
Mathematics and Computer
Science Division

Mathematics and Computer
Science Division

Mathematics and Computer
Science Division

An Integrated Database

to Support Research on

Escherichia coli

by Alexandra Baehr. George Dunham,
Adam Ginsburg. Ray Hagstrom,

David Joerg, Toni Kazic. Hideo Matsuda,
George Michaels. Ross Overbeek.

Kenneth E. Rudd. Cassandra Smith.
Ron Taylor. Kaoru Yoshida.

and Dave Zawada

I

Argonne National Laboratory. Argonne. Illinois 60439
operated by The University of Chicago
for the United States Department of Energy under Contract W-31-109-Eng-38

LJL~. ~J~IiJL~iTIiThflIl LJJ]LLL1~LULA.JJt~JUL~JUJIJ ii "j ~ I 4

Kg

Argonne National Laboratory. w ith facilities in the states of Illinois and Idaho, is

ow ned by the United States government. and operated by The University of Chicago
under the provisions of a contract with the Department of Energy.

DISCLAIMER

This report was prepared as an account of work sponsored b\ an agency, of

the United States Government. Neither the United States Government nor

any agenc% thereof. nor any of their employees. makes any warranty. express

or implied. or assumes an- iegal liability or responsibility for the accuracy.

completeness. or usefulness of any information, apparatus. product. or pro-

cess disclosed. or represents that its use would not infringe privately owned

rights. Reference herein to ani specific commercial product. process. or

service b% trade name. trademark. manufacturer. or otherwise. does not

necessarily constitute or imply its endorsement. recommendation. or

favoring bN the United States Government or any agency thereof. The views

and opinions of authors expressed herein do not necessaril. state or reflect

those of the United State, Government or ani agenc% thereof.

Reproduced from the best available copy.

Ax. ailable to DOE and DOE contractors from the

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge. TN 37831

Prices av ailable from 1615) 576-8401. FTS 626-8401

Aailahle to the public from the

National Technical Information Service

U.S. Department of Commerce

5285 Port Roy al Road

Springfield. VA 22161

Distribution Category:

Mathematics and

Computer Science (UC-405)

ANL-92/1

ANL-- 9 2 / 1

ARGONNE NATIONAL LABORATORY DE92 007 982

9700 South Cass Avenue

Argonne. Illinois 60439

An Integrated Database to Support Research on
Escherichia coli

by

Alexandra Baehr, George Dunham (1), Adam Ginsburg (2),

Ray Hagstrom (3), David Joerg, Toni Kazic (2),

Hideo Matsuda, George Michaels (1), Ross Overbeek,

Kenneth E. Rudd (4), Cassandra Smith (5), Ron Taylor (1),

Kaoru Yoshida (5), Dave Zawada (6)

Mathematics and Computer Science Division

January 1992

(1) Division of Computer Research and Technology, National Institutes of Health, Bethesda, Md.

(2) Department of Genetics, Washington University, St. Louis, Mo.

(3) High Energy Physics Division, ANL
(4) National Center for Biotechnology Information, National Institutes of Health, Bethesda, Md.

(5) Department for Molecular and Cellular Biology, University of California and Lawrence Berkeley

Laboratory, Berkeley, Calif.

(6) Environmental Assessment and Information Sciences Division, ANL

MASTER

This work was supported in part by the Office of Health and Environmental Research and in part

by the Office of Energy Research, U.S. Department of Energy, under Contract W-31-100-Eng-38.

Contents

Abstract 1

1 Introduction 1

1.1 Flexibility of a Chromosome Analysis System . 2
1.2 Ease of A ccess - - 21.2 ase f Acess 2
1.3 Reconciliation of Data . 3

1.4 Current Systems . 3
1.5 Prototype Database Based on Logic Programming 3

2 Conceptual Framework 4

2.1 Objects with Positions on the Chromosome . 4

2..1 Kohara's Clones and Restriction Sites . 5

2.1.2 Fragments of Sequence 6

2.1.3 Computed Restriction Sites . 7
2.1.4 Occurrences of Genes 8

2.2 Predicates Common to All Objects Located on the Chromosome 10
2.3 The Use of Actual Sequence Data 12

2.3.1 Accessing the Sequence of an Object . 13
2.3.2 Higher-Level Predicates to Support Scanning for Patterns in Objects 16
2.3.3 A Predicate to Support Scanning for Patterns in Translated Genes 17
2.3.4 Predicates for Computing Codon Usage, K-mer Counts, and GC Content . . 18

2.4 Interface to External Systems . 21

3 Encoding of Biologically Relevant Queries 21
3.1 Physical Map Sites in Objects . 22
3.2 Identifying Sequence Features . 23
3.3 Structure-Related Features 29
3.4 Questions about the Overall Project Status. 34

4 Summary 40

References 40

Appendix: Supported Predicates for Querying the E. coli Database 43

iii

An Integrated Database to Support Research on Escherichia coli

Alexandra Baehr, George Dunham, Adam Ginsburg,

Ray Hagstrom, David Joerg, Toni Kazic,

Hideo Matsuda, George Michaels, Ross Overbeek,

Kenneth E. Rudd, Cassandra Smith, Ron Taylor,

Kaoru Yoshida, Dave Zawada

Abstract

We have used logic programming to design and implement a prototype database of genomic

information for the model bacterial organism Eschenchia col. This report presents the funda-

mental database primitives that can be used to access and manipulate data relating to the E. col

genome. The present system, combined with a tutorial manual, provides immediate access to

the integrated knowledge base for E. coli chromosome data. It also serves as the foundation for

development of more user-friendly interfaces that have the same retrieval power and high-level

tools to analyze complex chromosome organization.

1 Introduction

Two recent advances in biotechnology have produced a pressing need to integrate and make ac-

cessible large volumes of genomic information. First, large-scale chromosome mapping strategies

[1, 5, 6, 9, 10, 12, 15, 20, 21, 25, 26, 27, 28, 33, 341 are now being successfully used to determine

the chromosome locations of specific DNA sequences. Second, the development of automated DNA

fragment analysis and sequencing machines [11] has made it possible to determine the complete

DNA sequence for any organism with a small genome in a reasonable amount of time. Large-scale

efforts at determining the complete DNA sequence of several model organisms have been targeted

by the joint DOE/NIH Human Genome Project (HGP) [9]. Though relatively little gene sequence

data has been produced by its component projects so far, approximately three gigabases of human

DNA sequence will be determined in the next fifteen years. This number translates, at two bits

per base. into approximately 750 megabytes of data, or about the size of the database that can fit

onto a relatively cheap, commercially available hard disk drive for any desktop workstation. Thus,

the scientific issue is not storage per se, but a mechanism for providing flexible access to stored

sequence information in order to analyze it. For example, consider the process of determining large

DNA sequences. A sequencing project requires extensive manipulation of the data for sequences

and clones to keep track of experimental details. Systematic computational analyss of these data is

also required to determine the course of continued experimentation, diagnose discrepancies and er-

rors in the data, and evaluate progress toward the goal of completing the sequenced DNA fragment.

Such systematic analysis requires reliable and flexible access to the clone and sequence information.

Finally, there must be a continuing effort to interpret the data, which often necessitates manipula-

tion of the data using novel methods. Yet because the methods used in determining sequences and

the underlying conceptual framework for analysis are changing almost daily, an adaptable system

is required that is easy and natural for practicing biologists to use when analyzing the data and

designing experiments.

1.1 Flexibility of a Chromosome Analysis System

The answers to many challenging questions in biology require an analysis facility that combines

information from different subdisciplines to form a coherent picture of the genetic basis of a biolog-

ical process. Indeed, a key element in successfully interpreting the biological "meaning" of genomic

sequence data hinges on the availability of a wide spectrum of information. For example, in the

assignment of chromosomal locations of a specific sequence of an organism, a researcher may wish

information on the clonal origin of the sequenced fragment, as well as access to high-resolution

physical and genetic maps for the chromosome.

Recent improvements in experimental technologies have facilitated a shift in focus to larger-

scale projects aimed at integrating more global biological information. Existing DNA sequence

and restriction map data have been consolidated into a coherent representation [4, 23, 29, 30].

Large-scale physical mappings of several organisms, including the yeast S. cerevisae [16, 22, 14],

the fruit fly Drosophila melanogaster [1, 15, 33], the nematode C. elegans [13, 31], and all human

chromosomes [2, 6, 8, 9, 11, 34] are in progress. The most complete collection of genomic data is

for the bacterium E. coli: approximately 30% of the chromosome has been sequenced, complete

low- and high-resolution restriction maps are available, approximately half of the genes have been

identified, and several ordered libraries of clones are available. This rich information base provides

an excellent platform to explore the principles fundamental to manipulating sequences, performing

comparative analysis of multiple maps, and resolving the chromosomal location of the new sequence

information.

Integrating and reconciling these different data with DNA sequence data into a knowledge base

to support both broadly based research and the genome projects poses substantial challenges. One

major challenge is that information is in a continual state of flux. New data are being added,

and experimental errors are corrected. Moreover, this state of flux goes far beyond the automatic

updating of previous information required after every transaction. The biological concepts that

underlie the organization of the database are in constant revision. There are changes even to the

questions users wish to pose: as new experimental protocols are invented, the data types, the

inferences drawn, and the questions all change.

Diversity presents another major challenge for the integration of scientific databases. Data can

be of widely different quality and even contradictory. Multiple values, or none at all (null values),

for a given attribute can occur. Further, the user community is diverse-including DNA sequencing

project managers, biochemists, and population geneticists, each with a customized set of algorithms

and queries.

Thus, any chromosome analysis system that seeks to accommodate biological information from

multiple sources must be extremely flexible in both design and use.

1.2 Ease of Access

The second issue is the ease of user access. While many different algorithms exist for the analysis

of gene sequence information, each software package implements those algorithms using different

data formats and requires the user to learn yet another set of conventions for constructing queries.

Posing even relatively simple queries can require substantial effort. To ease this burden, various

groups of departmental "experts" have been formed, groups to whom other scientists come for help

2

and instruction. However, since few departments can afford professional database managers, or

even formal training for their "experts," many interesting questions go unaddressed.

Therefore, any new system should allow users to formulate new queries as easily and as intu-

itively as possible. Such a system should also interface with existing packages, in order to maximize

the amount of genome information available.

1.3 Reconciliation of Data

The final issue is the reconciliation of different interpretations of the data. Genetic information and

gene sequence data come from multiple sources in different formats. Such sources may disagree even

on the usage of common terms. A gene in one database may be understood to be the sequence data

coding for a protein, while in another context it may include adjoining regulatory regions. While

synonyms are easy to recognize since most databases include suitable pointers or tables, homonyms

require a knowledge of the biological literature to determine whether two terms represent the same

entity.

These difficulties complicate the normal task of assuring data integrity. Since the data should

be biologically appropriate, integrity checks can and should be performed. For example, deter-

mining potential protein coding regions (open reading frames, or ORFs) in a DNA sequence and

comparing these with genetic data can be quite powerful in assigning a chromosome position. Such

tasks, however, require expert knowledge. Clearly, a system is needed that enables the automatic

comparison of multiple interpretations of chromosome organization.

1.4 Current Systems

Currently, data sent to a centrally supported distribution mechanisms (e.g., Genbank or EMBL)

are accessed by one of two techniques. The researcher may use a limited set of tools to locate

sequences similar to a specified sequence. Alternatively, the researcher can hire a programmer

to write special-purpose programs designed to answer specific, but unpredictable questions. The

former technique is limited by the number and type of tool available. The latter technique is

limited by its cost and its applicability to only a few specific organisms. What is needed is an

environment that is extremely flexible, enables data to be readily incorporated, and is relatively

easy for biologists to use.

1.5 Prototype Database Based on Logic Programming

We have developed such an environment [18, 24] Specifically, we have used logic programming

to design and implement a prototype database of genomic information for the model bacterial

organism Escherichia coli.

We have based our approach on logic programming for two principal reasons. First, logic

programming enables rapid prototyping and adaptable data retrieval. The technical problems out-

lined above make it particularly important to experinunt in a restricted domain before proceeding

to more complex databases involving multiple genomes. Second, logic programming enables the

straightforward inclusion of the query capabilities of a relational database with the ability to do

pattern-matching operations against sequence data in a single declarative framework.

The virtues of logic programming to support flexible access to data are well understood. We

have developed a logic programming workbench for genome analysis based on the language Prolog.

This prototype environment was designed to facilitate the exploration of chromosome structure

3

and organization. While the primitives we describe for accessing the data do require some compu-

tational education of the user, most queries can be formulated easily with minimum instruction.

Furthermore, we have already constructed a natural-language interface that demonstrates the util-

ity of the underlying primitives, and several graphical display interfaces written in C to visualize

the s)atial relationships of the integrated data and chromosome analysis features. We shall de-

scribe these interfaces in separate documents. We believe that the features included in ̂ ur current

system, along with the relatively short time required to construct the system, support our decision

to base our implementation on logic programming.

This report presents the fundamental database primitives that can be used to access and ma-

nipulate data relating to the E. coli genome. The present system, combined with a tutorial manual,

provides immediate access to the integrated knowledge base for E. coli chromosome data. It also

serves as the foundation for development of more user-friendly interfaces that have the same re-

trieval power and high-level tools to analyze complex chromosome organization.

2 Conceptual Framework

Like the data in all experimental biological databases, the data here should be understood to be

tentative, in a temporary state of validation. Some items are believed to be almost certain, while

others are far less determined and reflect the views of the curator. Any database provides a more

or less accurate model of reality that can be queried. The conclusions drawn from the model

inherently reflect the degree of certainty in the incorporated data. The goal of our work is to make

the interrogation of the model as straightforward and as flexible as possible.

The E. coli chromosome for this work is represented as a double-stranded piece of DNA of fixed

length. The current implementation defines this length at 4,672,600 bases pairs. This length is

an extrapolation based on the high-resolution physical map of the E. coli chromosome and the

known lengths of assembled sequenced portions of the chromosome represented in the EcoSeq data

collection. Oriented sequence fragments containing 1,332,986 bases have been assigned positions

that account for 28.5% of the chromosome [29, 30].

2.1 Objects with Positions on the Chromosome

The system supports queries relating to various types of object. One general category involves

objects that have been assigned or mapped to positions on the chromosome. The system supports

queries concerning the locations, directional arrangements, and distributions of such objects. Ini-

tially, the objects with positions on the chromosome that can be queried fall into the following

categories:

1. Kohara's clones - the cloned DNA fragments used by Kohara [19] to determine the high-

resolution physical map of the E. coli chromosome.

2. Kohara's restrictions sites - the estimated positions of restriction enzyme cut sites within

Kohara's cloned E. coli DNA fragments, used to assemble the high-resolution physical map

for the E. coli genome. Those restriction enzyme sites are BainHI, Bgll, EcoRl, EcoR5,

Hind3, Kpnl, Pstl, and Pvu2.

3. Fragments of sequence - the DNA sequence contigs and individual sequences that make up

the Rudd EcoSeq database. Many of the sequences have been assigned genome positions

4

based on a comparison of the distribution of restriction enzyme sites in sequences and the

physical map.

4. Restriction sites that occur within sequence fragments - the same eight restriction enzyme

DNA sequence recognition sites that were used by Kohara and have been identified by pattern

analysis of the DNA sequence data. The sites are BamHI, GGATCC; Bgll, GCCnnnnnGGC;

EcoRl, GAATTC; Eco R5. GATATC; Hind3, AAGCTT; Kpnl, GGTACC; Pstl, CTGCAG;

and Pvu2, CAGCTG.

5. Structural genes that have been identified by direct DNA sequencing - DNA sequence regions

for structural RNAs (such as tRNA and rRNAs) and protein coding regions. All genes

have a length and a direction of information content that corresponds to the direction of

transcription.

Some of these objects have been assigned to sections of the chromosome that have been se-

quenced (e.g., all "fragments of sequence," six of Kohara's clones, and some structural genes);

others have been partially sequenced or not sequenced at all.

In the following subsections, we illustrate some of the basic queries that can be used to access

data about these objects. The Appendix contains a summary of the Prolog predicates that were

developed to organize and manipulate this E. coli knowledge base. In a later section, we use these

basic techniques to illustrate the level of interaction required to answer more complex questions

typical of those that might be made by a molecular biologist.

2.1.1 Kohara's Clones and Restriction Sites

Each of Kohara's clones has a unique identifier. One can access the object corresponding to a

specific identifier and display it using the following Prolog query:

I ?- kohara.clone('[629B]18C4',Clone),display.object(Clone).

4240715/4243455 2741 [629B]18C4 (Kohara clone)

Here, the system displays the position (beginning/end), length, and identifier of the clone. To

list the set of Kohara restriction sites that occur in a given clone, one might use a query of the

form

I ?- kohara.clone(' [531B]3C5' ,Clone)

,

setof (Site, (kohara.rsite(Site) ,contains(Clone,Site)) ,Sites),

display.objects(Sites).

4234059/4234064 6 EcoR5 (Kohara site)

4234092/4234097 6 EcoR5 (Kohara site)

4234292/4234297 6 EcoR5 (Kohara site)

4234440/4234450 11 Bgl1 (Kohara site)

4235157/4235162 6 EcoRS (Kohara site)

4236072/4236082 11 Bgl1 (Kohara site)

4236533/4236538 6 EcoRS (Kohara site)

4236665/4236675 11 Bgl1 (Kohara site)

5

4236848/4236853 6 EcoRi (Kohara site)

4237609/4237614 6 Hind3 (Kohara site)

4238177/4238182 6 Hind3 (Kohara site)

4238203/4238208 6 EcoRl (Kohara site)

4238367/4238377 11 Bg1l (Kohara site)

4240268/4240273 6 EcoRl (Kohara site)

This query retrieves exactly those Kohara physical map sites associated with clone [531B]3C5 and

displays their locations and lengths. (For further explanation of the display capability, see Section

2.2.)

In the preceding example, we used koharassite(Site) to retrieve an arbitrary Kohara re-

striction site. The following Prolog predicate retrieves a Kohara restriction site corresponding to a

specific restriction enzyme:

I ?- kohara.rsite(BegEnd,Enzyme).

Beg = 600, End = 610, Enzyme = 'BglI' ;

Beg = 1458, End = 1468, Enzyme = 'Bgl' ;

Beg = 2611, End = 2616, Enzyme = 'Pvu2' ;

Beg = 3709, End = 3714, Enzyme = 'EcoRl';

By invoking koharassite/3 with the third argument instantiated, one can extract restriction

sites for a specific enzyme:

I ?- kohara.rsite(Beg,End,'Noti').

Beg = 25087, End = 25094

Beg = 679216, End = 679223

Beg = 786494, End = 786501

To collect all Kohara clones or restriction enzyme map sites, we provide the predicates

all-kohara-clones(Clones) and all-koharassites(Rsites). In both cases, the objects are

sorted based on starting location on the chromosome.

2.1.2 Fragments of Sequence

Knowledge about the E. coli genome has progressed to the point where many of the isolated

sequence entries in Genbank can be assigned locations on the chromosome [29, 30]. Our database

includes those nonoverlapping entries from the EcoSeq database, each of which has an associated

unique identifier. To access the position and length of a specified object, one uses a Prolog query

of the following form:

6

I ?- dna.fragment('ECOPROC' ,Fragment) ,display.object(Fragment).

411369/412336 968 ECOPROC (DNA fragment)

Note that what we are calling a "fragment" is a specified section of the chromosome that has

been sequenced; to access the sequence associated with the fragment, one uses the tools described

in Section 2.2.

To access the complete set of DNA sequence fragments, one uses the predicate

alldnalragments (Fragments). As with the predicates for Kohara clones and restrictions sites,

the objects are ordered based on starting location.

2.1.3 Computed Restriction Sites

For each section of the chromosome that has been sequenced, we can compute the position of

restriction sites that occur in that region. This capability is extremely useful for comparing the

arrangement of sites in a new DNA fragment against a physical map of the Kohara restriction sites.

The alignment of such restriction sites was one of the main methods of positioning fragments of

sequence on the genome [29, 30]. The predicates for computed restriction sites are similar to those

used to access Kohara restriction sites:

I ?- dna.frag.rsite(Obj).

Obj = dna.frag.rsite(1973976,1973981,'Acci')

Obj = dna.frag.rsite(1974741,1974746,'Acci') ;

Obj = dna.frag.rsite(1974347,1974352,'Acyl')

Obj = dna.frag.rsite(1974329,1974334,'Af13')

I ?- dna.frag..rc e(Beg,End,Enz).

Beg = 1,3976, End = 1973981, Enz = 'Acc'

Beg = 1974741, End = 1974746, Enz = 'Acci'

I ?- dna.frag.rsite(Beg,End,'EcoRi').

Beg = 335988, End = 335993 ;

Beg = 338631, End = 338636 ;

Beg = 338989, End = 338994

We have a large list of restriction enzymes sites that are known to the system. To compute

positions any restriction enzyme site, one can use the following:

I ?- restriction, ite('Not1',Pattern,Cuts), format('-sn',

[Pattern]).

GCGGCCGC

I ?- restriction.site('AlwNi',Pattern,Cuts), format('-s-n',

[Pattern]).

CAGnnnCTG

To compute the set of restriction sites corresponding to a set of restriction enzymes in a given

object, one uses restrict ion-sites-inobject/3:

..

I ?- gene(aceE,Gene),

restriction.sitesjinobject(Gene, ['EcoR1' ,'BamHl', 'BbvS1'],

Sites),display.objects(Sites).

123370/123375 6 GGATCC (BamH1)

123625/123629 5 GCTGC (BbvS1)

123826/123830 5 GCAGC (BbvS1)

123899/123904 6 GAATTC (EcoRI)

124129/124133 5 GCAGC (BbvSl)

124246/124250 5 GCTGC (BbvS1)
124376/124380 5 GCAGC (BbvSl)

2.1.4 Occurrences of Genes

The database includes information about genes that have been sequenced, along with genes that

have been assigned positions but have not yet been sequenced. The basic notions of gene that we

have implemented are as follows:

structural gene - a section of the chromosome that corresponds to a "mature product." That is,

if the gene codes for a protein, the section of the chromosome corresponding to the structural

gene will begin with a valid start codon and end with a valid stop codon. Otherwise, it will

correspond to a mature RNA product such as tRNA or rRNA. Each gene has an associated

"direction of expression," which has two possible values - "clockwise" or "counterclockwise."

translated gene - a structural gene believed to encode a polypeptide. It will always be a multiple

of 3 in length, will begin with a valid start codon, and will end with a valid stop codon.

mapped gene - a gene that has been approximately positioned by using genetic mapping [3], but

has not yet been sequenced.

known gene - either a structural gene or a mapped gene. Since the lengths of mapped genes are

not known, we represent them as points on the chromosome, while structural genes all have

known lengths and are thought of as a contiguous section of the chromosome (the complexities

associated with the distinction of exons and introns are absent in the restricted case of E.

coli).

To access structural genes, one uses the gene/2 or gene/4 predicates:

I ?- gene(Id,Obj).

Id = thrA,

Obj = gene(thrA,207,2669,clockwise)

Id = thrB,

Obj = gene(thrB,2671,3600,clockvise)

8

Id = thrC,

Obj = gene(thrC,3601,4887,clockwise)

I ?- gene(Id,Beg,End,Direction).

Id = thrA,

Beg = 207,

End = 2669,

Direction = clockwise

Id = thrB,

Beg = 2671,

End = 3600,

Direction = clockwise ;

Id = thrC,

Beg = 3601,

End = 4887,

Direction = clockwise

To access a gene with a specified Id or Direction, one invokes these predicates with the appro-

priate arguments instantiated.

To access all genes, one uses allgenes (Genes), which binds Genes to the set of all genes,

ordered by starting location (i.e., the start of the gene on the chromosome, irrespective of direction

of expression).

To access translated genes, one uses either translated.gene/2 or trans-lated.gene/4:

I ?- translated.gene(aceE,Obj).

Obj = gene(aceE,123344,126004,clockwise)

I ?- translated.gene(Id,Beg,End,counterclockwise).

Id = gef,

Beg = 16867,

End = 17019

Id = apaH,

Beg = 50814,

End = 516x6

To get a list of all genes thought to be translated, one uses

all.translated.genes (Genes)

To access a mapped gene, one uses mapped..gene/2:

9

I ?- mapped.gene(Id,Gene).

Id = tolJ,

Gene = mappedgene(tolJ, 'Bach.' ,unknovn,4.OE-02,6099)

Id = toll,

Gene = mappedgene(tolI, 'Bach.' ,unknovn,5.OE-02,6645)

Id = popD,

Gene = mapped_.ene(popD,'Bach.',unknovn,8.OE-02,8284)

Note that the second argument is bound to a structure of the form

mapped.gene(Id,Map,Direction,PositionOnMap,PositionOnChromosome)

Here, 'Bach.' is a reference to the digitized Bachmann genetic map [3], 4.0E-02 is a position in

the units chosen by the person constructing the map (in this case, minutes), and 6099 is the best

estimate of the position on the chromosome (in terms of base pairs).

To access known genes (both structural genes and mapped genes), one uses knowngene/2:

I ?- knovn.gene(Id,Gene).

Id = thrA,

Gene = gene(thrA,207,2669,clockvise)

Id thrB,

Gene = gene(thrB,2671,3600,clockvise)

To access entire collections of either known or mapped genes, one uses the predicates allknounzgenes/1

and all-mapped..genes/1.

2.2 Predicates Common to All Objects Located on the Chromosome

To access the location of any object on the chromosome, one uses the location/3 predicate:

I ?- gene(entA,Obj), location(Obj,Beg,End).

Obj = gene(entA,636874,637620,clockvise),

Beg = 636874,

End = 637620

10

Alternatively, one can use start-of /2 and endof /2:

1 ?- gene(entA,bj), start.of(Obj ,Beg), end.of(Obj ,End).

Obj = gene(entA,636874,637620,clockwise),

Beg = 636874,

End = 637620

To determine whether an object has been sequenced, one uses the predicate sequenced/1. Thus,

I ?- gene(Id,Obj), sequenced(Obj).

Id = thrA,

Obj = gene(thrA,207,2669,clockwise)

is guaranteed to set Obj to a sequenced gene.

The length of an object is computed with

I ?- gene(entA,Obj), length.obj(Obj,Ln).

Obj = gene(entA,636874,637620,clockwise),

Ln = 747

The sum of the lengths of a list of objects can be computed by using lengthobjects/2:

I ?- all-translated.genes(AllTranslated),

length.objects (AllTranslated,Ln).

AllTranslated = [gene(thrA,207,2669,clockwise), ...]

Ln = 764226

It is often extremely useful to be able to check whether one object contains another. This check

can be done with contains/2. For example, to locate the Kohara clone that contains gene phnL,

one can use the query

I ?- gene(phnL,Gene), kohara.clone(.,Clone),

contains (Clone, Gene).

Gene = gene(phnL,4354686,4355366,clockwise),

Clone = kohara.clone(' [643)12H2',4337800,4358195)

To display an object, one uses display-object/1; to display a set of objects, one

uses display-objects/1:

11

I ?- gene(phnL,Gene), kohara.clone(.,Clone),

contains (Clone,Gene),

display.obj ect (Gene),

displayobjects([Gene,Clone]).

4354686/4355366

4337800/4358195

4354686/4355366

681

20396

681

phnL

[643] 12H2

phnL

(gene) clockwise

(Kohara clone)

(gene) clockwise

We note that display..objects/1 sorts the objects to be displayed into ascending order based on

their starting locations. Hence, the Kohara clone appears before phnL in the displayed list.

In Section 2.1.3, we discussed how to locate restriction sites in an object (using

restrictionsites..in-objoct/3). For sequenced objects, one can compute a restriction map of

the object (e.g., here gene) and display the object using code similar to the following:

I ?- gene(aceE,Gene),

map.restriction.fragments(Gene,

['EcoRi' , 'Af 13' , 'BamH'],Map) ,display.objects(Map).

123371/123899

123900/124020

529 [BamHl,EcoR1]

121 [EcoRl, Af 13]

(computed rest. frag.)

(computed rest. frag.)

To create and display a restriction map based on Kohara restriction sites (which can be done

for either sequenced or unsequenced objects), one uses code similar to the following:

?- kohara.clcne (' [101]9E4' ,Clone),

kohara.map(Clone, ['EcoR' , ' Hind3' , 'EcoRS'] ,Map)

,

display.objects(Map).

3710/5063

5064/5879

5880/6602

6603/8602

8603/8900

8901/13006

13007/13278

13279/13710

13711/14439

14440/15322

1354

816

723

2000

298

4106

272

432

729

883

[EcoRf,EcoR5]

[EcoRS,EcoRS]

[EcoRS,EcoRS]

[EcoRS,EcoRS]

[EcoRS,Hind3]

[Hind3,EcoRl]

[EcoRl,EcoRS]

[EcoRS, EcoRS]

[EcoRS,Hind3]

[Hind3,Hind3]

(Kohara

(Kohara

(Kohara

(Kohara

(Kohara

(Kohara

(Kohara

(Kohara

(Kohara

(Kohara

rest. frig.)

rest. frag.)

rest. frag.)

rest. frag.)

rest. frag.)

rest. frag.)

rest. f rag.)

rest. f rag .)

rest. f rag.)

rest. frag.)

2.3 The Use of Actual Sequence Data

A central goal of our prototype environment is not only to demonstrate a capability of manipu-

lating relational data about the chromosome, but also to support an extensive sequence searching

functionality. For example, one type of analysis involves the identification of regions in the DNA

12

that could form a secondary structure known as a hairpin. Hairpin structures are characterized

by a region of sequence that is followed by a complementary sequence. For example. the short

section of sequence ACCGTTAGCAACGGT can form a hairpin, with ACCGTT pairing with the

final AACGGT, and the three middle characters forming "the loop." These hairpin structures are

often part of the genetic control mechanisms. With our prototype, one can easily write a query to

extract all hairpins that occur near the end of any structural gene. One merely uses the relational

capabilities discussed above to locate the sections of the chromosome that correspond to the notion

"near the end of a structural gene" and then uses the pattern-matching functions to check for

hairpins.

In this section, we discuss the fairly low-level operations to access and search a sequence. We

also discuss how to search for patterns, translate genes, and search for patterns in translated genes.

We believe that these capabilities go beyond those normally offered by chromosomal databases and

that they are extremely useful for supporting active research about the contents of the chromosome.

2.3.1 Accessing the Sequence of an Object

To access ti;e sequence of the fragment, one can use the following:

1 ?- dna.fragment('ECOPROC',Fragment),

sequence.of (Fragment ,Seq),

display.object(Seq).

411369/412336: sequence

411369 GGTTAAATTGAAATTTGCATAAAAATTGCGGCCTATATGGATGTTGGAAC

411419 CGTAAGAGAAAATGAATTTCACGGCAGGAGTGAGGCAATGGAAAAGAAAA

411469 TCGGTTTTATTGGCTGCGGCAATATGGGAAAAGCCATTCTCGGCGGTCTG

411519 ATTGCCAGCGGTCAGGTGCTTCCAGGGCAAATCTGGGTATACACCCCCTC

411569 CCCGGATAAAGTCGCCGCCCTGCATGACCAGTTCGGCATCAACGCCGCAG

411619 AATCGGCGCAAGAAGTGGCGCAAATCGCCGACATCATTTTTGCTGCCGTT

411669 AAACCTGGCATCATGATTAAAGTGCTTAGCGAAATCACCTCCAGCCTGAA

411719 TAAAGACTCTCTGGTCGTTTCTATTGCTGCAGGTGTCACGCTCGACCAGC

411769 TTGCCCGCGCGCTGGGCCATGACCGGAAAATTATCCGCGCCATGCCGAAC

411819 ACTCCCGCACTGGTTAATGCCGGGATGACCTCCGTAACGCCAAACGCGCT

411869 GGTAACCCCAGAAGATACCGCTGATGTGCTGAATATTTTCCGCTGCTTTG

411919 GCGAAGCGGAAGTAATTGCTGAGCCGATGATCCACCCGGTGGTCGGTGTG

411969 AGCGGTTCTTCGCCAGCCTACGTATTTATGTTTATCGAAGCGATGGCCGA

412019 CGCCGCCGTGCTGGGCGGGATGCCACGCGCCCAGGCGTATAAATTTGCCG

412069 CTCAGGCGGTAATGGGTTCCGCAAAAATGGTGCTGGAAACGGGAGAACAT

412119 CCGGGGGCACTGAAAGATATGGTCTGCTCACCGGGAGGCACCACCATTGA

412169 AGCGGTACGCGTACTGGAAGAGAAAGGCTTCCGTGCTGCAGTGATCGAAG

412219 CGATGACGAAGTGTATGGAAAAATCAGAAAAACTCAGCAAATCCTGATGA

412269 CTTTCGCCGGACGTCAGGCCGCCACTTCGGTGCGGTTACGTCCGGCTTTC

412319 TTTGCTTTGTAAAGCGCT

Here, only the sequence of the clockwise strand of DNA is displayed. That is,

sequenceof (Object ,Seq)

13

sets Seq to a "sequence object" representii g the sequence of Object, and

display.obj ect (AnyObj ect)

displays any object, including a "sequence object." One can also extract any sequence by absolute

coordinates. Thus, the following works as well.

I ?- sequence.at (123344,126004,Seq) ,display.object(Seq)

.

123344/126004: sequence

123344 ATGTCAGAACGTTTCCCAAATGACGTGGATCCGATCGAAACTCGCGACTG

123394 GCTCCAGGCGATCGAATCGGTCATCCGTGAAGAAGGTGTTGAGCGTGCTC

123444 AGTATCTGATCGACCAACTGCTTGCTGAAGCCCGCAAAGGCGGTGTAAAC

To access subsequences of a sequence, one can use subseq(Position,Length, SubSequence,Sequence)

Specifically, this can be used either to find the subsequence at a given position in a sequence or

to search for where a given subsequence occurs in a sequence. For example, the following query

computes all of the ten character sequences that occur at least twice in the gene aceE.

I ?- gene(aceE,Gene) , sequenceof (Gene, Seq)

,

subseq(Pos1,10,SubSeq,Seq),

subseq(Pos2,10 ,SubSeq,Seq), Pos2 > Posi,

format(''d/"d: s-n' , [Posl,Pos2,SubSeq])),

fail.

123541/124860:

123575/123604:

123744/125084:

124190/125450:

124281/125715:

124631/125972:

124747/125623:

125545/125851:

TGAAGAACAA

CTGGAACGCC

GCGGCGACCT

GAAGGTGCTG

TGATGAACGA

GATGCAGATA

CTTCACCGAG

CCTGCGTCAC

no

I ?-

This is such a common

common sequences:

request that we have included a predicate that computes the set of such

I ?- gene(aceA,Gene),

common.seqs-at.least.k-long([Gene,Gene],10,Seqs),

display.objects(Seqs).

14

4246610/424661

4246984/4246993

4246902/4246914

4247289/4247301

sequence

4246610 TCCTGAATGC

3: sequence

4246984 TCCTGAATGC

4: sequence

4246902 GCGGGCATTGAGC

1: sequence

4247289 GCGGGCATTGAGC

Notice that, in this case, matches are extended as far as possible (thus, the second reported match

is 13 characters long). One would normally use this with distinct objects, for example,

I ?- gene(thrA,Gene),

start.of (Gene,Start)

,

StartPre is Start-100, Endlnit is Start+80,

commonseqs-at.least.k-long([region(StartPreStart) ,region

(Start,Endlnit)]),5,Seqs),

display.obj ects (Seqs).

129/133:

229/233:

134/138:

278/282:

141/145:

247/251:

147/151:

280/284:

177/181:

254/258:

129

229

134

278

141

247

147

280

177

254

sequence

GTACA

sequence

GTACA

sequence

GGAAA

sequence

GGAAA

sequence

CAGAA

sequence

CAGAA

sequence

AAAGC

sequence

AAAGC

sequence

TTTTC

sequence

TTTTC

We also allow one to look for the longest common subsequence.

15

I ?- gene(aceE,Gene),location(Gene,Beg,End),EndPt is Beg+99,

sequence.at (Beg,EndPt ,Pref ix)

,

longest.commonsubseq(Pref ix ,Pref ix,Common,Pos1,Pos2),

format('-d/-d sn' , [Posl,Pos2,Common]).

123375/123402 CGATCGAA

The answer from this query indicates that the displayed eight-character string is the longest string

that occurs twice in the first hundred characters of the gene aceE.

2.3.2 Higher-Level Predicates to Support Scanning for Patterns in Objects

To properly handle requests to search for structures like hairpins or repeats, we implemented the

ability to scan for patterns. Here, we think of a pattern as a sequence of pattern units, each of

which can be

1. a string of DNA characters (including the codes to represent ambiguous characters);

2. a pattern unit that matches an arbitrary string of characters, where the length of the string

varies between specified bounds;

3. a pattern unit that "matches" the reverse complement of a string matched by a previous

pattern unit; and

4. a pattern that matches a string identical to a previously matched pattern unit.

The last two types of pattern unit allow one to specify an allowable number of mismatches,

insertions, and deletions (which gives an "approximate" matching capability).

For example, we think of the pattern

p1=AYGG 3.. .5 -pi p1

as capable of matching a sequence like

ACGGTTCGCCGTACGG

We encode such patterns as Prolog terms. Thus, the preceding pattern is encoded as

[pvar(pl,dna("AYGG")),

ellipses (3,5),

complement(p1,0,0,0),

repeat (p1,00,0)

The rules for a term encoding a pattern are as follows:

1. A pattern is a list of pattern units.

2. A pattern unit can be a "raw" pattern unit or can have the form

pvar(Id,RavUnit)

16

When an Id is specified, it is used to allow following pattern units to refer back to the string

matched by this pattern unit.

3. A raw pattern unit must be one of the following:

(a) dna(String)

(b) ellipses(Min,Max), where Min and Max give the bounds on the length of the string

matched;

(c) complement(Id,Mis,Ins,Del), where Mis gives the number of allowed mismatches, Ins

specifies the number of indels that can be inserted into the string matched, and Del

specifies the number of characters in the string being matched that can be deleted; or

(d) repeat((Id,MisIns,Del), where the parameters are just as for complement.

To scan a section of the chromosome for the occurrence of a pattern, one uses

scan-memlor-pattern-occurrence/4:

I ?- gene(aceE,Gene) ,start.of (Gene ,Beg) ,end-of (Gene ,End),

scanmem.for.pattern.occurrence(Beg,End,

[pvar(pl,dna("RYRYRY")),

ellipses(0,400),

repeat(pl,1,1,0)) ,Occ),

display.object(Occ).

123436/123464: sequence

123436 GCGTGC TCAGTATCTGATCGACCA ACTGC

By computing the set of such matches, one can rapidly acquire all matches of fairly complex patterns

(the actual pattern matching is achieved by invoking an underlying routine written in C).

2.3.3 A Predicate to Support Scanning for Patterns in Translated Genes

We have found that users wish to scan for patterns in the translated genes, as well as for patterns

in the DNA sequences. Hence, we have provided a predicate to support this capability:

find.pp.match(+Pat,+Gene, -PolyPepTide)

Both Pat (a list of the pattern units to scan) and Gene (the gene to be translated) must be

specified. Pat is a list of pattern units. Each unit is one of the following:

1. a string of one-character amino acid codes, with ? to represent an arbitrary amino acid (e.g.,

"CP???H"); or

2. the alternative of two patterns P1 and P2, which is represented as P1;P2.

PolyPepTide is the section of the translation of the Gene that matches Pat. The following example

will illustrate:

17

I ?- gene(thrA,Gene),

find.pp.match(["RE?E",("H";"L")],Gene,Match),

display.object(Match).

2280/2294 15 thrA (expressed) clockwise

RELE L

2.3.4 Predicates for Computing Codon Usage, K-mer Counts, and GC Content

The database provides a facility for computing codon usage for any set of translated genes. This is

achieved by using the predicate

codon.usage(Objects,Counts)

where Objects is a list of translated genes, and Counts is set to a list of 65 integers. The first

integer is a count of the number of "invalid" codons (i.e., those that are ambiguous or unsequenced

characters). The remaining 64 correspond to the counts of AAA, AAC, AAG, AAT, ACA,...TTT

To display the counts in a meaningful way, one can use

print.codon.usage(Counts)

For example, one can obtain the codon usage statistics for the genes currently placed on the

genome by using

I ?- alltranslated.genes(Genes),

codon.usage (Genes,Counts),

print.codon.usage (Counts).

number valid codons = 254740

number invalid codons 2

alanine: 24676 9.69%

GCA: 5133 2.01%

GCC: 6189 2.43%

GCG: 9146 3.59%

GCT: 4208 1.65%

arginine: 14841 5.83%

AGA: 291 0.11%

AGG: 215 0.08%

CGA: 713 0.28%

CGC: 5914 2.32%

CGG: 1130 0.44%

CGT: 6578 2.58%

asparagire: 9740 3.82%

18

AAC: 6237

AAT: 3503

aspartic.acid:

GAC: 5739

GAT: 8090

cysteine: 2736

TGC: 1592

TGT: 1144

glutamicacid:

GAA: 11170

GAG: 4791

glutamine: 112:

CAA: 3329

CAG: 7906

glycine:

GGA:

GGC:

GGG:

GGT:

19285

1490

8191

2442

7162

histidine: 576

CAC: 2819

CAT: 2943

isoleucine: 14

ATA: 604

ATC: 7132

ATT: 6815

leucine:

CTA:

CTC:

CTG:

CTT:

TTA:

TTG:

25943

747

2596

14682

2392

2563

2963

lysine: 11835

AAA: 9040

AAG: 2795

13829 5.43%

2.25%

3.18%

1.07%

0.62%

0.45%

15961 6.27%

4.38%

1.88%

35 4.41%

1.31%

3.10%

7.57%

0.58%

3.22%

0.96%

2.81%

2 2.26%

1.11%

1.16%

551 5.71%

0.24%

2.80%

2.68%

10.18%

0.29%

1.02%

5.76%

0.94%

1.01%

1.16%

4.65%

3.55%

1.10%

2.45%

1.38%

19

methionine: 6885

ATG: 6885

phenylalanine: 9369

TTC: 4653

TTT: 4716

proline: 11145

CCA: 1973

CCC: 1030

CCG: 6609

CCT: 1533

serine: 13923

AGC: 3925

AGT: 1698

TCA: 1398

TCC: 2442

TCG: 2050

TCT: 2410

stop: 697

TAA: 451

TAG: 49

TGA: 197

threonine: 13465

ACA: 1304

ACC: 6436

ACG: 3297

ACT: 2428

tyrosine: 7040

TAC: 3403

TAT: 3637

valine:

GTA:

GTC:

GTG:

GTT:

18436

2873

3724

6816

5023

2.70%

2.70%

3.68%

1.83%

1.85%

4.38%

0.77%

0.40%

2.59%

0.60%

5.47%

1.54%

0.67%

0.55%

0.96%

0.80%

0.95%

0.27%

0.18%

0.02%

0.08%

5.29%

0.51%

2.53%

1.29%

0.95%

2.76%

1.34%

1.43%

7.24%

1.13%

1.46%

2.68%

1.97%

The database also includes the capability of rapidly accumulating statistics on the occurrences

of k-mers. In the most trivial case, one can obtain. and display the number of occurrences of each

of the four nucleotides by using

20

I ?- alldna.fragments(Frags),

kmer.usage(Frags, 1,Counts),

print.kmer.usage(Counts,1),

print.gccontent (Counts).

A: 354898 24.29%

C: 375714 25.71%

G: 377757 25.85%

T: 352961 24.15%

Gs, Cs: 753471 51.56%

As, Ts: 707859 48.44%

Counts = [354898,375714,377757,352961]

The system can accumulate counts for k-mers of any size (although the user will probably not

wish to go above 10-mers).

2.4 Interface to External Systems

Our objective is to support the capability of storing and retrieving genetic data; it is certainly not

our ambition to recreate the standard tools required to analyze the retrieved sequence data. That

is, our system must be able to extract data that can later be processed by standard statistical

packages or data that support graphical exploration. This ability to interface to external packages

can be achieved in two basic ways:

1. For a very limited set of tools that require efficient transmission of data to and from the tool,

it is possible to install the C or Fortran code as "foreign predicates" which can be invoked

directly from the Prolog environment. This is how we have integrated the version of the

Smith-Waterman algorithm written by Xiaoqiu Huang et al. [17].

2. More commonly, to invoke an external tool, one simply extracts the data, writes it to a file,

and invokes a Unix shell script that invokes the desired tool and reformats the produced data

in a form accessible by the Prolog system. This is, for example, how we interface to external

systems to plot data and how we invoke FASTA [32] (the system for rapid similarity searches,

distributed by Bill Pearson).

The second approach is clearly more flexible and offers the most painless way to integrate

new capabilities. Tools that perform multiple-sequence alignment and motif searching must be

integrated into systems that compute the energetic stability of secondary structures.

3 Encoding of Biologically Relevant Queries

In this section, we illustrate the query facility with the predicates discussed in the preceding section.

We have collected.questions typical of those asked by molecular biologists. To illustrate the level

of difficulty, we provide short routines that will produce the desired answers In each case, the

predicates have been implemented in a straightforward manner based on the predicates presented

in the Appendix. Specifically, we present a collection of 21 questions a t i i he E. coli chromosome,

including the query, the answer, and the Prolog solution.

21

3.1 Physical Map Sites in Objects

The first three queries deal with identifying physical map sites in clones and sequences.

In determining a physical map for a chromosome and in establishing the chromosome positions

of genes, it is useful to know which gene regions would be interrupted once by digestion with specific

restriction enzymes.

Quer- 1: For a specified restriction enzyme Noti, find all

sequenced genes in which Noti occurs precisely once.

X I ?- queryl('Notl',Genes),display.objects(Genes).

% 785627/786892 1266 tolA (gene) clockwise

% 816181/817473 1293 bioA (gene) counterclockwise

X 1251391/1253088 1698 treA (gene) clockwise

X 2011366/2012091 726 orf (gene) counterclockwise

X 4083713/4084762 1050 glnL (gene) counterclockwise

queryl(E,Genes) :-

set.of.all(Gene,

Id-Sites^

(gene(Id,Gene),

computed.restriction.sitesjin.object(Gene,

[E], [Sites])),Genes).

Subcloning operations designed to manipulate a gene sequence often require a list of restriction

enzymes whose cut sites occur exactly once in that gene.

Query 2: For a given sequenced gene thrA, find all restriction

enzymes that occur precisely once in thrA.

X I ?- query2(thrA,Enzymes).

% Enzymes = ['Aval','Bbv2','Bcll','BsaBl','BstXl','Clal','Ddel',

% 'Drdl','Earl','EcoA','EcoPl','HgiCl','Mael','Mstl',

X 'Nae1','Nsp3','NspC1','Pvu1','Pvu2','SgrAI','SnaB1',

X 'Sspl']

query2(GeneId,Enzymes) :

-

gene(GeneId,Gene),

set.of.all(Enz,

Pattern^CutPoint^Sites^

(restriction.site(Enz,Pattern,CutPoint),

computed.restriction.sites-in.object

(Gene, [Enz] , [Sites]))), Enzymes)

.

22

The enzymes to use in isolating intact genes on single DNA fragments are those whose restriction

sites do not cut those genes. The following query allows us to identify that set of restriction enzymes.

Query 3. For a given sequenced gene G, find the set of Kohara

enzymes that do not occur in G.

% I ?- query3(thri,Enz).

x

% Enz = ['BamH1','EcoR1','EcoR5','Hind3','Kpn1','Pst1']

query3(Geneld,Enzymes) :-

gene (Geneld, Gene)

,

set.of._all(Enz,

Kenz^

(koharaenzymes(Kenz),

member(Enz,Kenz),

computed-restriction.sites.in.object

J(Gene, [Enz ,[1)) ,Enzymes)

.

3.2 Identifying Sequence Features

The next collection of queries involves searching for patterns in DNA sequences.

Much of the current work in the molecular biology involves some "reverse engineering." That is,

one can often predict a short DNA sequence fragment (also known as a primer) that is characteristic

of some genetic or structural trait. These primers can be used as probes to determine which clones

contain the potential target genes. However, to find interesting clones for further study, we need to

identify the sequenced clones that contain the primers. The following query identifies such clones.

Query 4: For a given sequence 1, list all Kohara clones that

contain K.

% I ?-

query4("GATTGCCAGTTCGCCATAATCACTCTTC",Clones) ,display.objects

(Clones).

7
7 1957500/1977500 20001 [337]20E4 (Kohara clone)

7. 1969800/1988245 18446 [338]12C7 (Kohara clone)

query4(Seq,Clones) :-

set.of .all(Clone,

Id^0ccs~

(kohara.clone(Id,Clone),

subseqsinobj (Clone,Seq,Occs)

),

Clones)

.

23

Conversely, we might like to identify those clones that do not contain a specific target sequence.

Query 5: For a given string I, list all Kohara clones that are

not known to contain I.

x I ?- query5("GATTGCC",Clones).

x Clones = [koharaclone(' [1026H3' ,9400,24157) ,]

query5(Seq,Clones) :-

set.of._all(Clone,

Id'Occs-

(koharaclone(Id,Clone),

\+ subseqs.inobj(Clone,Seq,Occs)

),

Clones).

Subcloning or probing projects often seek to identify those short unique sequences that are

diagnostic for a particular DNA segment. The following query allows us to identify diagnostic

sequences of a specific length within a target done.

Query 6: Given a length K and a clone Clone, produce a

sequence S that occurs just once in Clone.

2 I ?- query6(6,'E[116]15A7',S), format('-s-n',[S]).

2 CGCCTA

query6(K,CloneId,S) :-

kohara.clone(CloneId,Clone),

sequence.of (Clone,SeqObj),

subseq(Pos,K,S,SeqObj),

\+ (member(Char,S), \+ base(Char)),

\+ (subseq(Pos2,K,S,Seqobj), Pos2 =\= Pos).

To confirm that the sequence is diagnostic of the fragment, we can use the following query to

check that the sequence does not occur in any other sequenced clone.

Query 7: Given a length K and a clone Clone, produce a

sequence that occurs just once in Clone, and

never in any other Clone. Check both strands.

2 I ?- query7(12,'[116]15A7',S), format('s-n',[S]).

24

X ATCGCCTAATGC

query7(K,CloneId,S) :-

koharaclone(ClcneId,Clone),

sequence.of (Clone,SeqObj),

subseq(Pos,K,SSeqObj),

\+ (member(CharS), \+ base(Char)),

domain(ecoli~genome,Beg,End),

\+ (subseq.both(Pos2,K,S,seq(Beg,End),_), Pos2 =\= Pos).

Certain sequences must stand in spatial relationship to one another in order for certain biological

mechanisms to take place. For example, genes that are regulated through a coordinated control

mechanism using a common control protein usually have common control sequence motifs that occur

in specific spatial relationships to those genes. The following query searches for a potential control

sequence with a particular spatial requirement. In a relational database, identifying sequence level

features such as these normally requires an extensive, specialized programming effort.

Query 8: List genes that contain sequence I exactly once, and

the occurrence is at least a distance of Y away from

each end of the gene.

X I ?- query8("TGATTTGCT",60,Genes),displayobjects(Genes).

7
7 14285/15415 1131 dnaJ (gene) clockwise

. 572030/573193 1164 int (gene) counterclockwise

7. 631876/632832 957 fepB (gene) counterclockwise

X 995234/996436 1203 pncB (gene) counterclockwise

% 1408669/1409421 753 fnr (gene) counterclockwise

% 2104525/2105829 1305 hisD (gene) clockwise

% 2448989/2449477 489 dedE (gene) counterclockwise

% 2465017/2466087 1071 aroC (gene) counterclockwise

7 2699918/2703805 3888 purL (gene) clockwise

% 3610926/3611813 888 ugpA (gene) counterclockwise

X 3903261/3904334 1074 recF (gene) counterclockwise

X 4014398/4015594 1197 hemY (gene) counterclockwise

query8(X,Y,Genes) :-

length(X,Ln),

set.of._.all(Gene,

Id-SeqObj^Pos^Pos2^Dir-Dir2^Beg'End-

(gene(Id,Gene), sequence.of(GeneSeqObj),

subseq.both(Pos,Ln,X,SeqObj,Dir),

\+ (subseq.both(Pos2,Ln,X,Seq0bj,Dir2), Pos =\= Pos2),

location(Gene,Beg,End),

25

Pos-Beg >= Y, End-Pos >= Y

)

,

Genes).

The presence of localized repeated sequences often reflects a common heritage of those chromo-

some regions. The following query demonstrates how to search for repeats of a definite size within

a specific clone.

Query 9: List all repeats of length N in Kohara clone C.

X I ?- query9(' [102]6H3' ,13,Repeats) ,display.objects(Repeats).

14556/14568:

14580/14592:

18932/18944:

19486/19498:

19062/19074:

23657/23669:

sequence

14556 GCGATATTTTTGG

sequence

14580 GCGATATTTTTGG

sequence

18932 TATGCCGLTAAAA

sequence

19486 TATGCCGATAAAA

19062

23657

sequence

ACGCCGCAGTGGT

sequence

ACGCCGCAGTGGT

query9 (Cloneld,N,Repeats) :-

kohara.clone(Cloneld,Clone),

comonseqs-at-least.k-long([CloneClone],N,Repeats).

Another possibly interesting region ("hot spot") for transcriptional control features, whether

sequences or structural features, is the region between convergent genes. The following query

searches for such hot spots.

Query 10: What is the longest common sequence between two

convergent transcripts?

% I ?- querylo(G1,G2,Common),

X display.objects([G1,G2]), display.objects (Common) ,nl ,fail.

X 15562/16836 1275 orf2 (gene) clockwise

% 16867/17019 153 gef (gene) counterclockwise

4

% 16844/ 16847 : sequence

26

x
x

x

x

X

16844 GGGA

16852/16855: sequence

16852 TCCC

% 16846/16849:

X 16846

X 18719/19507

X 20833/21096

X 20158/20169:

20158

sequence

GATC

789 orf3

264 rpsT

(gene)

(gene)

clockwise

counterclockwise

sequence

GCCAGCGCTGGC

x

x

x

x

x

x

x

x

x

X

x

50257/50736

50814/51656

50761/50767:

50761

50787/50793:

50787

480 folA

843 a.pai

(gene)

(gene)

clockwise

counterclockwise

sequence

GCCGGAT

sequence

ATCCGGC

querylO(Genel,Gene2,Longest) :-

convergent.genes(Genel,Gene2),

gap (Gene1, Gene2, Gap)

,

C (commonseqs.atleast.klong.both-strands

([GapGap] ,8,Common)

,

Common \== 0) ->

true

common-seqsatleastk.long.both.strands

([Gap,Gap] ,4, Common)

keep.max(Common,Longest).

keep.max([HIT],Longest) :-

H=common-sequence([Si I]),

length.obj(Si,Lnl),

keep.max(T,Lni, [H],Longest).

27

keep.max(O ,.MaxLn,Longest ,Longest).

keep.max([H IT] ,MazLn,MaxSet ,Longest) :-

H=common-sequence ([Si I-])

,

length.obj (SI. ,Lnl),

(Lni < MaxLn ->

keep.max(T,MaxLn,MaxSet,Longest)

(Lni =:=MarLn ->

keep.max(T,MazLn, [H I MaxSet],Longest)

keep.max(T, Lnl, [H] ,Longest)

)

Some transcriptional control sequences occur just upstream of a gene. If one conjectured that

a particular transcriptional control signal were composed of a single occurrence of a sequence in

the gene, together with two identical sequences at different positions upstream of that gene, the

following query would extract the desired data.

Query 11: For a gene G, find all strings of length at least 6

that occur at least twice in the first 150

characters upstream and at least once in the first

100 characters of G.

I ?- queryll(Id,Strings) ,gene(IdGene),display.object(Gene),

display.objects (Strings).

84435/85307 873

84407/84415:

84407

84425/84433:

84425

84470/84478:

84470

leu0 (gene) clockwise

sequence

GGAGTTAAG

sequence

GGAGTTAAG

sequence

GGAGTTAAG

queryll(GeneId,Strings) :-

gene (GeneId,Gene),

upstream(Gene,150,Upstream),

initial (Gene,100, Initial),

common-seqs-atleastk.long([Upstream,Upstream, Initial]

,

6,Strings),Strings \== 0

.

28

x

x

x

x

x

x

x

x

x

x

x

x

upstream(Gene,Ln,region(Ptl,Pt2)) :-

direction(Gene,Dir), location(Gene,Beg,End),

(Dir == clockwise ->

Ptl is Beg-Ln, Pt2 is Beg-1

Ptl is End+1, Pt2 is Ezd+Ln

).

initial(Gene,Ln,region(Ptl,Pt2)) :-

direction(Gene,Dir), location(Gene,Beg,End),

(Dir == clockwise ->

Ptl is Beg, Pt2a is Beg+Ln, min(End,Pt2a,Pt2)

Pti is End, Pt2a is End-Ln, max(Beg,Pt2a,Pt2)

).

3.3 Structure-Related Features

The following four queries ask about the arrangement of genes on the chromosome and about

potential structural features, such as hairpins, that may be related to gene positions.

According to one well-known hypothesis, there is a correlation between the direction of replica-

tion and the strand on which genes are predominantly found [7]. The following query retrieves the

data available to test this hypothesis.

Query 12: Give the counts of clockwise genes in the region

just preceding the origin of replication and just

following it, along with the percentage of each

region that is sequenced. Then, do the same for

counterclockwise genes.

% I ?- queryl2(100000).

X 3853061/3953061 100001 (region)

% 1 cw genes; 33 ccw genes; 39% sequenced

X 3953061/4053061 100001 (region)

% 35 cw genes; 8 ccw genes; 49% sequenced

queryl2(Dist) :-

oriC(ecoli,Origin),

Left is Origin-Dist, Right is Origin+Dist,

reporton.region(region(Left,Origin)),

reporton.region(region(Origin,Right)).

reportonregion(Region) :-

genes.inobject(Region,clockwise,CWG),

genesinobject(Region,counterclockwise,CCWG),

length(CWG,CWcount), length(CCWG,CCWcount),

kmerusage([Region],1,[A,C,G,T]),

29

length.obj(Region,Ln),

PerCent is integer(100 * ((A+C+G+T) / Ln)),

display.object(Region),

format('~d cv genes; -d ccv genes; -d% sequencedn',

[CWcount ,CCWcount ,PerCent]).

genes~in.object (Object ,Direction,Genes) :-

set.of.all(Gene,

Id-

(gene(Id,Gene),

direction(Gene,Directian),

contains(Object ,Gene)

) ,Genes).

Similarly, one may wish to know whether there is a correlation between the direction of repli-

cation and the frequencies of occurrences of different sequences of length four (4-mers).

Query 13: Consider the set of 4-mers that occur in clockwise

genes just to the left of the origin of replication

and in clockwise genes just to the right. Are the

frequencies of occurrence for each 4-mer about the

same? In particular, give the set of 4-mers that

occur moral than twice as often (as a percentage of

the length of the sequence of clockwise genes) on

one side or the other.

X I ?- queryl3(200000).

% CCTT: left=0.0012 right=0.0027

X CTAG: left=0.0002 right=0.0004

% TAGG: left=0.0005 right=0.0012

queryl3(Dist)

oriC(ecoli,Origin),

Left is Origin-Dist, Right is Origin+Dist,

get.adjusted.counts(region(Left,Origin),LeftCounts),

get.adjusted.counts(region(Origin,Right),RightCounts),

report.disparity(LeftCounts,RightCounts).

get.adjustedcounts(Region,Counts) :-

genes in.object(Region,clockwise,CWG),

kmer.usage(CWG,4, [Counts1]),

sumL(Countsl,Sum),

adju:t..to.give.fraction(Countsl,Sum,Counts).

sumL(L,Sum) :- sumL(L,O,Sum).

30

sumL (O ,Sum, Sum)

.

sumL([HIT],SoFar,Sum) :- SoFari is SoFar+H, sumL(T,SoFarl,Sum).

adjust-to.give-f ract ion (O, _,)

.

adjustto.give-fraction([HIT],Sum, [Hal Ta])

-

Ha is H / Sum,

adjust.to.give.fraction(T, Sum, Ta)

.

report.disparity(Left ,Right) :- report.disparity(Left ,Right ,0).

report.disparity(0 , 0 ,.)

.

report.disparity([Lh ILt], [RhIRt] ,Which)

-

C (Lh >= 2*Rh ; Rh >= 2*Lh) ->

conv.kmer(4,Which,String),

format ('"s: left="4f right="4f"n' , [String,LhRh])

true

Which is Which+l,

report-disparity (Lt , Rt , Wichl)

.

Hairpin loops are often proposed to be structural signals for transcriptional regulation. To find

transcriptional signals common to a set of genes, we might wish to identify a set of hairpin loops

that occur at the beginning of genes. The following query identifies the genes that contain hairpins

within 20 bases of the start of the gene.

Query 14: Find all hairpin loops with that occur at the start

of genes.

X I ?- queryl4(20,9).

% 27228/281'2 915 orf

x 27208/27231: sequence

27208 GCATTTTTT

98459/99703

98442/98479:

98442

108335/111040

108327/108347:

108327

231921/233462

231909/231938:

231909

(gene) clockwise

ATGGAG AAAACATGC

1245 ftsW (gene) clockwise

sequence

GCGAAGGAG TTAGGTTGATGCGTTTATCT CTCCCTCGC

2706 secA (gene) clockwise

sequence

ATTTTATTA TGC TAATCAAAT

1542 rrsH (gene) clockwise

sequence

CATCAAACT TTTAAATTGAAG AGTTTGATC

31

2049 kdpB (gene) counterclockwise

738321/738342: seq

73832 1 ATA

1303723/1306398 2676

1303706/1303735: seq

1303706 ACC

1320555/1321094 540

1321074/1321097: sec

1321074 AAA

2272115/2273806 1692

2272098/2272131: sec

2272098 CAA

tuence

1TTCAGT GCTC ACTCAATAT

adhE (gene) clockwise

auence

TTCTAC ATAATCACGACC GTAGTAGGT

orf (gene) cow

quence
LhTCALG AAACTG CTTCATTTT

aterclockwise

fruk (gene) clockwise

quence
LTCAGGC ATTTATCGACATAAAC GCCAGATTG

queryl4(Dist ,Stem) :-

gene(.Id,Gene)

,

once((

around-.start (Gene ,Dist ,PtI,Pt2),

scan.mem.f or.pattern.occurrence (Pt i,Pt2,

[pvar (pl, ellipses (StemStem))

,

ellipses (3,20),

complement (p1,1,0,0)

0cc),

display.object (Gene), display.obj ect(Occ) ,nl)

),

fail.

query14(.,).

around.start cGene,Dist ,Ptl ,Pt2) :-

(d.rection(Gene,clockwise) ->

start.of(Gene,Start)

,

Ptl is Start-Dist, Pt2 is Start+Dist

end.of (Gene,End),

Ptl is End-Dist, Pt2 is End+Dist

It is also possible to query the knowledge base about structural features of RNA molecules.

Double-stranded hairpin stems in RNA molecules consist of the complementary base pairs A-U,

G-C, and G-U. In investigating the potential structure of an RNA molecule transcribed from a

known gene in another species, we detected complementary sequences as long as 18 bases. Such

32

xx
x

x

x

x
xx
x

x

% 736274/738322

complementary sequences could form hairpins in the transcribed RNA molecules. How often do

such complementary sections occur?

Query 15: Find all hairpins with stems 18 bases in length with

loops that could be as large as 300 bases, allowing

for G-T as a "match."

X I ?- queryl5(N).

85385/85402:

85407/85424:

123257/123274:

123287/123304:

123258/123275:

123286/123303:

123259/123276:

123285/123302:

85385

85407

sequence

TGCAGAATAGGTCAGACA

sequence

TGTCTGGTTTATTCTGCA

sequence

123257 GAACCTGTCTTATTGAGC

sequence

123287 GTTCAATGGGACAGGTTC

sequence

123258 AACCTGTCTTATTGAvCT

sequence

123286 AGTTCAATGGGACAGGTT

sequence

123259 ACCTGTCTTATTGAGCTT

sequence

123285 GAGTTCAATGGGACAGGT

queryl5(N) :-

set-of-all(HairPin,rna.hairpii(18,HairPin) ,L),

length(L,N).

rna.hairpin(Ln,hairpin(seq(B1,Ble)-Occ)) :

-

all-dna-.fragments (Frags)

,

member (Frag ,Frags), format (checking -w-n' , [Frag]),

location(Frag,Beg,End), Endi is End-21,

subseq(B1,Ln,DNA,seq(Beg,Endl)),

S2 is B1+(Ln+3), E2 is S2+300, min(E2,End,E2a),

to-look.for(DNA,RNAcomp),

scan-mem.for-patternoccurrence(S2,E2a, [dna(RNAcomp)] ,Occ),

Ble is B1+(Ln-1),

display.objects([seq(B1,Ble) ,Occ]).

33

x

x

x

x

x

x

x

x

x

x

x

x

x

to~look.for(DNA,RNAcomp) :- reverse(DNA,DNAr}, rna.comp

(DNAr,RNAcomp).

rna.comp(O , 0).
rna.comp([HIT] , [H2T2]) :- rna.comp.char(H,H2), rna.comp(T,T2).

rna.comp.char(65,84). Z A/T

rna.comp.char(67,71). X C/G

rna.comp.char(71,89). X G/Y

rna.comp.char(84,82). X T/R

3.4 Questions about the Overall Project Status

This final group of queries is directed toward assessing the current status of the assembly of the

total genome sequence.

In the management of a large-scale sequencing project, one must know the current status with

respect to project completion. The following query identifies which clones have been completely

sequenced.

Query 16: List all clones that are completely sequenced.

I I ?- queryl6(Clones),display.objects(Clones).

y 96594/105701 9108 [1106F3 (Kohara clone)

7 3444102/3447540 3439 [630A]SF12 (Kohara clone)

% 3936168/3952263 16096 [560]2A1 (Kohara clone)

% 4233865/4240715 6851 [531B]3C5 (Kohara clone)

% 4240030/4240715 686 [530B]6G9 (Kohara clone)

% 4240715/4243455 2741 [629B]18C4 (Kohara clone)

x

query 16(SequencedClones) :-

all.dnadfragments (Frags),

set..ofall(Clone,

Id^Frag^

(kohara.clone(Id,Clone),

member(Frag,Frags),

contains(Frag,Clone)

)

,

SequencedClones).

We can also construct queries to assess progress in sequencing any chromosome region or clone.

Query 17: List all clones that are greater than 90% sequenced.

. I ?- queryl7(90,L),member(Clone-PerCent,L),

. format('-n~3f% sequenced:-n',PerCent),display.object

34

. (Clone),fail.

7.

7.

.

7.

100.000% sequenced:

96594/105700 9107

90.136% sequenced:

760100/775499 15400

100.000% sequenced:

4240030/4240714 685

7 100.000% sequenced:

7. 4233865/4240714 6850

% 93.674% sequenced:

. 4188805/4206684 17880

% 100.000% sequenced:

x 3936168/3952262 16095

% 93.768% sequenced:

7 3611044/3627299 16256

7 98.882% sequenced:
% 3606153/3617239 11087

7. 100.000% sequenced:

7. 4240715/4243454 2740

7 100.000% sequenced:

. 3444102/3447539 3438

[110] 6F3

[176]7E10

[530B]6G9

[531B]3C5

[534]El1C11

[560] 2A1

[613] 1B6

[614] B10

[629B]18C4

[630A]5F1

(Kohara clone)

(Kohara clone)

(Kohara clone)

(Kohara clone)

(Kohara clone)

(Kohara clone)

(Kohara clone)

(Kohara clone)

(Kohara clone)

(Kohara clone)

7 no

query 17(X,ClonesAndPerCent) :-

set.of.-all(Clone-PerCent,

Id^A^C^G^T^Ln^

(kohara.clone(Id,Clone),

kmer.usage([Clone],1,[A,C,G,T]),

length.obj(Clone,Ln),

PerCent is ((A+C+G+T) / Ln) * 100,

PerCent >= X

),

ClonesAndPerCent).

To keep track of unsequenced regions, we need to identify gaps between known sequence frag-

ments.

35

Query 18: Compute the gaps between sequence fragments.

I ?- query18 (Gaps) ,display.obj ects (Gaps).

5933/12279

34340/49698

54148/62852

71729/83533

6347

15359

8705

11805

(gap)

(gap)

(gap)

(gap)

queryl8(Gaps) :-

all.dna-.fragments (Frags)

,

gaps (Frags, Gaps)

.

Knowing the unsequenced regions in the chromosome, we can now identify the Kohara clones

that should be used to complete the sequencing.

Query 19: For any unsequenced region, give the Kohara clones

that overlap the region.

X I ?- queryl8(Gaps), member(Gap,Gaps),

% queryl9(Gap,Clones), display.object(Gap),

% display.objects(Clones).

5933/12279

383/17253

9400/24157

6347

16871

14758

(gap)

[101]9E4

[102] 6H3

(Kohara clone)

(Kohara clone)

queryl9(Region,Clones)

set.of.all(Clone,

Id^

(kohara.clone(Id,Clone),overlaps(Region,Clone)),

Clones).

One might wish to locate the blocks of unknown sequence that could be determined with

relatively small effort.

36

x
x

Query 20: Find all gaps between sequenced fragments that are

less than 700 bp long.

% I ?- query20(L), member(,L),displayobjects(I),nlfail.

779858/783702

783703/783891

783892/788928

408099/410813

410814/411367

411368/412335

3845

189

5037

2715

554

968

ECECYD

tolQecoM

ECOPHOAA

ECOPROC

(DNA fragment)

(gap)

(DIA fragment)

(DIA fragment)

(gap)

(DIA fragment)

%

%.

% no

query2o (ClonesAndGaps) :-

all-dna. fragments(L),

domain(ecoligenome,Beg,End),

set-of_all([X,Y,Gap]

,

Ln^

(adjacent (I,Y,L)

,

contains(region(Beg,End) ,.),

contains (region(Beg,End) ,Y)

,

gap (I,YGap),

lengthobj (Gap ,Ln)

Ln < 700

),

ClonesindGaps)

.

Given a region bounded by known sequence, one can use "primers" (strings that occur only once

in a specified clone) to start the sequencing reaction. The following query identifies the primers

that, used in a DNA sequencing reaction, will supply the sequence to "fill in" the gaps identified

above.

Query 21: Given the output of the last query, find the

sequencing primers ca the counterclockwise and

clockwise strands that can be used to complete

the sequence.

. I ?- query21(L) ,member(X, L) ,display.closure(X) ,f ail.

7. CCW sequencing primer AACACCAGACCCGCGACAAA(410783)

7. 408099/410813 2715 ECOPHOAA (DNA fragment)

7

37

x
x
x

r.

X CW sequencing primer GTAACCGCACCGAAGTGGCG(411398)

% 411368/412335 968 ECOPROC (DNA fragment)

% will close the following gap:

% 410814/411367 554 (gap)

X The following clones contain the above gap and primers:

X 399200/415299 16100 [14231A10 (Kohara clone)

X 409727/425480 15754 [143]6A12 (Kohara clone)

% CCW sequencing primer CAACACGGCCACCGGTAGCA(4155544)

X 4151732/4155574 3843 cytRecoM (DNA fragment)

X CW sequencing primer CCTACAAGTTCGTGCAAATT (4156143)

% 4156113/4164654 8542 metJecoM (DNA fragment)

X

X will close the following gap:

X 4155575/4156112 538 (gap)

X The following clones contain the above gap and primers:

7 4146365/4163864 17500 [538]12E3 (Kohara clone)

7 CCW sequencing primer CCCTTCGGAGTTTTAGTCAC(3493602)

X 3490087/3493632 3546 tufAecoM (DNA fragment)

z
X CW sequencing primer TAATGCCCCCATTAAGGTCT(3494112)

X 3494082/3495097 1016 ECOSTRI (DNA fragment)

X will close the following gap:

X 3493633/3494081 449 (gap)

X The following clones contain the above gap and primers:

% 3487500/3502699 15200 [626]3F8 (Kohara clone)

X no

query2l (GapClosure) :

-

query20 (FragsAndGaps),

set.of-all([Seq1,Posl,Seq2,Pos2,Frag1,Frag2,Gap,Clones],

Id-Clone-MustBeBefore^MustBeAfter^

(member([Fragi,Frag2,Gap],FragsAndGaps),

kohara-clone(Id,Clone), contains(Clone,Gap),

38

once ccw.primer(Fragl,Clone,Seq,Posl),

once cw.primerFrag2,Clone,Seq2,Pos2),

MustBeBefore is Posl-20, MustBeAfter is

Pos2+20,clones.that.contain(region

(MustBeBefore,MustBeAfter), Clones)

GapClosure).

ccw.primer(Object ,Clone,Seq,CCWpos)

sequence.of (Clone,CloneSeq),

location(Object,BegEnd),

Start is End-30,

pick(CCWpos,Start,Beg),

subseq.backwards (CCWpos,20,Seq,CloneSeq),

\+ (subseq.both(Pos ,20 ,SeqCloneSeq,j), Pos =\= CCWpos).

cw.primer(GojectClone, Seq,CWpos) :-

sequence.of (Clone,CloneSeq),

locat ion(Object ,Beg,End),

Start is Beg+30,

pick(CWpos,Start,End),

subseq(CWpcs ,20 ,Seq,CloneSeq),

\+ (subseq.both(Pos,20,Seq,CloneSeq,), Pos =\= CWpos).

clones.that.contain(Obj ,Clones) :-

set.oftall(Clone,

Id-(kohara.clone(Id,Clone),contains(CloneObj)),

Clones).

display.closure([Seqi,Posi,Seq2,Pos2,Fragl,Frag2,Gap,Clones])

-

format('CCW sequencing primer -s(d)n' , [Seql,Pos1]),

display.object (Fragi) ,nl,

format('CW sequencing primer "s(d) n' ,[Seq2,Pos2]),

display.object(Frag2),nl,

format('will close the following gap:-n'a,J),

display.obj ect (Gap) ,nl,

format('The following clones contain the above gap

and primers:-n',O),

display.objects(Clones),

format('-------- - -n',O).

This set of example queries has been included to illustrate some of the capabilities of our system.

of course, biologists routinely make many more queries. We believe that the set we have chosen

accurately reflects the level of effort required to extract a broad range of information.

39

4 Summary

Although enormous resources are going into the effort of accumulating raw sequence data, no

effective means yet exists for allowing a biologist to query the data without employing a computing

technician. As the volume of available sequence data increases, and as complete genomes begin to

be assembled, the need for flexible access to the data is becoming increasingly acute.

A variety of database technologies can be used to achieve flexible access. We have selected logic

programming, and we have implemented a prototype system for answering queries about the E.

coli genome. This system provides numerous capabilities that are not available under any other

system. It allows biologically relevant queries to be answered in small fractions of the time required

with more conventional tools.

This system was developed as the initial step toward an environment that supports comparative

analysis of chromosomes. It will be extended to provide the database services to support queries

relating to several chromosomes. We shall then create user interfaces that make access to the

data possible without special-purpose programming. At this point, we have developed one such

interface, based on a restricted use of natural language, and we anticipate that other groups will

wish to experiment with other such interfaces.

We believe that an approach based on an extension of the work presented in this document

offers the most cost-effective strategy for making the benefits of database technology accessible

to the biologist. Logic programming, by integrating database queries with ease of computation,

creates an appropriate foundation for building user interfaces that will enable biologists to directly

pose the questions required to interpret genetic data.

References

[1] Ajioka, J. W.; Smoller, D. A.; Jones, R. W.; Carulli, J. P.; Vellek, A. E. C.; Garza, D.; Linnk,

A. J.; Duncan, I. W.; and Hartl, D. L., Drosrphiia genome project: One-hit coverage in yeast

artificial chromosomes, Chromosoma 100: 495-509 (1990)

[2] Adams, M. D.; Kelley, J. M.; Gocayne, J. D.; Dubnick, M.; Polymeropoulos, M. H.; Xiao, H;

Merril, C. R.; Wu, A.; Olde, B.; Moreno, R. F.; Kerlavage, A. R.; McCombie, W. R.; and

Venter, J. C., Complementary DNA sequencing: Expressed sequence tags and human genome

project, Science 252: 1651-6 (1991)

[3] Bachmann, B. J., Linkage map of Escherichia coli K-12, edition 8, Microbiol. Rev. 54: 130-97

(1990)

[4] Birkenbihl, R. P., and Vielmetter, W., Cosmid-derived map of E. coli strain BHB2600 in

comparison to the map of strain W3110, Nucleic Acids Res. 17: 5057-69 (1989)

[5] Billings, P. R.; Smith, C. L.; and Cantor, C. R., New techniques for physical mapping of the
human genome, FASEB J. 5: 28-34 (1991)

[6] Brandriff, B.; Gordon, L.; and Trask, B., A new system for high-resolution DNA sequence

mapping interphase pronuclei, Genomics 10: 75-82 (1991)

[7] Brewer, B. J., When polymerases collide: Replication and the transcriptional organization of

the E. col. chromosome, Cell 53: 679-86 (1988)

40

[8] Branscomb, E.; Slezak, T.; Pae, R.; Galas, D.; Carrano, A. V. ; and Waterman, M., Optimizing

restriction fragment fingerprinting methods for ordering large genomic libraries, Genomics 8:

351-66 (1990)

[91 Cantor, C. R., Orchestrating the Human Genome Project, Science 248: 49-51 (1990)

[101 Carrano, A. V., Establishing the order of human chromosome-specific DNA fragments, Basic

Life Sci. 46: 37-49 (1988)

[11] Carrano, A. V., et al., A high-resolution, fluorescence-based, semiautomated method for DNA

fingerprinting, Genomics 4: 129-36 (1989)

[12] Carrano, A. V.; de Jong, P. J.; Branscomb, E.; Slezak, T.; and Watkins, B. W., Constructing

chromosome- and region-specific cosmid maps of the human genome, Genome 31: 1059-65

(1989)

[13] Coulson, A.; Sulston, J. E.; Brenner, S.; and Karn, J., Towards a physical map of the genome

of the nematode C. elegans, Proc. Natl. Acad. Sci. U.S.A. 83: 7821-5 (1986)

[14] Coulson, A; Waterston, R.; Kiff, J.; Sulston, J.; and Kohara, Y., Genome linking with yeast

artificial chromosomes, Nature 335: 184-6 (1988)

[151 Garza, D.; Ajioka, J. W.; Burke, D. T.; and Hartl, D. L., Mapping the Drosophila genome with

yeast artificial chromosomes, Science 246: 641-6 (1989)

[16] Green, E. D.; and Olson, M. V., Systematic screening of yeast artificial-chromosome libraries

by use of the polymerase chain reaction, Proc. Natl. Acad. S6. U.S.A. 87: 1213-7 (1990)

[17] Huang, X. Q.; Hardison, R. C.; and Miller, W., A space-efficient algorithm for local similarities,

Comput. Apple. Biosci. 6: 373-81 (1990)

[18] Kazic, T.; Michaels, G. S.; Overbeek, R.; Zawada, D.; Dunham, G.; and Rudd, K. E., An

integrated database of E. coli chromosomal information to support queries and rapid prototyp-

ing, AAAI Workshop on Approaches to Classification and Pattern Recognition in Molecular

Biology, Anaheim, Calif., July 12, 1991

[19] Kohara, Y.; Akiyama, K.; and Isono, K., The physical map of the whole E. coli chromosome:

Application of a new strd.tegy for rapid analysis and sorting of a large genomic library, Cell

50:495-508 (1987)

[20] Komine, Y.; Adachi, T.; Inokuchi, H.; and Ozeki, H., Genomic organization and physical

mapping of the transfer RNA genes in Escherichia coli K12, J. Mol. Biol. 212: 579-98 (1990)

[21] Love, J. M.; Knight, A. M.; McAleer, M. A.; and Todd, J. A., Towards construction of a high

resolution map of the mouse genome using PCR-analysed microsatellites, Nucleic Acids Res.

18: 4123-30 (1990)

[22] Link, A. J.; and Olson, M. V., Physical map of the Saccharomyces cerevisae genome at 110-

kilobase resolution, Genetics 127: 681-98 (1991)

[23] Medigue, C.; Henaut, A.; and Danchin, A., Escherichia coli molecular genetic map (1000 kbp):

Update I, Mol. Microbiol. 4: 1443-54 (1990)

41

[24] Michaels, G., Kazic, T.; Overbeek, R.; Zawada, D.; Dunham, G.; Rudd, K.; and Smith, C. L.,

Logic programming-based system for querying E. coli chromosomal information, Cold Spring

Harbor Genomic Mapping and Sequencing meeting, May 8-12, 1991

[25] McKusick, V. A., Current trends in mapping human genes, FASEB J. 5: 12-20 (1991)

[26] Noda, A.; Courtright, J. B.; Denor, P. F.; Webb, G.; Kohara, Y.; and Ishihama, A., Rapid

identification of specific genes in E. coli by hybridization to membranes containing the ordered

set of phage clones, Biotechniques 10: 474, 476-7 (1991)

[27] Olson, M. V.; Dutchik, J. E.; Graham, M. Y.; Brodeur, G. M.; Helms, C.; Frank, M.; Mac-

Collin, M.; Scheinman, R.; and Frank, T., Random-clone strategy for genomic restriction

mapping in yeast, Proc. Natl. Acad. Sci. U.S.A 83: 7826-30 (1986)

[28] Olson, M. V.; Hood, L.; Cantor, C.; and Botstein, D., A common language for physical mapping

of the human genome, Science 245: 1434-40 (1985)

[29] Rudd, K. E.; Miller, W.; Ostell, J.; and Benson, D. A., Alignment of Escherichia coli K12

DNA sequences to a genomic restriction map, Nucleic Acids Res. 18: 313-21 (1990)

[30] Rudd, K. E.; Miller, W.; Werner, C.; Ostell, J.; Tolstoshev, C.; and Satterfield, S. G., Mapping

sequenced E. coli genes by computer: software, strategies and examples, Nucleic Acids Res. 19:

637-47 (1991).

[31] Ruvkun, G.; Ambros, V.; Coulson, A.; Waterston, R.; Sulston, J.; Horvitz, H. R., Molecular

genetics of the Caenorhabditis elegans heterochronic gene lin-14, Genetics 121: 501-16 (1989)

[32] Pearson, W., Rapid and sensitive sequence comps rison with FASTP and FASTA, Methods in

Enzymology 183: 63-98 (1990)

[33] Siden-Kiamos, I.; Saunders, R. D. C.; Spanos, L.; Majerus, T.; Treanear, J.; and Savakis, C.;

Louis, C.; aGlover, D. M.; Ashburner, M.;and Kafatos, F. C., Towards a physical map of the

D. melanogaster genome: Mapping of cosmid clones within defined genomic divisions, Nucleic

Acid Res. 18: 6261-70 (1990

[34] Stephens, J. C.; Cavanaugh, M. L.; Gradie, M. I.; Mador, M. L.; and Kidd, K. K., Mapping

the human genome: Current status, Science 250: 237-44 (1990)

42

Appendix: Supported Predicates for Querying the E. coli

Database

adjacent(-Objectl,-Object2,+ListOfObjects)

Objects and Object2 are adjacent in ListOfObjects (and the

last element in the list is considered to be adjacent to

the first)

align.2.seqs(+Stringl,+String2, -Corr, -Score)

Align the two lists of ascii DNA characters using a

Smith-Waterman algorithm. Corr is set to a list of terms

of the form P1-P2 where P1 and P2 are displacements

(integers from 0) into Seq1 and Seq2.

align.two.objects(+Obj 1,+Obj2)

aligns the sequence of Obj 1 with that of Obj2 and prints

the result

aligned.sequences(+Stringl,+String2, -Score,-Alignedl,-Aligned2)

This is used to produce aligned versions of Seqi and Seq2

(i.e., the aligned sequences that are returned are lists

of characters that have indels inserted at the appropriate

locations).

alignment._parameters (-U, -V)

returns current Smith-Waterman deletion cost parameters

(mismatch is always -18, and a match is always +18)

alldna.frag.rsites(-AllDna.FragRsites)

gets a list of all restriction sites in sequenced

fragments of DNA

all.dna.fragments(-AllFragments)

gets a list of all sequenced fragments of DNA

allgenes(-AllGenes)

gets a list of all the genes

all.knowngenes (-AllKnownGenes)

gets a list of all structural genes and mapped genes

all.koharaclones(-AllClones)

gets a list of all of the Kohara clones

all~kohara.rsites (-AllKoharaRsites)

gets a list of all of the Kohara restriction sites

43

all.mapped.genes(-MappedGenes)

gets a list of unsequenced, but mapped genes

all.translatedgenes (-TranslatedGenes)

gets a list of translated genes

amino.acid(?OneCharCode,?ThreeCharCode,?AminoAcid)

table of codes used to represent amino acids

between(+Pointl,+Point2,+Point3)

succeeds if Point2 is between Pointi and Point3. This

will be the case iff the shortest path on the circular

chromosome from Point1 to Point3 goes through Point2

quick.sim(+Seq,+PrintFlag,+MaxMatches,-Matches)

Seq represent a sequence fragment to be quick.simed

against the ecoli database. PrintFlag should be 0 or

1 (print). Matches comes back as a list of terms of

the form

region(FragId,QueryBeg,QueryEnd,FragBeg,FragEnd,Score)

bp.to.min(?BasePairs , ?Minutes)

converts (using a simple formula) between BasePair

coordinates and Minutes on the genetic map

char.stats(+Object,+Size,-CharStats) For a given object

(that may or may not have been sequenced), this goes

through the sequence cutting it into pieces of length

Size. Then it accumulates counts of each of the types

of characters (AC,GT, and Other) for each interval.

The list of CharStats is actually a "list of objects",

which means that each interval has a location and can

be displayed using display.object/1. Thus, you can get

character count statistics and then just display them

using display.objects/1. However, the more common use

is to feed them into either gc.histogram/1 or

gc.histogram.averaged.window/1.

clean.pins(+Pins,-CleanedPins)

Pins must be a list of pairs of the form P1-P2.

CleanedPins is set to a list in which "pins" do not

cross. Thus, [3-22,4-23,5-17,7-25] would produce

[3-22,4-23,7-25] as the "cleaned" pins.

i11

codon(?Charl,?Char2,?Char3,?ThreeCharCode,?OneCharCode)

Table of the genetic code, where Charl-3 are ascii

numeric values.

codonusago(+Objects ,-Counts)

Objects is a list of objects. Counts is set to a list

of 65 integers. The first is a count of the number of

"invalid" codons (i.e., those that contain ambiguous or

unsequenced characters). The remaining 64 correspond

to the counts of AAA, AAC, AAG, AAT, ACA,...TTT.

commonseqatleastklong(+Objects,+Min,-Seqs)

Locates a sequence that is at least Min long in all

Objects and then finds all occurrences in the objects

and sets Seqs to the set of occurrences.

common..seqatleastklongbothstrands(+Objects,+Min,-Seqs)

Locates a sequence that is at least Min long in all

Objects and then finds all occurrences in the objects and

sets Seqs to the set of occurrences (looking at both strands).

commonseqsatleastklong(+Objects ,+Min,-SubSeqs)

Computes the set of values reurned by

commonseqatleastklong/3.

commonseqsatleastklongbothstrands(+Objects,+Min,-SubSeqs)

Computes the set of values reurned by

commonseqatleastklongbothstrands/3.

conraonsubsequence(+SequenceObjects,+Length, -Common, -Positions)

SequenceObjects must be a list of sequence objects

(produced by sequence.at/3 or sequenceof/2). Suppose this

list has length N. Then Positions will be set to a list of

N positions of occurrences of a Common string of the given

Length.

commonsubsequencebothstrands (+SequenceObjects ,+Length,

-Common,-Positions)

SequenceObjects must be a list of sequence objects

(produced by sequence.at/3 or sequence.of/2). Suppose this

list has length N. Then Positions will be set to a list of

N positions of occurrences of a Common string of the given

Length. The search proceeds by picking a sequence in the

"forward." strand of the first object, and then by taking

strings from either strand of the following objects. The

positions are either integers (same strand) or i' (for

45

reverse strand).

compL(+String,?Complement)

produces the 'Jatson-Crick complement of a string. Thus,

compL("AACG",X) binds I to "TTGC"

complement (+String, -ReversedComplement)

produces the reversed complement of String. Thus,

complement ("AACG",X) binds X to "CGTT"

computeddna.frag.rsite(+LB,+UB,?Beg,?End,-Cuts,+Enzyme)

LB and UB must be the bounds of a sequenced section of DNA.

Beg and End are then the beginning and end of a restriction

site for the designated enzyme.

computed~restriction.fragment (-Beg,-End,+Enzymes,
-UsedEnzymes,+LB,+UB)

Given bounds LB and UB and a list of restriction Enzymes,

find Beg and End that delimit a restriction fragment, and

bind UsedEnzymes to a list containing just the two

cutting enzymes.

computed.restrictionsites.in.object(+Obj,+Enzymes,-Sites)

returns a list of computed restriction sites from

the given set of Enzymes that occur in Obj.

cont.gc.histogram(+Object,+SizeOfWindow)

Given a sequenced Object and a size of a window, produce

a histogram with one entry for each position in the object

which can be the center of a window. The histogram gives

the average GC content of the window.

contains (+ContainingObject ,+ContainedObject)

succeeds if the first object contains the second

convergent.genes(-Gene1, -Gene2)

binds Genel and Gene2 to convergent genes (which are

objects, not IDs)

direction(+Gene,?Direction)

Gene must be a gene, and direction gets bound to clockwise

or counterclockwise.

disp.seqs(+Ids,+Strings)

This is used to display a set of sequences that might be

over 50 characters long. Thus,

46

disp.seqs([seql,seq2], [S1,S2])

would interleave 50 characters of each sequence in a visual

display.

disp.seqs(+Ids,+Strings,+StartingLocations)

like disp.seqs/2, except that the positions of sequences

can be specified.

display.object(+Object)

displays an arbitrary object (gene, dna.fragment,

sequence object, etc.)

display.objects(+ListOfObjects)

displays a list of objects

dist (+Point I,+Point2, -Distance)

gets the Distance from Pointi to Point2 on the circular

chromosome

divergent.genes (-Genet, -Gene2)

gets two divergent genes (Genel and Gene2 are adjacent;

Genel is expressed ccv and Gene2 cv)

dna.frag.rsite(?Beg,?End,?Enzyme)

Beg and End delimit a site that is matched by the cutting

pattern for the designated Enzyme in a sequenced section

of the genome

dna.frag.rsite(?Object)

Object is bound to an object representing a DNA fragment

restriction site.

dna.fragment(?Id,?Beg,?End)

Id is the ID of a sequenced fragment of the genome

beginning at Beg and ending at End

dnafragment(?Id,?Object)

Id is the ID of a sequenced fragment represented by the

object Object.

endof (+Object , -EndLocat ion)

Equivalent to location(Object, ,EndLocation) for

noncomposite objects. For composite objects, it gives

the location of the last piece.

47

find.pp.match(+Pat,+Gene,-PolyPepTide)

Pat must be an encoding of a pattern to scan for in

the translation of Gene. PolyPepTide is bound to a

section of the translation that matches. Pat is a

list of pattern units. Each unit is one of the

following:

1. a string of 1-character amino acid codes, with ?

to represent an arbitrary amino acid (e.g., "CP???H"),

2. the alternative of two patterns P1 and P2, which is

represented as

P1;P2

To illustrate,

I ?- gene(thrA,Gene), find.pp.match(["RE?E",("H";"L")],

Gene,Match), display.object(atch).

2280/2294 15 thrA (expressed) clockwise

RELE L

f irst.n(+List,+N, -ListOfFirstN, -AllButFirstN)

ListOfFirstN is set to be a list of the first N elements

of List, and AllButFirstN is bound to a list of the

remaining elements in List.

gap(+Object1,+Object2,-Gap)

Gap is bound to an object representing the gap between

Object and Object2.

gaps(+Objects,-Gaps)

Gaps is bound to a list of any gaps that occur between

the objects in the list Objects.

gc.histogram(+CharStats)

writes a histogram of the GC contents of the intervals

described in CharStats (produced by char.stats/3).

gc.histogram.averaged.window(+CharStats)

gcihistogram/1 just produces a bar for the GC percentage

for each interval, with the bar corresponding to the

48

midpoint of the interval. This looks at adjacent intervals,

setting the bar to represent the GC percentage for two

adjacent intervals. Thus, there is an overlapping effect.

gene(?Id,?Beg,?End,?Direction)

Beg and End delimit a transcribed section of the genome,

where Direction is either counterclockwise or clockwise,

giving the direction of transcription.

gene(?Id,?Object)

Object is an object representing the gene with ID Id.

This predicate is identical to structuralgene/2. To get

only genes that are translated, use translated.gene/2.

geneticcode(?DNA,?AminoAcids)

DNA is a list of Ascii characters representing DNA, and

AminoAcids is set to a list of 1-char-codes of the

corresponding amino acids produced by translation of the

code

group(+ListOfKeyValuePairs,-Groups)

This routine takes a list of sorted key-value pairs and

groups them. For example

group([3-a,3-b,4-c,5-a,5-c],X)

would bind X to [3-[a,b],4-[c],5-[a,c]]

helix(+StartLoop,+LoopMin,+LoopMax,-Ln,-SizeLoop)

StartLoop specifies a point in the genome. This routine

considers all possible helices that could be formed with

perfect pairing and loops containing LoopMin to LoopMax

characters. Ln is set to the maximum length of the stem

of a helix, and SizeLoop gets the size of the loop that

produced the maximal stem length.

histogram(+ListOfPairs)

ListOfPairs must be a list of X-Y pairs. A histogram is

printed on the terminal to represent the data (one line

of asterisks for each pair).

init

an initialization routine that must be run before access

to sequence data are made. The routine loads sequences

from the file "sequences" into main memory, where C

routines access the data.

isjleft(+Pointl,+Point2)

49

succeeds if the shortest path from Point2 to Pointi is

counterclockwise ("Pointi is to the left of Point2")

is~right(+Pointl,+Point2)

succeeds if the shortest path from Point2 to Pointi is

clockwise ("Pointi is to the right of Point2")

kmer-usage(+Objects,+K,-Counts)

Accumulates a list of K-mer counts. For example,

I ?- gene(thrA,G), kmer.usage([G],1,L).

G * gene(thrA,207,2669,clockwise),

L [0,553,614,692,604]

Here, there were

0 - invalid 1-mers (ambiguous or unsequenced)

553 - As

614 - Cs

692 - Gs

604 - Ts

known.gene(?Id,?Gene)

either a structural gene or a mapped gene

kohara.clone(?Id,?Object)

Object is an object representing the Kohara clone with

ID Id.

kohara.clone(?Id,?Beg,?End)

The Kohara clone with ID Id begins at Beg and ends at End.

kohara.enzymes (?Enzymes)

the enzymes that Kohara used to construct his map

kohara.restrict ion..fragment (-Beg, -End,+Enzymes ,-UsedEnzymes)

There is a Kohara restriction fragment from Beg to End

bounded by cutting sites for the two enzymes in

UsedEnzymes, which are both elements of Enzymes.

kohara.rsite(?Beg,?End,?Enzyme)

Beg and End bound a cutting site for Enzyme in the Kohara

map.

kohara.rsite(?Object)

50

abject represents a Kohara restriction site.

kohararsitesinobj ect (+Obj ect , -Rsites)

binds Rsites to the list of Kohara restriction sites that

occur in Object

lengthobj (+Object, -Ln)

Ln is the length of Object.

lengthobjects (+Objects, -Lu)

binds Ln to the sum of the lengths of the objects in the

list Objects

location(+Object ,?Beg,?End)

Object has a piece that begins at Beg and ends at End.

Normally, objects are not composite, so this succeeds

just once. However, for composite objects, it will

succeed multiple times.

longest _.commonsubseq(+Seqs , -Common, -Positions)

Seqs must be a list of sequence objects (produced by

sequence.at/3 and sequence.of/2). Suppose that the length

of "is list is N. Then, Common string and Positions are

bound to a set of N unique positions (each from the

corresponding sequence object). Thus,

longest _.commonsubseq(Pref ix,Gene, Gene] ,Common, [Pi. ,P2 ,P3])

would find the longest sequence that occurred in Prefix

and twice in Gene. P1 would get the occurrence in Prefix.

This call is determinata

.

map _restrictionffragmwats (+Obj ect , +Enzymes ,-Map)

produces a list of restrict ion fragments (wich are

objects) which would be formed by Enzymes cutting Object.

One can display the map using display.objects/1. Object

must be sequenced.

mappedigene(?Id, -Gene)

used to access genes that have been mapped, but not

sequenced

mappedgene(?Id,?Mapper,?Dir,?MapLoc,?BasePair)

Mapper is the name of the person who did the map (e.g.,

'Bach.' for Barbara Bachmann); Dir is 'clockwise',

'counterclockwise', or 'unknown'; MapLoc is the

51

location on the map, using whatever units the Mapper

gave; BasePair is the location on the chromosome that

we computed by converting the MapLoc.

match(+Pattern, +String)

If Pattern is a string that may contain ambiguous

characters (Is, Rs, Ys, etc.) and String is a string

of DNA, then this succeeds if each character in the

pattern matches the corresponding character in the

string. An ambiguous character in the pattern matches

the appropriate values in the string. On the other

hand, an ambiguous character in the string will

match only that exact character in the pattern

(preventing a string of Is in the st- ing from matching

every restriction enzyme).

marL(+List,-Maximum)

Maximum is the maximum element in List.

max.match(+Pattern,+String,-Matched)

Matched is set to the maximum number of characters

that the pattern matches the string.

min t(+List, -Minimum)

Minimum is the minimum value in List.

minutes.tobp(+Min,-Bp)

converts a coordinate given in minutes on the Bachmann

genetic map to a base pair location (by interpolation

between points that occur on both the genetic and

physical maps).

on.circllar.chromosome(+I,-IonChrom)

lonChrom is I modulo the length of the chromosome.

once (+Goal)

allows a single solution of Goal

overlaps(+Jbject1,+Object2)

suc-:eeds iff Objecti overlaps Object2

overlaps(+Object1,+ Object2,-OvBeg,-vEnd)

like overlaps/2, except that the region of overlap

is returned

pick(-I,+StartOfRange,+EndOfRange)

52

This clause allows you to pick a value of I in the

rane StartOfRange to EndOfRange. The values

may be ascending or descending.

polypeptide(?Id,?PolyPepTide)

used to access translations of structural genes that code

for proteins

polypeptide(?Id,?Beg,?End,?Dir,?AAs)

For the translated gene given by translatedgene

(IdBeg,End,Dir), Us is a list of "chunks of the polypeptide",

where each chunk is a list of the 1-character amino acid codes.

This predicate always returns AAs as a list of one element,

which is the translation of the region Beg/End. Other

routines occasionally return the translation broken into

sublists; these are separated by a space when the string is

displayed.

print.codonusage(+Counts)

displays the meaning of the 65 integers in the list Counts.

For example,

I ?- gene(thrAG),codonusage([G],L),print.codonusage(L).

number valid codons = 821

number invalid codons = 0

alanine: 92 11.21%

GCA: 15 1.83%

GCC: 36 4.382

GCG: 27 3.29%

GCT: 14 1.71%

arginine: 47 5.72%

AGA: 0 0.002

AGG: 2 0.24

CGA: 3 0.37%

CGC: 19 2.312

CGG: 5 0.61

CGT: 18 2.192

asparagine: 40 4.872

AAC: 18 2.19%

AAT: 22 2.68%

53

print.gc.content (+Counts)

displays GC content represented by Counts returned by

kuer.usage/2. For example,

I ?- gene(thrAG), kmer.usage([G],1.L), print.gc.content(L).

invalid bases: 0

Gs, Cs: 1306 53.02%

As, Ts: 1157 46.98

G = gene(thri,207,2669,clockvise),

L = [0,553,614,692,604]

print.kaer.usage(+Counts,+K)

displays the Counts returned by kuer.usage/2.

For example,

I ?- gene(thrk,G), k er.usage([G],1,L), print..er.usage(L,1).

invalid iners: 0

A: 553 22.45%

C: 614 24.93

G: 692 28.10%

T: 604 24.52%

G = gene(thr,207,2669,clockvise),

L = [0,553,614,692,604]

restriction.site(+Enzyae,-Pattern,-DisplacentToCut)

returns the pattern and position of the cut for a specified

restriction enzyme

restriction.sitesin.object(+Obj,+Enzymes,-Sites)

returns a list of restriction sites (both computed and

Kohara sites) from the given set of Enzymes that occur in

Obj. To get just the computed restriction sites, use

computed.restriction,sitesn.object/3.

scan.mm.for.pat (+Pattern,+Beg,+End,-Matches)

To scan a section of the chromosome for the occurrence of

a pattern, one uses the routine

scan.mem.for.pattern-occurrence/4:

I ?- gene (aceE,Gene) ,start.of (Gene ,Beg) ,end.of (Gene ,End),

scan.mem.for.pattern.occurrence (Beg,End,

54

[pvar(p1,dna("RYRYRY")),

ellipses(0,400),

repeat(p1,1,1,0)],Occ),

display.object(Occ).

123436/123464: sequence

123436 GCGTGC TCAGTATCTGATCGACCA ACTGC

Gene = gene(aceE,123344,126004,clockwise),

Beg = 123344,

End = 126004,

0cc = seq(123436,123464,spaces([123442,123460]))

sequence.at (+Beg,+End, -SequenceObject)

produces a sequence object representing the section of the

genome from Beg to End.

sequence.of (+Object, -SequenceObject)

produces a sequence object representing the sequence of a

given object.

sequenced(+Object)

succeeds if Object has been entirely sequenced

set.sw.parameters(+U,+V)

set insertion costs for the Smith-Waterman alignment

algorithm. Mismatches cost -18; matches have a similarity

of +18. Insertion of n indels costs -(U + nV).

set _sv.parameters (U,V)

sets the costs of insertions for the Smith-Waterman

algorithm. "Identical matches" are worth 18 points of

similarity for DNA/RNA. The cost of a k-indel insertion

is U+kV. Default settings for the DNA/RNA alphabet

(which is the default alphabet) are U=0, V=18.

similaritysearch(+Stringl,+Idi,+String2,+Id2,+MS,+Q,+R,+K,

+Print ,-Sim)

This predicate invokes the similarity search generously

contributed by iaoqiu Huang and Webb Miller. Seqi and

Seq2 are lists of ascii characters. Idi and Id2 are atoms.

MS, Q, R, and K are as described above. Print.flag ==

yes -> write out the report of similarities; anything else

will suppress printing. Similarities are bound to a list

in which each element is of the form

55

similarity(Score,NumCharMatched,LengthOfAlignmentWithlndels,

NumberMisMatches,Startl,Endl,Start2,End2)

Here is a little example:

- similarity.search("aaaaaaaaacccccccccggggggggg",seq1,

"ccccaacccccaaaaacccc",seq2,

-1.0,2.2,0.2,2,yes,Similarities).

produces the following output:

Match Mismatch Gap-Open Penalty Gap-Extension Penalty

1.0 -1.0 2.1 0.1

Upper Sequence : seqi

Length : 27

Lower Sequence : seq2

Length : 20

Number 1 Local Alignment

Similarity Score : 9

Match Percentage : 100%

Number of Matches : 9

Number of Mismatches : 0

Total Length of Gaps : 0

Begins at (5, 12) and Ends at (13, 20)

0

5 aaaaacccc

II II III II

12 aaaaacccc

Number 2 Local Alignment

Similarity Score : 8.4

Match Percentage : 68%

Number of Matches : 11

Number of Mismatches : 0

Total Length of Gaps : 5

Begins at (8, 5) and Ends at (18, 20)

0 . :

8 aaccccc cccc

56

11 III - lii
5 aacccccaaaaacccc

I = (similarity(90,9,9,0,5,13,12,20),similarity(84,11,

16,0,8,13,5,20)]

similarity.search(+Stringl,+String2)

runs the local similarity search and displays the best 5

alignments

sites.in.object(+Object,-Sites)

Sites is set to a list of objects representing "interesting

sites" that occur in Object. You can use display.objects/1

to display the objects.

sites.in.object.both(+Object, -Sites)

Sites is set to a list of objects representing "interesting

sites" that occur in Object, looking at both strands.

start.of (+Object , -StartingLocation)

equivalent to location(Object ,StartingLocation,_) for non-

composite objects. For composite objects, it gives the

location of the first piece.

sub.list (+Pattern,+String, -LocOfMatch)

finds a location in String (location values start from 1)

for which Pattern matches.

sub-seq(+Position,+Ln,?String)

a predicate that takes some of the pain out of invoking

subseq/4. Position is an expression that gets evaluated.

Then, String is set to the Ln characters that occur at that

position (on the clockwise strand) at that location.

subseq(?Position,?Length,?String,+SequenceObject)

as described in the tutorial

subseq.backwards(?Position,?Length,?String,+SequenceObject)

as described in the tutorial

subseq.both(?Posit ion, ?Length, ?String,+SequenceObject, -Direction)

as described in the tutorial

subseqs.in.obj(+Object,+String,-Positions)

binds Positions to a list of all occurrences of String

57

in the Object (which does not have to be a sequence object).

This predicate fails if there are no occurrences.

sum.gaps (+ListOf Gaps ,-Sum)

ListOfGaps must be a list of gap objects. Sum is bound to

the sum of the lengths of the gaps.

trans.to.polypeptide(+Beg,+End,+Dir,-AAs)

translates the DNA string in the region Beg/End in the

direction given by Dir, setting AAs to the list of

1-character amino acid codes

translated.gene(?Id,?Object)

Object is an object representing the gene with ID Id.

Furthermore, the gene has a length that is a multiple

of 3, and it begins with ATG or GTG and terminates with

TGA, TAA, or TAG.

unique(+Beg,+End)

succeeds if the region Beg/End has been sequenced, and

if the value occurs just once.

write.list (+List)

displays the list of Prolog terms

58

Distribution for ANL-92/1

Internal:

E. A. Baehr

J. M. Beumer (20)

F. Y. Fradin

R. T. Hagstrom

D. Joerg

H. Matsuda

R. A. Overbeek (50)

G. W. Pieper

R. L. Stevens

D. P. Weber

C. L. Wilkinson

D. G. Zavada

ANL Patent Department

ANL Contract File

TIS Files (3)

External:

DOE-OSTI, for distribution per UC-405 (58)

ANL Libraries

Manager, Chicago Operations Office, DOE

Mathematics and Computer Science Division Review Committee:

W. W. Bledsoe, The University of Texas, Austin

P. Concus, Lawrence Berkeley Laboratory

E. F. Infante, University of Minnesota

M. J. O'Donnell, University of Chicago

D. O'Leary, University of Maryland

R. E. O'Malley, Rensselaer Polytechnic Institute

M. H. Schultz, Yale University

J. Cavallini, Department of Energy - Energy Research

G. Dunham, National Institutes of Health

A. Ginsburg, Washington University

F. Howes, Department of Energy - Energy Research

T. Kazic, Washington University

G. Michaels, National Institutes of Health

K. Rudd, National Institutes of Health

C. Smith, University of California and LBL, Berkeley, Calif.

R. Taylor, National Institutes of Health

K. Yoshida, University of California and LBL, Berkeley, Calif.

59

