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Introduction (1/2)

o Several trends in traffic patterns that threaten the
long-term stability.

— multiple independent concurrent flows by Web
application

— transport protocols and applications that do not
adapt to congestion

* Ensure proper congestion behavior and allows
applications adapt to network congestion and

varying bandwidth.



Introduction (2/2)
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Fig.1 New sender architecture with centered around the Congestion Manager.



CM algorithms

« Rate-based AIMD control
 Loss-resilient feedback protocol
« Exponential aging when feedback Is infrequent

* Flow segregation to handle non-best-effort
networks

o Scheduler to apportion bandwidth between flows
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Rate-based control i1s TCP-friendly
(1/2)

* Ensure proper congestion behavior
— rate-based AIMD control scheme

* Rate changes as
— learns from active flows about the state of the network
— probes for spare capacity

« AIMD

e Why choose rate-based instead of window-based
scheme?
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Rate-based control i1s TCP-friendly
(2/2)

e TCP-friendliness
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Fig.2 CM’s rate control is TCP-friendly.



Receiver feedback (1/3)

* Why do we need feedback?
— to be communicated to the sender

 Implicit: hints from application
« Explicit: CM probes
— Probe every half RTT

— tracks of the number of packets sent per flow, loss rate,
and updates RTT estimate.



Receiver feedback (2/3)

Sending a probe to the receiver

message = <probe,probesegnums;
send (message) ;

probe (probeseqnum) = {probeseqnum, now, nsent};
nsent = 0;

probesegnum = probesegnum+l;

Responding to probe number thisprobe

message=<response, thisprobe, lastprobe,nrecds;
send (message) ;
lastprobe = thisprobe;

nrecd = 0;



Receiver feedback (3/3)

Sender action on receiving a response

<response, thisprobe, lastprobe,nrecd>

nsent = 0;

for(i=lastprobe+l; i1<=thisprobe; 1++) do
nsent += probe (i) .nsent;

end;

lossprob = nrecd/nsent;

Delete all entries 1in probe less than

thisprobe;



Handling infrequent feedback

« During times of congestion, probe messages or
responses are lost

« Exponential aging: reduce rate by half, every

silent RTT
— Continues transmissions at safe rate without clamping

apps
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Better than best-effort networks

 Future networks will not treat all flows equally

— differentiated services, prioritization based on flow
Identifiers, etc

 Solution: flow segregation
— If an application knows beforehand, it can inform the CM

— the CM Incorporates a segregation algorithm
— based on per-flow loss rates and bandwidths
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CM Scheduler

 Using Hierarchical Round Robin (HRR) scheduler
for rate allocation

» Uses receiver hints to apportion bandwidth between

flows
o Exploring other scheduling algorithms for delay
management as well 100
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The CM API

e Goal: To enable easy application adaptation

 Guiding principles:
— Put the application in control
— Accommodate application heterogeneity
— Learn from the application



Put the application in control

Application decides what to transmit

CM does not buffer any data

— allows applications the opportunity to adapt to
unexpected network changes

Request/callback/notify API
— cm_request(nsend);

— app_notify(can_send);

— cm_notify(nsent);

learn about available bandwidth and the RTT
— cm_query(&rate, &srtt);



Accommodate application heterogeneity

* API should not force particular application style

* Asynchronous transmitters

— triggered by events (ex. file reads) rather than periodic
clocks

— request/callback/notify works well
e Synchronous transmitters

— Maintain internal timer for transmissions

— Need rate change triggers from CM
change_rate(newrate);



Learn from the application

e cm_notify(nsent): upon each transmission

e cm_update(nrecd, duration, loss_occurred, rtt)

— hint to internally update CM sustainable sending rate and
RTT estimates.

e cm_close(): a flow Is terminated and allows the CM
to destroy the internal state associated with it.



Application Performance (1/4)

o Application 1: Web/TCP

* \Web server uses change_rate() to pick convenient
source encoding
{ Application l

open 6. cm_close
2 cm_pEquest 3. chy_update
3. app_notify 4. dm_notify

cM J

Steps 2, 3, 4 and 5 ocour multiple times



Application Performance (2/4)

o Application 1: Web/TCP
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Fig.5 sequence traces for a Web-like workload
using 4 concurrent TCP Newreno connections.
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Fig.6 the same workload over TCP/CM.



Application Performance (3/4)

Application 2: Layered Streaming Audio

The CM enables the audio server to adapt its choice
of audio encoding to the congestion state.

cm_open()

cm_query()
cm_notify()
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Application Performance (4/4)
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Fig.7 Performance of an adaptive audio application



Conclusions

 CM ensures proper and stable congestion behavior
— CM tells flows their rates

o Simple, yet powerful API to enable application
adaptation
— Application is in control of what to send

* Improves performance consistency and predictability
for individual applications
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