction using this instruction field
might depend on. Most of this can be done uniformly:
only 13 special cases were needed for individual instruc-
tions, and 7 for certain load/store instruction forms.
For single-bit mode fields, our test generation is exhaus-
tive. For the 154 user-mode branch and fixed-point in-
structions, we currently generate 6984 tests (we omit
only conditional branches to absolute addresses). Run-
ning these on POWER 7 hardware and in our model,
all of these instructions pass all their tests. This testing
has found around 33 bugs, variously in our ISA model
(e.g. where we omitted flag setting that is not in the
pseudocode or made multiple accesses to the same reg-
ister), interpreter (e.g. arithmetic mismatches), concur-
rency model, and test generation. There was also one
error in the manual’s pseudocode and four cases where
the pseudocode and text disagree.
For concurrent testing, we checked 2175 litmus tests,

including those of §2 and [3], each of which identifies a
non-SC execution which might or might not be allowed
in the model or observed in practice. For each we ran
the model exhaustively to calculate the set of possible
results it allows, and compared against previous exper-
imentally observed behaviour for POWER G5, 6, 7 and
8 hardware. This identified a small number of problems
in the model, all of which were fixed. Systematic gen-
eration of good litmus tests that exercise all the new
features of the model is a research problem for future
work in itself, as there are now many more possibilities.

8. CONCLUSION
We have shown how one can construct a rigorous ar-

chitectural model for a substantial fragment of a so-
phisticated multiprocessor architecture, combining in-
struction description and concurrency model to make
a precise artifact embodying the architectural abstrac-
tion, not merely a prose document. The fact that we
can compute the set of all model-allowed outcomes for
extensive sequential and concurrent tests validates our
claim that it can serve as a test oracle.
This opens up many possibilities for future work: us-

ing the model as a reference for hardware validation,
for exploring whether future microarchitecture designs
provide the same programmer-observable concurrency
behaviour, and for testing whether implementations of
software concurrency libraries are correct with respect
to the architecture (previous sequential POWER hard-
ware testing deemed construction of an architecture
model to be a “critical step [that] should not be un-
derestimated” [30]). Related work on ARM is also in
progress [31].
We have focussed on precision, clarity, abstraction,

soundness, and completeness, not on performance, and
that is the obvious limitation of our current tool: it is
just fast enough for the testing we have considered (the
sequential and concurrent checking above take minutes
and hours respectively, on a single machine). There is

ample scope for improving both sequential and concur-
rent performance, though the latter will always be lim-
ited by the combinatorial challenge. Ideally one would
be able to generate high performance, verified, and ar-
chitecturally complete emulators from such models, but
that needs a great deal of further research.
We have done all this for a pre-existing industrial

architecture, but our techniques, tools, and much of the
concurrency model should also be applicable to research
architectures. There one can hope to escape some of the
legacy issues and move directly to precise architecture
descriptions that one can test against.

8.1 Acknowledgements
We acknowledge funding from EPSRC grants

EP/H005633 (Leadership Fellowship, Sewell) and
EP/K008528 (REMS Programme Grant), an ARM
iCASE award (Pulte), and the Scottish Funding Coun-
cil (SICSA Early Career Industry Fellowship, Sarkar).

9. REFERENCES

[1] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna,
S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood, “The gem5 simulator,” SIGARCH
Comput. Archit. News, vol. 39, pp. 1–7, Aug. 2011.

[2] F. Bellard, “QEMU, a fast and portable dynamic
translator,” in Proceedings of the Annual Conference on
USENIX Annual Technical Conference, ATEC ’05,
(Berkeley, CA, USA), pp. 41–41, USENIX Association,
2005.

[3] S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and
D. Williams, “Understanding POWER multiprocessors,” in
PLDI, 2011.

[4] S. Sarkar, K. Memarian, S. Owens, M. Batty, P. Sewell,
L. Maranget, J. Alglave, and D. Williams, “Synchronising
C/C++ and POWER,” in Proc. PLDI, 2012.

[5] J. Alglave and L. Maranget, “The diy tool.”
http://diy.inria.fr/.

[6] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell, “Litmus:
running tests against hardware,” in Proc. TACAS 2011,
2011.

[7] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber,
“Mathematizing C++ concurrency,” in Proc. POPL, 2011.

[8] M. Batty, K. Memarian, S. Owens, S. Sarkar, and P. Sewell,
“Clarifying and compiling C/C++ concurrency: from
C++11 to POWER,” in Proc. POPL, 2012.

[9] P. McKenney, “Validating memory barriers and atomic
instructions,” Linux Weekly News, 2011.
http://lwn.net/Articles/470681/.

[10] J. Alglave, L. Maranget, and M. Tautschnig, “Herding cats:
Modelling, simulation, testing, and data-mining for weak
memory,” in Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and
Implementation, PLDI ’14, (New York, NY, USA),
pp. 40–40, ACM, 2014.

[11] M. Dubois, C. Scheurich, and F. Briggs, “Memory access
buffering in multiprocessors,” in Proceedings of the 13th
Annual International Symposium on Computer
Architecture, ISCA ’86, (Los Alamitos, CA, USA),
pp. 434–442, IEEE Computer Society Press, 1986.

[12] W. Collier, Reasoning about parallel architectures.
Prentice-Hall, Inc., 1992.

[13] K. Gharachorloo, “Memory consistency models for
shared-memory multiprocessors,”WRL Research Report,
vol. 95, no. 9, 1995.

[14] J. M. Stone and R. P. Fitzgerald, “Storage in the
PowerPC,” IEEE Micro, vol. 15, pp. 50–58, April 1995.

[15] C. May, E. Silha, R. Simpson, and H. Warren, eds., The
PowerPC architecture: a specification for a new family of
RISC processors. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1994.

[16] S. V. Adve and K. Gharachorloo, “Shared memory
consistency models: A tutorial,” IEEE Computer, vol. 29,
no. 12, pp. 66–76, 1996.

[17] A. Adir, H. Attiya, and G. Shurek, “Information-flow
models for shared memory with an application to the
PowerPC architecture,” IEEE Trans. Parallel Distrib.
Syst., vol. 14, no. 5, pp. 502–515, 2003.

[18] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell, “Fences
in weak memory models,” in Proc. CAV, 2010.

[19] D. Lustig, M. Pellauer, and M. Martonosi, “Pipe check:
Specifying and verifying microarchitectural enforcement of
memory consistency models,” in Proceedings of the 47th
Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-47, (Washington, DC, USA),
pp. 635–646, IEEE Computer Society, 2014.

[20] Power ISA Version 2.06B. IBM, 2010.
https://www.power.org/wp-content/uploads/2012/07/
PowerISA_V2.06B_V2_PUBLIC.pdf (accessed 2015/07/22).

[21] D. P. Mulligan, S. Owens, K. E. Gray, T. Ridge, and
P. Sewell, “Lem: reusable engineering of real-world
semantics,” in Proc. ICFP, 2014.

[22] P. Misra and N. Dutt, eds., Processor Description
Languages. Morgan Kaufmann, 2008.

[23] A. C. J. Fox, “Directions in ISA specification,” in
Interactive Theorem Proving – Third International
Conference, ITP 2012, Princeton, NJ, USA, August 13-15,
2012. Proceedings (L. Beringer and A. P. Felty, eds.),
vol. 7406 of Lecture Notes in Computer Science,
pp. 338–344, Springer, 2012.

[24] S. Goel, W. A. Hunt, M. Kaufmann, and S. Ghosh,
“Simulation and formal verification of x86 machine-code
programs that make system calls,” in Proceedings of the
14th Conference on Formal Methods in Computer-Aided
Design, FMCAD ’14, (Austin, TX), pp. 18:91–18:98,
FMCAD Inc, 2014.

[25] X. Shi, J.-F. Monin, F. Tuong, and F. Blanqui, “First steps
towards the certification of an ARM simulator using
Compcert,” in Certified Programs and Proofs (J.-P.
Jouannaud and Z. Shao, eds.), vol. 7086 of Lecture Notes in
Computer Science, pp. 346–361, Springer Berlin
Heidelberg, 2011.

[26] J. Harrison, “Floating-point verification,” Journal of
Universal Computer Science, vol. 13, pp. 629–638, may
2007.

[27] S. Boldo and G. Melquiond, “Flocq: A unified library for
proving floating-point algorithms in Coq,” in Proceedings of
the 2011 IEEE 20th Symposium on Computer Arithmetic,
ARITH ’11, (Washington, DC, USA), pp. 243–252, IEEE
Computer Society, 2011.

[28] D. M. Russinoff, “Computation and formal verification of
SRT quotient and square root digit selection tables,” IEEE
Trans. Comput., vol. 62, pp. 900–913, May 2013.

[29] L. Maranget et al., “herdtools.”
https://github.com/herd/herdtools.

[30] L. Fournier, A. Koyfman, and M. Levinger, “Developing an
architecture validation suite: Applicaiton to the PowerPC
architecture,” in DAC, pp. 189–194, 1999.

[31] S. Flur, K. E. Gray, C. Pulte, S. Sarkar, A. Sezgin,
L. Maranget, W. Deacon, and P. Sewell, “Modelling the
ARMv8 architecture, operationally: Concurrency and ISA,”
in Proceedings of POPL, 2016.

