An Integrated congestion
management architecture for

Internet hosts

Hari Balakrishnan!, Hariharan S. ahul!, and
Srinivasan Seshan?

IM.I.T. Laboratory for Computer Science
2IBM T. J. Watson Research Center~




Outline

Introduction

CM algorithms

— Rate-based control is TCP-friendly
— Receiver feedback

— Better than best-effort networks

— CM Scheduler

The CM API
Application performance
Conclusions



4 e
Y S i
41 g B -
o o
il

Introduction (1/2)

o Several trends in traffic patterns that threaten the
long-term stability.

— multiple independent concurrent flows by Web
application

— transport protocols and applications that do not
adapt to congestion

* Ensure proper congestion behavior and allows
applications adapt to network congestion and

varying bandwidth.



Introduction (2/2)

Applications

—-—» Datapath

—¢ — > (Control path

", Transport

, Instances
—_—_ = — — ’_ .
Congestion
__________ P. _b..
________ . Manager

IP

Fig.1 New sender architecture with centered around the Congestion Manager.



CM algorithms

« Rate-based AIMD control
 Loss-resilient feedback protocol
« Exponential aging when feedback Is infrequent

* Flow segregation to handle non-best-effort
networks

o Scheduler to apportion bandwidth between flows



L e
—1“ |

Rate-based control i1s TCP-friendly
(1/2)

* Ensure proper congestion behavior
— rate-based AIMD control scheme

* Rate changes as
— learns from active flows about the state of the network
— probes for spare capacity

« AIMD

e Why choose rate-based instead of window-based
scheme?




T ot e
B 12 0 Ll
At |
i

Rate-based control i1s TCP-friendly
(2/2)

e TCP-friendliness

relationship: S
1=K/ 1/p o 7e+06 | @ %gg}g;}weno
. : 6e+06 | " Sl
A :throughput, p:loss rate, seroc |

=
2
L
K:constant depends on the 2 4e+06 |
packet size and RTT 5 3e06 |
lan, 2 oeer
/n ~ le+06 B
P a ny 0 s LS
0 20 40 60 &80 100 120 140 160
> — 2 2 (packets received)/(packets dropped)
n? = K4(n/ny)+K

Fig.2 CM’s rate control is TCP-friendly.



Receiver feedback (1/3)

* Why do we need feedback?
— to be communicated to the sender

 Implicit: hints from application
« Explicit: CM probes
— Probe every half RTT

— tracks of the number of packets sent per flow, loss rate,
and updates RTT estimate.



Receiver feedback (2/3)

Sending a probe to the receiver

message = <probe,probesegnums;
send (message) ;

probe (probeseqnum) = {probeseqnum, now, nsent};
nsent = 0;

probesegnum = probesegnum+l;

Responding to probe number thisprobe

message=<response, thisprobe, lastprobe,nrecds;
send (message) ;
lastprobe = thisprobe;

nrecd = 0;



Receiver feedback (3/3)

Sender action on receiving a response

<response, thisprobe, lastprobe,nrecd>

nsent = 0;

for(i=lastprobe+l; i1<=thisprobe; 1++) do
nsent += probe (i) .nsent;

end;

lossprob = nrecd/nsent;

Delete all entries 1in probe less than

thisprobe;



Handling infrequent feedback

« During times of congestion, probe messages or
responses are lost

« Exponential aging: reduce rate by half, every

silent RTT
— Continues transmissions at safe rate without clamping

apps



T . e s
11 Wy st
i |

i J
i

Better than best-effort networks

 Future networks will not treat all flows equally

— differentiated services, prioritization based on flow
Identifiers, etc

 Solution: flow segregation
— If an application knows beforehand, it can inform the CM

— the CM Incorporates a segregation algorithm
— based on per-flow loss rates and bandwidths



T " B i
S THIEPAE =
il |

¢ :
il

CM Scheduler

 Using Hierarchical Round Robin (HRR) scheduler
for rate allocation

» Uses receiver hints to apportion bandwidth between

flows
o Exploring other scheduling algorithms for delay
management as well 100

350
300 |
250 f
200

150 } _

100 } i

s0 b /A /
0 L L

0 2 4 o6 8 10 12 14 16

Time (seconds)

— currently implemented
only bandwidth allocation

AN

Sequence Number




The CM API

e Goal: To enable easy application adaptation

 Guiding principles:
— Put the application in control
— Accommodate application heterogeneity
— Learn from the application



Put the application in control

Application decides what to transmit

CM does not buffer any data

— allows applications the opportunity to adapt to
unexpected network changes

Request/callback/notify API
— cm_request(nsend);

— app_notify(can_send);

— cm_notify(nsent);

learn about available bandwidth and the RTT
— cm_query(&rate, &srtt);



Accommodate application heterogeneity

* API should not force particular application style

* Asynchronous transmitters

— triggered by events (ex. file reads) rather than periodic
clocks

— request/callback/notify works well
e Synchronous transmitters

— Maintain internal timer for transmissions

— Need rate change triggers from CM
change_rate(newrate);



Learn from the application

e cm_notify(nsent): upon each transmission

e cm_update(nrecd, duration, loss_occurred, rtt)

— hint to internally update CM sustainable sending rate and
RTT estimates.

e cm_close(): a flow Is terminated and allows the CM
to destroy the internal state associated with it.



Application Performance (1/4)

o Application 1: Web/TCP

* \Web server uses change_rate() to pick convenient
source encoding
{ Application l

open 6. cm_close
2 cm_pEquest 3. chy_update
3. app_notify 4. dm_notify

cM J

Steps 2, 3, 4 and 5 ocour multiple times



Application Performance (2/4)

o Application 1: Web/TCP

400 400
. 350} 350 }
2 300 } 2 300 }
g h g ‘250 5
Z 250 ¢ E
9 200 F g 200 f
5 150 } 5 150 F
= _ =
= 100 } g 1007
wn 50 i wn
0 0

0O 2 4 6 8 10 12 14 16
Time (seconds)

Fig.5 sequence traces for a Web-like workload
using 4 concurrent TCP Newreno connections.

50 f

— 1Mbps bottleneck link, 120ms propagation delay

0O 2 4 6 8 10 12 14 16

Time (seconds)

Fig.6 the same workload over TCP/CM.



Application Performance (3/4)

Application 2: Layered Streaming Audio

The CM enables the audio server to adapt its choice
of audio encoding to the congestion state.

cm_open()

cm_query()
cm_notify()



T . e s
11 Wy st
i |
o J
i

Application Performance (4/4)

* 0.5Mbps bottleneck link, 300 SR
120ms propagation delay 5 250 f . Tcpem //
 choose encodings of 10, § 200 - TCF Nveeﬁ,, . -
20, 40, 80,160and 320 3 107 // e
Kbps. 2 100 f / g
e transmissions of 1KB A S0f =k../“"'.,..,‘.“'::j::f“'...'.'3- """""
packets. 0 =
0 2 4 6 8 10 12 14

Time (seconds)

Fig.7 Performance of an adaptive audio application



Conclusions

 CM ensures proper and stable congestion behavior
— CM tells flows their rates

o Simple, yet powerful API to enable application
adaptation
— Application is in control of what to send

* Improves performance consistency and predictability
for individual applications



	An integrated congestion management architecture for Internet hosts 
	Outline
	Introduction (1/2)
	Introduction (2/2)
	CM algorithms
	Rate-based control is TCP-friendly (1/2)
	Rate-based control is TCP-friendly (2/2)
	Receiver feedback (1/3)
	Receiver feedback (2/3)
	Receiver feedback (3/3)
	Handling infrequent feedback
	Better than best-effort networks
	CM Scheduler
	The CM API
	Put the application in control
	Accommodate application heterogeneity
	Learn from the application
	Application Performance (1/4)
	Application Performance (2/4)
	Application Performance (3/4)
	Application Performance (4/4)
	Conclusions

