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Abstract

In this work we present an integrated computational pipeline in-
volving several model order reduction techniques for industrial and
applied mathematics, as emerging technology for product and/or pro-
cess design procedures. Its data-driven nature and its modularity al-
low an easy integration into existing pipelines. We describe a com-
plete optimization framework with automated geometrical parameter-
ization, reduction of the dimension of the parameter space, and non-
intrusive model order reduction such as dynamic mode decomposition
and proper orthogonal decomposition with interpolation. Moreover
several industrial examples are illustrated.

1 Introduction

A very common problem in the optimization of the design of industrial ar-
tifacts is that of finding the shape that minimizes some quantity of interest
representing the expected performance. From a mathematical point of view
such a problem translates into an optimization problem in which a suitable
algorithm makes several queries to a simulation solver allowing for an eval-
uation of each sample in the design space. This leads to the identification of
the optimal solution, possibly subjected to a set of prescribed constraints.

The experience acquired through several industrial projects suggested
us that for such pipeline to operate in a robust way in a manufacturing
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environment, several aspects have to be integrated and developed so as to
deal with both complex geometries and solution fields. With the concept of
digital twin becoming widespread nowadays, we have to be able to pass auto-
matically from industrial CAD geometries to fluid dynamics and structural
simulations which allow for virtual performance evaluation. All the steps in
the procedure that, moving from a CAD geometry, leads to an optimized
shape need to be carefully devised and integrated. First, one has to process
the industrial geometry at hand through a suitable shape parameterization
strategy which identifies the parameter space describing all possible designs
to be investigated. After the generation of a suitable space including all
the parameters that satisfy all the structural, geometrical, and regulatory
constraints prescribed by the design engineers according to the stakeholders
needs, a proper sampling of such space is used to set up a campaign of CFD
and structural simulations resulting in the performance evaluation of each
shape tested. Usually, a single full order industrial simulation takes days
or even weeks, so it is crucial to develop reduced order models (ROMs) so
as to speed up the full optimization cycle and make it compatible with the
production needs. The computational time of a single sample point evalu-
ation is reduced through different ROM techniques such as dynamic mode
decomposition (DMD), and proper orthogonal decomposition (POD), both
based on singular value decomposition [7, 8, 47, 45]. In the case of DMD,
ROM is used to reconstruct and predict the spatiotemporal dynamics of a
high fidelity simulation such that its evolution can be completed at a faster
rate. Instead POD-Galerkin or POD with interpolation exploit data on pre-
vious simulations, properly stored, to provide accurate surrogate solutions
corresponding to untested sample points in the parameter space. In such a
way the computational cost of an online optimization cycle can be dropped
to hours or even minutes.

In a further post-processing phase, we also apply a reduction of the
parameter space exploiting the active subspaces property [12, 64, 62]. Such
an analysis allows for the detection of possible redundancies in the chosen
parameters, suggesting linear combinations of the original parameters which
dominate the system response.

This work aims at presenting and discussing a series of best practice ap-
proaches for the application of each of the aforementioned techniques within
an industrial optimization framework. Such approaches are the result of the
constant involvement of mathLab laboratory of SISSA1 in industrial projects
joining the research efforts of both manufacturing companies and academic
institutions. After a brief overview of the overall problem and goals, the
contribution is arranged so as to present each of the described industrial nu-
merical pipeline steps in a complete and detailed fashion. We first consider
the geometrical treatment of the industrial artifacts shape, then we suggest

1www.mathlab.sissa.it
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possible parameter space reduction strategies. We then provide details on
data-driven model order reduction methodologies, and finally present a brief
summary of numerical results obtained in some applications carried out in
the framework of industrial projects in which mathLab is involved.

2 From digital twin to real-time analysis

Nowadays the digital twin is a concept well spread among all the engineer-
ing companies and communities. With the exact digital representation of
a physical system, it allows, for example, to perform structural and fluid
dynamics simulations, to make sensitivity analysis with respect to the pa-
rameters, and to optimize the design. The increased number of devices
for real-time data acquisition of the physical system makes the digital twin
paradigm obsolete, due to its intrinsic static nature.

We are moving every day into a more dynamical representation of the
entire system that takes into account more and more real-time data from
different sources. This new paradigm, thanks to data-driven models, uncer-
tainty quantification, machine learning algorithms, artificial intelligence and
better integration of all the singular computational modules, will provide
new capabilities in terms of discovery of hidden correlations, fault detec-
tion, predictive maintenance and design optimization. Its goal is to enable
delivery of better simulation and modeling results, and thus shorter the
product development, the so-called time-to-market, and reduce the product
maintenance and potential downtime.

These new needs from the industrial point of view, lead to new math-
ematical methods and new interdisciplinary pipelines for data acquisition,
model order reduction, data elaboration, as well as optimization cycles [4,
17, 25].

We can summarize a modern shape design optimization cycle with the
diagram in Figure 1. Usually a CAD file describing the geometry to be
optimized is provided by the design team, then we have the structural and
CFD teams that provide physical constraints and admissible range for the
parameters variation, we have data coming from the experiments on the
scale model, and finally we have regulations constraints from the national
authorities.

When the inputs of the simulation are set, the output is computed
through high fidelity solver and the optimization cycle is closed by vali-
dation and control, the imposition of the constraints, and a selection of a
new set of parameters. If a complete simulation takes several hours, even
days, finding the optimal shape becomes impossible due to the many evalua-
tions of the parametric PDE needed by the optimizer. Here, the model order
reduction (MOR) approach allows fast evaluations of the output of interest
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Figure 1: Complete optimization pipeline involving automatic interface with
CAD files, experimental and numerical data acquisition, definition of the pa-
rameters constraints, and parameter space dimensionality reduction. Two
possible reduced order methods are presented: an intrusive and a non-
intrusive approach, allowing the creation of a complete simulation-based
design optimization framework.

or derived quantities of the output thus enabling to find the optimum shape
in few hours and to test different optimization algorithms. MOR techniques
are very versatile, enabling both intrusive and non-intrusive approach with
respect to the solver used. If it is a commercial black box it is possible to use
numerical methods that work using only precomputed solution fields. While
having access to the solver code allows also to reduce the single operators
of the PDEs.

After the continued validation and control the optimization cycle ends
by providing the final design in a suitable file format that can be analysed
by all the interested departments.

In the following we are going to present all the techniques and integrated
pipelines developed to accomplish such simulation based design optimiza-
tion.

3 Advanced geometrical parametrization with au-
tomatic CAD files interface

The first important step is related to the geometry of the shapes consid-
ered. As previously mentioned, one of the aspects typically subjected to
optimization in the design of industrial artifacts is in fact their geometry.
Finding the shape by maximizing the performance of a certain product or
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of one of its components is in fact a very common problem in industry.
From a mathematical standpoint, such class of problems is obviously for-
malized as an optimization problem, which consists in the identification of
the point of a suitable parameter space that maximizes the value of a pre-
scribed performance parameter (or output function). Although the mathe-
matical algorithms carrying out such task are commonly well assessed, the
mathematical formalization of the problem requires that the shape mod-
ification can be recast as the corresponding variation of a certain set of
parameters. The latter operation, which somehow translates the properties
of the geometrical shapes into a set of numbers handled by the optimiza-
tion algorithms, is usually referred to as shape parametrization. In the most
common practice the shape parametrization is a rather delicate part of the
overall design process. In fact, as the shape to be studied can be specified
in several different file formats or analytical descriptions, a unified approach
for shape parametrization algorithms has currently not been established. In
the present section we will describe and discuss the state of the art of shape
parametrization techniques, and present examples of their application to the
geometry of different industrial artifacts.

A first shape parametrization algorithm which has been devised so as
to be applied to arbitrarily shaped geometries, is the free form deformation
(FFD) [56, 36, 58]. FFD consists basically in three different steps, as de-
picted in Figure 2. The first step is that of mapping the physical domain
into a reference one. In the second step, a lattice of points is built in such
reference domain, and some points are moved to deform the lattice. Since
the lattice points represent the control points of a series of shape functions
(typically Bernstein polynomials), the displacement of such points is propa-
gated to compute the deformation of all the points of the reference domain.
In the third, final step, the deformed reference domain is mapped back into
the physical one, to obtain the resulting morphed geometry.

So, the displacements of one or more of the control points in the lat-
tice are the parameters of the FFD map, which is the composition of the
three maps described. As both the number of points in the lattice and the
number of control points displaced to generate the deformation are flexible,
the FFD map can be built with an arbitrary number of parameters. Thus,
a very useful feature of FFD, is that it allows for the generation of global
deformations even when few parameters are considered.

Since FFD is able to define a displacement law for each point of the 3D
space contained in the control points lattice, it can be quite naturally ap-
plied to all the geometries that are specified through surface triangulations,
surface grids or even volumetric grids. As a first example, in Figure 3 we
present the application of FFD to an STL triangulation, which is a very
common output format for CAD modeling tools. The shape deformation
illustrated in the picture has been carried out making use of the PyGeM [3]
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Figure 2: Sketch of the three maps composing the FFD map construction.
ψ maps the physical space to the reference one, then T̂ deforms the entire
geometry according to the displacements of the lattice control points, and
finally ψ−1 maps back the reference domain to the original one.

Python package, which has been developed to be directly interfaced with
the industrial geometry files and to deform them, so as to cut the com-
munication times between the company simulation team and design team.
In this application, the STL triangulation is imported and the coordinates
of the nodes in the triangulation are modified according to the FFD map
generated through the user specified lattice (included in the pictures).

The versatility of FFD can be further exploited to deform CAD sur-
faces that are generated as the collection of parametric patches. In such
case, the desired deformation is obtained applying the specified FFD map
to the control points of the NURBS and B-Splines surfaces of each patch
composing the CAD model. The result in this case will also be a deformed
geometry which follows the FFD deformation law specified by the user. Fig-
ure 4 presents a real world application of FFD to CAD parametric surfaces.
The renderings show the original bulbous bow of the DTMB-5415 US Navy
Combatant hull (which is a common benchmark for the CFD simulations
community), and one of its several deformations generated to carry out the
campaign of fluid dynamic simulations discussed in [18]. The PyGeM capa-
bilities allow for importing the CAD geometry (in IGES or STEP format),
extract and modify the control points of its surfaces and curves, and export
the result into new CAD files.

Along with FFD, the PyGeM package implements other morphing tech-
niques: the deformation based on radial basis function (RBF) interpola-
tion [9, 40, 38], and the inverse distance weighting (IDW) interpolation [57,
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(a) Original (b) Deformed

Figure 3: An example of the application of FFD to an STL triangulation.
Plot (a) shows the FFD lattice over one side of the bulbous bow of a ship.
Plot (b) depicts a deformed configuration of the same hull, along with the
displaced FFD lattice control points.

67, 23, 5]. Yet, there are situations in which the shape to be deformed is
already been engineered in a specific way, and general purpose deformation
algorithms like FFD and the ones just mentioned would not preserve some
critical characteristics of the geometry. A rather striking example of this is
represented by the deformation of propeller blades illustrated in Figure 5.
The shape of a propeller blade is in fact generated in a bottom-up fash-
ion, first defining a set of sections represented by airfoils, and then properly
placing each section in the three dimensional space. Since the aerodynamic
feature of each airfoil section are known to the engineers which have selected
them, any deformation that alters the sectional shape of the blade will not
lead to an acceptable geometry. Thus, for such highly engineered shapes
ad hoc solutions have to be generated. In most cases such solutions exploit
the very algorithms used by the engineers to generate the artifacts in the
first place, introducing parameters in one or more points of the generation
procedure so as to create a class of deformed shapes. Also in this case, once
the shape has been properly deformed (or re-generated), it has to be saved
in the proper CAD format (IGES, STEP or STL) to be handled by the CFD
or design team.

As mentioned, in the CAD data structures surfaces can be described
both by means of a triangulation and as a collection of parametric patches.
Yet, most CAD modeling tools used by engineers to generate the virtual
model of any object designed, operate using NURBS and B-Splines curves
and surfaces. On the other hand, several tools for CFD or structural analy-
sis only handle geometries specified through triangulations. For such reason,
a series of algorithms that generate triangulations on arbitrary parametric
surfaces has been implemented in the last years. Among others, the ability
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(a) Original (b) Deformed

Figure 4: An example of the application of FFD to an IGES CAD geometry
containing parametric surfaces. Plot (a) shows the original shape of the
DTMB-5415 US Navy Combatant hull bulb. Plot (b) presents a deformed
configuration of the same bulb.

to produce closed — or water tight — triangulations on surfaces composed
of possibly unconnected faces is a crucial feature for both CFD and struc-
tural engineering applications. In fact, the neighboring parametric patches
composing a CAD model are generally only connected up to a specified tol-
erance. Thus, it is not infrequent that ideally continuous surfaces present
small gaps and overlaps between each patch composing them. To avoid
the problem, most CAD modeling tools retain several logical information
to complement the geometric data and indicate which patches should be
considered as neighbors. Yet, converting to vendor-neutral file formats such
as IGES of STEP that allow the digital exchange of information among
CAD systems will cause in most case the loss of topological information
on neighboring patches. This is often a problem in the numerical analysis
community, in which geometries are in most cases obtained by third par-
ties, and in which water tight surfaces are in needed to define (and confine)
the three dimensional domains considered in the simulations. So, a possible
strategy to avoid a surface triangulation that depends on the local patches
parametrization, and suffers from parametrization jumps and gaps, is to
create new nodes not in the surface parametric space, but in the physical
three dimensional space. Since such new nodes will not be initially located
onto the CAD surface, a series of surface and curves projectors are used to
make sure that the new grid points are properly placed onto the surface in
a way that is completely independent of the parametrization. Along with
the projectors, presented in [16], the work in [39] describes an algorithm
which allows for the hierarchical refinement of an initial blocking made of
quadrilateral cells. Across each level of refinement, the cells located in the
highest curvature regions are refined, until a prescribed accuracy is reached.
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Figure 5: An example of the deformation of an engineered propeller blade
shape. The picture shows four deformed configurations of a PPTC bench-
mark propeller blade, in which the sectional properties of the blade have been
kept untouched, while modifying the pitch, rake and skew distributions. The
deformations are performed with the BladeX Python package [2].

Figure 6 shows the geometry (left side) and quadrilateral grid generated on
a planing yacht hull. As can be appreciated, the grid is consistently refined
in the high curvature regions located around the double chine line, and on
the spray rails. Finally, once this quadrilateral water tight mesh is obtained,
the cells are split into triangles to obtain a water tight STL triangulation,
which can be an ideal input for numerical analysis software.

Figure 6: Water tight quadrilateral mesh generated on the water non tight
IGES surface of a planing yacht hull.

We remark that all the presented applications exemplify the employment
of the numerical pipeline proposed in the framework of the industrial POR-
FESR projects SOPHYA “Seakeeping Of Planing Hull YAchts”, PRELICA
“Advanced methodologies for hydro-acoustic design of naval propulsion”,
and FSE HEaD “Higher Education and Development” programme founded
by European Social Fund, in which mathLab laboratory has been involved
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in the last years.

4 Parameter space dimensionality reduction

After all the contributions from the different teams, the number of param-
eters could be too big for a reasonable optimization cycle in terms of com-
putational time. In other cases, even if the parameters are not too many,
there could be some of them dependent on the others. To overcome this
problem it is possible to reduce the dimensionality of the parameter space
by finding an active subspace (AS) [12] of the target functions. This tech-
nique ascertains whether the output of interest can be approximated by a
function depending by linear combinations of all the original parameters. Its
application has been proven successful in several parametrized engineering
models [26, 13, 18, 64].

Now we briefly review the process of finding active subspaces of a scalar
function f representing the output of interest, and depending on the inputs
µ ∈ Rm. Let us assume f : Rm → R is a scalar function continuous and
differentiable in the support of a probability density function ρ : Rm →
R+. We assume f with continuous and square-integrable (with respect to
the measure induced by ρ) derivatives. We define the active subspaces of
the pair (f, ρ) as the eigenspaces of the covariance matrix associated to
the gradients ∇µf . The elements of this matrix, the so-called uncentered
covariance matrix of the gradients of f , denoted by C, are the average
products of partial derivatives of the simulations’ input/output map, i.e.:

C = E [∇µf ∇µf
T ] =

∫
D

(∇µf)(∇µf)Tρ dµ,

where E[·] is the expected value. The matrix C is symmetric and positive
semidefinite, so it admits a real eigenvalue decomposition C = WΛWT ,
where W is a m×m orthogonal matrix of eigenvectors, and Λ is the diagonal
matrix of the eigenvalues, which are non-negative, arranged in descending
order.

Now we select the first M eigenvectors, for some M < m, forming a lower
dimensional parameter subspace. We underline that, on average, low eigen-
values suggest the corresponding vector is in the nullspace of the covariance
matrix. So we can construct an approximation of f by taking the eigen-
vectors corresponding to the most energetic eigenvalues. Let us partition Λ
and W as follows:

Λ =

[
Λ1

Λ2

]
, W = [W1 W2] ,

where Λ1 = diag(λ1, . . . , λM ), and W1 contains the first M eigenvectors.
The range of W1 is the active subspace, while the inactive subspace is
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the range of W2. By projecting the full parameter space onto the active
subspace we approximate the behaviour of the target function with respect
to the new reduced parameters.

The active variable µM , and the inactive one η, are obtained from the
input parameters as follows:

µM = WT
1 µ ∈ RM , η = WT

2 µ ∈ Rm−M .

That means that we can express any point in the parameter space µ ∈ Rm

in terms of µM and η as:

µ = WWTµ = W1W
T
1 µ+ W2W

T
2 µ = W1µM + W2η.

So we can rewrite f as f(µ) = f(W1µM +W2η), and construct a surrogate
quantity of interest g using only the active variable µM

f(µ) ≈ g(WT
1 µ) = g(µM ).

Active subspaces can also be seen in the more general context of ridge
approximation [14, 42, 33].

(a) Original configuration. (b) The function with respect
to the active variable.

Figure 7: Example of a scalar output function depending on two parameters.
After a proper rotation of the whole domain it is possible to highlight the
behaviour of the quantity of interest along the active direction.

From a practical point of view, expressing a target function with respect
to its active variable means to rescale the parameter space on the origin and
then rotate it so as to unveil the low rank behaviour of the function. In
Figure 7 an example involving a bivariate scalar function is depicted. This
approach can be viewed as a preprocessing step in the optimization cycle
that helps both in reducing the number of the parameters and to increase
the accuracy of a further reduction of the model as proven in [62] for the
computation of the pressure drop in an occluded carotid artery using active
subspace and POD-Galerkin methods.
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Other approaches focus only on the shape parameters. To retain a
significant geometric variance while reducing the number of geometrical
parameters there exist nonlinear methods such as, among others, Kernel
PCA [54, 55], Local PCA [32], and particular neural network such as Auto
Encoders and Deep Auto Encoders [31]. For a comprehensive comparison
among them we refer to [15], where the methods are demonstrated for the
design-space dimensionality reduction of a destroyer hull. For a comparison
between 13 different nonlinear techniques see [66].

5 Data driven model order reduction

In the big data era, data-driven models is becoming more and more pop-
ular in order to extract as much information as possible from all the data
acquired during the physical experiments and the simulations. We mention
also uncertainty quantification and ROM algorithms modified “ad hoc” [11].
Also in model order reduction community, several techniques have been de-
veloped to face industrial problems with a non-intrusive approach.

5.1 Dynamic mode decomposition

Dynamic mode decomposition (DMD) has emerged as a powerful tool for
analyzing the dynamics of nonlinear systems, and for postprocessing spatio-
temporal data in fluid mechanics [52, 53, 61]. It was developed by Schmid
in [51], and it is an equation-free algorithm, and it does not make any
assumptions about the underlying system. DMD allows to describe a non-
linear time-dependent system as linear combination of few main structures
evolving linearly in time. Many variants of the DMD were developed in the
last years like forward backward DMD, compressed DMD [21], multiresolu-
tion DMD [35], higher order DMD [37], and DMD with control [43] among
others. For a complete review refer to [34, 65], while for an implementa-
tion of them we refer to the Python package called PyDMD [20]. Lots of
these variants arose to solve particular industrial problems such as streaming
DMD [27] that are able to feed the classical algorithm with new real-time
data coming from sensors, and do not require storage of past data, and
they prove useful for real-time PIV or smoke/dye visualizations. In pres-
ence of very large dataset for complex industrial model the DMD modes
are computed via randomized methods [22]. We cite also a new paradigm
for data-driven modeling that simultaneously learns the dynamics and es-
timates the measurement noise at each observation that uses deep learning
and DMD for signal-noise decomposition [46].

Now we present a brief overview of the standard algorithm. Let us
consider m vectors, equispaced in time, representing the state of our system,
also called snapshots: {xi}mi=1. The idea is that there exists a linear operator
A that approximates the nonlinear dynamics of x(t), i.e. xk+1 = Axk.
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Without explicitly computing the operator A we seek to approximate its
eigenvectors and eigenvalues, and we call them DMD modes and eigenvalues.
First of all we arrange the snapshots in two matrices X and Y so as each
column of the latter contains the state vector at the next timestep of the
one in the corresponding X column, as follows

X =


x11 x12 · · · x1m−1
x21 x22 · · · x2m−1
...

...
. . .

...
xn1 xn2 · · · xnm−1

 , Y =


x12 x13 · · · x1m
x22 x23 · · · x2m
...

...
. . .

...
xn2 xn3 · · · xnm

 .
We are looking for A such that Y ≈ AX. The best-fit A matrix is given by
A = YX†, where the symbol † represents the Moore-Penrose pseudo-inverse.

The DMD algorithm projects the data onto a low-rank subspace defined
by the POD modes, that are the first r left-singular vectors of the matrix
X. We compute them via truncated singular value decomposition as X ≈
UrΣrV

∗
r . The unitary matrix Ur contains the first r modes. So we can

express the reduced operator Ã ∈ Cr×r as

Ã = U∗rAUr = U∗rYX†Ur = U∗rYVrΣ
−1
r U∗rUr = U∗rYVrΣ

−1
r ,

avoiding the computation of the high-dimensional operator A. Ã defines the
linear evolution of the low-dimensional model x̃k+1 = Ãx̃k, where x̃k ∈ Rr

is the low-rank approximated state. The high-dimensional state xk can then
be easily computed as xk = Urx̃k.

Exploiting the eigendecomposition of Ã, that is ÃW = WΛ, we can
reconstruct the eigenvectors and eigenvalues of the matrix A. The elements
in Λ correspond to the nonzero eigenvalues of A, while the eigenvectors of
A can be computed in two ways. The first one is by projecting the low-rank
approximation W on the high-dimensional space: Φ = UrW. We call the
eigenvectors Φ the projected DMD modes. The other possibility is the so
called exact DMD modes [65], that are the real eigenvectors of A, and are
computed as Φ = YVrΣ

−1
r W.

DMD has also been successfully used to accelerate the computation of
the total drag resistance of a hull advancing in calm water [63, 17, 18]. This
responded to the industrial needs of a rapid creation of the offline dataset.
We decided not only to identify the approximated dynamics of the system
but also to predict its evolution in order to achieve the regime state using
only few snapshots, as we show in the example reported in Figure 8.

5.2 Proper orthogonal decomposition with interpolation

Proper orthogonal decomposition with interpolation (PODI) is an equation-
free model order reduction technique providing a fast approximation of the
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Figure 8: Example of DMD application for wall shear stress prevision. In
the top image, we show the wall shear stress along the x direction, at time
t = 50s, computed using full-order solver. In the bottom, we show the
wall shear stress along x direction reconstructed at time t = 50s using 30
snapshots equispaced in the temporal window [1, 30].

solution of a parametric PDE. The key idea is to approximate the solution
manifold by interpolating a finite set of high-fidelity snapshots, computed
for some chosen parameters. Since interpolation of high dimensional data
can be very expensive, we need reduced order modelling for a real-time
evaluation of the solution for the new parameters.

This method consists in two logical phases: in the offline one, the high-
fidelity solutions of a finite set of deformed configurations are computed and
stored into the matrix S such that:

S =
[
s1 s2 . . . sm

]
, si ∈ Rn for i = 1, 2, . . . ,m.

The basis spanning the low dimensional space is computed applying the
singular value decomposition on the snapshots matrix:

S = UΣV∗,

where U ∈ Cn×m refers to the matrix whose columns are the left singular
vectors — the so called POD modes — of the snapshots matrix. We project
the high-fidelity solutions onto the low-rank space, so they are represented
as linear combination of the modes and the coefficients of this combination
are called modal coefficients.

In the online phase the modal coefficients are interpolated and finally,
for any new parameter, the solution of the parametric PDE is approximated.
This method has the great benefit of being based only on the system output,
but the accuracy of the approximation depends on the chosen interpolation
method. The algorithm has been implemented in an open source Python
package called EZyRB [19]. For deeper details about the PODI, we recom-
mend [49, 10, 44].
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6 Simulation-based design optimization framework

As previously stated, a shape optimization pipeline is usually composed by
three fundamental ingredients: a deformation technique to construct the set
of admissible shape, an objective function, and an optimal strategy to con-
verge to the optimal shape with the lowest number of evaluations. Depend-
ing on the studied physical phenomena, the entire process can be very long:
many complex problems, as for example conductivity, diffusion and fluid
dynamic, are described through partial differential equations (PDEs). The
numerical solution of such equations is usually expensive from the compu-
tational viewpoint. Moreover, in an optimization scenario, these equations
have to be solved at each iteration, making the computational cost unaf-
fordable for many applications, especially in the industrial sectors where a
high responsiveness is requested to reduce the time-to-market. The model
order reduction (MOR) offers the possibility to efficiently compute the so-
lution of parametric PDEs, drastically reducing the computational effort.
We exploited MOR techniques to design an innovative shape optimization
pipeline which fits the industrial needs, primarily in terms of efficiency, re-
liability and modularity. The key idea of this optimization procedure is to
collect the solutions, or the output of interest, from the full-order model for a
finite set of parameters, then combining these solutions for a fast evaluation
of the solution for any new iteration of the optimization algorithm.

In the first step, the deformed shapes are created from the initial ge-
ometry by using a combination of parameters. There are many possible
techniques to choose from, as presented in Section 3. The important aspect
is that given a set of parameters, the software is able to generate a new
deformed geometry.

The parameter space is sampled and the system configurations so-created
are evaluated using the high-fidelity numerical method. The pipeline relies
only on the system outputs, without requiring information about the phys-
ical system, making all the procedure independent from the high-fidelity
solver. Especially in an industrial context, this guarantees a great plus,
allowing to adopt any solver — also commercial — within the pipeline.
Further, the non-intrusive approach preserves the industrial know-how and
reduces the complexity in the implementation phase.

We use two different data-driven model order reduction methods to ac-
celerate the optimization. With the dynamic mode decomposition described
in Section 5.1 we can simulate the physical problem at hand for a shorter
temporal window using the computational expensive full-order solver and
apply the DMD on the produced output to predict the solution/output of
interest at regime. The second model order reduction technique adopted in
the pipeline is the PODI, discusses in Section 5.2. Thanks to this method,
we have the possibility to approximate in a real-time context the solution
of parametric PDEs, combining several pre-computed snapshots. We adopt
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Figure 9: Example of the shape optimization pipeline applied on naval hull:
the original shape (left) and the optimized shape (right).

PODI in order to deal only with the output data of the high-fidelity solver,
thus let the pipeline be independent from the used full-order model. To
increase the accuracy of the reduced order model, an intrusive approach can
be adopted. For an exhaustive discussion on the intrusive model order re-
duction, we suggest [59, 60] due to the implementation of MOR methods in
a finite volume (FV) framework, the nowadays industrial standard for many
fluid dynamics applications. For an overview on projection-based ROMs and
the effort in increasing the Reynolds number see [29, 6], and for the joint use
of such methods and uncertainty quantification strategies based on non in-
trusive polynomial chaos see [30]. Another possibility is to link together the
isogeometric analysis with MOR into a complete parametric design pipeline
from CAD to accurate and efficient numerical simulation [48, 24]. For a
complete discussion about ROM for parametric PDEs, we recommend [28].

The optimization algorithm relies so on the reduced order model: since
the online phase returns the approximated solutions in a quasi real-time
scenario, the optimization algorithm lasts minutes or hours to reach the
optimal shape, also if thousands of iterations are needed. The computa-
tional cost of the procedure is due to the creation of the solutions database.
Thanks to MOR, we have also the possibility to run and tests many differ-
ent optimization algorithms, avoiding any further high-fidelity simulations.
Moreover, the solutions database can be enriched to increase the accuracy
of the reduced order model. Examples of optimization procedure involv-
ing MOR techniques applied into naval and aerodynamics fields are respec-
tively [17, 50]. Figure 9 shows the results of the application of the shape
optimization system on the bulbous bow of a cruise ship. This achievement
has been developed in the framework of a regional European Social Fund
project from Regione Friuli Venezia-Giulia: HEaD in collaboration with
Fincantieri - Cantieri Navali Italiani S.p.A..
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7 Conclusions and perspectives

Industrial computational needs are every day more and more demanding in
terms of computational time, reliability, error certification, data-assimilation,
robustness, and easiness of use. In this work we presented several model or-
der reduction and shape parameterization techniques to solve industrial and
applied mathematics problems.

More has to be made to integrate real-time data-assimilation, machine
learning and prediction, but we are moving along this horizon and MOR
will play a crucial role to tackle many complexities arising from complex
industrial artifacts management. A step in this direction is the planned
webserver ARGOS [1], developed by mathLab group at SISSA that will
make possible the exploitation of reduced order models to a vast category of
people working in design, structural, and CFD teams. Through specific web
applications the user will be able to solve many industrial and biomedical
problems without the need of being an expert in numerical analysis and
scientific computing. Figure 10 depicts some of the possible applications
that are currently being developed.

Figure 10: Possible extension of the presented pipeline with different goal
and application fields. From cardiovascular problems like real-time blood
flow simulation, to structure load analysis and identification, as well as naval
applications.

We also cite the Artificial Student “Artie” [41] that accepts problem
statements posed in natural language, and solves numerically some PDEs
problems, that will help both students, the scientific staff, and engineers
in general. Moreover we want to highlight the effort of the Italian govern-
ment in the technology transfer thanks to the institution of several compe-
tence centers connecting research facilities, university, and companies in the
framework of Industry 4.0. Similar initiatives are undergoing in many other
European countries (France, Germany, UK, . . . ).
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