
Wayne State University

DigitalCommons@WayneState

Wayne State University Dissertations

1-1-2012

An integrated framework for freight
forwarders:exploitation of dynamic information for
multimodal transportation
Farshid Azadian
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Azadian, Farshid, "An integrated framework for freight forwarders:exploitation of dynamic information for multimodal transportation"
(2012). Wayne State University Dissertations. Paper 496.

http://digitalcommons.wayne.edu?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F496&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F496&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F496&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/496?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F496&utm_medium=PDF&utm_campaign=PDFCoverPages


AN INTEGRATED FRAMEWORK FOR FREIGHT FORWARDERS: 

EXPLOITATION OF DYNAMIC INFORMATION FOR 

MULTIMODAL TRANSPORTATION 

 

by 

FARSHID AZADIAN 

DISSERTATION 

Submitted to the Graduate School 

of Wayne State University, 

Detroit, Michigan 

in partial fulfillment of the requirements 

for the degree of 

DOCTOR OF PHILOSOPHY 

2012 

MAJOR: INDUSTRIAL ENGINEERING 

Approved by: 

 

 

 

 

 

 

 

 Advisor Date

  

  

  



 

 

 

 

 

 

 

 

 COPYRIGHT BY 

FARSHID AZADIAN 

2012 

All Rights Reserved 



 

 

ii 

 

DEDICATION 

 

 

 

 

 

 

 

 

 

 

 

To the memory of my grandfather, 

Houssein Dehmand, who taught me 

 the value of knowledge at an early age  

and to my parents Morteza and Rabeeh  



 

 

iii 

 

ACKNOWLEDGEMENTS 

I would like to take this opportunity to express my appreciation to the many people who 

have contributed their time and energy to the furtherance of this research. This dissertation 

would not have been possible without the kind help and support of my professors, colleagues, 

friends, and family.  

First and foremost, I would like to express my utmost gratitude to my mentors and 

advisors Dr. Alper Murat and Dr. Ratna Babu Chinnam for their unselfish and unfailing support 

and inspiration during this research and throughout my graduate education; I am forever 

grateful to both of them. I would also like to thank my dissertation committee members Dr. 

Leslie Monplaisir, Dr. Darin Ellis, and Dr. John Taylor for their time & effort, helpful suggestions, 

and constructive criticism. 

I would like to especially thank Dr. Monplaisir, ISE department chair, and Dr. Kenneth 

Chelst, former ISE department chair, for their support and encouragement during my PhD 

program. 

I am grateful to the University Transportation Center at University of Toledo for 

sponsoring this research. This work was supported by funds from the US Department of 

Transportation through the University of Toledo University Transportation Center. 

  



 

 

iv 

 

TABLE OF CONTENTS 

Dedication   ii

Acknowledgments   iii

List of Tables   vii

List of Figures   ix

Chapter One: Introduction   1

1.1.Motivations   1

1.2.Research Objectives   5

1.3.Research Scope   6

1.4.Novelty and Contribution of the Research   8

1.5.Organization of the Dissertation   9

Chapter Two: Dynamic Routing of Time-Sensitive Air-Cargo  11

2.1. Introduction   11

2.2. Literature Review   16

2.3. Dynamic Air Cargo Routing   20

2.3.1. Modeling Departure Delay   25

2.3.2. Dynamic Programming Model for Air-Cargo Routing  29

2.4. Experimental Study   35

2.5. Case Studies   41



 

 

v 

 

2.5.1. Estimation of Flight Departure Delay and Travel Time  42

2.6. Conclusions and Future Research   51

 

Chapter Three: Air-Cargo Pickup and Delivery Problem with Alternative 

Access Airports 

 

53

3.1. Introduction   53

3.2. Related Literature   56

3.3. Model Formulation   59

3.3.1. Time Dependent Delivery Cost   60

3.3.2. Graph Transformation   63

3.3.3. Formulation   67

3.3.4. Network Preprocessing and Valid Inequalities   69

3.4. Methodology   70

3.4.1. Standard Lagrangian Decomposition Approach   70

3.4.2. Successive Subproblem Solving Method   72

3.5. Computational Experiments   85

3.5.1. Evaluation of the Solution Algorithm   85

3.5.2. Case Study   90

3.6. Conclusion   98

Conclusion   100



 

 

vi 

 

References   104

Abstract   114

Autobiographical Statement   116

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

vii 

 

LIST OF TABLES 

Table 2.1. LGA to SEA time-sensitive air cargo routing case study 

  

46

Table 2.2. LGA to DFW time-sensitive air cargo routing case study 

  

49

Table 3.1. Description of column headings in Table 3.2.  

 

87

Table 3.2. Comparative performance of CPLEX and SSS.  

 

88

Table 3.3. Case study flight itinerary options from LAX and LGB airports. 

 

93

 

Table 3.4. Case study results for three depot location scenarios (DLGB,

                    DMID, DLAX) and three airport access policies (AAAP, LGB,

                    LAX) 

 

96

 

 

  



 

 

viii 

 

LIST OF FIGURES 

Figure 2.1. Time sequence of the air-cargo arriving to airport n at time

                    t, departing at ߠ௜ ൅ ௜ and arriving to the airport n’ at timeߜ

                    t’=ߠ௜ ൅ ௜ߜ ൅ ߬௜. 
 

1

Figure 2.2. Network structure and parameters for five problem

                       configurations (N0 to N4). 

 

37

Figure 2.3. Flight path distributions of static and dynamic policies for

                     different levels of announced delay accuracy (N0, N3),

                     travel time variation (N1, N2), and different delay

                     distributions (N4). 

 

40

Figure 2.4. Improvement (ߩ) of dynamic policy over static policy for

                     N0, N1, N2 , N3 (a) and N4 (b) 

 

40

Figure 2.5. Conditional expected tardiness for different due date

                       levels: (a)N0 , (b)N3,and  (c)N4 . 

 

41

Figure 2.6. Departure hour clustering for LGA to ORD (a); departure

                     delay frequency of LGA-ORD flights in June 2009 for all

                     departure times (b); frequency plots for two clusters (c,d). 

 

44

Figure 2.7. Marginal distribution of departure delay and travel time

                     for LGA-ORD flights for cluster 2. 

 

45

Figure 2.8. Travel time distributions for different announcement

                       accuracy levels (LGA-SEA case study). 

 

48

Figure 2.9. LGA to SEA case study, flight path frequency (a) and

                       improvement (b) 

 

48

Figure 2.10. Flight path distribution (a) and improvement of dynamic

                       policy over static policy (b). 

 

50

Figure 2.11. Conditional Tardiness: percentage of tardy deliveries

                         (left) and average total tardiness (right)  

 

51



 

 

ix 

 

Figure 3.1. Illustrative airport ݄  delivery cost function for customers

                     ݅, ݆ א customer ݅ has two flight itinerary options (left) ;ܥ

                     and customer ݆ has a single flight itinerary option (right). 

 

62

Figure 3.2. Illustration of a sample feasible solution in the original (a)

                     and transformed (b) graphs. 

 

66

Figure 3.3. Effect of number of customers, (a) number of airports and

                    (b) number of vehicles on the performance of SSS-B-VTVM 

 

90

Figure 3.4. Southern California MAR used in the case study 
 

92

Figure 3.5. Routes for problem instance #10 with DMID depot 
 

97

Figure 3.6. Routes for problem instance #1 with DLGB depot 
 

98

Figure 3.7. Routes for problem instance #6 with DLAX depot 
 

98

 

 



1 

 

 

Chapter One 

Introduction 

1.1   Motivations 

In recent decades, access to cheap labor and raw materials, better financing 

opportunities, larger product markets, arbitrage opportunities, and additional inducements 

offered by host governments to attract foreign capital encouraged companies to extend their 

supply chains over the globe (Manuj and Mentzer 2008). However, the success of these longer 

supply chains highly relies on the performance of the firms’ logistics (Green, Whitten, and 

Inman 2008). While logistics includes a wide range of activities, one of its fundamental 

elements is transportation (Bookbinder and Matuk 2009). 

The nature of supply chains requires efficient short and long-haul shipping of raw 

materials, components, and products between manufacturers, retailers and customers. In 

recent years, many companies have adopted new manufacturing and inventory management 

strategies (e.g., make-to-order and just-in-time) that aim to reduce costs while improving 

responsiveness to market demands. However, these approaches demand for fast, and more 

importantly reliable, transportation. However, since transportation infrastructure has not kept 

pace with business growth, excess demand over the transportation network capacity has led to 
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growing congestion and uncertainty in transportation lead-times. According to a 2011 Urban 

Mobility Report, the US experienced a steady increase in travel time index1 since 1982 from 

1.09 to a national average of 1.2 in 2011 (Schrank  and Lomax 2011). They also reportthe cost of 

congestion to be about $101 billion for delay and fuel waste in 2010 alone. Average line-haul 

speed on rail freight is about 22 mph (US DoT 2007). Congestion is also an issue in other modes 

of transportation (US DoT 2007, 2009). A survey conducted by Golob and Regan (2000) shows 

that 82% of the interviewed companies recognize congestion as a problem (somewhat to 

critically serious) for their business and over 27% of them often or very often miss their 

schedules due to congestion. The aforementioned problem can be recognized as a major factor 

in shift of shippers’ demand toward more expensive modes of transportation that provide 

faster and more reliable services (US DoT 2006).  

Using more expensive modes of transportation translates to increased shipping service 

level expectation that demands for more sophisticated decision making that in turn requires 

better system-wide information. The advent of the Intelligent Transportations Systems (ITS) 

provides opportunity for improvement in transportation performance and quality. The core of 

ITS consists of obtaining, processing, and distributing information for better use of the 

transportation system, infrastructure and services (Crainic, Gendreau, and Potvin 2009). This 

includes Geographical Positioning System (GPS), Automatic Vehicle Location System (AVL), Fleet 

                                                       

 

1
 The Travel Time Index (TTI) is the ratio of peak period travel time to free flow travel time. The TTI 

expresses the average amount of extra time it takes to travel in the peak relative to free-flow travel. A TTI 
of 1.3, for example, indicates a 20-minute free-flow trip will take 26 minutes during the peak travel time 
periods, a 6-minute (30 percent) travel time penalty. 
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Telematics System (FTS), Wireless Communication, Electronic Data Interchange (EDI), along 

with internet and other real-time data sharing systems that inform the decision maker about 

the location of the vehicles and freight and provide better understanding of the network status, 

especially, under congestion. 

The importance of logistics and its complexities are motivating companies to outsource 

their logistic operations in different levels to third parties known as “freight forwarders” to 

reduce cost and increase efficiency (Razzaque and Sheng 1998). Freight forwards generally act 

as an intermediary between shippers and carriers and are responsible for transporting goods in 

supply chains. Indeed, freight forwarding industry, as part of the broader supply chain 

management industry, is undergoing a profound transition with the rise of multinational freight 

forwarders based in Europe, the United States, and Japan that perform integrated logistics 

services in addition to simple freight forwarding with a range of value-added services (Bowen 

and Leinbach 2004). However, despite the major integrators (e.g. FedEx, UPS, DHL, BAX Global 

and alike), majority of the freight forwarders are small- to mid-size companies. Due to high 

capital investment, schedules and capacities are usually fixed by carriers far in advance and 

therefore freight forwarders decide on freight routing and book the capacity based on their 

forecasted demand (Chew et al. 2006). 

A freight forwarder generates its profit from the difference between the price that a 

customer is obliged to pay for the execution of the requested service and the costs of the 

fulfillment of the request. Moreover, the nature of the freight forwarding industry, especially 

for small forwarders, is based on personal relations and long-term trust-building that requires 
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meeting service level expectations and consistence in the quality of service (Agnes 2000). 

Accordingly, forwarders are challenged to conduct their business with the minimum possible 

cost while satisfying the shippers’ expectation in a competitive market. Achieving this goal 

requires a sophisticated decision making process that integrates all the related information to 

produce high quality decisions for freight routing to satisfy the demand in a reasonable time 

window with minimum cost to generate profit. The goal of this research is to address this need 

in freight forwarding industry. We, however, limit the scope of the research to consider only 

multimodal air-cargo transportation as the fastest growing mode of transportation in the U.S. 

The freight forwarders constitute more than 90% of air-cargo shipments (Hellermann, 2006) 

and play a critical role in the air mode of transportation. 

Air is arguably the most competitive mode of transportation in providing the fastest and 

most reliable transportation service that is required in today’s global supply chains. Over the 

past decade, there has been a consistent growth in demand for air-cargo deliveries. According 

to the Bureau of Transportation Statistics (BTS), in 2007, the value of air-cargo shipment goods 

in the US was over $1.8 trillion, a 31% increase in just five years from a survey in 2002 

(Margreta et al., 2009). Futher, despite the financial crises, annual forecast reports by both 

Airbus (2010) and Boeing (2010) predict a 5.9% annual growth rate for global air-cargo tonnage 

over the next 20 years.  

In response to the demand growth, the air transportation network has been steadily 

expanding its capacity over the past two decades through establishing new airports, offering 

more flights options, and investing in road connectivity. One consequence of these 
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developments is the expansion of service zones of airports and the overlaping of their market 

catchment regions. This has resulted in the creation of Multi-Airport Regions (MARs) where 

several airports accessible in a region substitute and supplement each other in meeting the 

region's demand for air transportation (Loo, 2008). These MARs provide alternative access 

options for passengers as well as air-cargo shippers and forwarders. Accessibility of multiple 

airports and expansion of transportation options introduce new opportunities and challenges 

for forwarders that in turn reemphasizes the importance of effective operational decision 

making for competitiveness. 

On the other hand, along with the increasing trend of demand for air transportation, the 

time variavility measure of the air mode has steadily declined. For example, in July 2007, 28% of 

the flights in the U.S. domestic market arrived late, up from 19% in July 2003 (BTS, 2010). The 

impact of these delays is as severe for the time-sensitive air-cargo shipments (common in JIT 

logistics) as it is for passengers. In fact, when the International Air Transport Association (IATA) 

asked major shippers for their main issues in February 2008, efficiency (reducing costs) and 

reliability were identified as the top two issues.1  

1.2   Research Objectives 

In this dissertation, the objective is to provide an operational decision support system 

for air freight-forwarders for time-sensitive cargo transportation. The goal is to enable them to 

                                                       

 

1
 Bisignani, G., Plenary speech, IATA World Air Cargo Symposium, 2008. 
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better and predict the network variability based on historical and real-time information and 

respond through effective operational planning and scheduling of cargo transportation. The 

performance measures for the forwarders in this research are the operational costs and service 

level cost that is measured by the delivery tardiness penalties. 

Accordingly, the objectives of this research are, 

• Develop a methodology to analyze the historical flight performance, airport 

congestion state, and announced real-time information to estimate the air-

network state at a given time in near future and how it is affecting the air-cargo 

shipment  

• Develop stochastic dynamic as well as deterministic routing models to assist 

forwarders in the operational planning of air-cargo transportation on a 

stochastic time-dependent air-road network and enable them to plan for the 

variability in the stochastic and time-dependent air network. 

• Design algorithms for solving the models developed. Specifically, these 

algorithms identify optimal (near optimal) solutions for the scheduling and 

routing of air-cargo on the stochastic and time dependent air and road networks.  

1.3   Research Scope 

In this study, we focus on middle-size freight forwarders that handle freight shipping for 

different shippers. The freight forwarder is responsible for collecting, sorting, consolidating and 

delivering time-sensitive goods from different origins to different destinations. The forwarder in 

this research does not provide extra services usually offered by major integrators such as 
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warehousing or vendor-managed inventory system. The objective of the forwarder is to deliver 

the freight before the deadline agreed with shipper while minimizing the operational cost; 

deviation from the delivery deadline is penalized. 

Customer orders are received in advance (before the beginning of each day) and 

forwarder is responsible to collect and transport the air-cargo shipment orders. Orders are 

available at customer sites for pickup and they have individual destination delivery airports. The 

customer orders are time-sensitive with specific delivery deadline at destination airport. We 

assume that, due to the nature of the orders, there are no economies of scale, e.g., no air-cargo 

consolidation benefits. 

For the long-haul transportation, forwarder relies on contracted air-carriers and is thus 

obligated to their schedules and capacity limitations. It is assumed that, if needed, further 

capacity is available to forwarder but with a price that is based on the contract between the 

forwarder and carrier.  In this setting, the air network is stochastic, carriers’ on-time 

performance is not guaranteed, and network disruption is possible. In other words, flights may 

depart later than the announced schedule or may even get canceled. Moreover, travel time for 

any flight arc can be different from the expected time. Accordingly, the forwarder needs to 

prepare to deal with the connectivity problem in intermediate ports and consider these factors 

in estimating the delivery time and transportation cost. It is assumed that forwarder can 

implement a dynamic routing policy by altering the freight path on the air network en route; 

however, there are capacity availability restrictions with this option and re-routing might 

introduce additional costs. The aforementioned dynamic routing is based on the realization of 
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the network status (e.g. level of congestion, incidents, and network disruptions). Therefore, in 

this research we study the value of the information based on the time of realization and fidelity 

of data.  

On the road network, it is assumed that the network is deterministic. Consequently, the 

connectivity of the network and arc travel times are fixed and known in advance. The freight 

forwarder is assumed to operate a fleet of identical vehicles to perform the transportation on 

the road. A fixed cost is imposed for each vehicle’s allocation to the pickup and delivery task 

and variable cost is based on arc travel by each vehicle, e.g. total traveled miles.   

1.4   Novelty and Contribution of the Research 

This research contributes to the existing literature of air-cargo transportation and 

operations research. A comprehensive literature review and detailed contributions are 

presented in each chapter individually. In this section, however, we provide a brief review of 

the highlights of the research and its contributions. 

 In the realm of air-cargo transportation, this research is the first work that introduces 

dynamic cargo routing based on real-time information availability. Considering the stochasticity 

of air-network, we provide a novel approach to analyze the publicly available historical data to 

perform a static routing to reduce the expected operational and service cost. We further 

enhance this approach to incorporate the real-time information, while accounting for its 

fidelity, to dynamically re route the cargo en route. Through a set of experimental studies and 

real world based case studies, we demonstrate the performance of this approach in terms of 

reducing total cost including service level costs. 
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In addition, this is the first study that provides operational algorithm to implement the 

concept of alternative access airport policy. This algorithm enables forwarders to increase their 

competitiveness and reduce their cost by providing a decision support system to expand their 

options in a multiple airport region.  

In terms of contribution to the vehicle routing literature, we introduce a new class of 

pickup and delivery problem that generalize a many-to-many pickup and delivery problems by 

considering time dependence and pickup-delivery pairing dependence of the delivery costs. In 

terms of methodological contribution, we introduce the approach of successive subproblem 

solving to address the common issues of homogeneous subproblems which result from 

(Lagrangian) problem decomposition of many vehicle routing problems with identical vehicles. 

This approach is demonstrated to be very competitive in solving large scale problem instances 

in reasonable time and with optimality (or near optimality) compared with alternative methods. 

1.5   Organization of the Dissertation 

In addressing the freight forwarders problem, this dissertation is organized as follows. In 

Chapter 2, we study the dynamic routing of air-cargo on the air network. In Chapter 3, we 

consider the short-haul transportation of air-cargo by studying its routing on the road network. 

The dissertation summary and conclusion are presented in the last chapter. 

In Chapter 2, we address the problem of dynamic routing of time-sensitive air-cargo 

using real-time information on stochastic air-network. We present a procedure to estimate the 

network parameters including flight departure delays and travel times from historical data 

based on a origin and destination airport for a given operation day. A static routing policy is 
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developed through stochastic dynamic programming to minimize the expected operational and 

delivery tardiness costs. Next, we provide an approach to analyze the real-time information 

(accounting for their fidelity) to estimate the network parameters and respond by dynamic re 

routing of the cargo if necessary to minimize the objectives. The performance of the algorithm 

is evaluated through a set of real-world based case studies. 

In Chapter 3, the problem of air-cargo pickup and delivery problem with alternative 

access airports is studied. We introduce a mixed integer mathematical program for customer 

order pickup scheduling, fleet routing and allocations, and assignment of customer orders to 

flights available a multiple regional airports. We decompose the problem based on identical 

vehicles using Lagrangian decomposition and then develop a successive subproblem solving 

approach to solve the problem. The performance of this innovative approach is tested through 

a set of experimental problems and a case study based on the Southern California region. 
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Chapter Two 

Dynamic Routing of Time-Sensitive Air-Cargo 

Using Real-Time Information 

2.1   Introduction 

Over the past decade, the unprecedented growth in the global trade has further 

increased the importance of just-in-time (JIT) logistics and contributed to the growth of the air-

cargo industry. According to a recent study for The International Air Cargo Association, the 

global air-cargo industry carried 100 billion ton-miles with a direct revenue exceeding $50 

billion in 2005 (Kasarda et al., 2006). The biennial World Air Cargo Forecast by Boeing forecasts 

that the world air-cargo traffic will grow at a rate of 5.8% per year over the next 20 years 

(Boeing, 2008). This growth is accompanied by steady increase in flight delays. For example, in 

July 2007, 28% of the flights in the U.S. domestic market arrived late, up from 19% in July 2003 

(Bureau of Transportation Statistics, 2010). The impact of these delays is as severe for the time-

sensitive air-cargo shipments (common in JIT logistics) as it is for passengers. In fact, when the 

International Air Transport Association (IATA) asked major shippers for their main issues in 

February 2008, efficiency (reducing costs) and reliability were identified as the top two issues.1 

Facing these challenging trends, freight forwarders and shippers must plan and manage their 

                                                       

 

1
 Bisignani, G., Plenary speech, IATA World Air Cargo Symposium, 2008. 
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routes more effectively to improve the delivery performance of air-cargo. Internet companies, 

such as “Flightstats.com”, “Flightview.com”, “Pathfinder-web.com” and “Flightexplorer.com”, 

provide historical and real-time flight on-time performance data to improve in-advance 

planning and real-time management of routes. Further, “Pathfinder-web.com” also provides 

static routes based on such factors as weather/airport status and on-time statistics. The 

dynamic route planning for a time-sensitive air-cargo by leveraging the available historical and 

real-time air-network congestion information is the subject of this study.  

A freight forwarder (forwarder in short), upon receiving a time-sensitive shipment, has 

three options: shipping via (1) an integrator’s (e.g., FedEx, UPS, DHL) express or next-flight-out 

service, (2) a mixed belly (e.g., United Airlines, Delta Airlines, American Airlines) or combination 

carrier (e.g., Lufthansa Cargo AG, Korean Air), and (3) chartered/dedicated freighter. Clearly, 

the forwarder’s decision depends on the reward/penalty structure of the agreement with the 

shipper as well as on the attributes of the shipment such as size (weight and volume), value 

density, commodity type (e.g., hazmat), origin and destination, contracted capacity with 

carriers and so on. In this study we are considering shipments for which chartering dedicated 

freighter is not economically feasible. Accordingly, the forwarder in this study considers only 

integrators’ express and next-flight-out service (cost effective for shipments less than 70-150 

lbs) and the mixed belly or combination carrier option which provides broader network 
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coverage with more frequent flight connectivity and significantly lower costs.2 Furthermore, a 

shipment route involving multiple carriers, and possibly the integrator, provides the greatest 

schedule and route flexibility leading to the shortest delivery lead-time. This study is motivated 

by practical applications affecting different industries. Since the beginning of 2000, automotive 

OEMs (e.g., GM and Ford) have been shifting their sourcing from domestic facilities to Canada, 

Mexico and overseas (Klier and Rubenstein, 2008). This has not only increased the supply chain 

transportation lead-times but also increased the supply chain sourcing risks. Supply disruptions 

caused by various reasons, such as quality defects and incorrect shipments (quantity, part mix), 

can halt the assembly processes in multiple facilities. The disruption of an assembly line is 

estimated to cost $60-100K/hour in a medium-sized finished vehicle assembly plant.3 In 

response, the OEMs often resort to expedited shipment by either chartering a freighter or a 

cargo helicopter for time-definite delivery, which can cost $100Ks depending on the origin-

destination and freighter availability. These incidents are routine and OEMs have chartered 

aircrafts to ship products such as wheels, power trains and transmissions. 

The logistic disruptions also arise when a time insensitive and surface divertible cargo 

becomes a time-sensitive cargo requiring air shipment. Freight forwarders regularly draw 

shipments from intermodal facilities (e.g. ports, airports, rail terminals) and forward it to the 

consignees (with or without break bulk). However, due to the late arrival of the vessel or the 

                                                       

 

2 For instance, the shipping rate for an LD2 container with dimensions (61.5×60.4×64) inches and weight 1,228 lbs 

from Cleveland to Seattle on 22 March 2010 with UPS is $4,9K-$8,5K depending on service type and is $933 for 

Delta Cargo (Source: www.ups.com, http://www.delta.com/business_programs_services/delta_cargo/). 
3 Based on interviews with the managers at Ford MP&L and GM Supply Chain department. 
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congestion at the intermodal facility, there occur excessive delays such that the cargo becomes 

no longer suitable for surface diversion (e.g. trucking) and needs to be air shipped. For instance, 

the Target Logistics, a freight forwarding company in California, US, often experiences delays 

due to the congestion at the port of Long Beach, California.  A container shipment arriving from 

East Asia may require some of its contents to be air shipped next-flight-out if the delay is 

excessive. When such an incident occurs, the Target Logistics explores options for the best 

outbound flight from the regional airports (Los Angeles, Ontario, Oakland, San Diego) by trading 

off the delivery lead-time with the cost. In addition to considering the flight availability, cost, 

and size restrictions, the Target Logistics also accounts for the road traffic congestion to the 

airport and its other shipments and classes for that day. Another practical application is the air-

cargo shipments during peak seasons (e.g. Christmas Day) where the demand for both the 

passenger and the cargo transportation exceeds the supply. C.H. Robinson, a leading third party 

logistics (3PL) company, provides air-cargo freight forwarding services to manufacturing 

companies, such as 1st and 2nd Tier automotive suppliers in Michigan, through the Detroit 

Metropolitan Airport (DTW). Whereas the air-cargo demand is stable and the contracted carrier 

capacity is sufficient during regular months, C.H. Robinson cannot meet the requested service 

levels in high demand seasons. For example, during December months, C.H. Robinson 

determines the flight routes, which are less likely to be congested, and books same-day flights 

with mixed carriers for its time-sensitive shipments.  

The main goal of this study is to investigate the benefits of dynamic (online) routing of a 

time-sensitive air-cargo on the air network from an origin airport to a destination airport while 
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accounting for the real-time and historical information (e.g., delays, cancellations, capacity 

availability) to optimize a given shipment criteria (e.g., cost, delivery lead-time). We study the 

problem from a freight forwarder’s perspective for two reasons. First, more than 90% of air-

cargo shipments are handled through freight forwarders (Doganis, 2002). In comparison, 

shippers sending freight directly with carriers/integrators account for only a small fraction 

(approximately 5-10%) of total airfreight volume (Althen et al., 2001).  Second, due to the 

industry practice of capacity contracts, the freight forwarders have access to cargo capacity 

from multiple carriers at favorable terms and rates (Hellermann, 2006). We also note that, in 

most instances, a static route may be the best option since it is not only the least cost option 

but can also provide short delivery lead-times. However, for highly time-sensitive shipments 

and in the absence of routes with short lead-times (or the routes are subject to delays), 

dynamic routing can provide short delivery lead-times with affordable costs. The approach 

presented in this study allows freight forwarders to effectively make these trade-off decisions. 

The proposed approach is a Markov decision process (MDP) model for dynamic routing that 

differs from other MDP formulations in the literature. Our contribution is three fold. First, we 

propose a novel departure delay estimation model based on the real-time delay announcement 

and historical data. Secondly, we provide a dynamic routing model on the air network that 

differs from those on traditional road networks such that it considers scheduled departures and 

effect of stochastic travel times and departure delays. The dynamic routing model incorporates 

the proposed departure delay estimation model. Finally, through experimental studies and real-

world case studies, we show that the proposed dynamic routing model can provide significant 
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savings for freight forwarders. These savings depend on the severity of delays, variability of 

travel times, availability and accuracy of real-time delay announcements as well as availability 

of flight alternatives. Lastly, we note the distinction between this paper’s problem, freight 

forwarders’ dynamic routing of air-cargo through available flights to improve the overall 

delivery performance of a single shipment, and the broader and more strategic problem of 

carriers or integrators planning of their fleet routes and schedules. The later problem concerns 

an asset owner’s (carrier, integrator) operations planning to improve operating performance as 

well as utilization of aircraft fleet and other assets (Yan et al. 2006, Tang et al. 2008). 

The rest of the paper is organized as follows. Survey of relevant literature is given in 

Section 2. Modeling the dynamic routing of air-cargo and delay estimation is presented in 

Section 3. Section 4 presents the results of an experimental study conducted to investigate the 

benefits of dynamic routing and accurate real-time flight status information. Two case study 

applications of the proposed approach are discussed in Section 5. Finally, Section 6 offers 

concluding remarks and proposes avenues for future research. 

2.2   Literature Review 

The problem investigated in this study relates to multiple research streams. The 

proposed dynamic routing formulation and solution approach is closest to the stochastic time-

dependent shortest path problems (STD-SP) and hence we restrict our review to those studies 

with stochastic and time-dependent arc travel costs. In terms of application, this study also 

relates to the literature on the estimation of flight departure/arrival delays and 

cancellations/diversions which is briefly reviewed in the end. 
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The shortest-path problems are referred as STD-SP when arc costs follow a known 

probability distribution which is also time-dependent. Hall (1986) studied the STD-SP problems 

and showed that the optimal solution has to be an ‘adaptive decision policy’ (ADP) rather than 

a static route. In an ADP, the node to visit next depends on both the node and the time of 

arrival at that node, and therefore the classical SP algorithms cannot be used. Hall (1986) 

employed the dynamic programming (DP) approach to derive the optimal policy. Bertsekas and 

Tsitsiklis (1991) proved the existence of optimal policies for STD-SP. Later, Fu and Rilett (1998) 

modified the method of Hall (1986) for problems where arc costs are continuous random 

variables. They showed the computational intractability of the problem based on the mean-

variance relationship between the travel time of a given path and the dynamic and stochastic 

travel times of the individual arcs. They also proposed a heuristic in recognition of this 

intractability. Bander and White (2002) modeled a heuristic search algorithm AO* for  the 

problem and demonstrated significant computational advantages over DP, when there exists 

known strong lower bounds on the total expected travel cost between any node and the 

destination node. Fu (2001) estimated immediate arc travel times and proposed a label-

correcting algorithm as a treatment to the recursive relations in DP. Waller and Ziliaskopoulos 

(2002) suggested polynomial algorithms to find optimal policies for stochastic shortest path 

problems with one-step arc and limited temporal dependencies. Gao and Chabini (2006) 

designed an ADP algorithm and proposed efficient approximations to time and arc dependent 

stochastic networks. An alternative routing solution to the ADP is a single path satisfying an 

optimality criterion. For identifying paths with the least expected travel (LET) time, Miller-Hooks 
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and Mahmassani (1998) proposed a modified label-correcting algorithm. Miller-Hooks and 

Mahmassani (2000) extended this algorithm by proposing algorithms that find the expected 

lower bound of LET paths and exact solutions by using hyperpaths. 

All of the above studies on STD-SP assume deterministic time dependence of arc costs, 

with the exception of Waller and Ziliaskopoulos (2002) and Gao and Chabini (2006). However, 

the change in the cost of traversing an arc over-time can be stochastic as in the flight departure 

delays. Psaraftis and Tsitsiklis (1993) is the first study to consider stochastic temporal 

dependence of arc costs and to suggest using real-time information en route. They considered 

an acyclic network where the cost of outgoing arcs of a node is a function of the environment 

state of that node and the state changes according to a Markovian process. They assumed that 

the arc’s state is learned only when the vehicle arrives at the source node and that the state of 

nodes are independent. They proposed a DP procedure to solve the problem. Azaron and 

Kianfar (2003) extended Psaraftis and Tsitsiklis (1993) by evolving the states of current node as 

well as its forward nodes with independent continuous-time semi-Markov processes for ship 

routing problem in a stochastic but time invariant network. Kim et al. (2005a) studied a similar 

problem as in Psaraftis and Tsitsiklis (1993) except that the information of all arcs are available 

real-time. They proposed a dynamic programming formulation where the state space includes 

states of all arcs, time, and the current node. They stated that the state space of the proposed 

formulation becomes quite large, making the problem intractable. To address the intractable 

state-space issue, Kim et al. (2005b) proposed state space reduction methods. Thomas and 

White (2007) study a similar problem as in Kim et al. (2005a) but also consider the amount of 
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time that an observed arc has spent in a particular state. All these studies consider routing on 

unscheduled transport networks where there is no schedule induced or switching delays at the 

nodes as in scheduled networks or multimodal transportation, respectively. There are few 

studies on the routing problem on multimodal networks with time-dependent arc weights (e.g., 

cost or travel time). Ziliaskopoulos and Wardell (2000) proposed a time-dependent intermodal 

optimum path algorithm for deterministic multimodal transportation networks while 

accounting for delays at mode and arc switching points. Opasanon and Miller-Hooks (2001) 

proposed the stochastic variation of the approach by Ziliaskopoulos and Wardell (2000) where 

the mode transfer delays and arc travel times are stochastic and time varying. However, this 

study assumes independence over time for all probability distributions. Our proposed dynamic 

routing model differs from earlier models in the STD-SP literature by accounting for the 

scheduled departures, the effect of stochastic travel times and departure delays. In addition, it 

admits the real-time announced information on the status of flights and makes routing 

decisions and updates the delay distributions based on this online information.  

The estimation of flight departure/arrival delays and cancellations/diversions has been 

the subject of several studies (Mueller and Chatterji 2002, Chatterji and Sridhar 2005, Tu et al. 

2008). These studies can be categorized into analytical (e.g. queuing), statistical (e.g. regression 

models) and simulation approaches that vary by computational efficiency and level of detail. 

For example, the delay and cancellation component in the Federal Aviation Administration 

(FAA) NAS Strategy Simulator takes a macroscopic approach and obtains approximations of 

delay based on the aggregate values of input parameters, namely traffic demand and airport 
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capacity. The majority of delay estimation approaches proposed in the literature predict 

cancellations and delays at the system level rather than for each individual flight. The only two 

studies considering the traveler’s perspective (e.g. passenger) are Wang and Sherry (2007) and 

Tien et al. (2008). Whereas Wang and Sherry (2007) estimate delays at a flight level, Tien et al. 

(2008) propose a model that estimates overall averages across multiple flights. Tien et al. 

(2008) consider passenger trip scenarios by explicitly accounting for probability of flight 

cancellation, distribution of flight delay (if not cancelled), and probability of missing a 

connecting flight. In Section 3.1, we adopt the traveler’s perspective approach taken in Wang 

and Sherry (2007) and Tien et al. (2008) and propose a delay estimation model accounting for 

flight disruption and recovery scenarios and using historical data to estimate the probabilities. 

Our model differs from the two studies in that it incorporates real-time information updating 

while accounting for the fidelity of real-time delay announcement.  

2.3   Dynamic Air-Cargo Routing 

Let ܩ ؠ ሺܰ, ݊ ሻ be the directed graph of an air network with a finite set of nodesܣ א ܰ 

representing airports and a set of arcs ݈ א  representing connecting flights between the ܣ

airports. Since there can be multiple flights between any airport pairs, we designate each flight 

with a distinct arc. In particular, let ܣ௟ ك ܣ
 
denote the set of flights between airports ݊Ԣ to ݊ᇱᇱ 

where ݈ ൌ ሺ݊ᇱ, ݊ᇱᇱ ሻ, then ݅ א  ௟ denotes a unique flight from ݊Ԣ to ݊ᇱᇱ. In the remainder of thisܣ

work, we refer to these flights as arcs. A dynamic routing problem on this air network is 

concerned with departing from the origin node (݊଴) and arriving to the destination node 
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 ሺ݊ௗሻ via a series of airport/flight selection decisions. The goal is to find an optimal routing 

policy that minimizes a total cost criterion. 

 
Figure 2.1. Time sequence of the air-cargo arriving to airport n at time t, departing at ߠ௜ ൅  ௜ and arrivingߜ

to the airport n’ at time t’=ߠ௜ ൅ ௜ߜ ൅ ߬௜. 
 

The flight arcs have three parameters affecting the flight selection decisions which are 

illustrated through the time sequence depiction in Figure 2.1. First parameter is the stochastic 

travel time of arc ݅ ሺ߬௜ሻ which is measured as the duration from the gate closure at the origin 

airport until the unloading of the air-cargo at the destination airport. This duration includes 

taxi-out at the origin airport, air time (e.g., flight duration), taxi-in at the destination, and 

unloading time. The second parameter is the scheduled departure time of flight ሺߠ௜ሻ. Node 

arrival prior to ߠ௜ results in waiting until departure. Whereas the scheduled departure times are 

exactly known, the arrival time to the airport node is unknown making the waiting time at the 

node a stochastic variable. For the purpose of notational clarity and without loss of generality, 

we assume any cargo processing times (e.g. security checks, processing prior to being loaded 

onto the aircraft) are already accounted for in the scheduled departure time ߠ௜. Alternatively, ߠ௜ can be considered as the scheduled cut-off time for flight ݅ for air-cargo acceptance. The final 
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parameter, absent from most network routing models, is the stochastic departure delay ሺߜ௜ሻ 

corresponding to an uncontrollable waiting time at the origin node of an arc (flight ݅) before 

traveling through it. Therefore, the total waiting time for an air-cargo of flight ݅ arriving to the 

airport at time ݐ is jointly determined by the waiting due to scheduled departure time maxሼݐ െ ௜ߠ , 0ሽ and the departure delay ߜ௜. Accordingly, if the flight has not departed past the 

scheduled departure time, the actual departure time depends on ߜ௜, which is stochastic. Once 

the flight has departed, the arc becomes unavailable. This temporal change in arc availability is 

another attribute that distinguishes this problem setting from the other STD-SP problems. 

The departure delay (ߜ௜) is attributable to a multitude of factors that can be classified as 

the congestion at the origin and destination airports, weather, equipment (mechanical failures, 

late pushback tug, etc.), personnel (unavailable flight crew or gate agents, etc.), ground 

operations, passenger/cargo processing/loading delays, unscheduled maintenance and so forth 

(Mueller and Chatterji, 2002). The departure delay can be negative, zero or positive. The cases ߜ௜ ൌ 0  and ߜ௜ ൐ 0 indicate on-time and late departures, respectively. We adapt 

“DepDelayMinutes” definition of the Bureau of Transportation Statistics (BTS) where the 

departure delay is defined as the difference between scheduled and actual departure time and 

early departures are set to 0 and regarded as on-time departures. Accordingly, we consider 

only the non-negative departure delays in our routing model for three reasons. First, the early 

departures durations are very small compared to late departure delays and thus the effect on 

the routing policy decisions is minimal. For instance in 2010, the average early departure delays 

for all flights outbound from Detroit, Atlanta, Memphis, New York (LaGuardia), Minneapolis, 
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Charlotte and Dallas airports were -3.8, -3.8, -4.0, -5.4, -4.0, -4.4, and -3.7 minutes which are 

negligible compared to the average late departure delays of 31.9, 32.4, 33.2, 48.5, 26.2, 29.8, 

and 32.7 minutes, respectively (BTS, 2010). Secondly, early departures are only possible once all 

the cargo is loaded (or passengers have boarded). This can only happen if the capacity is full or 

if the routed cargo is already loaded on the plane. In the former case, the flight is unavailable 

due to insufficient capacity and need not be considered in routing. In the latter case, we already 

selected this flight and considering its negative departure possibility would only further support 

the inclusion of the flight in the routing policy. Lastly, only the late departure delay information 

is announced in real-time (i.e. early departures are not announced).  

Most carriers accept cargo reservations in advance, e.g., in hours, which is sufficient for 

a forwarder to book a flight while en route or at the preceding airports.  These booking cut-off 

times (a.k.a. closeout or lockout times) are typically 30-60 minutes for shipments under 100 lbs 

and 1-2 hours for larger shipments depending on the carrier and airport. The cut-off times for 

transfers can range between 30 minutes to several hours, depending on the connection type 

(domestic or international), carrier and airport operations, and on whether the cargo is loose or 

containerized in Unit Load Devices (ULDs). During transshipment of air-cargo from one aircraft 

to another, the forwarders are subject to the line-up area check-in time (Nsakanda et al., 2004). 

This line-up area is the final sequencing stage of shipments in ULDs or pallets before the loading 

onto an aircraft. The latest check-in time depends on the carrier, aircraft size and airport 

operations. Nsakanda et al. (2004) report on terminal cut-off time of 45 minutes as the latest 

time to send an ULD or a cart to the staging area. In our model, we consider the carrier cut-off 
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times for the initial loading at the origin airport and the line-up area cut-off times for transfers 

at the intermediate airports. We assume that the forwarder can freely revise, at some 

cost/penalty if necessary, its booking decisions prior to arriving at a node subject to the cut-off 

times.4 However, upon arriving at a node, the final flight selection decision is made and then 

the air-cargo is loaded on the aircraft. We assume that there is no recourse decision at that 

node once the air-cargo is loaded meaning the flight decision is permanent. This is a reasonable 

assumption since the freight forwarders often do not have the flexibility to get their cargo 

loaded and unloaded at a short notice due to physical constraints.  

Any flight at a given time can be in one of the two states: available or unavailable for 

loading the air-cargo. The unavailable flights are those that are departed, diverted, cancelled 

(due to insufficient load levels, bad weather conditions, operational failures, etc.) or no-longer 

accepting cargo (e.g., past cut-off time or insufficient capacity). Sometimes, the flight delays can 

be lengthy and we consider delays larger than a threshold level (ߦ) as excessive delays.5 The 

availability of a flight is random and cannot be fully guaranteed while the cargo is en route, so 

we rely on probability estimates from the historical data on flight cancellations and diversions 

that are publicly available from the BTS and the FAA’s Operations Network (OPSNET). It is also 

                                                       

 

4 The U.S. Bureau of Customs and Border Protection (CBP) and Canada Border Services Agency (CBSA) require 

freight forwarders to transmit air-cargo and conveyance data several hours in advance for both inbound and 

outbound shipments. However, for short-haul distances, this requirement is prior to time of departure (“wheels 

up”) of aircraft for first U.S. or Canadian airport of arrival and is thus not limiting the changes in flight 

routes.(Source:http://www.cbp.gov/xp/cgov/trade/automated/automated_systems/ams/camir_air/, http://www.cbsa-

asfc.gc.ca/prog/aci-ipec/menu-eng.html ) 
5 Delays longer than a threshold typically lead to cancellation or other recovery methods, rather than delays 

subsequent flights (AhmadBeygi et al., 2008) 
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possible that not all flights outgoing from an airport will have cargo space available. The 

availability of cargo space is further affected by the seasonality and trends in air-cargo supply 

and demand volumes. In the absence of real-time information on the availability of cargo space 

for short-term booking, we account for unavailability through historically estimated 

probabilities. In Section 3.2, we incorporate the flight unavailability due to cancellation, 

diversion and lack of cargo space. Section 3.1 presents a delay prediction model which 

considers real-time announced delay information and its fidelity. Given that this real-time 

information is broadcast by the carriers, airports and FAA, they reflect the best information 

available from the delay and cancellation estimation processes used in practice.  

2.3.1   Modeling Departure Delay 

In this section, we first describe the distribution of the departure delay given the real-

time announced delay information. Then, we present the delay modeling approach used in the 

dynamic air-cargo routing model.  

Let's denote the density and cumulative distribution functions of the departure delay for 

a flight ݅ with ߰ሺߜ௜ሻ and Ψሺߜ௜ሻ, respectively. Let ߙ௜ denote the “on-time” departure probability 

of flight ݅, i.e. ߰ሺߜ௜ ൌ 0ሻ ൌ ௜ߜ ௜  follows any continuous distribution for delayed flightsߜ ௜ andߙ ൐ 0. This distinction between delayed and on-time flights allows for empirical estimation of 

the delay distributions by fitting common continuous distributions such as Exponential and 

Weibull. For routing purposes, we assume that the flight departure delay is bounded with a 

finite delay (ߦ) such that after ߦ the flight is considered as unavailable. Provided that ߦ is chosen 

sufficiently large, any flight that is delayed longer than ߦ but eventually departed is not only of 
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little value for dynamic routing but is also considered an outlier (Tu et al, 2008). Further, as per 

the definition of the BTS, early departures are regarded as on-time departures and ߜ௜ is set to 0. 

Accordingly, we have Ψሺߜ௜ሻ ൌ 1 െ ௜ for 0ߙ ൏ ௜ߜ ൏ ζ  and ߰ሺߜ௜ሻ ൌ 0 for ߜ௜ ൏ 0, ௜ߜ ൒ ζ. 

At any given time t, the decision maker has access to real-time information on the 

departure delay ߜመ௜ሺݐሻ for ݅ ൌ 1,2 … ,  as forecasted by the carriers and airports. This |ܣ|

information is referred as the announced departure delay and is assumed imperfect. To simplify 

the notation, we will suppress the time from the announced delay and use ߜመ௜ instead. Given the 

announced delay ߜመ௜, the distribution ܲ൫ߜ௜|ߜመ௜൯ represents the degree of accuracy in the 

departure delay announcement, e.g. ܲ൫ߜ௜ ൌ መ௜൯ߜ|መ௜ߜ ൌ 1 corresponds to the case of perfect 

information. However, once the real-time announcement (ߜመ௜) on the departure delay (ߜ௜) is 

revealed, we assume that the information is tail conditionally accurate such that the flight will 

not depart earlier than the announced departure delay, i.e. ܲሺߜ௜ሻ ൌ 0 for ߜ௜ ൑  መ௜ . Note that ifߜ

there is no announcement, then either the flight departs on time or will be delayed without an 

announcement. In the latter case, the announced delay is considered as a zero delay 

announcement, e.g. ߜመ௜ ൌ 0. We assume announced delays can be updated but are non-

decreasing with time, i.e. ߜመ௜ሺݐଵሻ ൑ ଵݐ ଶሻ forݐመ௜ሺߜ ൑   . ଶݐ
Given the historical data on announced and actualized delays, one can estimate the 

conditional probability of the actualized delay given the announced delay. The estimation of  ܲ൫ߜ௜|ߜመ௜൯ requires the availability of sufficient historical data on the actualized departure delays 

and the associated announced delays. For any given flight, these historical data sets are usually 

sparse considering the effect of other determining factors such as seasonality (e.g., time of the 
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day, day of the week, month) and non-recurring events (e.g., weather conditions, special days). 

Accordingly, we instead approximate this distribution by considering the intervals for the 

announced delay, ߜመ௜ א ሺݒ௜௥ , ݎ ௜௥ାଵሻ forݒ ൌ 1, … , ݉,  where ݒ௜௥ and ݒ௜௥ାଵ define the upper and 

lower bound on the departure delay for interval ݎ, respectively. Note that ݒ௜௥భ ൑ ଵݎ ௜௥మ forݒ ൑  ଶݎ

and   ݒ௜ଵ ൌ 0 and ݒ௜௠ାଵ ൌ ௜௥ݒThe delay intervals ሺ .ߦ , -௜௥ାଵሻ can be determined through a biݒ

variate clustering method (e.g. Gaussian Mixture Model clustering), which can then be used to 

estimate the joint distribution of announced and actualized departure delay, e.g. ܲሺݒ௜௥ᇱ ൑ ௜ߜ ൑ݒ௜௥ᇱାଵ, ௜௥ݒ ൑ መ௜ߜ ൑  ௜௥ାଵሻ. Hence, prior to receiving any departure delay information (e.g. delayݒ

announcement) and before the scheduled departure time, the delay distribution of a delayed 

flight ݅ satisfies  ∑ ௥ܲ௥ ൌ 1 where ௥ܲ ൌ ܲሺݒ௜௥ ൑ ௜ߜ ൑  ௜௥ାଵሻ. Given that the announced delayݒ

information is tail conditionally accurate, we have ܲሺߜ௜ሻ ൌ 0 for ߜ௜ ൑ ௜௥ݒ ௜௥ andݒ ൑ ௜ߜ ൑ߜመ௜ where ߜመ௜ א ሺݒ௜௥ ,  ௜௥ାଵ ሻ. Therefore, number of intervals (m) determines the announcementݒ

fidelity, e.g. the larger the m, the more accurate the announcements are. 

Based on announced delay intervals, for a given flight ݅, we calculate the probability 

density function of departure delay given departure delay announcement ߜመ௜, where ߜመ௜ ௜௥ݒሺא , ௜௥ାଵሻ for a given 1ݒ ൑ ݎ ൑ ݉ as, 

ܲ൫ߜ௜หݒ௜௥ ൑ መ௜ߜ ൑ ௜௥ାଵ൯ݒ ൌ ෍ ܲ൫ߜ௜|ݒ௜௥ᇲ ൑ ௜ߜ ൑ ௜௥ᇲାଵ൯ݒ ܲ൫ݒ௜௥ᇲ ൑ ௜ߜ ൑ ௜௥ݒ௜௥ᇲାଵหݒ ൑ መ௜ߜ ൑ ௜௥ାଵ ൯௠ݒ
௥ᇲவ௥  

                   ൅ ܲሺߜ௜| ߜመ௜ ൑ ௜ߜ ൑ መ௜ߜ௜௥ାଵሻܲ൫ݒ ൑ ௜ߜ ൑ ௜௥ݒ௜௥ାଵหݒ ൑ መ௜ߜ ൑ ௜௥ାଵݒ ൯ . 

(1.) 

Note that ܲ൫ݒ௜௥ᇱ ൑ ௜ߜ ൑ ௜௥ݒ௜௥ᇱାଵหݒ ൑ መ௜ߜ ൑ ௜௥ାଵ ൯ݒ ൌ 0 for ݎԢ ൏  and the last term in (1) ݎ

corresponds to the case ݎԢ ൌ  ,From the Bayes' rule, we have .ݎ
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ܲ൫ݒ௜௥′ ൑ ௜ߜ ൑ ௜௥ݒ௜௥′ାଵหݒ ൑ መ௜ߜ ൑ ௜௥ାଵݒ ൯ ൌ ܲ൫ݒ௜௥′ ൑ ௜ߜ ൑ ,௜௥′ାଵݒ ௜௥ݒ ൑ መ௜ߜ ൑ ௜௥ݒ௜௥ାଵ൯ܲ൫ݒ ൑ መ௜ߜ ൑ ௜௥ାଵ൯ݒ for  ݎԢ ൐  (.2) ,ݎ

ܲ൫ߜመ௜ ൑ ௜ߜ ൑ ௜௥ݒ௜௥ାଵหݒ ൑ መ௜ߜ ൑ ௜௥ାଵݒ ൯ ൌ ܲ൫ߜመ௜ ൑ ௜ߜ ൑ ,௜௥ାଵݒ ௜௥ݒ ൑ መ௜ߜ ൑ ௜௥ݒ௜௥ାଵ൯ܲ൫ݒ ൑ መ௜ߜ ൑ ௜௥ାଵ൯ݒ  . (3.) 

We calculate ܲ൫ߜ௜|ݒ௜௥ᇲ ൑ ௜ߜ ൑ Ԣݎ ௜௥ᇲାଵ൯  in (1) forݒ ൐ ௜ߜ and ݎ א ሺݒ௜௥ᇲ ,  ,௜௥ᇲାଵሻ asݒ

ܲ൫ߜ௜|ݒ௜௥ᇲ ൑ ௜ߜ ൑ ௜௥ᇲାଵ൯ݒ ൌ ܲ൫ߜ௜ , ௜௥ᇲݒ ൑ ௜ߜ ൑ ௜௥ᇲݒ௜௥ᇲାଵ൯ܲ൫ݒ ൑ ௜ߜ ൑ ௜௥ᇲାଵ൯ݒ ൌ ߰ሺߜ௜ሻΨ൫ݒ௜௥ᇲାଵ൯ െ Ψ൫ݒ௜௥ᇲ൯. (4.) 

For ߜ௜∉ሺݒ௜௥ᇲ , ௜௥ᇲݒ|௜ߜ௜௥ᇲାଵሻ, we have ܲ൫ݒ ൑ ௜ߜ ൑ ௜௥ᇲାଵ൯ݒ ൌ 0. 

Similar to the derivation of (4), the density in the second term of (1) for ߜ௜ א ሺߜመ௜ ,  ௜௥ାଵሻ isݒ

expressed as, 

ܲሺߜ௜| ߜመ௜ ൑ ௜ߜ ൑ ௜௥ାଵሻݒ ൌ ߰ሺߜ௜ሻΨሺݒ௜௥ାଵሻ െ Ψ൫ߜመ௜൯, (5.) 

and is 0 if ߜ௜∉ሺݒ௜௥ᇲ ,  .௜௥ᇲାଵሻݒ

Hence, the conditional delay distribution is as follows: 

ܲ൫ߜ௜หݒ௜௥ ൑ መ௜ߜ ൑  ௜௥ାଵ൯ݒ

ൌ ߰ሺߜ௜ሻ ൭ܲ൫ߜመ௜ ൑ ௜ߜ ൑ ௜௥ݒ௜௥ାଵหݒ ൑ መ௜ߜ ൑ ௜௥ାଵሻݒ௜௥ାଵ ൯Ψሺݒ െ Ψሺߜመ௜ሻ ൅ ෍ ܲ൫ݒ௜௥ᇲ ൑ ௜ߜ ൑ ௜௥ݒ௜௥ᇲାଵหݒ ൑ መ௜ߜ ൑ ௜௥ᇲାଵ൯ݒ௜௥ାଵ ൯Ψ൫ݒ െ Ψ൫ݒ௜௥ᇲ൯௠
௥ᇲவ௥ ൱ . (6.) 

For m=1 (e.g. ݒ௜ଵ ൌ 0 and ݒ௜ଶ ൌ መ௜ߜ and (ߦ ൌ 0, the expression in (6) is ߰ሺߜ௜ሻ. For 

notational simplicity, we define conditional delay distribution of flight ݅ at time ݐ with 

announced delay ݒ௜௥ ൑ መ௜ߜ ൑ ,௜ߜ௜൫ݍ :௜௥ାଵ asݒ መ௜൯ߜ ൌ ܲ൫ߜ௜ ൌ ݐ െ ௜௥ݒ௜หߠ ൑ መ௜ߜ ൑  ௜௥ାଵ൯, (7.)ݒ

Note that we suppress t for ݍ௜൫ߜ௜ , መ௜൯ߜ  in (7) and assume that it will be clear from the 

context. We further define the cumulative probability that the delayed flight  ݅ departs at or 
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after  ݐ as:   

ܳ௜൫ݐ, መ௜൯ߜ ൌ ෍ ௜ߜ௜൫ݍ ൌ ᇱݐ െ ௜ߠ , መ௜൯,ఏ೔ାకߜ
௧ᇱୀ௧  (8.) 

In the next section, we describe our dynamic programming model for air-cargo routing. 

2.3.2   Dynamic Programming Model for Air-Cargo Routing  

The objective of the dynamic air-cargo routing model is to minimize the expected cost 

criteria for a trip originating at origin ݊௢ 
and concluding at destination ݊ௗ. The cost criteria can 

be a function of the service level (e.g. delivery time), a penalty function measuring 

earliness/tardiness of arrival time to the final destination, itinerary cost or a weighted 

combination of these criteria. We assume that the forwarder has already booked an itinerary 

(called static path) and thus secured the cargo space availability on this path. As long as the 

forwarder does not deviate from the static path, there are no additional flight booking and 

handling costs; otherwise there is a one-time penalty for breaching the booking contract. 

Consider a flight path ݌ between ሺ݊௢, ݊ௗሻ where ݌ ൌ ሺ݅ଵ, ݅ଶ, … , ݅௞, … , ݅௄ሻ, ݇ ൌ 1,2, … , ܭ
 

is defined as sequence of flights such that ݅௞ א ௟ೖܣ  where ݈௞ ؠ ሺ݊ᇱ௟ೖ , ݊ԢԢ௟ೖሻ and ݊ᇱ௟ೖశభ ؠ ݊ԢԢ௟ೖ. 

Note that ݊Ԣ௟భ ؠ ݊௢ and ݊ԢԢ௟಼ ؠ ݊ௗ. Let ݌ௌ indicate the static path. Denote the set ܫሺ݊, ሻݐ ك  ܣ

as the set of flights scheduled to depart from node ݊ with departure times ߠ௜ ൑ ݅׊ for ݐ א ,ሺ݊ܫ  ሻ. Each node on a flight path is a decision stage (or epoch) at which a routing decisionݐ

(i.e., which flight to select next) is to be made. Let ݊௞ be the airport location of ݇௧௛ decision 

stage, ݐ௞ is the time at ݇௧௛ decision stage where ݐ௞ א ሼ1, … , ܶሽ, ܶ ൐  ௄. Note that we areݐ

discretizing the planning horizon. Since the objective of our dynamic air-cargo routing model 
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can be expressed as an additive function of the cost of individual stages on the flight path, the 

dynamic flight selection problem can be modeled as a dynamic programming model.  

The state of the system at ݇௧௛ decision stage is denoted by Ω௞ ൌ Ωሺ݊௞, ,௞ݐ Δ෡௞,  ௌ௞ሻ. Thisݖ

state vector is composed of the state of the air-cargo and flight network and is thus 

characterized by the current node (݊௞), the current node arrival time (ݐ௞), and the announced 

departure delay state of all flights at time ݐ௞ at stage ݇, i.e., Δ෡௞ ൌ ሼߜመ௜ , ݅׊ א  ሽ, and static routeܣ

indicator, i.e., ݖௌ௞ ൌ 1 if the flights are selected from the static route until stage ݇ and ݖௌ௞ ൌ 0 

otherwise. After the air-cargo is loaded on to a flight, there is a chance that the flight becomes 

unavailable (e.g., cancelled) or forwent without a penalty due to excessive delay. In either case, 

the forwarder is faced with the task of choosing another flight. It can be shown that an optimal 

policy decision is to account for not only the first flight choice but collectively all recourse 

flights. Therefore, we define the action space for the state Ω௞ as the set of all orderings of all 

the available flights scheduled to depart from airport ݊௞  denoted with ܫ௢ሺ݊௞,  ௞ሻ. Note that thisݐ

list accounts for all the restrictions experienced by the freight forwarders such as the restriction 

of the aircraft for certain ULD classes and unavailability of spot capacity on a certain flight at ݐ௞.  

At every decision stage, the air-cargo freight forwarder evaluates the alternative flight 

orderings from the “current” node based on the expected cost-to-go. The expected cost-to-go 

at a given node with the selection of a flight ordering is the expected total cost of the flight 

ordering selected and the cost-to-go from the next node. Let ߨ ൌ ሼߨଵ, ,ଶߨ … ,  ௄ሽ be the policyߨ

of the routing and is composed of policies for each of the ܭ െ 1 decision stages. For a given 

state Ω௞, the policy ߨ௞ሺΩ௞ሻ is a deterministic Markov policy that chooses an ordering of flights 
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departing from node ݊௞, i.e., ߨ௞ሺΩ௞ሻ א ,௢ሺ݊௞ܫ  ௞ሻ. Therefore, the expected total cost for aݐ

given policy vector ߨ ൌ ሼߨଵ, ,ଶߨ … ,  :௄ሽ is as followsߨ

,൫݊௢ܨ ,ଵݐ Δ෡ଵ, ൯ߨ|1 ൌ ୼ೖܧ ൝݃௄ାଵሺΩ௄ାଵሻ ൅ ෍ ݃௞ሺΩ௞, ,௞ሺΩ௞ሻߨ Δ௞ሻ௄
௞ୀଵ ൡ , (9.) 

where ൫݊௢, ,ଵݐ Δ෡ଵ, 1൯ is the starting state of the system and the Δ௞ is the actualized 

departure delay vector at stage ݇. The single stage cost ݃௞ሺΩ௞, ,௞ሺΩ௞ሻߨ Δ௞ሻ is cost of the flight 

ordering selected given the actualized departure delay Δ௞. The ݃௄ାଵሺΩ௄ାଵሻ is the penalty 

function based on the earliness/tardiness of arrival time to the final destination ݊ௗ. Then, the 

minimum expected total cost can be found by minimizing ܨ௢൫݊௢, ,ଵݐ Δ෡ଵ, 1൯ over the policy 

vector ߨ ൌ ሼߨଵ, ,ଶߨ … ,  :௄ሽ as followsߨ

,൫݊௢כܨ ,ଵݐ Δ෡ଵ, 1൯ ൌ minగୀሼగభ,గమ,…,గ಼ሽ ,൫݊௢ܨ ,ଵݐ Δ෡ଵ, ൯ߨ|1 . (10.)

The corresponding optimal policy is then, 

כߨ ൌ minగୀሼగభ,గమ,…,గ಼ሽ ,൫݊௢ܨ ,ଵݐ Δ෡ଵ,  ൯. (11.)ߨ|1

Hence, the Bellman’s cost-to-go equation can be expressed as follows (Bertsekas, 2005): 

ሺΩ௞ሻכܨ ൌ minగೖ ,୼ೖ൛݃௞൫Ω௞ܧ ,௞ሺΩ௞ሻߨ Δ෡௞൯ ൅ ሺΩ௞ାଵሻൟכܨ ݇׊ ൌ 1, … , (.12) .ܭ

We now derive the כܨሺΩ௞ሻ in (12). Consider the ݇௧௛ decision stage where the air-cargo 

has arrived to node ݊௞ at ݐ௞. An outbound flight from ݊௞ can be in either available or 

unavailable state at ݐ௞. Let ߛ௜ denote the steady-state probability that flight ݅ is not cancelled or 

diverted and has also sufficient capacity.6 Then the probability that the ݅௧௛ flight is available at ݐ௞ and can depart with the air-cargo, ௜ܲ൫ݐ௞,   ,መ௜൯, is calculated as followsߜ

                                                       

 

6 Note that we also include in this probability the cases where the flight can be delayed longer than the 

threshold ߦ. 
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௜ܲ൫ݐ௞, መ௜൯ߜ ൌ ,௞ݐ௜ܳ௜൫ߛ መ௜൯. (13.)ߜ

Therefore, the chance of loading the cargo on a flight increases with the cumulative 

probability that the delayed flight  ݅ departs at or after  ݐ given the announcement ߜመ௜. For 

notational simplicity, we also define തܲ௜ሺݐ௞, ො݅ሻߜ ൌ 1 െ ௜ܲሺݐ௞,  ො݅ሻ. Note that equation (13) assumesߜ

that the cancellation/diversion and delay decision processes are complementary, e.g., on-time 

or delayed if not cancelled. When the on-time departures are not possible with reasonable 

delay (due to a late arrival, mechanical, weather, congestion, or staffing issue), the carrier or 

airport then opts to cancel (Jarrah et al. 1993, Rupp and Holmes 2006).  

For a given state Ω௞, ܥ௜ሺΩ௞ሻ is the cost of selecting flight ݅ and depends on whether the 

route deviates from the static path. The ܥ௜ሺΩ௞ሻ can be in one of the three cases (I,II, or III),  

௜ሺΩ௞ሻܥ ൌ ቐ      0          ݂݅ ݅ ൌ ௌሺ݇ሻ݌ ܽ݊݀ ௌ௞ݖ ൌ 1, ሺ݁ݏܽܥ ݂݅        ௜ܮ      ሻܫ ௌ௞ݖ ൌ 0, ሺ݁ݏܽܥ ܪ  ሻܫܫ ൅ ݂݅    ௜ܮ ݅ ് ௌሺ݇ሻ݌ ܽ݊݀ ௌ௞ݖ ൌ 1, ሺ݁ݏܽܥ ሻܫܫܫ  

 

(14.)

where, ݌ௌሺ݇ሻ is the ݇௧௛ flight in the static route, ܮ௜ is the air-cargo and handling fare of 

flight ݅, and ܪ is the penalty cost of forgoing the static itinerary, e.g. the air-cargo booking price 

for the static itinerary. The case (I) corresponds to maintaining the static path by choosing 

flight ݅ from the static path. The case (II) corresponds to the scenario where the route has 

already deviated from the static path and thus ܮ௜ is incurred for using flight ݅. Case III 

corresponds to deviating from the static path in stage. In cases (I) and (II), we assume that once 

the route deviates from the static path, all future flights are booked with full booking fee. In 

lieu, one can assume flights on static path can be used at a cost less than full fee ܮ෠௜ ൏  ,.௜, i.eܮ

for case (II), ܥ௜ሺΩ௞ሻ ൌ ݅ ௜ ifܮ ് ௌ௞ݖ ௌሺ݇ሻ and݌ ൌ 0, and, ܥ௜ሺΩ௞ሻ ൌ ݅ ෠௜ ifܮ ൌ ௌ௞ݖ ௌሺ݇ሻ and݌ ൌ 0. 
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We note that certain privileges such as the availability of discount fares and waivers for route 

changes are captured through ܪ and ܮ௜. 
Subsequently, the cost-to-go of flight ݅ at time ݐ௞ with departure delay information  Δ෡௞ 

is calculated as, 

௜݂൫݊௞, ,௞ݐ Δ෡௞, ௌ௞൯ݖ ൌ ௜ሺΩ௞ሻܥ ൅ ෍ ෍ ௜ߜ௜൫ݍ , መ௜൯ߜ ܲሺ߬௜|ߜ௜ሻ ,൫݊௞ାଵכܨ ௜ߠ ൅ ௜ߜ ൅ ߬௜ , Δ෡௞ାଵ, ௌ௞ାଵ൯ఛ೔ఋ೔ݖ , 
(15.)

where ܥ௜ stage ݇ cost of choosing flight ݅, ߜ௜ is the stochastic departure delay satisfying ߜመ௜ ൑ ௜ߜ ൑ ௜ߠ the ,ߦ ൅ ௜ߜ ൅ ߬௜ is the stochastic arrival time to ݊௞ାଵ, ݍ௜൫݅ߜ,  መ௜൯ is the conditionalߜ

departure delay probability in (10), probability ܲሺ߬௜|ߜ௜ሻ is the conditional probability of the 

travel time given the departure delay, and ݖௌ௞ାଵ ൌ 1 if ݖௌ௞ ൌ 1 and ݅ ൌ ௌ௞ାଵݖ ௌሺ݇ሻ and݌ ൌ 0 

otherwise.  

Let ߨ௞ א ,௢ሺ݊௞ܫ  ௞ outgoingݐ ௞ሻ denote a flight ordering of all the available flights atݐ

from node ݊௞. This ordering is determined based on the cost-to-go of individual flights, i.e. ሺ݆ሻ ൏ ሺ݅ሻ if ሺ݂௝ሻ൫݊௞, ,௞ݐ Δ෡௞, ௌ௞൯ݖ ൑ ሺ݂௜ሻ൫݊௞, ,௞ݐ Δ෡௞,  ௌ௞൯, where ሺ݅ሻ and ሺ݆ሻ are the rankings of flights ݅ and ݆, respectively. We can calculate the probability of departing with flight ݆ in the flightݖ

ordering ߨ௞ as ሺܲ௜ሻ൫ݐ௞, ∏ොሺ݅ሻ൯ൣߜ തܲሺ௝ሻ൫ݐ௞, ොሺ݆ሻ൯ሺ௝ሻழሺ௜ሻߜ ൧ which considers that all higher ranked flights 

are unavailable. Then, the expected cost-to-go of the flight ordering ߨ௞ at time ݐ௞ with 

departure delay information  Δ෡௞ from node ݊௞ is, 

,൫݊௞ܨ ,௞ݐ Δ෡௞, ௞൯ൌߨ|ௌ௞ݖ ܯ ෑ  തܲ௜൫ݐ௞, గೖאመ௜൯௜ߜ  ൅ ෍ ሺܲ௜ሻ൫ݐ௞, መሺ௜ሻ൯ߜ ቎ ෑ തܲሺ௝ሻ൫ݐ௞, መሺ௝ሻ൯ሺ௝ሻழሺ௜ሻߜ ቏ ሺ݂௜ሻ൫݊௞, ,௞ݐ Δ෡௞, గೖאௌ௞൯ሺ௜ሻݖ . (16.)

Here, ܯ is a large delivery failure penalty cost paid by the forwarder to the shipper if the 

shipment is not delivered beyond a threshold delay. The agreement between the air-cargo 
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forwarder and shipper carries performance guarantee clauses that usually restrict this penalty. 

Clearly, as ܯ increases, the routing decisions become more conservative, e.g. choose airports 

with more flights or flight availabilities.  

The expression in (12) is calculated as, 

ሺΩ௞ሻכܨ ൌ minగೖ ቐ ෍  ሺܲ௜ሻ൫ݐ௞, መሺ௜ሻ൯ߜ ቎ ෑ തܲሺ௝ሻ൫ݐ௞, መሺ௝ሻ൯ሺ௝ሻழሺ௜ሻߜ ቏ሺ௜ሻאగೖ ሺ௜ሻሺΩ௞ሻܥ ൅ ܯ ෑ തܲ௜൫ݐ௞, గೖ൅אመ௜൯௜ߜ ෍  ሺܲ௜ሻ൫ݐ௞, መሺ௜ሻ൯ߜ ቎ ෑ തܲሺ௝ሻ൫ݐ௞, መሺ௝ሻ൯ሺ௝ሻழሺ௜ሻߜ ቏ሺ௜ሻאగೖ ቌ෍ ෍ ௜ߜ௜൫ݍ , ,൫݊௞ାଵכܨ ௜ሻߜ|መ௜൯ ܲሺ߬௜ߜ ௜ఛ೔ఋ೔൅ߠ ௜ߜ ൅ ߬௜ , Δ෡௞ାଵ, ௌ௞ାଵሻቍቑݖ ݇׊ ൌ 1, … ,  .ܭ
(17.)

The backward induction approach is often used to solve כܨሺΩ௞ሻ for an optimal policy כߨ 

offline, i.e. before the trip starts. However, the size of the state space is ܱ൫2|ܰ|ܶ݉|஺|൯ makes 

the offline solution strategy prohibitive for ݉ ൒ 2. For instance, let’s consider the scenario 

where there are |ܰ| ൌ 10 airports each with 8 outbound flights on the average and the air-

cargo trip duration is ܶ ൌ 216 time units (e.g., 18 hours discretized with 5 minute time 

intervals). Whereas we have 2|ܰ|ܶ݉|஺| ൌ4,320 states for ݉ ൌ 1, the size of the state-space 

grows to 2|ܰ|ܶ݉|஺| ؆ 4 x 10ଶ଻ for ݉ ൌ 2. Instead, we solve for כܨሺΩ௞ሻ using the backward 

induction algorithm online which has the complexity equivalent to the case with ݉ ൌ 1. The 

departure delay information for all flights Δ෡௞ is available at the time of decision ݐ௞ in epoch ݇. 

Since the permanent flight selection decision (i.e. an ordering of flights) is made and cargo is 

committed at the time of node arrival (ݐ௞), the only departure delay information available and 

used for this decision is Δ෡௞. Therefore, the online backward induction approach uses stationary 

departure delay information Δ෡௞ in making a decision at a node. In the next decision epoch 
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 ݇ ൅ 1, the flight selection decision is made based on the new departure delay information Δ෡௞ାଵ.  

2.4   Experimental Study 

Experimental study investigates the effect of such problem parameters as accuracy of 

announced delay information, distribution parameters of the departure delay, effect of travel 

time variability, and number of air-connections on various performance criteria (e.g., expected 

cost and delivery reliability).  

The experimental study is based on five problem configurations (N0,N1,N2,N3,N4) as 

illustrated in Figure 2.2 together with the problem parameters. The parameters for every flight 

are the probability of on-time departure ሺߙሻ, the expected departure delay ሺߤሻ if the flight is 

delayed, the scheduled departure time (ߠ), and the mean ሺ߬ሻ and standard deviation (ߪ) of the 

Gaussian travel time distribution. In all configurations, the origin airport is A (origin), the 

destination airport is D (destination), and there are two alternative intermediate airports (B and 

C) with inbound flights from the origin airport. Furthermore, the expected total trip time of 

going through B or C is same for all three networks.  

The N0 configuration represents the baseline configuration from which the other 

network configurations are constructed. In the baseline, the flights’ travel times are 

deterministic; i.e. ߪ஺஻ ൌ ஼஽ߪ ൌ ஺஼ߪ ൌ ஻஽ߪ ൌ 0. The mean travel times for flights between the 

same airport pair are same as shown in Figure 2.2, e.g. ܧሺ߬ሻ=200 for flights 5, 6, and 9 between 

B and D in N0. The N1 and N2 configurations are identical to the baseline except for the 

standard deviation of the flights’ travel times. In the N1 configuration, coefficient of variation 
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(CV) for flights’ travel times are set at 5%, i.e., ߪ஺஻ ൌ ஼஽ߪ ൌ 5 and ߪ஺஼ ൌ ஻஽ߪ ൌ 10. In the N2 

configuration, CV is set at 20%, i.e., ߪ஺஻ ൌ ஼஽ߪ ൌ 20 and ߪ஺஼ ൌ ஻஽ߪ ൌ 40. The N3 network 

configuration is identical to the baseline except that direct flights from B to D are replaced with 

one-stop flights connecting at node E. The N4 network differs from the baseline at airport C, 

where we consider six scenarios, e.g. ሾ ଵܵ, ܵଶ, ܵଷ, ܵସ, ܵହ, ܵ଺ሿ, for the departure delay distribution 

of the outgoing flights (7, 8, 10). Note that the expected delay of flights (7, 8, 10) are identical in 

all six scenarios. We assume that, at t0=95, the cargo is processed and ready for loading onto 

the first available flight. Further, the due date is set at T=100, e.g., the cargo requires expedited 

shipment. In order to better understand the effect of parameters and without loss of any 

generality, we consider total trip time as the performance measure and assume there are no 

cancellations and capacity constraints. 
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Figure 2.2. Network structure and parameters for five problem configurations (N0 to N4). 

 

For each configuration, we first derive the three routing policies (dynamic, static and 

dynamic with perfect information) and then simulate each policy for all 20,000 delivery run 

samples. The static policy is a fixed flight path determined based on the expected departure 

delays; accordingly, the recourse flights are only selected if a flight in the path becomes 

unavailable. The dynamic policy under perfect information is determined by a priori knowledge 

of all realizations. We define measure (ߩ) as dynamic policy’s improvement over static policy as 

a percentage of total possible under perfect information.  

ߩ ൌ  100 ൈ ሺΩଵሻכ௦ܨ െ ሺΩଵሻכ௦ܨሺΩଵሻכܨ െ כ௉ூܨ , (18.)
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where ܨ௦כሺΩଵሻ, כܨሺΩଵሻ and ܨ௉ூכ denotes the expected costs of the static policy, 

dynamic policy, and dynamic policy with perfect information, respectively. For configurations 

N0, N3, and N4, we sample only departure delays (actual and announced delay) and, for 

configurations N1 and N2 , we also sample flight travel time (߬). For consistence, we use the 

same actualized and announced departure delay information in simulating the static policy, 

dynamic policy and dynamic policy with perfect information. 

Figure 2.3 presents the distribution of flight paths for all problem configurations. N0 

with m=1, dynamic policy is almost indifferent between B and C and tends to choose early 

flights out of airport A. With increasing m, the dynamic policy begins choosing secondary flights 

(e.g., flights 2 and 4). This is attributable to the instances where the announced delay for early 

flight makes the secondary flight desirable. In contrast, the static policy commits to the flight 

path (1,5) connecting through node B. Whenever static policy misses the connecting flight 5, it 

chooses the next flight out, e.g. either 6 or 9. In cases of N1 and N2, we observe that the travel 

time variability notably affects the dynamic policy’s path selection. For m=1, routes through B 

are more preferred in N1 since arrival time variability at node B is less than node C and 

therefore less chance of missing flights. With m=2 and m=5, the dynamic policy begins selecting 

routes through C as it can now better manage the risk of missing flights departing from C; e.g. 

select C only if departing flights from C are delayed. The dynamic policy’s route choice in N2 is 

similar to N1 except that later flights departing from B and C are selected more. Therefore, we 

conclude as the travel time variability increases, the dynamic policy selects similar routes as the 

static policy. For N3 with m=1, the flight path with the least number of connections (i.e., passing 
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through C) is preferred due to  higher chance of getting on an early flight at C than B. With 

increased announcement accuracy, the dynamic policy sometimes chooses the most preferable 

path through B, which constitutes all the early flights departing from B and E. In comparison, 

the static policy commits to the flight path (1,5,11) connecting through the nodes B and E. 

However, whenever static policy misses the flights 5 at node B or 11 at node E, it chooses the 

next flight out, e.g. either 6 or 9 at node B and either 12 or 13 at node E.  

In the case of N4, Figure 2.3 illustrates the effect of changing the delay distribution of all 

flights departing from airport C with m=2. These distributions share the same expected delay 

and S2 is identical to N0 with m=2. As the expected value of delay distribution for delayed flights 

increases (or decreases) from that of S2, the dynamic policy prefers the flight paths going 

through C more. The reason for preferring C more with S3-6 is the availability of flight 8, in 

essence, provides the dynamic policy a truncation on the delay distribution experienced by 

flight 7. In summary, the choice of flight paths depends on the policy used. The static policy 

tradeoffs the tardiness of a fixed path with the risk of missing a connecting flight. On the other 

hand, the dynamic policy exploits both the real-time departure delay information (whenever 

available) and the multiplicity of flights departing from connecting airports. 

Figure 2.4a indicates that the rate of improvement with increased accuracy is 

diminishing for N0 to N3. Further, the dynamic policy can achieve the majority of performance 

improvement even with some level of real-time delay information. An increase in travel time 

variability decreases the dynamic policy’s performance improvement over the static alternative, 

e.g. N0 versus N1 and N2. The effect of delay distribution is illustrated in Figure 2.4b.  For S5, the 
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on-time departure probability is very high and there is some level of truncation of the 

experienced delay at the airport C, and thus dynamic policy is better performing than S1. With 

increasing m, the dynamic policy’s performance is increasing and is robust with respect to the 

delay distribution due to the truncation effect on the experienced delay in airport C. 

 

 
Figure 2.3. Flight path distributions of static and dynamic policies for different levels of announced delay 

accuracy (N0, N3), travel time variation (N1, N2), and different delay distributions (N4). 

  
(a)     (b) 

Figure 2.4. Improvement (ߩ) of dynamic policy over static policy for N0, N1, N2 , N3 (a) and N4 (b) 
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Another important performance measure for the shippers and freight forwarders is the 

delivery reliability, i.e., the percentage of shipments arriving on time. Figure 2.5 shows the 

conditional expected tardiness for N0, N3, and N4  at different levels of announced delay 

accuracy and delivery due dates. Figure 2.5a and 5b illustrate that increasing information 

accuracy improves tardiness performance. Case for N3 is similar to N0, but the difference in 

static and dynamic policy tardiness is more remarkable. In the case of N4, the conditional 

expected tardiness of two policies with no real-time information is similar and insensitive to the 

delay distribution (Figure 2.5c). Further, with the increased level of announced delay accuracy, 

the effect of the delay distribution on the conditional expected tardiness diminishes. 

 

 
          (a)            (b)      (c) 

Figure 2.5. Conditional expected tardiness for different due date levels: (a)N0 , (b)N3,and  (c)N4 . 

 

2.5   Case Studies 

In this section, we first briefly describe the estimation of delay and travel time 

distribution model parameters using real-world data sources. Next, we describe two case study 
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2.5.1   Estimation of Flight Departure Delay and Travel Time 

The flight ݅ is delayed with probability ሺ1 െ  ௜ሻ and the corresponding departure delayߙ

 .௜ሻߜ௜ሻ and cumulative density Ψሺߜhas non-negative and continuous probability density ߰ሺ (௜ߜ)

We estimate these probabilities using the publicly available historical databases. The departure 

delay depends on a number of factors such as seasonality (e.g. time of the day, etc.), origin and 

destination airports, carrier, weather, special days and other non-recurring events. The 

databases of the BTS and the OPSNET provide detailed multi-year historical on-time departure 

and departure delay information on all the US domestic flights and major US airports. The data 

in both the BTS and the OPSNET are either aggregated at the facility level or available only for 

the passenger flights. Since our routing model is applicable to both dedicated carriers as well as 

passenger carriers, we assume that departure delay for cargo carrying flight can be 

approximated with the delay data for mixed passenger/cargo flights. This assumption can be 

justified by considering the fact that in both cases the flights are affected by similar factors 

(Mueller and Chatterji 2002, Chatterji and Sridhar 2005). These delay data are extracted for 

each combination of the determining factors to estimate the most accurate non-parametric 

delay distribution for each flight. However, due to small sample sizes, we aggregated the data 

by selecting the origin airport, destination airport, month of the year and time of the day as the 

factors to be included. These factors are identified as most significant by conducting multiple 

analysis of variance tests.  

In case study applications, we considered the month of June in 2009. First, we estimated 

the percentage of on-time departures (ߙ௜) and the cancellation and diversion percentages (ߛ௜). 
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We considered those flights with delays in excess of ߦ ൌ 90 minutes as cancelled. After filtering 

out the on-time departures, cancellations and diversions from the data collected, we estimated 

the departure delay distributions. While any of the non-parametric estimation techniques are 

suitable, we considered various common distributions for presentation purposes. The goodness 

of fit tests of common distributions indicated that the distribution of departure delays follow 

exponential distribution which is also used by some of the earlier studies (Long et al. 1999, 

Hansen and Bolic 2001). We note that the proposed method is independent of the distribution, 

e.g. empirical or other common densities, such as Bi-Weibull in Tien et al. (2008), can be used if 

they provide better fit. Despite the aggregation over the statistically non-influential factors, the 

size of the data set was small for some flights and the goodness-of-fit tests were not conclusive. 

Accordingly, we further aggregated the data by using agglomerative hierarchical clustering to 

cluster the departure hours based on their average departure delay. In most cases, the 

clustering of the departure hours into two clusters is found satisfactory. Figure 2.6 illustrates 

the steps of this procedure for flights from the La Guardia Airport (LGA) to Chicago O'Hare 

International Airport (ORD) in June 2009. The hierarchical clustering identified two clusters: one 

cluster with lower departure delay means (hours in 6h00 to 16h00 except 11h00) and the other 

higher departure delay means (11h00 and hours in 17h00-20h00). Figure 2.7 illustrates the 

frequency plots of the data in two clusters of LGA-ORD flights. 
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Figure 2.6. Departure hour clustering for LGA to ORD (a); departure delay frequency of LGA-ORD flights in 

June 2009 for all departure times (b); frequency plots for two clusters (c,d). 

 

Using the same database, we also estimated the travel time distributions conditional on 

the departure delay. Figure 2.7 illustrates the joint and marginal distributions of LGA-ORD 

flights in June 2009 for the cluster with higher departure delay. For this particular cluster, the 

actual travel time and departure delay are found to be statistically independent. For those 

instances with significant dependence, we use conditional travel time distribution. 
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Figure 2.7. Marginal distribution of departure delay and travel time for LGA-ORD flights for cluster 2. 

 

The departure delay announcement policies vary from carrier to carrier and from airport 

to airport. Since our goal in this study is to investigate the effect of dynamic routing using real-

time delay information, we studied the case study problem for different availability and 

accuracy levels of delay information.  The departure delay for each flight is generated according 

to the distributions estimated.  

2.5.1.1   Case Study I: La Guardia Airport (LGA) to Seattle–Tacoma International Airport (SEA) 

We consider the routing of the time-sensitive air-cargo from LGA to SEA at 6:00 a.m. on 

Friday June 12, 2009. We consider two air-carriers: Northwest airlines (NW) and American 

Airlines (AA).7 Since there are no direct flights, we chose three potential connecting airports for 

this problem: ORD, DTW, and Minneapolis International Airport (MSP). We then established the 

air-network by extracting the data from the OPSNET and the BTS databases and estimated 

                                                       

 

7 As January 2010, the Northwest Airlines merge to the Delta Airlines was completed; however, to be able to use 

the historical data, we evaluate the case study for June 2009. 
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problem parameters as shown in Table 2.1. The departure times are based on US Eastern Time. 

According to the extracted data, the distribution for departure delay of delayed flights is 

estimated by the exponential distribution. The flight travel times are found to be independent 

of the departure delay and their distributions are estimated by Gaussian distributions. We 

further assume that the freight forwarder can load onto the cargo connecting flights, e.g. no 

cargo space restriction. 

 

Table 2.1. LGA to SEA time-sensitive air-cargo routing case study. 

 

 

We solved the air-cargo routing problem for different departure delay announcement 

polices, e.g. by varying ݉. For each ݉ category, we generated 20,000 samples of flight 

departure delay and announced delay information for all flights in Table 2.1. We determined 

the routing solution for each sample using static policy, dynamic routing policy, dynamic routing 

with perfect information based on total trip time using delivery failure penalty M=1400 

minutes. Figure 2.8a illustrates the routing choice of static and dynamic policies. With m=1, the 

static and dynamic policies prefer paths through Detroit (flights 1 then 7) and Chicago (flights 3 

then 9), respectively. While the expected travel time of path (1-7) is less than path (3-9), the 
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chance of missing flight 7 is higher than missing flight 9. The dynamic policy trades off this risk 

in favor of shortest path. Consequently, it misses the flight 7 in about 25% of the time and 

continues by flight 8. However, as m increases, the dynamic policy mostly substitutes the path 

(1-8) with path (3-9) in such announcement scenarios where flight 7 is expected to be missed. 

Figure 2.8 presents the distribution of the delivery times. For m=1, the static policy’s 

single path choice leads to single mode distribution of delivery times. In comparison, the paths 

(1-7) and (1-8) corresponds to the two modes of the dynamic policy’s distribution. The dynamic 

policy exploits the availability of departure delay information and chooses earlier but riskier 

flights. In comparison, the static policy chooses a path of flights with a high probability of being 

available. Figure 2.9a illustrates that the expected value of the static and dynamic policy 

distributions are identical for the case m=1. With increased announcement accuracy (m=2), we 

note that the dynamic policy’s distribution shifts towards left as a result of choosing path (3-9) 

more than before. This corresponds to about 70% performance improvement over the static 

policy (Figure 2.9b). With m=5, the frequency of long trip durations is minimized and the 

performance improvement is about 86%. The ability to change the flight decisions online 

provides the dynamic policy the ability to choose the earlier flights with recourse options. 

Therefore, the dynamic policy is not only superior in the expected sense but can also provide 

early delivery performance which cannot be attained by a static policy. Whereas the earliest 

delivery for the static policy is at 822 minutes, the dynamic policy can attain deliveries as early 

as at 792 minutes. 
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Figure 2.8. Travel time distributions for different announcement accuracy levels (LGA-SEA case study). 

 

  
(a)                                                          (b) 

Figure 2.9. LGA to SEA case study, flight path frequency (a) and improvement (b) 

 

This case study illustrates that dynamic policy can significantly enhance the routing 

performance, especially when the information accuracy is high. It also illustrates that dynamic 

policy may not lead to significantly better results in the case of limited route alternatives and 

low information accuracy. 
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2.5.1.2  Case Study II: La Guardia (LGA) to Dallas Fort Worth International Airport (DFW) 

This case study considers the routing of a time-sensitive air-cargo from LGA to DFW at 

6:00 a.m. on Tuesday, June 16, 2009. We consider three air-carriers: US Airways (US), Delta 

Airlines (DL) and NW. Table 2.2 presents problem parameters and distributions.  

Table 2.2. LGA to DFW time-sensitive air-cargo routing case study. 

 

Figure 2.10a shows the flight path frequency for the two policies. With m=1, the static 

and dynamic policies prefer paths through Atlanta (flights 1 then 12) and Charlotte (flights 10 

then 21), respectively. The expected travel time of path (1-12) is less than path (10-21). 

However, the flights 12 and 13 are missed in Atlanta with recourse to flights 13 and 14. With 

more accurate information on departure delay, e.g. m=2 and m=5, the dynamic policy reduces 

the missed flights 13 and 14 by following path (10-21) when advantageous. Figure 2.10b 
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illustrates that the expected performance improvement of dynamic routing policy over static 

policy. Clearly, even for limited information accuracy, dynamic can realize 20% performance 

improvement. However, unlike the previous case study, the upside potential of the improved 

accuracy is limited to 59%. This result demonstrates that even though the dynamic policy can 

provide significant benefit with limited information accuracy, its upside potential might be 

limited.  

 
  

(a)                                                                                 (b) 

Figure 2.10. Flight path distribution (a) and improvement of dynamic policy over static policy (b). 

 

Another advantage of the dynamic policy over the static policy is the reliability of 

delivery, a key performance metric in the air-cargo industry. Figure 2.11 shows the conditional 

tardiness as percentage of tardy deliveries and average total tardiness for different due dates. 

For m=1, while the average tardiness performances of both policies are similar, the dynamic 

can cut down the late deliveries by up to half for certain due dates, e.g. only 17% of deliveries 

are tardy with dynamic policy compared to 32% with static policy for due date at 737 minutes. 

However, this performance improvement fluctuates with different due dates and could be 

insignificant at certain due dates, e.g. at due dates 760 and 707. With increased information 

accuracy, the dynamic policy reduces the frequency of tardy deliveries and total average 
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tardiness, e.g. the percentage of late deliveries at 737 minutes is only 13% for dynamic policy 

with m=5.  

 

 
Figure 2.11. Conditional Tardiness: percentage of tardy deliveries (left) and average total tardiness (right)  

 

2.6   Conclusions and future research 

We studied the air-cargo routing problem from the freight forwarders perspective and 

investigated the benefits of dynamic routing for the shipment of time-sensitive air-cargo given a 

shipment criterion subject to the availability of flights and travel time variability. We further 

examined the effect of real-time flight information accuracy on the dynamic routing 

performance. The contributions of this paper to the literature are a novel dynamic routing 

model which accounts for the scheduled departures, the effect of stochastic travel times and 

departure delays and a novel departure delay estimation model based on the real-time 

announced delay information and historical delay distributions.  
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We developed a departure delay estimation approach for the dynamic air-cargo routing 

based on conditional probability models. The proposed delay estimation model accounts for 

the unavailability of a flight due to late arrival of the cargo and uses both historical and real-

time departure delay information. We then formulated a dynamic routing Markov decision 

problem with a novel action space definition. The action space consists of not only the first 

flight choice but collectively all recourse flights at an airport node. A set of controlled 

experiments is conducted to investigate the effect of delay information accuracy, departure 

delay distribution, travel time variability and topology of flight network on the expected cost 

and delivery reliability. Lastly, we presented two case study applications using real flight 

network and departure delay data. The results show that dynamic policy is able to not only 

improve the expected delivery performance but also increase the delivery reliability. Further, 

the departure delay information is critical for realizing the full potential of dynamic routing. 

However, the majority of the improvements can be attained even with little real-time 

information availability and accuracy.  
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Chapter Three: 

Air Cargo Pickup and Delivery Problem with 

Alternative Access Airports 

3.1.   Introduction 

This paper considers a freight forwarder's problem of selecting air cargo flight itineraries 

to a given set of heterogeneous customers and, simultaneously, planning the pickup and airport 

delivery schedule of customer loads. The air cargo flight itinerary options for each customer 

consist of a set of flights departing from the origin airport(s) and arriving to the destination at 

different times. For each customer, the forwarder selects an itinerary considering flight and 

delivery service level related costs, such as tardiness penalties. Given the air cargo itinerary 

assignments, the forwarder performs the customer pickup and airport deliveries via a fleet of 

trucks originating from a depot. In this paper, we formulate and develop an efficient solution 

approach for freight forwarders to concurrently plan the air cargo flight itinerary selection and 

pickup and delivery scheduling of multiple customer loads to minimize the total cost of air and 

road transportation and service. 

Over the past decade, there has been consistent growth in demand for air cargo 

deliveries. According to the Bureau of Transportation Statistics (BTS), in 2007, the value of air 

cargo shipment goods in the US is over $1.8 trillion, a 31% increase in just five years (Margreta 

et al., 2009). Annual forecast reports by both Airbus (2010) and Boeing (2010) predict a 5.9% 
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annual growth rate for global air cargo tonnage over the next 20 years. In response to this 

growth, the air transportation network has been steadily expanding its capacity over the past 

two decades. However, this capacity expansion through new airports, offering more flights 

options, and investing in road connectivity cause the service zones of airports to expand and 

overlap. This has resulted in the creation of Multi-Airport Regions (MARs) where several 

airports accessible in a region substitute and supplement each other in meeting the region's 

demand for air transportation (Loo, 2008). These MARs provide alternative access options for 

passengers as well as air cargo shippers and forwarders. For instance, air travelers consider 

MARs in a region and select airports and flights primarily based on airport access time, flight 

itinerary options, and frequency factors (Basar and Bhat, 2004). These factors are also 

important concerns for the air cargo transportation. The shippers are mainly concerned with 

the on-time delivery performance and the shipping costs, and thereby leave the flight itinerary 

decisions to forwarders. The freight forwarders, intermediaries between shippers and carriers, 

constitute more than 90% of air cargo shipments (Hellermann, 2006). In the case of MAR, the 

forwarders decide on which origin airport to use given the flight itinerary options and costs. 

Their decisions are primarily based on such factors as airport accessibility, proximity to the 

origin of the loads, flight itinerary options (e.g., frequency, destinations). Hall (2002) proposed 

the Alternative Access Airport Policy (AAAP) where considering multiple airports (and 

subsequently flight itinerary options) in a MAR can be beneficial to reduce truck mileage, 

decrease sorting and handling costs, improve delivery service level, and avoid congestion on 

both road and air network. The author discussed the merits of AAAP for air cargo 

transportation using the case study of the Southern California region. 
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In this paper, we consider a freight forwarder's operational implementation of AAAP for 

air cargo transportation. While Hall (2002) outlined and discussed the advantages of the AAAP, 

to the best of our knowledge, there is no study on its modeling and implementation. We model 

the forwarder's problem of selecting flight itineraries for a given set of air cargo customers, 

picking up their loads via a fleet of vehicles and then delivering to the airports in the region. 

One decision component in this problem is the flight itinerary assignment of the air cargo of 

different customers that are geographically dispersed in the MAR. These decisions are driven by 

the availability of flight itinerary options, cargo drop-off cutoff times, destination arrival times, 

flight itinerary costs, and tardiness penalties. The other decision component is the multi-vehicle 

routing to pick up customer loads and deliver to the airports prior to the starting time of the 

selected flight itineraries. These routing decisions are affected by the locations (depot, 

customers and airports), starting times of the selected flight itineraries, and the vehicle fleet 

size. This operational implementation of AAAP generalizes the Many-to-Many Pickup and 

Delivery Problems (M-M-PDP) in several aspects. For instance, the delivery cost of customer air 

cargo is both destination and time dependent. We hereafter refer to this problem as PDP with 

Assignment and Time-Dependent delivery cost (ATD-PDP). Our contribution in this research is 

three fold. First, we model the operational implementation of AAAP for freight forwarders 

which generalizes several known pickup and delivery problems in terms of model structure and 

objective function. Second, we develop a novel and highly efficient solution method based on 

the Lagrangian decomposition. Finally, we present the results of a case study implementation 

of the AAAP in a Southern California MAR. 

The rest of this paper is organized as follows. We briefly describe the relevant literature 
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in Section 2. In Section 3, we present the problem formulation, network transformation and 

preprocessing. The solution method is developed and properties such as convergence are 

discussed in Section 4. In Section 5, we report on the results of the computational study with 

experimental problem instances and a case study implementation. Section 6 concludes with 

discussion and future research directions. 

3.2   Related Literature 

The freight forwarder's operational implementation of the AAAP is closely related to the 

pickup and delivery problem. Pickup and delivery problems have been extensively studied in 

past decades; for a comprehensive survey see (Berbeglia et al., 2007; Berbeglia et al., 2010; 

Laporte, 1992, 2009; Parragh et al., 2008a, b; Toth and Vigo, 2001). Generally, the PDP involves 

routing a fleet of vehicles to satisfy a set of transportation requests between the given origins 

and destinations. In the PDP, all the origin pickups must precede the destination deliveries and 

be performed by the same vehicle. Moreover, each route must start and terminate at the same 

location (i.e., depot). The PDP usually considers capacitated vehicles and the goal is to minimize 

criteria related to a travel measure. The travel measure can be as simple as the total travel 

distance for urban commercial vehicles (Miguel Andres, 2007) or more complex as the total 

excess riding time over the direct ride time in passenger transportation (Diana and Dessouky, 

2004). The PDP can be classified into two categories: transportation between customers and 

the depot, and transportation between the pickup and delivery locations (Parragh et al. 2008a). 

The proposed problem is in the latter category, which can be further classified into paired and 

unpaired pickup and delivery locations. 
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In the paired PDP, also known as One-to-One PDP (1-1-PDP), the load picked up from a 

customer location can only be delivered to one of the delivery locations. Some customers, 

however, may share the same delivery location. In the stacker-crane problem (SCP), unit loads 

of non-identical commodities have to be transported from the origin to the destination using a 

unit capacity vehicle (see Frederickson, 1978). In the Vehicle Routing Problem with Pickup and 

Delivery (VRPPD), the unit capacity requirement of SCP is relaxed and replaced with a set of 

constraints based on the load properties (e.g., weight, volume, or unit count). A special case of 

the VRPPD is the VRPPD with Time Windows (VRPPDTW) where visiting the pickup or delivery 

location is only allowed during a time window. While the VRPPD generally concerns goods 

transportation, the dial-a-ride problem (DARP) addresses the passenger transportation and 

therefore includes additional side constraints (e.g., maximum ride time, time windows, or 

service quality). Accordingly, the objective function measures customers (in)convenience; see 

(Cordeau and Laporte, 2007) for a comprehensive survey on the modeling and solution 

algorithms for DARP. 

In comparison, the unpaired PDPs, also known as Many-to-Many PDP problems 

(M-M-PDP), consider the case where any commodity can be picked up and delivered to delivery 

locations that accept the commodity. The M-M-PDP was initiated with Anily and Hassin (1992) 

that introduced the swapping problem (SP) for moving n-commodity objects between 

customers with a single unit capacity vehicle. In the SP, each customer supplies one type of 

commodity and demands a different type. In addition to the n-commodity case of the SP, there 

are several other single commodity problems that are studied under the M-M-PDP where 

picked up loads are homogenous. Hernandez-Perez and Salazar-Gonzalez (2004a, b, 2007) 
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introduced and studied the one-commodity pickup and delivery traveling salesman problem 

(1-PDTSP). The 1-PDTSP is the more general case of the Q-delivery traveling salesman problem 

(Q-DTSP) by Chalasani and Motwani (1999) and the capacitated traveling salesman problem 

with pickup and deliveries (CTSPPD) by Anily and Bramel (1999). In the 1-PDTSP, a single vehicle, 

starting from a depot, transports goods from pickup nodes to delivery nodes without exceeding 

the vehicle capacity; the objective is to minimize the total traveling cost. Q-DTSP and CTSPPD 

are special cases of 1-PDTSP where the pickup and deliver quantities are all one unit and the 

vehicle capacity is restricted (i.e., Q units). Hernandez-Perez and Salazar-Gonzalez (2009) later 

extend their 1-PDTSP to the Multi-Commodity One-to-One Pickup and Delivery Traveling 

Salesman Problem (m-PDTSP); however, with this extension, the problem is not an M-M-PDP 

anymore. 

The proposed problem is essentially a PDP as it consists of transporting loads from 

customer sites (pickup locations) to the airports (delivery locations) in the MAR. The depot is 

both the origin and destination of the vehicles; however, it is neither pickup nor a delivery 

point. The proposed problem differs from the 1-1-PDP in that a customer load can be accepted 

by more than a single delivery location (airport). Further, it differs from the general M-M-PDP in 

that the delivery cost of customer loads is time and destination dependent. Moreover, the 

delivery cost structure is different than those proposed for PDPs. Accordingly, we denote this 

problem as the PDP with Assignment and Time-Dependent delivery cost (ATD-PDP). The use of 

term " assignment" indicates that the delivery cost of a customer's load depends on the airport 

and flight itinerary selected. The proposed problem's characteristics have not been studied in 

the literature and, to the best of our knowledge, this is the first research on PDPs with 
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assignment and time dependent delivery costs. The proposed problem is clearly an NP-hard 

problem in the strong sense as it coincides with the VRPPD when there is only one airport and a 

single itinerary (accepted by all customers), which departs late enough to complete all pickups 

and delivery to the airport prior to the departure. 

3.3   Model Formulation 

In this section, we develop the model formulation of the ATD-PDP. We first discuss the 

time dependent delivery cost. Next, we describe the graph transformation and present the 

mixed integer programming model formulation. Last, we introduce and discuss pre-processing 

steps and valid inequalities to strengthen the formulation. 

Let  ܩ௢ ൌ ሺ ௢ܸ,  ௢ሻ be an undirected graph representing the network topology of theܧ

problem where  ௢ܸ is the set of nodes and  ܧ௢ is the set of connecting edges. The set  ௢ܸ 

consists of the depot ݀, the set of customers (pickup locations) ܥ, and the set of airports 

(delivery locations) ܪ ; i.e., ௢ܸ ൌ ሼ݀ሽ ׫ ܥ ׫ ܪ . Let ܭ    be the set of uncapacitated 

homogeneous vehicles (trucks) that originate from the depot and operate during the depot's 

opening (ߠௗ௢௣
) and closing hours (ߠௗ௖௟). A cost  ܿ௜௝ and a travel time ݐ௜௝ is associated with each 

edge  ׊ሺ݅, ݆ሻ א ,௢ܧ ݅ ് ݆ of the network, where  ܿ௜௝ ൒ 0 and  ݐ௜௝ ൒ 0. We assume that the 

triangle property holds for the travel times and travel costs; i.e., we have ݐ௜௝ ൅ ௝௚ݐ ൒  ௜௚ݐ

and  ܿ௜௝ ൅ ௝ܿ௚ ൒ ܿ௜௚, ݅׊, ݆, ݃ א ௢ܸ. Note that, if needed, the fixed cost of utilizing a vehicle can 

be captured by adjusting the cost parameter ܿௗ௝ , ݆׊ א ܥ ׫  We further assume that travel .ܪ

time ݐ௜௝ is deterministic and time-independent. Without loss of generality, we assume that 

there are no time windows for customers' pickups and the service (e.g., loading and unloading) 
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times are negligible. The formulation can be easily extended to incorporate these 

considerations as the methods presented do not rely on their absence. Let ܴ௛ be the set of 

flight itinerary options available at airport  ݄ א  on the day of operation. The cost of assigning ܪ

a flight itinerary ݎ א ܴ௛ to customer  ݅ is  ܨ௜௥௛ , which accounts for the flight cost of the carrier 

as well as the delivery service level related costs, such as tardiness penalties. The starting time 

of the flight itinerary ݎ is denoted by  ܳ௥௛ (i.e., the cargo drop-off cutoff time for the first flight 

of the itinerary). We only consider those flights that can be used on the day of operation, e.g.,   ܳ௥௛ ൒ ௗ௢௣ߠ
. 

3.3.1   Time Dependent Delivery Cost 

In assigning the customer ݅'s cargo to a flight itinerary ݎ א ܴ௛, the freight forwarder 

accounts for the airport ݄ arrival time. The assignment is feasible only if the airport delivery 

time (ݐ) is on or before the flight itinerary starting time, i.e., ݐ ൑ ܳ௥௛. When a customer's load is 

delivered to an airport ݄ at time ݐ and there are no flights available, ݐ ൐ max௥אோ೓ሼܳ௥௛ሽ  , 
then the air cargo is assigned to a recourse flight itinerary ݎ଴ ב ܴ௛, e.g., a next day itinerary. 

We assign a penalty cost  ܨ௜଴௛ ൐ ௜௥௛ܨ ݎ׊   א ܴ௛, for airport delivery after the departure time of the 

last flight on the day of operation. Accordingly, we define the time dependent airport delivery 

cost of delivering customer  ݅'s load to airport  ݄ at time  ݐ, ݂ሺ݄, ݅,   :ሻ, as followsݐ

݂ሺ݄, ݅, ሻݐ ൌ ൝  min௥אோ೓ሼܨ௜௥௛ ݐ| ൑ ܳ௥௛ሽ  ݂݅  ݐ ൑ max௥אோ೓ሼܳ௥௛ሽ  ܨ௜଴௛ , ݁ݏ݅ݓݎ݄݁ݐ݋  

The definition above indicates that for each customer, not all the itinerary options need 

to be considered and we can identify the potential set of itinerary options that are dominated 
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by at least another itinerary option from the same airport. The flight itineraries that are 

dominated for all customers are removed from further consideration. The flights itineraries that 

are dominated only for a subset of customers are preprocessed such that their assignment to 

that subset of customers is precluded. Lemma 1 provides the conditions necessary to identify 

the dominated flight itineraries from airport ݄ for customer ݅. 

Lemma 1. Given two flight itineraries ݎ, ᇱݎ א ܴ௛, ݎ ്  is dominated by ݎ ᇱ, itineraryݎ

itinerary ݎᇱ if (a) ܨ௜௥ᇲ௛ ൑ ௜௥௛ܨ   and ܳ௥௛ ൏   ܳ௥ᇲ௛  or (b) ܨ௜௥ᇲ௛ ൏ ௜௥௛ܨ   and  ܳ௥௛ ൑   ܳ௥ᇲ௛   . Moreover, if 

(c) ܨ௜௥ᇲ௛ ൌ ௜௥௛ܨ   and ܳ௥ᇲ௛ ൌ ܳ௥௛, considering either one is sufficient. 

Proof. The proof is evident from the definition of ݂ሺ݄, ݅,  ז.ሻݐ

Upon the elimination of dominated itineraries, the following corollary states that there 

exist no two flight itineraries for customer ݅ at airport ݄ that either depart at the same time 

or have the same cost. 

Corollary 1. After eliminating the dominated flight itineraries, there are no two flight 

itineraries such that ݎ, ݎ  ᇲ א ܴ௛, ݎ ് ,ᇱ in ݂ሺ݄ݎ ݅, ሻ with  ܳ௥ᇲ௛ݐ ൌ ܳ௥௛ or ܨ௜௥ᇲ௛ ൌ ௜௥௛ܨ   . 
Theorem 1 characterizes the airport delivery cost function after eliminating the 

dominated itineraries. 

Theorem 1. Airport delivery cost function ݂ሺ݄, ݅,  ሻ based on non-dominated flightݐ

itineraries is a non-decreasing step function with discontinuities at every ܳ௥௛  ݎ׊ א ܴ௛. 

Proof. Let us first consider single flight itinerary case where ݂ሺ݄, ݅, ሻݐ ൌ ௜௥௛ܨ ݐ׊    , ൑ ܳ௥௛ 

and ܨ௜଴௛  otherwise. Since   ܨ௜଴௛ ൐ ௜௥௛ܨ , the ݂ሺ݄, ݅,  ሻ is a step-function, which is non-decreasingݐ

and has a single discontinuity at ܳ௥௛. In the case of more than one flight itinerary, let us 

consider any two itineraries  ݎ, ᇱݎ א ܴ௛. From Lemma 1 and Corollary 1, we have  ܳ௥ᇲ௛ ൏ ܳ௥௛ 
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and ௜௥ᇲ௛ܨ ൏ ௜௥௛ܨ . Therefore, for any two delivery times   ݐଵ  and ଶݐ    where ଵݐ   ൏ ଶݐ , we 

have  ݂ሺ݄, ݅, ଵሻݐ ൑   ݂ሺ݄, ݅, ,ଶሻ. In this case, ݂ሺ݄ݐ ݅,  ሻ is a non-decreasing step-function withݐ

discontinuities at ܳ௥௛  and ܳ௥ᇲ௛ . The case for more than two itineraries follows from the 

induction. Thus, the airport delivery cost function is a non-decreasing step-function with 

discontinuities at the starting times of the non-dominated itineraries.ז 

 Figure 3.1 illustrates a typical airport delivery cost function at airport ݄ for two 

customers   ݅, ݆ א ܥ . There are two flight itinerary options available ݎ ൌ 1  and 2 . While 

customer  ݅ can use both ݎ ൌ 1 and 2, customer  ݆ can only use the flight itinerary ݎ ൌ 1 

and its load cannot be shipped by itinerary ݎ ൌ 2, e.g., destination of itinerary ݎ ൌ 2 is 

different than the customer ݆'s destination. Note that airport delivery after ܳଶ௛ for customer  ݅ 

(ܳଵ௛ for customer  ݆) will result in the penalty cost of  ܨ௜଴௛ ௝଴௛ܨ)   for customer  ݆).  

 

Figure 3.1. Illustrative airport ݄  delivery cost function for customers ݅, ݆ א  customer ݅ has two flight itinerary ;ܥ

options (left) and customer ݆ has a single flight itinerary option (right). 

 

Given the time-independent and deterministic edge travel times, we can infer the 

following two corollaries from Theorem 1. 

Corollary 2. Waiting at any node or delaying any airport delivery is suboptimal for 

ATD-PDP. 
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Corollary 3. All used vehicles start at their earliest time from the depot. 

3.3.2   Graph Transformation 

In ATD-PDP, each airport can be visited multiple times by a vehicle to deliver loads from 

different customers. Consequently, a feasible solution may not be a Hamiltonian cycle. Hence, 

in modeling the ATD-PDP, we need to keep track of the order of these airport visits for each 

vehicle by introducing additional variables. Moreover, another set of additional variables is 

needed to handle the step-function characteristic of the airport delivery cost. To reduce the 

complexity of the ATD-PDP's formulation and eliminate the need for these additional variables, 

we perform a graph transformation of the original network graph ܩ௢ ൌ ሺ ௢ܸ,  .௢ሻܧ

We now describe important properties of the optimal solutions of ATD-PDP used in the 

graph transformation. The first property relates to preemption, which is the act of temporarily 

leaving the previously picked up load at a location that is not its destination for retrieving it for 

delivery at a later time. 

Lemma 2. There is an optimal solution for ATD-PDP that is non-dominated by a solution 

with preemption. 

Proof. First, vehicles have no capacity restrictions to motivate preemptive solutions. In 

addition, a preemptive solution potentially prolongs deliveries by introducing additional node 

visits, shown to be suboptimal in Corollary 2. For any solution with preemption, we can identify 

a similar solution without preemption where the return visit for picking up the dropped load is 

eliminated while the remainder of the decisions remains the same. Since this elimination does 

not increase the airport arrival time, then, from Theorem 1, the non-preemptive solution has 
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same or better objective function than that of the preemptive solution.ז 

Corollary 4. In ATD-PDP, there is an optimal solution where all customer nodes are 

visited at most once. 

 Based on the above corollary, we can restrict the visit of each customer to at most 

once. The airport nodes, in contrast, can be visited more than once by each vehicle. However, 

the following theorem establishes that each vehicle visits an airport only once for each 

itinerary. 

Theorem 2. There exists an optimal solution of ATD-PDP where each vehicle delivers 

customers' load to an airport for each flight itinerary only once. 

Proof. Consider an optimal solution in which a set of customers (ܵ) are assigned to a 

given flight itinerary ݎᇱ at airport ݄. Assume that these customers are delivered to the airport 

by one vehicle but in two visits at times ݐଵ and ݐଶ consecutively, where ݐଵ ൏ ଵݐ ,ଶ. Clearlyݐ ൏ ଶݐ ൑ ܳ௥ᇲ௛ . Let us denote the set of delivered customers at each visit as two distinctive and 

non-empty sets of ଵܵ and ܵଶ respectively; i.e., ଵܵ ׫ ܵଶ. To prove the theorem it is sufficient 

to show that moving all the customers in set ଵܵ to set ܵଶ will results in a feasible solution 

with the objective value the same as the optimal objective value. First, since set ܵଶ is not 

empty and vehicles are uncapacitated, the proposed solution is feasible. Moreover, since the 

same itinerary is used the objective value is the same as the original optimal value. In other 

words, although the vehicle may still visit the airport at time ݐଵ for other itineraries, since ଵܵ 

is empty in the proposed solution, itinerary ݎᇱ is used only once in the second visit.ז 

 

 Theorem 2 states that we can restrict the solution of ATD-PDP to those solutions 
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where each flight itinerary requires at most one visit to the airport. The following corollary 

establishes that we only need to consider visits to an airport ݄ equal to the number of flight 

itineraries ݎ׊ א ܴ௛  plus an additional visit for the recourse flight ݎ଴ ב ܴ௛. 

Corollary 5. In ATD-PDP, there is an optimal solution where any airport ݄ is visited, at 

most, |ܴ௛| ൅ 1 times. 

We use this property to perform the graph transformation. In our graph transformation 

scheme, we partition each airport node ݄ into |ܴ௛| ൅ 1 nodes, each node representing a 

single flight itinerary. In the remainder, we refer to these nodes as flight nodes. 

Let ܩ ൌ ሺܸ, ௢ܩሻ be the transformed graph of the original graphܧ ൌ ሺ ௢ܸ,  ௢ሻ. In thisܧ

transformation, each airport node ݄ א |is replaced by |ܴ௛ ܪ ൅ 1 flight nodes, |ܴ௛| nodes 

each corresponding to a flight itinerary plus another node for the recourse flight. Consequently, 

the airport set ܪ is replaced with a new set of flight nodes ݎ א ܴ, where  |ܴ| ൌ ∑  ௛אு |ܴ௛| ൅|ܪ|. The geographical locations of the flight nodes are identical to that of their respective 

airport nodes. Then, we have  ܸ ൌ ሼ݀ሽ ׫ ܥ ׫ ܴ. The cost of assigning flight itinerary ݎ א ܴ௛ to 

customer  ݅ (ܨ௜௥௛ ) is replaced with the delivery cost (ܨ௜௥) to flight node ݎ א ܴ. Note that we are 

using the same index ݎ for itineraries and flight nodes. Further, we introduce a hard upper 

time window ܳ௥ for flight node ݎ, i.e., it cannot be visited after  ܳ௥. The flight node for 

recourse flights has the delivery cost of ܨ௜଴ and upper time window of infinity. 

As for the edges, we replace the airport ݄׊ א ,ሺ݆׊ edges ܪ ݄ሻ א ,௢ܧ ݆׊ א ௢ܸ\ሼ݄ሽ 

with new flight node edges ሺ݆, ሻݎ ,א ݆׊ א ܸ, ݎ׊ א ܴ௛  and assign edge travel times ݐ௝௥ ൌ  ௝௛ݐ

and costs ௝ܿ௥ ൌ ௝ܿ௛. Similar procedure is repeated for the outgoing links. In addition, a new set 

of links interconnecting the flight nodes are added with zero travel time and cost for the flight 
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nodes generated from the same airport. The transformed graph ܩ ൌ ሺܸ,  ሻ inherits all theܧ

edges connecting depot to customers and customers to customers. 

While a feasible solution in the original graph may not be a Hamiltonian cycle, the same 

solution is represented with one or more Hamiltonian cycles on the sub-graphs of the 

transformed graph. Indeed, any solution in graph  ܩ can be easily transferred back to a 

solution in original graph  ܩ௢ by collapsing the flight nodes back to their original airport node. 

Figure 3.2 illustrates the graph transformation on a network with 5 customers and 2 airports, 

each with 2 flights. In the feasible solution illustrated in Figure 3.2a, loads from customer(s) ሼ1ሽ,ሼ2,3,4ሽ, and ሼ5ሽ are assigned to flight itineraries 2ݎ at airport 3ݎ ,1ܪ at airport 2ܪ, 

and 4ݎ at airport 2ܪ, respectively. While vehicle 1's trip is a Hamiltonian cycle, vehicle 2 

visits the airport 2ܪ  twice. In the transformed graph in Figure 3.2b, this solution is 

represented in a single Hamiltonian cycle as vehicle 1 visiting flight node 1ݎ and vehicle 2 

visiting flight node 3ݎ and then subsequently 4ݎ. In Figure 3.2b, the shaded flight nodes 

correspond to flight nodes for recourse flights.  

 

Figure 3.2. Illustration of a sample feasible solution in the original (a) and transformed (b) graphs. 

 

The graph transformation eliminates the need for additional variables for tracking the 
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order of vehicle visits to airports as well as handling the step-function characteristic of the time 

dependent delivery cost. This transformation further reduces the complexity of the ATD-PDP's 

formulation. In particular, it allows network preprocessing and introducing valid inequalities to 

strengthen the formulation as described in Section 3.4. 

3.3.3   Formulation 

The objective of the ATD-PDP is to pick up all customer loads, assign loads to flight 

itineraries and deliver loads to the airports on time while minimizing the total cost. We now 

formulate the ATD-PDP using the transformed graph as a mixed-integer programming model. 

Let ݔ௜௝௞  denote the binary decision variable indicating whether vehicle  ݇ travels from node  ݅ 

directly to node  ݆. Let ݕ௜௥௞  be the binary decision variable indicating whether the load of 

customer  ݅ is shipped by flight itinerary  ݎ א ܴ with vehicle  ݇ א  The arrival time of the .ܭ

vehicle   ݇  at node ݆ א ܸ  is denoted as   ௝ܽ௞ . For the depot, we set ܽௗ௞ ൌ ௗ௢௣ߠ
 for any 

vehicle  ݇ א כெ௉ݖ                The formulation of the ATD-PDP, labeled (MP), is as follows. ሺMPሻ .ܭ ൌ min௫,௬ ∑  ௞א௄ ൣ∑  ௜א௏ ∑  ௝א௏\ሼ௜ሽ ܿ௜௝ݔ௜௝௞ ൅ ∑  ௜א஼ ∑  ௥אோ ௜௥௞ݕ௜௥ܨ ൧             (1) 

Subject to ∑  ௞א௄ ∑  ௥אோ ௜௥௞ݕ ൌ ݅׊                1 א ∑ (2)  ܥ  ௝א௏\ሼ௜ሽ ௜௝௞ݔ ൑ ݅׊                1 א ܸ, ݇׊ א ∑ (3)  ܭ  ௜א௏\ሼ௝ሽ ௜௝௞ݔ ൅ ∑  ௜א௏\ሼ௝ሽ ௝௜௞ݔ ൌ ݆׊                0 א ܸ, ݇׊ א ௜௝௞ݔ൫ (4) ܭ െ 1൯ܯ ൅ ܽ௜௞ ൅ ௜௝ݐ ൑ ௝ܽ௞        ݅׊ א ܸ, ݆׊ א ܸ\ሼ݀, ݅ሽ, ݇׊ א ௜௞ܽ (5) ܭ ൒ ݅׊                ௗ௢௣ߠ א ,ܥ ݇׊ א  (6)  ܭ
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 ܽ௥௞ ൑ ݉݅݊൛ߠௗ௖௟ െ ௥ௗݐ , ܳ௥ൟ        ݎ׊ א ܴ, ݇׊ א ௜௥௞ݕ൫ (7) ܭ െ 1൯ܯ ൅ ܽ௜௞ ൅ ௜௥ݐ ൑ ܽ௥௞                ݅׊ א ,ܥ ݎ׊ א ܴ, ݇׊ א ௜௥௞ݕ2 (8) ܭ ൑ ∑  ௝א௏\ሼ௜ሽ ௜௝௞ݔ ൅ ∑  ௝א௏\ሼ௥ሽ ௥௝௞ݔ ݅׊         א ,ܥ ݎ׊ א ܴ, ݇׊ א ௜௥௞ݕ (9) ܭ , ௜௝௞ݔ א ሼ0,1ሽ      ܽ௜௞, ܽ௥௞ ൒ ,݅׊        0 ݆ א ܸ|݅ ് ݎ׊      ,݆ א ݇׊      ,ܴ א  (10) ܭ

 

The objective (1) minimizes the total cost of delivery including flight itineraries, service 

level and road travel cost. Constraint set (2) ensures that every customer's load is assigned to a 

flight itinerary. Constraint set (3) guarantees that each node is visited at most once by each 

vehicle. Constraint set (4) is the flow conservation at each node for each vehicle. Constraint sets 

(5) and (6) calculate the arrival time at every node while also preventing sub-tours. Constraint 

set (7) prohibits visiting a flight node after the starting time of the flight itinerary while ensuring 

that the vehicle can also return to the depot before the depot's closing time. Constraint set (8) 

guarantees that a customer load pickup precedes its delivery to the selected flight node. 

Constraint set (9) ensures that both pickup and delivery of a customer load is performed by a 

same vehicle. Constant  ܯ is a big number corresponding to arrival times and can be calculated 

as summation of all the links' travel times. 

For brevity, let ܬ௞ሺݔ, ሻݕ  denote the objective function for vehicle   ݇  and ܬሺݔ,  ሻݕ

denote objective for all vehicles. 

,ݔ௞ሺܬ  ሻݕ ൌ ∑  ௜א௏ ∑  ௝א௏\ሼ௜ሽ ܿ௜௝ݔ௜௝௞ ൅ ∑  ௜א஼ ∑  ௥אோ ௜௥௞ݕ௜௥ܨ ݇׊         א  (11) ܭ

,ݔሺܬ  ሻݕ ൌ ∑  ௞א௄ ,ݔ௞ሺܬ  ሻ (12)ݕ
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3.3.4   Network Preprocessing and Valid Inequalities 

We strengthen the formulation (MP) by network preprocessing and introducing valid 

inequalities. First preprocessing step is to tighten the upper and lower bounds on the node 

arrival times. For a customer node, the earliest arrival time (ܽ௜௞) is attained via a direct travel 

from the depot, 

 ܽ௜௞ ൒   ܽ௜௞ ൌ ௗ௢௣ߠ ൅ ݅׊      ௗ௜ݐ א ݇׊      ,ܥ א  (13) ,ܭ

and, the latest arrival time (ܽ௜௞) is the latest time that allows a vehicle to pick up the 

customer load, deliver it to a flight node, and return to the depot before the closing time, 

 ܽ௜௞ ൑ ܽ௜௞ ൌ max௥אோ ൛min൫ܳ௥ , ௗ௖௟ߠ െ ௥ௗ൯ݐ െ ݅׊          ௜௥  ൟݐ א ,ܥ ݇׊ א  (14) .ܭ

For a flight node, the earliest arrival time (ܽ௥௞) is attained by the shortest travel from the 

depot after visiting a customer, 

 ܽ௥௞ ൒   ܽ௥௞ ൌ ௗ௢௣ߠ ൅ min௜א஼ ሺݐௗ௜ ൅ ݎ׊          ௜௥ሻݐ א ݇׊    ,ܴ א  (15) .ܭ

The latest arrival time to a flight node (ܽ௥௞) is already included in (MP) as the constraint 

set (7). Next preprocessing step is determining the lowest value for ܯ in constraints (5) and 

(8). In particular, we replace ܯ with edge specific ܯ௜௝, 

௜௝ܯ  ൌ ܽ௜௞ ൅ ௜௝ݐ ݅׊             א ܸ, ݆׊ א ܸ\ሼ݀, ݅ሽ, ݇׊ א  (16) .ܭ

The final preprocessing step is the elimination of the inadmissible edges that can never 

be traversed in a feasible solution. We remove edges ሺ݅, ݀ሻ  ݅׊ א  since vehicles must return ܥ

to the depot empty. The edges ሺ݀, ݎ׊  ሻݎ א ܴ are eliminated since vehicles leave the depot 

empty. Lastly, we remove any edge ሺ݅, ݆ሻ  ݅׊, ݆ א ܸ if ܽ௜௞ ൅ ௜௝ݐ ൐ ௝ܽ௞ , i.e., the vehicle cannot 

traverse an edge if it cannot arrive its destination before the latest allowed arrival time. 
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We tighten the constraints set (5) by using the following lifting scheme from Desrochers 

and Laporte (1991) by taking the reverse arcs into account. 

ܯ௝௜௞൫ݔ  െ ௜௝ݐ െ ௝௜൯ݐ ൅ ൫ݔ௜௝௞ െ 1൯ܯ ൅ ܽ௜௞ ൅ ௜௝ݐ ൑ ௝ܽ௞    ݅׊, ݆ ് ݅ א ܸ\ሼ݀ሽ, ݇׊ א  (17) ܭ

In addition, we introduce the following cut set that ensures that a vehicle visits a 

customer only if it delivers the customer's load to a flight node. 

 ∑  ௝א௏\ሼ௜ሽ ௜௝௞ݔ ൌ ∑  ௥אோ ௜௥௞ݕ ݅׊       א ݇׊    ,ܥ א  (18) ܭ

3.4   Methodology 

First, we briefly present the standard Lagrangian Decomposition approach. Next, we 

introduce the Successive Subproblem Solution (SSS) method for solving ATD-PDP problem using 

the (MP) formulation with preprocessing and valid inequalities described in Section 3.4. We also 

provide convergence results and a method to estimate the bound used in subgradient 

optimization to improve the convergence to quality primal feasible solutions. 

3.4.1   Standard Lagrangian Decomposition Approach 

The standard Lagrangian Decomposition (LD) approach is commonly used for 

formulations composed of two or more intertwined subproblems that are easier to solve 

independently through specialized algorithms. In fact, the LD approach is commonly used for 

the vehicle routing problems (Kohl and Madsen, 1997). The (MP) formulation is a candidate for 

LD approach since constraints (2) are the only coupling constraints for vehicles and the rest of 

the constraints and the objective is separable by vehicle. Hence, by relaxing the constraints (2) 

through Lagrangian relaxation, (MP) can be decomposed to |ܭ|    subproblems, each 
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corresponding to a single vehicle. 

The Lagrangian relaxation of MP with respect to constraints (2) results in the following 

relaxed problem (LR), 

 ሺLRሻ                Φሺλሻ ൌ minሺ௫,௬ሻאΩൣ∑  ௞א௄ ,ݔ௞ሺܬ ሻݕ ൅ ∑  ௜א஼ λ௜൫1 െ ∑  ௞א௄ ∑  ௥אோ ௜௥௞ݕ ൯൧, (19) 

where  λ ൌ ൫λଵ, ڮ , λ|஼|൯ א Ը|஼|is the vector of Lagrangian multipliers associated with 

constraints (2). The set denotes all feasible solutions of the (LR). Then, the Lagrangian Dual (LD) 

problem maximizes the (LR) solution, which is a lower bound on ݖெ௉כ . 

 ሺLDሻ                                        Φ௅஽כ ൌ max஛ ൫Φሺλሻ൯.                                         (20) 

 The set  splits into  |ܭ| disjoint subsets, i.e.  Ω ൌ Ωଵ ൈ Ωଶ ൈ ڮ ൈ Ω|K|, where each  Ω୩ 

is defined by constraints (3)െ(10) for a given  ݇ א  ,Further, the objective of (LD) is additive .ܭ

thus leading to the following decomposition, 

 Φሺλሻ ൌ ∑  ௞א௄ Φ௞ሺλሻ ൅ ∑  ௜א஼ λ௜ . (21) 

where Φ௞ሺλሻ ൌ minሺ௫,௬ሻאΩౡܮ௞ሺλ, ,ݔ ሻݕ  and ܮ௞ሺλ, ,ݔ ሻݕ ൌ ,ݔ௞ሺܬ ሻݕ െ ∑  ௜א஼ ∑  ௥אோ λ ௜ݕ௜௥௞  

is the Lagrangian function of the ݇௧௛  subproblem. To solve (LD), we solve the primal 

subproblem Φ௞ሺλሻ for each vehicle ݇ at the low-level and update the Lagrangian multipliers 

at the high-level, e.g., using subgradient optimization (Conejo et al., 2006; Fisher, 2004; 

Geoffrion, 1974). The optimization at both levels is performed iteratively until the dual solution 

converges. 

However, since the vehicles are homogeneous, the subproblems Φ௞ሺλሻ  are identical; 

i.e. Ωଵ ൌ Ωଶ ൌ ڮ ൌ Ω|K| . Hence, all subproblems have the same optimal solution with 

identical objective value. Accordingly, solving (LD) is equivalent to solving the following, 
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max஛|ܭ|  ቆ minሺ௫,௬ሻאΩౡܮ௞ሺλ, ,ݔ ሻቇݕ ൅ ∑  ௜א஼ λ௜ (22) 

 where  ݇ א  is any one of the subproblems. This case of identical subproblems ܭ

presents challenges in the solution process. In particular with discrete decisions, it leads to 

oscillating dual solutions, affecting the convergence rate. Further, the solutions converged are 

primal infeasible and provide a lower bound on ݖெ௉כ  that can be weak. Lastly, the primal 

infeasibility of the solutions requires integration with an exact (heuristic) method such as 

branch-and-bound (Lagrangian heuristic) to obtain optimal (good quality) solutions (Kohl and 

Madsen, 1997). 

3.4.2   Successive Subproblem Solving Method 

We adapt the Successive Subproblem Solving (SSS) method to avoid the challenges 

associated with the standard Lagrangian Decomposition method due to the identical 

subproblems. This approach is introduced by Zhai et al. (2002) to solve the unit commitment 

problem in electrical power generator scheduling. The SSS approach extends and improves over 

the standard Lagrangian Decomposition method by addressing the dual solution oscillation. 

However, it does not guarantee either the primal feasibility or the quality of feasible solutions. 

We address these issues in Section 4.4 by developing a modified variable target value method 

for subgradient optimization for SSS approach. 

In SSS, we introduce an absolute penalty term that helps to reduce the oscillation and 

constraint violations more rapidly. Accordingly, the Lagrangian function is revised to the 

following augmented form, 
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,෠ሺ߱ܮ  λ, ,ݔ ሻݕ ൌ ∑  ௞א௄ ,ݔ௞ሺܬ ሻݕ ൅ ∑  ௜א஼ λ௜൫1 െ ∑  ௞א௄ ∑  ௥אோ ௜௥௞ݕ ൯ 

 ൅߱ ∑  ௜א஼ ห1 െ ∑  ௞א௄ ∑  ௥אோ ௜௥௞ݕ ห, (23) 

where  ߱ ൐ 0 is the penalty parameter. The revised dual problem (PS) and dual 

function Φሺλሻ are then expressed as, 

 ሺPSሻ        Φ௉ௌכ ሺ߱ሻ ൌ max஛ Φ෡ ሺω, λሻ ൌ max஛ ቆ minሺ௫,௬ሻאΩܮ෠ሺ߱, λ, ,ݔ  ሻቇ. (24)ݕ

 The  Φ௉ௌכ ሺ߱ሻ is the optimum dual solution with penalty weight  ߱. The optimum 

solution (PS) can be either a feasible or infeasible solution to the original problem (MP). If the 

solution is feasible, it can be shown that it is also optimum, i.e., no duality gap Φ௉ௌכ ሺ߱ሻ ൌ כெ௉ݖ . 

Following theorem establishes that the Φ௉ௌכ ሺ߱ሻ is a lower bound on the primal optimum 

solution  ݖெ௉כ . 

Theorem 3. For any ߱ and ߣ, Φ෡ ሺω, λሻ ൑ Φ௉ௌכ ሺ߱ሻ ൑ כெ௉ݖ ൑ ,ݔሺܬ  .ሻݕ

Proof. By definition from (1) and (24), we have ݖெ௉כ ൑ ,ݔሺܬ ሻ and Φ෡ݕ ሺω, λሻ ൑ Φ௉ௌכ ሺ߱ሻ, 

respectively. Let ሺכݔ,  denote the כሻ be the primal optimum solution to problem (MP) and λכݕ

optimum multipliers. The primal optimum solution is feasible, thus, satisfies constraint set (2). 

Accordingly, we have  

כெ௉ݖ ൌ ෍  ௞א௄ ,כݔ௞ሺܬ ሻכݕ ൅ ෍  ௜א஼ λ୧כ ൭1 െ ෍  ௞א௄ ෍  ௥אோ ൱כ௜௥௞ݕ ൅ ߱ ෍  ௜א஼ อ1 െ ෍  ௞א௄ ෍  ௥אோ อכ௜௥௞ݕ ൌ ,෠ሺ߱ܮ λכ, ,כݔ  .ሻכݕ
From the definition (24),                                  Φ௉ௌכ ሺ߱ሻ ൌ minሺ௫,௬ሻאΩܮ෠ሺ߱, λכ, ,ݔ ሻݕ   ൑ ,෠ሺ߱ܮ λכ, ,כݔ ሻכݕ ൌ כெ௉ݖ .  ז

 Revised Lagrangian function (23) cannot be decomposed into ݇ subproblems due to 

the penalty term. Hence, to calculate the subgradient of  Φ෡ ሺω, λሻ with respect to  λ, we now 



74 

 

need to solve the integrated low-level problem minሺ௫,௬ሻאΩܮ෠ሺ߱, λ, ,ݔ ,ሻݕ  which is 

computationally inefficient.  Revised Lagrangian function in (23), however, can be reformulated 

as an additive function. Let us redefine the Lagrangian function for  ݇௧௛ vehicle as follows: 

,෠௞ሺ߱ܮ  λ, ,ݔ ሻݕ ൌ ,ݔ௞ሺܬ ሻݕ െ ∑  ௜א஼ ∑  ௥אோ λ௜ݕ௜௥௞ ൅ ߱ ∑  ௜א஼ หݍ௞ሺ݅ሻ െ ∑  ௥אோ ௜௥௞ݕ ห  , (25) 

where, 

௞ሺ݅ሻݍ  ൌ 1 െ ∑  ௦א௄௦ஷ௞ ∑  ௥אோ ௜௥௦ݕ   . (26) 

It can be verified that the Lagrangian function (23) can be expressed in terms of ܮ෠௞ሺ߱, λ, ,ݔ  :௞ሺ݅ሻ as followsݍ ሻ andݕ

,෠ሺ߱ܮ  λ, ,ݔ ሻݕ ൌ ,෠௞ሺ߱ܮ λ, ,ݔ ሻݕ ൅ ∑  ௦א௄௦ஷ௞ ,ݔ௦ሺܬ ሻݕ ൅ ∑  ௜א஼ λ௜ݍ௞ሺ݅ሻ  . (27) 

 Since (27) is additive, we can now solve the (PS) in parts, e.g., for each vehicle. The 

subproblem for vehicle ݇ is then defined as follows: 

 ሺPS୩ሻ      Φ෡ ௞ሺλሻ ൌ minሺ௫,௬ሻאΩౡ    ܮ෠௞ሺ߱, λ, ,ݔ  ሻ  . (28)ݕ

The variable  ݍ௞ሺ݅ሻ is fixed for the ݇௧௛ subproblem. The ݍ௞ሺ݅ሻ links subproblem ݇ to 

other subproblems by conveying the information about customer  ݅'s assignment to other 

vehicles. Hence, the solutions of the subproblems are likely to be different from each other, 

thus alleviating the issues associated with identical subproblems. 

In solving (PS), the SSS method solves the vehicle subproblems one at a time, while 

calculating the ݍ௞ሺ݅ሻ ݅׊ א  using the solution from other vehicles. The SSS method updates ܥ

the Lagrangian multipliers after solving any of the subproblems. Note that this is needed since 

solving subproblems one after another using the same multipliers improves the ܮ෠ሺ߱, λ, ,ݔ  ሻ atݕ

a decreasing rate because the subgradient directions are not being updated. In SSS, the 
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Lagrangian multipliers are updated using the surrogate subgradient (SSG) approach introduced 

by Zhao et al. (1999). The standard subgradient approach requires solving all subproblems to 

obtain the subgradient direction (Geoffrion, 1974; Fisher, 2004). In the SSG approach, however, 

the solution to only one of the subproblems is sufficient to obtain a proper surrogate 

subgradient direction. Let ݃௜௝  denote the surrogate subgradient for customer ݅  at any 

iteration  ݆ and is calculated as,   
 ݃௜௝ ൌ 1 െ ∑  ௞א௄ ∑  ௥אோ ൫ݕ௜௥௞ ൯௝ ݅׊                 א  (29) .ܥ

We first introduce the notation used in the SSS method and then present its algorithmic 

steps. 

Notation: ൫ݔ௝ , ௝ݔ௝൯௞: solution of ݇௧௛ subproblem at iteration ݆ ൫ݕ , ௝൯: solution at iteration ݆ λ෠଴: initial Lagrangian multipliers, i.e., λ෠଴ݕ ൌ ൛λ෠௜଴, ݅׊ א ൟ λ௝: Lagrangian multipliers at iteration ݆, i.e., λ௝ܥ ൌ ൛λ௜௝ , ݅׊ א ൟ ݃௝: surrogate subgradients at iteration ݆, i.e., ݃௝ܥ ൌ ൛∑  ௜א஼ ݃௜௝ , ݅׊ א ఠ௝ܮ ݆ ௝: step-size at iterationߜ ൟܥ : Lagrangian function value at iteration ݆ with penalty ߱, i.e., ܮఠ௝ ൌ ,෠൫߱ܮ λ௝ , ௝ݔ , step-size update parameter, 0 :ߚ ௝൯ݕ ൏ ߚ ൏ ߝ ,threshold for Lagrangian multiplier convergence criteria :ߝ initialization factor for Lagrangian multipliers :ߙ 1 ൐ 0 
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SSS Procedure: 

 Initialization.  

  I.1. Given λ෠଴, e.g.,  λ෠଴ ൌ 0, solve (LD) using (22) and obtain  ሺݔ଴,  ଴ሻݕ

  I.2. Calculate, 

 λ௜଴ ൌ ߙ ቀ1 െ ∑  ௞א௄ ∑  ௥אோ ൫ݕ௜௥௞ ൯଴ቁ            ݅׊ א  (30) ,ܥ

  where,  0 ൏ ߙ ൏ ቀΦ௉ௌכ ሺ߱ሻ െ ,෠ሺ߱ܮ 0, ,଴ݔ ଴ሻቁݕ / ∑  ௜א஼ ቛ1 െ ∑  ௞א௄ ∑  ௥אோ ൫ݕ௜௥௞ ൯଴ቛଶ
 

  I.3. Calculate ܮఠ଴ ൌ ,෠ሺ߱ܮ λ଴, ,଴ݔ  :଴ሻ and update Lagrangian multipliersݕ

 λଵ ൌ λ଴ ൅  ,଴݃଴ߜ
  where 0 ൏ ଴ߜ ൌ כሺΦ௉ௌߚ ሺ߱ሻ െ  ܮఠ଴ ሻ/ԡ݃଴ԡଶ and 0 ൏ ߚ ൏ 1. Set ݆ ൌ 1. 

 Step 1. Subproblem Solution: 

  1.1. For ݇ ൌ 1,2, … ,  :Repeat ,|ܭ|

  1.1.a. Solve subproblem ሺPS୩ሻ in (28) by setting 

 ൫ݔ௝ , ௝൯௦ݕ ൌ ൫ݔ௝ିଵ, ݏ௝ିଵ൯௦forݕ א ݏ  ܭ ് ݇ 

  to obtain ൫ݔ௝ ,  .௝൯௞ݕ
  1.1.b. If the following improvement condition is satisfied, 

ఠ௝ܮ  ൌ ,෠൫߱ܮ λ௝ , ௝ݔ , ௝൯ݕ ൏ ,෠൫߱ܮ λ௝ , ,௝ିଵݔ  ௝ିଵ൯, (31)ݕ

  where  ൫ݔ௝ , ௝൯ݕ ൌ ൫ݔ௝ , ௝൯௞ݕ ׫ ቄ൫ݔ௝ିଵ, ݏ|௝ିଵ൯௦ݕ א ,ܭ ݏ ് ݇ቅ, 

  then go to Step 2, otherwise continue with the next ݇. 

  1.2. Set  ൫ݔ௝ , ௝൯ݕ ൌ   ൫ݔ௝ିଵ,  .௝ିଵ൯ݕ

 Step 2. Subgradient Optimization:  

  2.1. Update Lagrangian multipliers : 
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 λ௝ାଵ ൌ λ௝ ൅ ௝݃௝ߜ , 
  where 0 ൏ ௝ߜ ൌ כ൫Φ௉ௌߚ െ ఠ௝ܮ   ൯/ฮ݃௝ฮଶ

 and 0 ൏ ߚ ൏ 1. 

 Step 3. Check the stopping criteria.  

  3.1. If ฮλ௝ାଵ െ λ௝ฮ ൑ ݆  then go to Step 4; otherwise set ,ߝ ൌ ݆ ൅ 1 and return to Step 1. 

 Step 4. Terminate with solution ൫ݔ௝ ,  .௝൯ݕ

 

The SSS method is initialized by solving (LD) to obtain initial solutions to estimate the 

starting values for Lagrangian multipliers. The bounding of ߙ in the initialization ensures that ܮఠ଴ ൌ ,෠ሺ߱ܮ λ଴, ,଴ݔ ଴ሻݕ ൏ Φ௉ௌכ ሺ߱ሻ. This inequality is important for convergence analysis as 

explained in the next section. The subproblems in Step 1 are sequentially solved until the 

improvement condition in (31) is attained. In each subproblem solution, the previous iteration's 

solutions are used to calculate ݍ௞ሺ݅ሻ ݅׊ א  When none of the vehicle ݇'s subproblem .ܥ

solution satisfies (31), then the previous iteration's solution is maintained. The multipliers are 

updated using the surrogate gradient in Step 2.1. The SSS method terminates when multipliers 

converge. 

The SSS method requires Φ௉ௌכ ሺ߱ሻ. This value, however, is generally unknown in 

advance and needs to be estimated. A poor underestimation may result in convergence to a 

primal infeasible solution with large duality gap (see Theorem 4). In the standard Lagrangian 

method, the value used in place of Φ௉ௌכ ሺ߱ሻ is an overestimation of ݖெ௉כ , which affects the 

convergence rate. However, the solutions converged are either primal infeasible or optimal 

(Held et al., 1974). In comparison, SSS method, using an overestimation of Φ௉ௌכ ሺ߱ሻ, may 

converge to a primal feasible but not optimal solution. Hence, SSS differs from the standard 
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Lagrangian method, as it may converge to a suboptimal primal feasible solution without a 

feasibility recovery heuristic. The reason for this is that the SSS minimizes the augmented 

Lagrangian relaxation in (25) by solving decomposed subproblems in Step 1. The bound 

estimate of Φ௉ௌכ ሺ߱ሻ in SSS is therefore critical affecting both the convergence rate and the 

solutions converged, i.e., primal feasible or infeasible. We present the bound estimation 

procedure in Section 4.2.2. 

3.4.2.1   Convergence Analysis 

In this section, we provide convergence results for SSS method with subgradient 

optimization using Φ௉ௌכ ሺ߱ሻ. The following theorem establishes that the Lagrangian function 

value at each iteration of SSS underestimates the optimal solution to the (PS). 

Theorem 4. (Solution Bounding) For a given ߱, at each iteration ݅,   ܮఠ௝ ൏ Φ௉ௌכ ሺ߱ሻ. 

Proof. For  ݆ ൌ 0, the condition on ߙ suffices. In the case of ݆ ൒ 1, from (31) we have,  

ఠ௝ܮ  ൌ ,෠൫߱ܮ λ௝ , ௝ݔ , ௝൯ݕ ൑ ,෠൫߱ܮ λ௝ , ,௝ିଵݔ  .௝ିଵ൯ݕ
Further, ܮ෠൫߱, λ௝ , ,௝ିଵݔ ௝ିଵ൯ݕ ൌ ,෠൫߱ܮ λ௝ିଵ, ,௝ିଵݔ ௝ିଵ൯ݕ ൅ ,෠൫߱ܮ λ௝ , ,௝ିଵݔ ௝ିଵ൯ݕ െ ,෠൫߱ܮ λ௝ିଵ, ,௝ିଵݔ  ௝ିଵ൯ݕ

 ൌ ఠ௝ିଵܮ ൅ ∑  ௜א஼ ൫λ௜௝ െ λ௜௝ିଵ൯൫1 െ ∑  ௞א௄ ∑  ௥אோ ௜௥௞ݕ ൯ ൌ ఠ௝ିଵܮ ൅  .௝ିଵฮ݃௝ିଵฮଶߜ  
From the definition of ߜ௝  in Step 3 of SSS procedure we have, ܮఠ௝ ൑ ఠ௝ିଵܮ ൅ߚ൫Φ௉ௌכ ሺ߱ሻ െ ߚ ఠ௝ିଵ൯. Sinceܮ ൏ 1, we obtain, ܮఠ௝ ൏ ఠ௝ିଵܮ ൅ ΦPSכ ሺωሻ െ ఠ௝ିଵܮ ൑ ΦPSכ ሺωሻ.  ז

The following lemma states that the search direction of the Lagrangian multipliers in any 

iteration is always a proper direction, i.e., ൫λכ െ λ௝൯݃௝ ൐ 0. 

Lemma 3. (Direction). Let λכ be the optimal multiplier vector, then ΦPSכ ሺωሻ െ ఠ௝ܮ ൑
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 ൫λכ െ λ௝൯݃௝ ,  .݆׊

Proof. Based on (23) and (24), we have  ΦPSכ ሺωሻ ൌ Φ෡ ሺω, λכሻ ൌ ,෠ሺ߱ܮ λכ, ,כݔ ሻכݕ ൑ ,෠൫߱ܮ λכ, ௝ݔ , ௝൯ݕ ൌ ఠ௝ܮ ൅ ,෠൫߱ܮ λכ, ௝ݔ , ௝൯ݕ െ ఠ௝ܮ                          ൌ ఠ௝ܮ ൅ ൫λכ െ λ௝൯݃௝  . 
Last step follows from the definition of ݃௝  in (29) and Lagrangian function ܮ෠ሺ߱, λ, ,ݔ כሻ  in (23). From Theorem 4, we have ΦPSݕ ሺωሻ െ ఠ௝ܮ ൐ 0, thus the theorem's result 

follows.ז 

The convergence of the Lagrangian multipliers is established by the following theorem. 

Theorem 5. (Convergence) In the SSS algorithm, the Lagrangian multipliers are 

converging; i.e,  

 ฮλכ െ λ௝ାଵฮଶ ൏ ฮλכ െ λ௝ฮଶ      ݆׊, 
where λכ is the optimal multiplier vector. 

Proof. From (32) we have  

 ฮλכ െ λ௝ାଵฮଶ ൌ ฮλכ െ λ௝ െ ௝݃௝ฮଶߜ
 

              ൌ ฮλכ െ λ௝ฮଶ ൅ ൫ߜ௝൯ଶฮ݃௝ฮଶ െ כ௝൫λߜ2 െ λ௝൯݃௝ . 
Using result from Lemma 3, we have,  

 ฮλכ െ λ௝ାଵฮଶ ൑ ฮλכ െ λ௝ฮଶ ൅ ൫ߜ௝൯ଶฮ݃௝ฮଶ െ כ௝൫ΦPSߜ2 ሺωሻ െ ఠ௝ܮ ൯. 
Then, from the definition of ߜ௝ in Step 2 of SSS procedure,  

             ฮλכ െ λ௝ାଵฮଶ ൑ ฮλכ െ λ௝ฮଶ െ כ௝൫ΦPSߜ ሺωሻ െ ఠ௝ܮ ൯, 
and using the result of Theorem 4, we obtain ฮλכ െ λ௝ାଵฮଶ ൑ ฮλכ െ λ௝ฮଶ.  ז

 Increasing the penalty parameter improves the quality of the solution converged as 
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established by the following theorem. 

Theorem 6. For any two penalty weight ߱ଵ and  ߱ଶ, where  0 ൏ ߱ଵ ൏ ߱ଶ,  

 Φ෡ ሺωଵ, λሻ ൑ Φ෡ ሺωଶ, λሻ ൑ ΦPSכ ሺωଶሻ ൑ כெ௉ݖ . 
Proof. From (23), we have ܮ ഘమ௝ െ ഘభ௝ ܮ ൌ ሺ߱ଶ െ ߱ଵሻห∑  ௜א஼ ݃௜௝ห ൒ 0.Thus, ܮఠమ௝ ൒ ఠభ௝ܮ

. 

Subsequently from (24), we have,  

 minܮఠమ௝ ൒ minܮఠభ௝   , 
 maxΦ෡ ሺωଶ, λሻ ൒ maxΦ෡ ሺωଵ, λሻ  , 
 ΦPSכ ሺωଶሻ ൒ ΦPSכ ሺωଵሻ. 
From Theorem 5, we already have  ΦPSכ ሺωଶሻ ൑ כெ௉ݖ  ז.

While Theorem 6 states that the solution quality of SSS improves with penalty 

parameter, we note that choosing ߱ very large may cause ill-conditioning and numerical 

instability. 

3.4.2.2   Bound Estimation: Variable Target Value Method 

The SSS procedure uses an estimate of   ΦPSכ ሺωሻ  for the surrogate subgradient 

optimization. Rather than using a static estimate, we dynamically change this estimate in order 

to obtain a good quality primal feasible solution. Specifically, we modify the variable target 

value method (VTVM) presented in Lim and Sherali (2006) and incorporate backtracking to 

improve the target value estimation. Since the SSS method can converge to primary feasible but 

suboptimal solution, we integrated a backtracking phase within the VTVM to improve the 

quality of the feasible solution. 

We modify the SSS method by replacing Φ௉ௌכ ሺωሻ with a dynamically adjusted estimate 
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 Φ௉ௌ௝
 (target value). Analogous to Theorem 3, it can be shown that ܮఠ௝ ൏ Φ௉ௌ௝

 holds true for 

each iteration ݆. In choosing the estimate Φ௉ௌ௝
, the goal is to approximate ݖெ௉כ  as close as 

possible. In standard VTVM method, the target value Φ௉ௌ௝
 is increased as long as the 

convergence rate is satisfactory and then decreased to close in on an optimal solution. In our 

adaptation, we increase the target value Φ௉ௌ௝
 with a controlled rate until we find a primal 

feasible solution. Finding a primal feasible solution, as explained in Section 4.2.1, indicates that 

the target value is an overestimation of Φ௉ௌכ ሺωሻ. This primal feasible solution, however, maybe 

a low quality suboptimal solution. Therefore, with a backtracking phase, we revise the latest 

target value to obtain a better primal feasible solution. Specifically, after encountering with a 

primal feasible solution, we return back to a past iteration where the target value 

underestimates the current solution's objective value. Then, the modified SSS repeats the 

iteration with a smaller step size in an effort to find an improved primal feasible solution. 

We first provide the notation used in VTVM with backtracking and then present the 

modified steps of the SSS procedure. Next, we briefly discuss the convergence behavior of the 

SSS with backtracking. Note that we replace Φ௉ௌכ ሺωሻ with Φ௉ௌ௝
 in the remainder steps of the 

SSS procedure. 

Notation for SSS with Backtracking VTVM: Φ௉ௌ௝
: target value at iteration ݆ 

Φ௉ௌ௝
: upper bound on the optimal solution at iteration ݆ Φ௉ௌ: lower bound on the optimal solution value ሺכݔ,  ሻ: an optimal solution to (MP)כݕ
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 ୨: accumulated improvements since the last Lagrangian function improvement until the߂ 

beginning of iteration ݆ ߝ௝: acceptance tolerance that the current incumbent value ܮఠ௝  is close to the target value Φ௉ௌ௝
 

in iteration ݆ ߪ: acceptance interval parameter ߟ୨: fraction of cumulative improvement that is used to increase the target value in iteration ݆ ߝGAP: optimality gap threshold 

 

Modified Steps of the SSS Procedure with Backtracking VTVM:  

 Initialization. Execute Steps I.1, I.2, I.3 of the original SSS procedure, and, 

  I.4. Set   Φ௉ௌ௝ୀଵ ൌ Φ௉ௌ, Φ௉ௌ௝ୀଵ ൌ ൅∞, ௝ୀଵߟ ൌ ߪ    ,0.35 ൌ 0.2, ௝ୀଵ߂ ൌ 0,  and ߝ௝ୀଵ ൌߪ൫Φ௉ௌ௝ୀଵ െ  .ఠ௝ୀ଴൯ܮ

 Step 1. Subproblem Solution & Backtracking: 

  1.1. For ݇ ൌ 1,2, … ,  :Repeat ,|ܭ|

  1.1.a. Solve subproblem (PS୩ሻ in (28) by setting ൫ݔ௝ , ௝൯௦ݕ ൌ ൫ݔ௝ିଵ, ݏ ௝ିଵ൯௦ forݕ א ,ܭ ݏ ് ݇ 

  and obtain ൫ݔ௝ , ௝ݔ௝൯௞. Denote ൫ݕ , ௝൯ݕ ൌ ൫ݔ௝ , ௝൯௞ݕ ׫ ቄ൫ݔ௝ିଵ, ݏ|௝ିଵ൯௦ݕ א ,ܭ ݏ ് ݇ቅ. 

  1.1.b. If ൫ݔ௝ ,  ௝൯ is primal feasible, thenݕ

   i. Set ሺכݔ, ሻכݕ ൌ ሺݔ௝ ,  ,௝ሻݕ
   ii. Set Φ௉ௌ௝ ൌ ఠ௝ܮ   ൌ ௝ݔ൫ܬ ,  ,௝൯ݕ
   iii. Set algorithm parameters, variables, and solutions back to iteration ݒ, i.e., 

   where ݒ ൌ ݔܽ݉ ቄ݈: Φ௉ௌ௟ ൏ Φ௉ௌ௝ ൌ ఠ௝ܮ   ቅ, 
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   iv. Set ݆: ൌ  ,ݒ
   v. Set ߚ ൌ and repeat iteration ݆ with updated Lagrange multipliers λ௝ 2/ߚ ൌ λ௝ିଵ ൅  .௝ିଵ݃௝ିଵߜ
  1.1.c. If the following improvement condition is satisfied, 

ఠ௝ܮ  ൌ ,෠൫߱ܮ λ௝ , ௝ݔ , ௝൯ݕ ൏ ,෠൫߱ܮ λ௝ , ,௝ିଵݔ  ,௝ିଵ൯ݕ
 

  where  ൫ݔ௝ , ௝൯ݕ ൌ ൫ݔ௝ , ௝൯௞ݕ ׫ ቄ൫ݔ௝ିଵ, ݏ|௝ିଵ൯௦ݕ א ,ܭ ݏ ് ݇ቅ, 

  then go to Step 2, otherwise continue with the next ݇. 

  1.2. Set  ൫ݔ௝ , ௝൯ݕ ൌ   ൫ݔ௝ିଵ,  .௝ିଵ൯ݕ

 Step 2. Subgradient Optimization & VTVM:  

  2.1. If ܮఠ௝ ൐ Φ௉ௌ௝ െ  ௝, thenߝ

  2.1.a. Update the target value Φ௉ௌ௝ାଵ ൌ min ቄܮఠ௝ ൅ ௝ߝ ൅ ,  ୨߂୨ߟ Φ௉ௌ௝ ቅ, 
  2.1.b. Update the threshold ߝ௝ାଵ ൌ ൫Φ௉ௌ௝ାଵߪ െ ఠ௝ܮ   ൯,  

  2.1.c. Reset ߂୨ ൌ 0, 

  2.1.d. Update ߟ୨ାଵ ൌ ݉݅݊൛2ߟ୨, 1ൟ, 
  otherwise set  Φ௉ௌ௝ାଵ ൌ Φ௉ௌ௝

, Φ௉ௌ௝ାଵ ൌ Φ௉ௌ௝
୨ାଵߟ  , ൌ ௝ାଵߝ ୨ andߟ ൌ  .௝ߝ

  2.2. Update ߂୨ାଵ ൌ ୨߂ ൅ ൫  ܮఠ௝ െ  ܮఠ௝ିଵ൯ 

  2.3. Update Lagrangian multipliers: 

 λ௝ାଵ ൌ λ௝ ൅ ௝݃௝ߜ , 
 

  where 0 ൏ ௝ߜ ൌ ൫Φ௉ௌ௝ߚ െ ఠ௝ܮ   ൯/ฮ݃௝ฮଶ
 and 0 ൏ ߚ ൏ 1. 

 Step 3. Check the stopping criteria:  
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  3.1. If ቀΦ௉ௌ௝ െ  ܮఠ௝ ቁ ൑ GAP or ฮλ௝ାଵߝ െ λ௝ฮ ൑  ;then terminate with Step 4 ,ߝ

  otherwise set  ݆ ൌ ݆ ൅ 1 and go to Step 1. 

 Step 4. Terminate with ሺכݔ,  .ሻכݕ

 

The SSS with backtracking VTVM initializes the target value Φ௉ௌ௝
 with an 

underestimation Φ௉ௌ of the dual optimal value, e.g., linear programming relaxation. From 

Lemma 3, it can be shown that the Lagrangian multipliers provide a proper direction and thus 

the dual solution ܮఠ௝  is non-decreasing. When the dual solution is primal feasible, we perform 

the backtracking phase in Step 1.1b. This backtracking helps improve the quality of the 

subsequent feasible solutions by reverting to the an iteration ݒ satisfying Φ௉ௌ௩ ൏ ఠ௝ܮ  and 

repeat the iteration ݆ with smaller step size. As the ܮఠ௝  closes in on the target value such that ܮఠ௝  is within ߝ௝ threshold of Φ௉ௌ௝
, then Step 2.1.a updates the target value based on the 

accumulated improvement ߂୨ and Φ௉ௌ௝
. This update guarantees that the dual solution and the 

target value is separated by at least ߝ௝ while ensuring that the target value does not exceed 

the upper bound. The threshold ߝ௝ is updated in Step 2.1.b. 

Choosing large values for ߪ increases ߝ௝. With higher ߝ௝ values, we are more likely to 

consider that the ܮఠ௝  is close to the target value and thus update the target value more 

frequently and with larger increments (Step 2.1.a). This can result in poor feasible solutions as 

the upper bound Φ௉ௌ௝
 might not have decreased sufficiently. In contrast, lower ߪ values 

reduce the convergence rate. The required ranges for acceptance interval parameter and 

fraction of cumulative improvement are ߪ א ሺ0,1/3ሿ and ߟ୨ א ሺ0,1ሿ (Lim and Sherali, 2006). 
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The algorithm terminates and returns the best primal feasible solution when the gap between 

the best feasible solution and the Lagrangian dual function value falls below the optimality gap 

threshold (ߝGAP). 

3.5   Computational Experiments 

We report on the results of two computational experiments. First, we investigate the 

computational and solution quality performance of the proposed approach for solving the 

ATD-PDP. Next, we present the results of implementing AAAP in a real-world case study using 

the Southern California region discussed in Hall (2002). The SSS with backtracking VTVM is 

programmed in Matlab R2008a and integer programs are solved with CPLEX 12.1. All 

experimental runs are conducted on a PC with Intel(R) Core 2 CPU, 1.66 GHz processor and 1 

GB RAM running on Windows XP Professional. In the following section, we report on the 

computational results of the two variants of the SSS method, namely SSS with backtracking 

VTVM (SSS-B-VTVM) and VTVM base SSS without backtracking (SSS-VTVM). 

3.5.1   Evaluation of the Solution Algorithm 

We generated a set of test problems varying from small to large problem scenarios. 

Since the ATD-PDP is a new problem, no benchmark datasets are available. In generating the 

data sets, we adhered to the development procedure described in Solomon (1987). The 

problem scenarios have one depot and one or two airports each with three flight itinerary 

options for each customer. The third option represents the recourse flight itinerary option. For 

a problem scenario with   ݊ ൌ |ܥ|  customers and ݉ ൌ |ܪ|  airports, we first generate 
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 ሺ  1 ൅ ݉ ൅ ݊ሻ  locations from a uniform distribution over the square bounded by   ሾ0,10ሺ1 ൅ ݉ ൅ ݊ሻሿ ൈ 0, 10ሺ1 ൅ ݉ ൅ ݊ሻሿ. Next, we randomly label the nodes as the depot, 

airports and customers to avoid any association between the location and identity of a node. 

The travel time between nodes is calculated as the Euclidean distances between them. The 

travel cost between two nodes is set equal to their travel time. 

For each airport ݄, the departure times   ܳ௥௛ of flights are independent and identically 

distributed according to a uniform distribution ܷሾ߮/|ܭ|,  is the number of |ܭ|  ሿ whereߠ

available vehicles; ߮ is the heuristic solution to a TSP problem consisting of the depot (origin), 

all customers and the airport (destination) and obtained through the greedy next best routing 

heuristic. The cost of flight itinerary options ܨ௜௥௛  are independent and identically distributed 

according to a uniform distribution ܷሾܽ, ܾሿ where  ܽ and  ܾ are the bounds set as 100 and 600, respectively. The flight itinerary options are sorted from cheapest to most expensive and 

assigned to the flight itineraries based on the starting times such that cheaper itineraries start 

earlier. 

We have conducted experiments using 5, 7, 10 and 15 customer cases. For each 

experiment scenario, we generated 10 independent instances and solve them using CPLEX, 

SSS-VTVM, and SSS-B-VTVM. Since there is no prior work on ATD-PDP, we compare the 

proposed methods with the CPLEX solution of (MP) as an integrated model. We restricted the 

solution time to 3 hours for all methods and report the best feasible solution attained within 

the time limit for each instance. In total, we have solved 300 problem instances using both 

methods. We first present the results of SSS-VTVM. In this method, we terminate the solution 

procedure when a primal feasible solution is found. Table 3.2 presents the comparative solution 
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quality and computational performance results and Table 3.1 describes the column headings. 

Table 3.2 optimality results are based on the gap between the best solutions found in each 

method and the lower bound from CPLEX. For each problem scenario, we report the average, 

minimum, and maximum optimality gap of the methods and the comparison of the CPU time in 

terms of a ratio. The CPU time ratio metric is selected since we report the performance across 

all the instances.  

 

Table 3.1. Description of column headings in Table 3.2. 

 

 

We first consider the results without backtracking, i.e., SSS-VTVM. For small size 

problems with 5 and 7 customers, the CPLEX's average gap across all scenarios is 0.5% 

whereas the SSS's gap is 2.1%. On the average, CPLEX finds the optimum in 96% of the cases 

and SSS finds in 30% of the cases. While the CPLEX's solution quality performance is slightly 

better than that of SSS's, the difference is small. Further, SSS is able to attain good quality 

solutions up to 346 times faster and on the average 29 times faster. 
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Table 3.2. Comparative performance of CPLEX and SSS. 

 

The CPLEX's gap for medium size problems with 10 customers averages 4.8% across 

all scenarios and an optimum is found for 45% of the cases. In comparison, the SSS has an 

average gap of 6.2% and finds an optimum for 4% of the cases. While the CPLEX's solution 

quality performance is slightly better than that of SSS, the difference is small. The SSS is able to 

attain good quality solutions up to 2,205 times faster and on the average 296 times faster. 

For the large size problems with 15 customers, the CPLEX's average gap is 16.2% with an 

optimality hit rate of 7% of the time. While the SSS's average gap is 9.8%, it is not able to 

find a verifiable optimal solution. Unlike small and medium size problem scenarios, SSS has a 

better average gap performance than that of CPLEX's for large size problems. As before, the SSS 

is much more efficient than CPLEX, e.g., up to 1,892 times faster and on the average 197 

times faster. 

The last seven columns of Table 3.2 present the results for SSS-B-VTVM which improves 
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over the solution quality performance of the SSS-VTVM through the backtracking phase. For 

small size problems the average gap is reduced to 1.2% and the optimality hit rate is 

increased to 54% . These improvements are attained without sacrificing the CPU time 

performance advantage over CPLEX. For medium size problems, the average gap performance 

of SSS-B-VTVM is better than that of the CPLEX, e.g., 4.0% versus 4.8%, respectively. While 

this improvement comes with reduced CPU time performance advantage, the SSS-B-VTVM is 

still 168 times faster than CPLEX on the average. For large size problems, the average gap 

performance improves slightly and is about half of that of the CPLEX, e.g., 8.0% versus 16.2%, respectively. The CPU time performance is reduced by a third but still about 131 times 

faster than CPLEX on the average. Across all problem instances, the CPLEX, SSS-VTVM, and 

SSS-B-VTVM have on the average 5.3%, 4.8%, and 3.4% optimality gap, respectively. In 

terms of CPU performance, SSS-VTVM and SSS-B-VTVM are on the average 138 and 87 times 

faster than CPLEX, respectively. 

Based on the results in Table 3.2, we study the effect of number of airports, vehicles and 

customers on the performance of SSS-B-VTVM (Figure 3.3). The effect of the number of airports 

is illustrated in Figure 3.3a. With increasing number of airports, the optimality gap of 

SSS-B-VTVM increases at a lower rate than that of the CPLEX. For medium and large instances, 

the CPU performance of SSS-B-VTVM is highest with single airport and, for small instances, 

highest with two airports. This is because as the problem size increases, flight itinerary 

assignment and routing decisions become more interrelated making it difficult to solve as an 

integrated model. Note that the CPU time advantage of SSS-B-VTVM is significantly reduced for 

two airport case in the large problem instances. This is attributable to the time limit which is 
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mostly restrictive for CPLEX than SSS-B-VTVM. 

 

Figure 3.3. Effect of number of customers, (a) number of airports and (b) number of vehicles on the performance 

of SSS-B-VTVM 

 

Figure 3.3b illustrates the effect of the number of vehicles. The gap performance of 

SSS-B-VTVM is robust with respect to the number of vehicles. This can be explained by the fact 

that additional vehicles are utilized to a lesser extent, hence their effect on the optimality is 

marginal. In comparison, the gap performance of CPLEX is reduced, especially, for large 

problems. This difference is due to the vehicle-based decomposition of SSS-B-VTVM, which is 

able to find quality solutions in the presence of underutilized fleet capacity. The CPU time 

advantage is relatively reduced, beginning with 4 vehicles in medium size problem instances. 

This is, indeed, a result of the time limit which makes the numerator of the CPU time ratio 

invariant to the number of vehicles. 

3.5.2   Case Study 

To assess the benefits of implementing AAAP, we conducted a case study in a Southern 

California MAR using real flight itinerary information and airport locations. The performance of 

AAAP is compared to the single airport policy where the freight forwarder can only assign 
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customers' air cargo loads to the flights departing from one airport. 

3.5.2.1   Alternative Access Airports and Depot Locations 

The Southern California MAR used in our experiments is described in Hall (2002) and 

illustrated in Figure 3.4. In this MAR, the Los Angeles International Airport (LAX) is the largest 

air-freight port. Hall (2002) suggests redirecting some of the domestic freight load to Long 

Beach Airport (LGB) or Ontario International Airport (ONT) to reduce the load and congestion in 

the LAX airport. As discussed in Hall (2002) and Chayanupatkul et al. (2004), a forwarder rarely 

considers more than two alternative access airports. Hence, we consider LGB and LAX as the 

two alternative access airports. For the location of the depot, we experimented with three 

location scenarios: adjacent to LAX, adjacent to LGB, and in-between LAX and LGB. We denote 

these depot location scenarios as DLAX, DLGB, and DMID, respectively. For the two scenarios of 

DLAX and DLGB, we randomly and uniformly select the depot location in a one-mile radius 

region with the airport in the center. For DMID scenario, we select the depot location within a 

one-mile radius of the city of Compton such that the travel time is identical to both the LAX and 

LGB airports. These regions are illustrated with dashed circles in Figure 3.4. 

3.5.2.2   Customer Locations 

In all experiments, the fleet size is four vehicles and there are 15 customers. We 

consider the scenario where the air cargo loads are time-sensitive (shipped overnight). All 

customer loads are available for pick-up by 7:00 pm. We generate multiple case study 

instances, by uniformly sampling customer locations within the MAR region, i.e., rectangular 
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region in Figure 3.4. The Google Maps API is used to generate the customer locations and 

calculate travel times. For each customer in each problem instance, we first uniformly sample a 

geographical coordinate (i.e., latitude and longitude) in the MAR region. Next, we determine 

the closest street address to this coordinate point through the Google Maps API. In case of an 

infeasible coordinate point (e.g., inside a lake), we re-sample for another coordinate. The travel 

times are estimated from the shortest paths accounting for speed limits using Google Maps API. 

 

Figure 3.4. Southern California MAR used in the case study 

 

3.5.2.3   Flight Itinerary Options 

A forwarder, upon receiving a time-sensitive shipment order, can execute it via an 

integrator (e.g. FedEx, UPS), a mixed passenger-cargo (e.g. United Airlines, Delta Airlines, 

American Airlines), or a chartered/dedicated freighter. In this case study, we consider only the 

mixed passenger-cargo flight itinerary options, the most practiced option for small and mid-size 

forwarders. 
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Table 3.3. Case study flight itinerary options from LAX and LGB airports. 

 

 

We assume the final destination of a customer's air cargo is a domestic destination with 

direct flights from both the LAX and the LGB. Accordingly, we consider four major US airports as 

the destinations: Boston Logan International Airport in Massachusetts (BOS), Fort 

Lauderdale-Hollywood International Airport in Florida (FLL), Dulles International Airport in 

Dallas, Texas (IAD), and John F. Kennedy International Airport in New York (JFK). As for the 

airlines, we considered American Airlines (AA) and Delta Airlines (DL) for the LAX airport and 

JetBlue Airways (B6) for the LGB airport. In determining the cargo destination for each 

customer, we randomly assigned each customer's load to one of the four destinations. The 

probability distribution used in this assignment is based on the frequency of the outgoing flights 

to each destination from each airport. These probabilities are presented in the second column 

of Table 3.3. For each customer, there are in total four flight itinerary options, e.g., two options 

from each airport. 

We arbitrarily selected the operation day as August 16, 2010 and collected the flight 
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itinerary information from the BTS database1. The flight itinerary information, including the 

average departure delay and elapsed time (i.e. overall taxi-out to taxi-in time) in August 2010, 

is listed in Table 3.4. The departure delays are incorporated in the total delivery time by 

assuming flights depart late with their respective mean delay. While the first flight departure 

times are rather similar in two airports, the second flight departure times are notably different 

for some destinations. We consider the starting time of a flight itinerary as the departure time 

of its first flight. 

3.5.2.4  Case Study Results 

We evaluate the performance of different policies based on total delivery time including 

road and air travel times. Note that the practical implementation of the AAAP would account 

for forwarder's negotiated terms with air-carriers, cost structure of road transportation 

operations, and pricing models (Azadian et al. 2012). However, cost performance, i.e., the total 

delivery time, used in this case study provides ample policy comparison opportunity. 

Specifically, given a solution, we calculate total delivery time as the sum of road travel times by 

all vehicles and the total time elapsed for each customer load from the start of the operation 

(19:00) until its delivery time to the destination airport. We have conducted three sets of 

experiments corresponding to each depot location scenario (DLAX, DLGB, and DMID). In each 

set, we consider three different airport access policies: AAAP (with LAX & LGB), LAX only, and 

LGB only. For each depot location, we generated 10 problem instances and solve them with 

the SSS-B-VTVM algorithm under each access policy. 

                                                       
1
 Bureau of Transportation Statistics, U.S. Department of Transportation, Last Accessed November 2011, 

http://www.transtats.bts.gov/ 



95 

 

The case study flight itinerary options in Table 3.3 show that there is no significant 

difference between the first flight options across the two airports. Further, the recourse flight 

itinerary options only differ for the loads going to BOS or FLL. Hence, in this case study, the 

performance differences of the three airport policies are primarily attributable to the road 

travel time and the small differences in the flight itinerary options. We note that the 

performance advantage of utilizing alternative access airports would increase when the flight 

itinerary options' starting times and flight itinerary durations/costs (especially for multi-leg 

itineraries) vary between the alternative airports. Therefore, we compare the airport policies 

based on the delivery time saving potential in each depot location scenario. For this, we 

estimate a lower bound on the total delivery time as a summation of the lower bound for flight 

itinerary time and road travel. The lower bound for the flight itinerary time is estimated by 

assigning each customer load to the cheapest itinerary accessible. The lower bound for the road 

travel time is calculated by solving a minimum spanning tree connecting all the nodes. 

Table 4 presents the total delivery time in minutes for all problem instances in each 

depot location scenario and under three access policies (LAX & LGB, LGB, LAX). For AAAP policy, 

i.e., LAX &LGB, we report the percentage of the time that the LAX airport is selected. Last two 

rows in Table 3.4 present the average and standard deviations of the results. The column 'LB' 

denotes the lower bound on the total delivery time for each depot location scenario. 
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Table 3.4. Case study results for three depot location scenarios (DLGB, DMID, DLAX) and three airport access 

policies (AAAP, LGB, LAX) 

 

 

The AAAP policy dominates the single airport policy in all depot location scenarios and in 

all problem instances. The AAAP's impact on the total delivery time can be assessed through 

the following performance measure: 

ߩ  ൌ ௭ಲಲಲುି௅஻୫୧୬ሼ௭ಽಸಳ,௭ಽಲ೉ሽି௅஻ % (32) 

where ݖ஺஺஺௉,  .௅஺௑ correspond to the solutions of three airport policiesݖ ௅ீ஻, andݖ

The performance measure in (32) indicates the percentage total delivery time 

improvement of the AAAP policy over single airport policies. In the case of DLGB depot location, 

the AAAP policy improves the total delivery time performance on the average by 58%. The 

improvements range between 47% and 77%. Similarly, for the DMID depot location, the 

average improvement of AAAP is 63% and the range is between 45% and 91%. In the case 

of DLAX depot location, the average improvement is 57% and the range is between 36% 

and 87%. Overall, the AAAP's improvement over single airport policies is 59% on the average 

across all depot locations. 
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In Figures 5-7, we illustrate the routes identified for each depot location and airport 

policy for sample problem instances. These routes are turn-by-turn routes from the Google 

Maps API. The labels are " 1" for the location of depot, " 2" to " 16" for the locations of 15 

customers, and LAX and LGB for the airports. The label in parenthesis denotes the order of visit 

by the vehicle. Each color route corresponds to a unique vehicle. For instance, in Figure 3.5a, 

the vehicle with blue color route starts its trip from the depot located in Compton (i.e. node 1), 

visits customers 5, 6, 8, 3, delivers loads to LAX, and returns to the depot. Accordingly, the 

customer 5 is labeled 5ሺ1ሻ, customer 6 is labeled 6ሺ2ሻ, and so forth. In all instances, at 

most three of the four vehicles are used, indicating absence of recourse flight usage.  

In Figure 3.5, there are three vehicles in all airport policies. In Figures 6a and 7b only two 

vehicles are used since the third vehicle does not provide any additional benefit in terms of 

improving the total delivery cost. In Figures 5c, 6c and 7c, two vehicles deliver customer loads 

to both the LAX and LGB airports whereas the third vehicle visits only the LGB. In Figure 3.7a, 

the third vehicle is used to pick up and deliver the load of only customer 5. 

 

Figure 3.5. Routes for problem instance #10 with DMID depot 
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Figure 3.6. Routes for problem instance #1 with DLGB depot 

 
Figure 3.7. Routes for problem instance #6 with DLAX depot 

3.6   Conclusion 

We study a freight forwarder's operational implementation of AAAP in a MAR for air 

cargo transportation. The forwarder's AAAP implementation involves the task of selecting flight 

itineraries for a given set of heterogeneous air cargo customers, picking up their loads via a 

fleet of vehicles and then delivering to the airports in the region. The goal is to minimize the 

total cost of air and road transportation and service by simultaneously selecting the air cargo 

flight itinerary and scheduling pickup and delivery of multiple customer loads to the airport(s). 

We formulated a novel model (ATP-PDP) which extends the existing PDP models to address the 

case where the delivery cost is both destination and time dependent. This model is further 
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strengthened by preprocessing steps and special cuts. To overcome the computational 

complexity, we adapted an efficient solution method, SSS, based on Lagrangian decomposition. 

The SSS method overcomes the challenges associated with identical subproblems in standard 

Lagrangian decomposition and iteratively solves the ATP-PDP in parts. Since Lagrangian based 

methods, including SSS, can converge to a primal infeasible solution, we developed a modified 

variable target methodology for subgradient optimization. The integrated method, 

SSS-B-VTVM, converges to a primal feasible solution and the solution quality can be controlled 

by trading-off the quality with computational performance. 

We conducted an experimental study to assess the optimality gap and CPU time 

performance of SSS-B-VTVM and compared with those of CPLEX. The results show that the 

SSS-B-VTVM yields near-optimal primal feasible solutions, i.e., on the average 3.4% optimality 

gap compared to 5.3% of CPLEX. Further, the SSS-B-VTVM is able to achieve this performance 

on the average about 87 times faster than CPLEX and more than thousand times faster for 

some problems. In addition, we have applied the modeling and solution methodology for a case 

study in a Southern California MAR and compared the AAAP performance with single airport 

policies considering various depot location and customer scenarios. The computational results 

indicate that the AAAP is able to realize savings in the order of 36% to 91% of the potential 

saving opportunities. This research can be extended in multiple directions. The proposed 

approach can be used to evaluate forwarder's locational decisions for its depot(s). Similarly, it 

can be used to assess the competitiveness of multiple airports in a MAR for air cargo shipments 

under various flight availability schedule scenarios. 
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Conclusion 

In this research, we studied the air-cargo routing problem on both the air and road 

networks from the freight forwarders perspective.  

In chapter two, we investigated the benefits of dynamic routing for the shipment of 

time-sensitive air cargo given a shipment criterion subject to the availability of flights, travel 

time and departure delay variability. We further examined the effect of real-time flight 

information accuracy on the dynamic routing performance. The contributions of this chapter to 

the literature are developing a novel dynamic routing model that accounts for the scheduled 

departures, the effect of stochastic travel times, and departure delays.  In essence, the model 

extends the literature on dynamic routing problems subject to stochastic and time-dependent 

travel times with real-time information by incorporating the following aspects (1) the real-time 

information is inaccurate and (2) arcs on the network are schedule-based.  

For the first aspect, we developed a novel departure delay estimation model based on 

the real-time announced delay information and historical delay distributions. For the second 

aspect, we formulated a dynamic routing Markov decision problem with a novel action space 

definition. The action space consists of not only the first choice of flight but also collectively all 

recourse flights at an airport node. A set of controlled experiments is conducted to investigate 

the effect of delay information accuracy, departure delay distribution, travel time variability 

and topology of flight network on the expected cost and delivery reliability. Lastly, in chapter 

two, we presented two case study applications using real flight network and departure delay 
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data. The results show that dynamic policy is able to not only improve the expected delivery 

performance but also increase the delivery reliability. Further, the departure delay information 

is critical for realizing the full potential of dynamic routing. However, the majority of the 

improvements can be attained even with little real-time information availability and accuracy.  

There are multiple extensions possible of this study. First extension is the investigation 

of the effect of code sharing agreements among carriers on the dynamic routing benefits. 

Clearly, the code sharing increases the flight alternatives that can be selected and thus 

improves the performance. Another extension is to relax the assumption that flight itineraries 

are priced based on the individual legs and additive. Instead, the future research will consider 

more complex pricing of flight itineraries by accounting for the savings for booking multiple legs 

at a time which will restrict the flexibility of the dynamic routing. 

In chapter three, we studied a freight forwarder's operational implementation of 

Alternative Access Airport Policy (AAAP) in a multi airport region for air-cargo transportation. 

The forwarder's AAAP implementation involves the task of selecting flight itineraries for a given 

set of heterogeneous air cargo customers, picking up their loads via a fleet of vehicles and then 

delivering them to the airports in the region. The goal is to minimize the total cost of air and 

road transportation and service by simultaneously selecting the air cargo flight itinerary and 

scheduling pickup and delivery of multiple customer loads to the airport(s). We formulated a 

novel model (ATP-PDP) which extends the existing pick up and delivery problem models to 

address the case where the delivery cost is both destination and time dependent. This model is 

further strengthened by preprocessing steps and special cuts.  
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To overcome the computational complexity, we adapted an efficient solution method, 

SSS, based on Lagrangian decomposition. The SSS method lessens the challenges associated 

with identical subproblems in standard Lagrangian decomposition and iteratively solves the 

ATP-PDP in parts. Since Lagrangian based methods, including SSS, can converge to a primal 

infeasible solution, we developed a modified variable target methodology for subgradient 

optimization. The integrated method, SSS-B-VTVM, converges to a primal feasible solution and 

the solution quality can be controlled by trading-off the quality with computational 

performance. We conducted an experimental study to assess the optimality gap and CPU time 

performance of SSS-B-VTVM and compared with those of CPLEX. The results show that the SSS-

B-VTVM yields near-optimal primal feasible solutions, i.e., on the average 3.4% optimality gap 

compared to 5.3% of CPLEX. Further, the SSS-B-VTVM is able to achieve this performance on 

the average about 87 times faster than CPLEX and more than thousand times faster for some 

problems. In addition, we have applied the modeling and solution methodology for a case study 

in a Southern California MAR and compared the AAAP performance with single airport policies 

considering various depot location and customer scenarios. The computational results indicate 

that the AAAP is able to realize savings in the order of 36% to 91% of the potential saving 

opportunities. This research can be extended in multiple directions. The proposed approach can 

be used to evaluate forwarder's locational decisions for its depot(s). Similarly, it can be used to 

assess the competitiveness of multiple airports in a MAR for air cargo shipments under various 

flight availability schedule scenarios. 
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This research can be extended by studying the possible expansion and improvement to 

the solution algorithm for the AAAP mixed integer programming through alternative sub 

problem solving algorithms. Further research would test the applicability of the proposed SSS 

procedure for solving the general PDP and vehicle routing problems while addressing the issues 

associated with homogeneous subproblems. Lastly, one limitation of this research is the 

absence of economies of scale in cost when multiple customers’ air cargo is loaded on the same 

flight. A fruitful future research avenue is to investigate the effect of such economic relations 

on the forwarder’s implementation of the AAAP.  
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Advent of real-time information broadcasting technologies, growth in demand for air-

cargo, and increased congestion and variability on air-road network, are the main forces 

compelling today’s air-freight forwarders to improve their operational decision-making to be 

more competitive and responsive to needs of customers. This research studies the air-cargo 

transportation on both road (short-haul) and air (long haul) network from the perspective of a 

mid-size freight forwarder.  

We develop a routing algorithm for congestion avoidance on air-network based on 

historical data and introduce an innovative approach to incorporate real-time information to 

enable dynamic routing of cargo on a stochastic air-network. In the road network, we introduce 

a new class of pickup and delivery problems to carry out the customer load pickups, fleet 
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management, cargo-to-flight assignments, and airport deliveries in a multiple airport region 

under alternative access airport policy.  

The main contributions of this research to the air-cargo literature are the study of the 

value of real-time information and introduction of the concept of dynamic air-cargo routing. In 

addition, this is the first study that provides an operational framework to implement the 

alternative access airport policy. This research also contributes to operations research and 

logistics literature by introducing a new class of pickup and deliveries with time-sensitive and 

pair-dependent cost structure. It also contributes an innovative algorithm based on successive 

subproblem solving for Lagrangian decomposed mixed integer programming that shows to be 

efficient in obtaining near optimal solutions in reasonable time.  

The performances of the algorithms presented in this research are tested through 

experimental and real-world case studies. The results demonstrate that dynamic routing with 

real-time information can dramatically improve delivery reliability and reduce expected cost on 

the air-network. Moreover, they confirm that alternative access airport policy can greatly 

enhance a forwarder’s options and reduce the operational and service costs while improving 

the service levels. 
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