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ABSTRACT
Reprogrammable hardware systems are traditionally very
difficult to debug due to their high level of parallelism. In
our solution to this problem, features are inserted into the
user’s design which allow the system to be monitored and
updated at runtime. An assortment of logic is added be-
fore synthesis to allow variable buffering, assertion checking,
and automatic breakpointing. Low-level clock control and
access to off-chip storage is managed by a custom hardware
operating system. Through the addition of these features, a
system can be debugged directly on the hardware, bypassing
simulation and reducing iterations through the design flow.

Categories and Subject Descriptors: D.2.5 [Testing
and Debugging]; B.5 [Register-Transfer Level Implementa-
tion]; B.6.3 [Design Aids]: Simulation, Verification

General Terms: Design, Verification

Keywords: design, simulation, verification

1. INTRODUCTION
Field-programmable gate arrays (FPGAs) are integrated

circuits that allow arbitrary computing elements to be map-
ped onto a reconfigurable 2D array of combinational logic
blocks (CLBs). To implement an algorithm on an FPGA,
the input description (usually some form of hardware de-
scription language, or HDL) is synthesized into its basic log-
ical operations, mapped into equivalent CLB functions, and
finally placed and routed spatially on the FPGA fabric. The
final physical implementation, represented as a configuration
bitfile, is then loaded onto the FPGA via a configuration bus
and the device is ready to serve its purpose.

Related research has shown that FPGA-based computing
platforms, such as the Berkeley Emulation Engine (BEE)[1]
and BEE2[2], can achieve much higher levels of performance
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than processor-based platforms. This is largely due to the
efficient direct mapping of algorithms onto the array, rather
than executing a purely sequential series of instructions.
This performance gap will continue to become larger, as
FPGA capacity scales in two dimensions with Moore’s Law,
and processor performance scales only as a function of the
maximum core clock frequency.1

While FPGAs have shown a desirable benefit in perfor-
mance, they have been hindered by very difficult program-
ming and debugging methodologies. Although less compli-
cated than a full-custom chip design, the FPGA design pro-
cess still resembles a traditional hardware design flow, as
mentioned above. Typically, the system under development
is described in an HDL like VHDL or Verilog, or possibly
in a specialized higher-level language. At this point, the de-
signer can simulate the system in software to prove correct-
ness. However, simulation of a very large, parallel hardware
design is extremely slow on even the fastest workstations,
typically at least 106 times slower than the actual hardware.
This trend is also getting worse as FPGA capacity contin-
ues to scale up, causing software emulation to demand even
more memory and processing power.

One natural observation is that it would be faster to move
directly onto the hardware platform to execute, rather than
emulate, the design in progress. There are two prohibitive
bottlenecks to this approach. The first is the time required
for the place and route (PAR) stage. PAR can take any-
where from minutes to hours for a single run targeting a
modern FPGA. The process is also entirely “flat”, mean-
ing even a single design change requires PAR to rerun for
the whole chip. The second bottleneck is the complexity of
observing the hardware itself. Inspecting the running hard-
ware requires that any signals of interest are designed in
advance to be accessible on external pins, requires a sophis-
ticated piece of equipment (i.e. logic analyzer) to capture
the signals, and requires the designer to manually interpret
the values and timing of all the captured waveforms.

The focus of this work is to bring powerful, high-level de-
bugging controls directly onto the FPGA platform, allowing
rapid and early design verification and exploration without
software simulation. While significant work has been done
in the areas of logic verification and distributed debugging,

1This assumes an inherent limitation in the amount of
instruction-level parallelism that can be exploited, which is
a more advanced topic of computer architecture.
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our work differs in several ways. Static logical error diagno-
sis, such as in [3], only deals with errors compared to a func-
tional specification and does not provide any dynamic design
exploration. Advanced models, such as [5], have also been
developed to automatically trace errors in HDL/RTL level
designs. While this greatly improves the efficiency of RTL
debugging, it does not eliminate the increasing complexity
and performance limitations of software-based simulation.
Large-scale hardware designs can also exhibit similarities to
distributed computation on parallel machines, the latter of
which is reviewed in [4]. However, our target platform and
design flow feature a fully synchronous, direct-mapped hard-
ware architecture which does not suffer from the limitations
of distributed computation such as the lack of a global clock
and a common memory space.

FPGA vendors have also started to implement features to
aid in debugging, such as Xilinx ChipScope�[9]. However,
their solution requires the memory cores to be inserted at
design time, and cannot be changed without rerunning the
lengthy implementation tool flow. One alternate debugging
solution developed recently is the UNSHADES system[7],
which uses a small, auxiliary debug controller to start and
stop the system clock and read or write all register con-
tents through the configuration port. This solution has very
low overhead and is complementary to any existing design.
However, it is also dependent on specific Xilinx configura-
tion features, and requires an external control FPGA tied
to a host workstation to provide the actual debugging in-
terface. This research is more focused on a general-purpose,
integrated debugging methodology which utilizes the hard-
ware platform to debug itself, and is applicable to any FPGA
vendor or even alternative programmable architectures.

The methodology chosen here is based on inserting hard-
ware elements into the design which provide user-driven de-
bugging support. A similar use of logic insertion on FP-
GAs can be found in [8], although their focus was on the
debugging of embedded processor code rather than direct-
mapped hardware. Because logic is being injected into the
user’s design, our approach is not intended to preserve the
timing of the system. In fact, the critical timing paths in
the design will surely be lengthened as a result of both logic
insertion and generally longer wire delays caused by addi-
tional crowding on the device. Therefore, a final timing-
driven pass through the tool flow will still be necessary once
functional and algorithmic correctness is proven in order
to achieve maximum performance. Recall that since the
hardware has 106 times better performance than simulation,
there is plenty of headroom to partially degrade the speed
of the hardware and still come out well ahead.

The organization of this paper is as follows. Section 2
describes the hardware operating system, being developed
in-house, which provides several valuable runtime services.
Section 3 and its subsections describe the supported debug-
ging features and their practical implementation. Section 4
concludes the paper with the current state of this research
and plans for the future.

2. PLATFORM AND OS SUPPORT
We are developing our own hardware operating system,

the Berkeley Operating system for ReProgrammable Hard-
ware (BORPH)[6], designed to improve the efficiency of pro-
gramming and verifying large-scale reconfigurable hardware
platforms. It allows a hardware designer to deploy hard-

ware applications in a software-like runtime environment.
FPGA designs are abstracted as user processes, thereby al-
lowing flexible access to a variety of services such as net-
work interfaces and filesystems. BORPH is being designed
on BEE2[2], but its principles apply to any platform built
from an array of reprogrammable devices.

The current implementation of BORPH divides the tasks
of the OS into two categories. Tasks that are not timing
critical (network access, mass storage, etc.) are handled by
the heavyweight main kernel (mk), while timing critical sys-
tem calls and cycle-accurate process management are han-
dled by distributed, lightweight microkernels (uk) on each
FPGA device.

Each user design is physically encapsulated by a copy of
uk, making it a relocatable object. Arbitrary I/O redirec-
tion is handled by setting uk parameters at process load
time. Furthermore, uk controls the clock input of a user
process, which enables the kernel to stop and resume a pro-
cess as needed during runtime. Since all the OS services
related to debugging communicate only with the local uk

identified with the current process, all references to kernel
or OS interfaces in later sections refer to uk.

uk
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Figure 1: Architecture of a user process

General filesystem support is provided to all hardware
processes. A process communicates with the encapsulated
uk by passing packetized messages over a number of parallel
lightweight interfaces. Copies of uk (i.e. separate process
instances) residing in different parts of the system can then
communicate with mk and each other, forming a scalable
message passing network that routes data to the appropri-
ate file location. In all cases, if a file operation is not ready,
the corresponding process will be blocked automatically by
uk. File operations are exposed to the user through a syn-
chronous, zero-latency library component at design time,
abstracting away all the details of the filesystem implemen-
tation. The availability of a filesystem is a major benefit
to the user for data collection during design verification. In
addition, files are utilized by the debugging infrastructure it-
self as an expansive storage device for buffering data values
(as described starting in Sect. 3.2).

Another OS service critical to debugging is a global cycle-
accurate timer that is synchronized across the entire array
of FPGAs in the system. The user-driven interface of the
debugger (see Sect. 3.3) uses system calls to the timer to
control cycle-by-cycle execution of a process.

3. DEBUGGING INFRASTRUCTURE
Section 1 stated the huge gap in execution time between

software simulation of a hardware design and running on the
hardware itself. While this may seem fairly obvious, the rea-
son designers spend so much time emulating their design in
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a software simulator is that generating an FPGA bitstream
is a very time-intensive process (mostly due to PAR), and
accessing data on-chip requires complex test machinery and
requires that all signals of interest be exposed on external
pins at design time. Both these problems must be overcome
to make debugging directly on the hardware a reality.

The main philosophy behind the debugging infrastructure
is to exploit the vast spatial resources of the hardware plat-
form to directly monitor and manipulate the design in its
native architecture. The “ease of debugging” on a plat-
form is a very subjective metric that is difficult to quantify.
However, a valid solution to the problems described above
should meet the following criteria: the design elements
are robustly parameterized to allow exploration with-
out re-implementing the hardware; all design variables
are readily accessible for reading and writing; and fi-
nally, the user should have complete control over pro-
cess execution. The combination of mutable variables and
soft configuration of functional units allows for design ex-
ploration directly on the platform with few if any iterations
back through PAR, while variable access and deterministic
process control bring the convenience of sequential observa-
tion to the massively parallel hardware domain.

The practical implementation of this debugging frame-
work has three parts, each related to a distinct phase of the
design creation process.

• A library which includes abstractions of debugging fea-
tures and highly parameterized functional units

• A stitcher, an automated tool which inserts debugging
logic underneath the user’s design

• A runtime interface which provides control over pro-
cess execution and visual feedback of design operation

Each of these phases are covered in the following subsec-
tions. Note that our current in-house design environment is
based around Simulink, a graphical dataflow language which
is part of the Matlab suite by The Mathworks. Designs are
specified using the Xilinx System Generator blockset, and
are compiled directly into a mixture of synthesizable VHDL
and pre-optimized netlist components. However, all the con-
cepts presented here could be applied to a purely HDL-based
flow, or in even more powerful ways as additional semantics
of a higher-level language. The framework presented here is
not specific to any single type of design flow.

3.1 Library Components
The initial interaction between the designer and the de-

bugging infrastructure occurs during design entry. In order
to facilitate the later stages of the debugging process, it is
necessary for the designer to provide hints to the system
of what aspects of the design may need to be explored at
runtime. To make this process as simple as possible, it is
best to provide a set of library components which abstract
away the details of the underlying implementation. Note
that even the use of the term ‘library’ is somewhat abstract,
as some of the components described below could also be
implemented as built-in features of the design environment
or description language itself.

The first component included in the design library is a
means of tagging and identifying variables. In software de-
sign, a variable precisely represents a data type and its lo-
cation in memory, both of which can be referenced fairly

easily by a debugger. However, in hardware design, a ‘vari-
able’ can either be a stored (i.e. registered) value or an ar-
bitrary name for the intermediate results of an operation
(i.e. wires between sets of logic gates). In the latter case,
these wires can end up being lost altogether in the synthe-
sis and mapping phases of hardware generation due to logic
optimization. Therefore, it is necessary to tag signals in
the hardware design by placing a variable block on any sig-
nals that the designer would like to track at runtime. The
variable block serves three purposes: it defines a name for
the specified variable; it defines a set of parameters for the
variable which will assist the debugging tools with how to
store and route the variable’s data; and finally, it provides a
placeholder for the stitcher to insert the necessary logic for
data access and breakpointing at runtime. Each instance of
a variable does not automatically allocate a large number of
hardware resources. Rather, it will change the amount and
type of storage it consumes based on whether or not the user
is currently observing it (controlled by the runtime interface
described in Sect. 3.3) and what the expected rate of change
is (which is hinted by the designer in the parameters of the
variable block). Therefore, variables should be defined as
often as needed to make them available at runtime without
recompiling the design. Variable storage is handled by a
combination of direct buffering and offloading to the OS, as
mentioned in Sect. 3.2.

The second type of component needed in the design li-
brary is a means for defining assertions. Some typical ex-
amples of assertions in software would be to check for divi-
sion by zero, ensure pointers are valid, or ensure that loop
or array indices are in-bounds. Assertions have typically
never existed in the hardware domain – the design had to
be proven 100% correct during simulation. Similar princi-
ples to software can be applied to assertions in hardware:
check the range of arithmetic operands, check for overflow
on operations that don’t allow it, check for state machine
deadlocks or invalid states. In the context of the design li-
brary, the assertion block is a special component which has
one boolean input which, when true, will instantly halt the
design and wait for user interaction. Halting process exe-
cution is handled by trapping to the OS, as mentioned in
Sect. 3.2.

The third type of library component represents services
provided by the OS. In the software domain, one of the most
die-hard manual debugging methods is piping runtime data
into a file or directly to the console. In this debugging envi-
ronment, the hardware OS still provides the same features.
Data can be sent to a file, which could reside either in mem-
ory or on an attached disk, or to one of the special-purpose
files like an interactive console. These features allow the
user to perform manual debugging if necessary, and more
importantly, provide a high-level service for data collection
to simplify algorithm exploration and tuning.

A final characteristic that should be provided by the li-
brary is an extremely parameterized set of functional units.
By having highly configurable sets of operators and using
variables to define the control inputs to these operators, the
hardware system can be reprogrammed on the fly to emulate
a large number of different algorithms, microarchitectures,
or numerical precisions. The principle for constructing the
functional units should be to inherently provide many phys-
ical alternatives within a single library block, at the cost of
spatial hardware resources. During the functional verifica-
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tion phase, it should be sufficient to expend larger amounts
of the hardware to verify the correctness of the system in-
crementally. This is especially true for FPGA arrays, the
type of platform to which this environment is most appli-
cable, where designs are often highly modular and can be
debugged piecemeal.

3.2 Stitching
The stitcher is responsible for inserting logic to support

debugging operations and for creating interfaces to the local
OS. Rather than have to modify the sophisticated and pro-
prietary FPGA tool flow, the stitcher works by traversing
the hierarchy and augmenting the design before synthesis,
such that the standard tools are unaffected. The stitcher
also creates a database of names and internal IDs to match
debugging components and their hardware elements in the
final system. There are three different modules used by the
stitcher: variable control units, assertion control units, and
a debug controller.

Input
Output

To/From Debug Controller

bkptBuffer
logic

Memory and/or File

Figure 2: Block diagram of a variable control unit

Each variable placeholder in the original design is replaced
with one variable control unit (VCU) in the actual hardware.
A simple diagram of a VCU is shown in Fig. 2. The variable
is implemented such that the normal values during operation
are automatically copied into a circular buffer, which could
either be stored in on-chip memory or relatively fast off-chip
RAM. Currently, the initial size of the buffer is specified
manually by the designer in the variable parameters, but in
the future the VCU may automatically control the buffer
size depending on the variable class2 and current memory
utilization. The size of the buffer is also adjusted at runtime
when the user chooses a variable for close observation. In
order to allow more variable history to be stored than at-
tached memory might allow, the buffers are also streamed to
one monolithic file through the OS. This method is chosen
to minimize the kernel communication bottleneck, prevent
the need for the OS to manage a separate file for each vari-
able, and to optimize the bandwidth used for sending data
to remote devices.

If the user chooses to override or rewind a variable’s value
(as described in Sect. 3.3), the variable data is read from the
local buffer or a file instead of using the computed results.
This allows an arbitrary system state to be restored, such
as when investigating a failure condition. The VCU also

2For example, a stream class is expected to be changing
on every cycle as inputs are continually processed, while a
param class would change very rarely based on the mode of
operation.

contains a programmable comparator which can be used at
runtime to support data-dependent breakpoints. When in-
structed by the user, the debug controller will enable the
comparison and set its threshold, and the process will be
halted (in a manner similar to an assertion failure, described
below) when the comparison becomes true. The other con-
trol points of the VCU are also driven by the debug con-
troller, and respond directly to user input at runtime.

It should be mentioned here that state machines in the
design are treated as a special case. State machines are
a critical source of information in most hardware designs.
They often define the control flow and mode of operation
of the system, and can potentially be common sources of
design errors. The path through a state machine alone can
indicate the overall behavior of the system before a failure
occurred. For these reasons, all state machines are automat-
ically assigned variables for the purpose of debugging, where
the current state is the value of the variable.

Similar to variables, each instance of an assertion block in
the original design will be replaced by an assertion control
unit (ACU) in the hardware. In the current architecture,
with the assertion condition defined externally by the de-
signer, the ACU simply waits for a logical high value on its
input. Once this happens, the debug controller will signal
a trap on the kernel bus, which will immediately stop the
main design clock. With the system halted, control is ef-
fectively passed to the user via the remote interface, and
the debug controller remains in a lock-step state until the
user returns the system to normal operation. In order to
preserve the current state of the system at the time of the
failure, it is necessary to trigger the kernel trap in the same
cycle as the assertion. Clearly this can have a significant
impact on the operating frequency of the design. However,
as mentioned in Sect. 1, this environment is focused mainly
on replacing simulation in the early design phases. As such,
it is acceptable to take a penalty in clock frequency and still
be far ahead of the 106 performance gap versus simulation.
The only data sent to the ACU is an enable signal, which
is assigned by the debug controller to indicate whether or
not the user has chosen to ignore the given assertion. In
the future, situations for which automatic assertions should
be inserted (such as for common design bugs), as well as al-
ternate methods for tolerating latency in the assertion trap
(such as compensating for the delay by adjusting the vari-
able buffers), will be investigated.

Finally, the single debug controller (DC) is a manager for
the system under test, and serves as an arbiter between the
OS, the VCUs and ACUs, and the remote user interface.
It is the DC that regulates the design clock through the
use of OS timers. In the nominal state, the design clock
keeps running until the DC initiates a trap, such as for an
assertion failure. At this point, the DC can single-step the
design or run bursts of cycles as instructed by the user. The
DC also handles user access to variables. Upon request, the
DC can switch a variable between the running and recall
modes, or override the variable buffers altogether to restore
a user-defined state. While the DC is a simple state machine
arbiter and should not consume a large number of resources,
it will scale weakly in size with the number of VCUs and
ACUs.
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Figure 3: Conceptual diagram of debug controller
functions, with kernel-managed services at the top
and the user design at the bottom

3.3 Runtime Interface
On the client (user) side, the runtime interface to the sys-

tem appears as a general-purpose shell with a variety of
commands to load, stop, and monitor a process. In the cur-
rent incarnation of this environment, the user interface is
implemented entirely in Matlab to provide a very high level
of integration with the original design model. The server
(hardware) side of the interface is implemented within the
DC logic and operates through a network interface managed
by the OS. The DC parses commands coming from the net-
work and translates them into OS system calls and control
signals sent to the VCUs/ACUs.

The first thing a user must do is load the process onto the
hardware. The user’s design is actually a form of soft core
wrapped inside a kernel interface, as described in Sect. 2.
Standard input and output is determined by the loading ar-
guments, allowing a process to communicate through the
console, attached physical interfaces on the platform, or vir-
tually through existing files or pipes. How an FPGA is pro-
grammed and how process data is actually routed around
the platform is a fairly complicated task performed by the
OS, and beyond the scope of this paper. At load time, the
user also has the option to start the process with a normally
running clock, or in a halted state to manually control the
clock from the beginning. Once the process is running nor-
mally, the user is free to monitor file contents and observe
any output on the console.

One of five events can cause the system to stop running
and prompt the user: an expiring timer, an assertion fail-
ure, a breakpoint trigger, manual user interruption, or any
general exception that could be detected by the OS (i.e.
resource exhaustion, critical temperature, hardware failure,
etc.). Once the process is halted, the user has a set of com-
mands to investigate the system, update variable contents,
and proceed with execution. Some of these commands are
listed in Table 1.

4. CONCLUSION
By integrating all the features described above, it is pos-

Table 1: Some examples of runtime shell commands
load Load a process onto a free FPGA
halt Stop a specified process as soon as possible
runfor Run the process for one or more clock cycles
cont Run the process until the next exception
break View, enable, or change a breakpoint
view View a variable’s value or history
set Override a variable’s value or source

rewind Rewind the system state by n clock cycles

sible to exploit the vast resources of the hardware platform
to assist in both functional verification of the design and
algorithmic tuning. Design exploration performed on the
hardware runs several orders of magnitude faster than any
software simulation, and can also be exploited to avoid iter-
ations through PAR.

Currently, many OS services and individual components
have been implemented. Successive work will focus on com-
pleting the remaining services and coding the stitcher and
runtime interface. Future plans include an analysis of sys-
tem effectiveness under resource constraints and studies on
automatic determination of variable storage and automatic
detection of common hardware design bugs.
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