
An integrated congestion
management architecture for

Internet hosts
Hari Balakrishnan1, Hariharan S. ahul1, and

Srinivasan Seshan2

1M.I.T. Laboratory for Computer Science
2IBM T. J. Watson Research Center

ACM SIGCOMM, 1999

Outline

• Introduction
• CM algorithms

– Rate-based control is TCP-friendly
– Receiver feedback
– Better than best-effort networks
– CM Scheduler

• The CM API
• Application performance
• Conclusions

Introduction (1/2)

• Several trends in traffic patterns that threaten the
long-term stability.
– multiple independent concurrent flows by Web

application
– transport protocols and applications that do not

adapt to congestion

• Ensure proper congestion behavior and allows
applications adapt to network congestion and
varying bandwidth.

Introduction (2/2)

Fig.1 New sender architecture with centered around the Congestion Manager.

CM algorithms

• Rate-based AIMD control
• Loss-resilient feedback protocol
• Exponential aging when feedback is infrequent
• Flow segregation to handle non-best-effort

networks
• Scheduler to apportion bandwidth between flows

Rate-based control is TCP-friendly
(1/2)

• Ensure proper congestion behavior
– rate-based AIMD control scheme

• Rate changes as
– learns from active flows about the state of the network
– probes for spare capacity

• AIMD

• Why choose rate-based instead of window-based
scheme?

Rate-based control is TCP-friendly
(2/2)

• TCP-friendliness
relationship:

λ = K /√p
λ:throughput, p:loss rate,
K:constant depends on the

packet size and RTT
λα nr

p α nd /n

nr
2 = K2(nr/nd)+K2

Fig.2 CM’s rate control is TCP-friendly.

Receiver feedback (1/3)

• Why do we need feedback?
– to be communicated to the sender

• Implicit: hints from application
• Explicit: CM probes

– Probe every half RTT
– tracks of the number of packets sent per flow, loss rate,

and updates RTT estimate.

Receiver feedback (2/3)

Receiver feedback (3/3)

Handling infrequent feedback

• During times of congestion, probe messages or
responses are lost

• Exponential aging: reduce rate by half, every
silent RTT
– Continues transmissions at safe rate without clamping

apps

Better than best-effort networks

• Future networks will not treat all flows equally
– differentiated services, prioritization based on flow

identifiers, etc

• Solution: flow segregation
– If an application knows beforehand, it can inform the CM

– the CM incorporates a segregation algorithm
– based on per-flow loss rates and bandwidths

CM Scheduler

• Using Hierarchical Round Robin (HRR) scheduler
for rate allocation

• Uses receiver hints to apportion bandwidth between
flows

• Exploring other scheduling algorithms for delay
management as well
– currently implemented

only bandwidth allocation

The CM API

• Goal: To enable easy application adaptation

• Guiding principles:
– Put the application in control
– Accommodate application heterogeneity
– Learn from the application

Put the application in control

• Application decides what to transmit
• CM does not buffer any data

– allows applications the opportunity to adapt to
unexpected network changes

• Request/callback/notify API
– cm_request(nsend);
– app_notify(can_send);
– cm_notify(nsent);

• learn about available bandwidth and the RTT
– cm_query(&rate, &srtt);

Accommodate application heterogeneity

• API should not force particular application style
• Asynchronous transmitters

– triggered by events (ex. file reads) rather than periodic
clocks

– request/callback/notify works well

• Synchronous transmitters
– Maintain internal timer for transmissions
– Need rate change triggers from CM

change_rate(newrate);

Learn from the application

• cm_notify(nsent): upon each transmission

• cm_update(nrecd, duration, loss_occurred, rtt)
– hint to internally update CM sustainable sending rate and

RTT estimates.

• cm_close(): a flow is terminated and allows the CM
to destroy the internal state associated with it.

Application Performance (1/4)

• Application 1: Web/TCP
• Web server uses change_rate() to pick convenient

source encoding

Application Performance (2/4)

• Application 1: Web/TCP
– 1Mbps bottleneck link, 120ms propagation delay

Fig.5 sequence traces for a Web-like workload
using 4 concurrent TCP Newreno connections.

Fig.6 the same workload over TCP/CM.

Application Performance (3/4)

• Application 2: Layered Streaming Audio
• The CM enables the audio server to adapt its choice

of audio encoding to the congestion state.
• cm_open()
• cm_query()
• cm_notify()

Application Performance (4/4)

• 0.5Mbps bottleneck link,
120ms propagation delay

• choose encodings of 10,
20, 40, 80, 160 and 320
Kbps.

• transmissions of 1KB
packets.

Fig.7 Performance of an adaptive audio application

Conclusions

• CM ensures proper and stable congestion behavior
– CM tells flows their rates

• Simple, yet powerful API to enable application
adaptation
– Application is in control of what to send

• Improves performance consistency and predictability
for individual applications

	An integrated congestion management architecture for Internet hosts
	Outline
	Introduction (1/2)
	Introduction (2/2)
	CM algorithms
	Rate-based control is TCP-friendly (1/2)
	Rate-based control is TCP-friendly (2/2)
	Receiver feedback (1/3)
	Receiver feedback (2/3)
	Receiver feedback (3/3)
	Handling infrequent feedback
	Better than best-effort networks
	CM Scheduler
	The CM API
	Put the application in control
	Accommodate application heterogeneity
	Learn from the application
	Application Performance (1/4)
	Application Performance (2/4)
	Application Performance (3/4)
	Application Performance (4/4)
	Conclusions

