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Resumen

Antecedentes

La importancia de la optimización de sistemas energéticos es cre-
ciente debido a la liberalización del sector energético, así como del
establecimiento de objetivos como el 20-20-20 de la Unión Europea,
que a su vez desembocan en nuevas regulaciones. Esta situación
lleva a nuevos modelos estocásticos dinámicos incluyendo decisiones
estratégicas (en el largo plazo) que deben ser tomadas teniendo en
cuenta el desempeño de los sistemas y las decisiones operacionales
(en el corto plazo). Estas decisiones incluyen tanto inversión en
tecnologías como opciones de mercado y financieras. Así, los propi-
etarios y gestores de edificios tienen el reto de tomar decisiones para
obtener el conjunto óptimo de tecnologías y contratos, y adoptar un
papel activo en los mercados energéticos. Además, estas decisiones
se tienen que tomar bajo condiciones inherentes de incertidumbre.

Los procesos de toma de decisiones como el abordado en esta
tesis, a menudo se realizan bajo condiciones de incertidumbre. En
estos procesos de decisión, se buscará lógicamente la mejor decisión
posible, es decir, se tratará de optimizar un valor determinado, por
ejemplo minimizar el coste total para un determinado sistema. Estos
problemas de optimización se pueden formular mediante modelos de
programación matemática, donde una serie de parámetros son fijos,
y ciertas variables de decisión son desconocidas. Dichos parámetros
fijos suelen estar sujetos a incertidumbre, es decir, no se conoce su
valor exacto. Una forma de tratar esta incertidumbre es estimar
los parámetros y resolver el problema para los valores medios. Esta
forma de resolver el problema resulta en la mejor solución para el
escenario promedio. Pero la mayoría de las veces, esta solución no
es óptima para el valor real de los parámetros una vez se desvela la
incertidumbre, especialmente en modelos estratégicos a largo plazo.
Incluso esa solución óptima para los valores promedio puede ser
realmente mala para el escenario real, o peor aún, la solución puede
ser no factible para el escenario que finalmente tiene lugar, incur-
riendo así en determinados riesgos. Téngase en cuenta además que
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el escenario promedio normalmente nunca ocurre. Una forma más
efectiva de tratar la incertidumbre en problemas de optimización es
la Programación Estocástica. Mediante Programación Estocástica
se obtiene la solución óptima para el problema de optimización te-
niendo en cuenta la distribución de probabilidad de los parámetros
estocásticos, es decir, sujetos a incertidumbre, y no sólo sus valores
medios sino también su variabilidad. De hecho, la solución no es
óptima para ningún escenario en particular, sino una solución ro-
busta frente a todos los escenarios posibles. Esto es especialmente
importante en modelos estratégicos a largo plazo en general, y en
planificación energética en particular. En esta tesis se desarrollan
modelos novedosos de optimización estocástica capaces de tratar la
incertidumbre a largo plazo.

Para abordar el proceso de toma de decisiones descrito, el uso de
Sistemas de Ayuda a la Decisión (SAD) es inevitable. Esta tesis
presenta una visión de los SAD más allá del puro programa infor-
mático, dando especial relevancia al modelo. El modelo es la base
para la toma de decisiones basada en el Análisis, y por tanto en la
evidencia científica. Otro aspecto importante del marco de trabajo
propuesto es la importancia del diálogo entre stakeholders (actores
involucrados), en el que el modelo vuelve a tener un papel impor-
tante, pero también otros aspectos que facilitan este diálogo, como
la investigación reproducible. Así, dentro del marco de trabajo se
integran el modelo mediante el llamado SMS (Symbolic Model Spec-
ification, especificación del modelo simbólico); los datos, mediante
la definición de clases y estructuras lógicas; y el diálogo entre stake-

holders mediante interfaces adecuados. En esta tesis se propone
un marco de trabajo integrado capaz de tratar el problema de de-
cisión abordado, y se realiza una implementación del mismo con los
modelos desarrollados y con datos de edificios reales. La figura 2.5
resume el marco de trabajo propuesto.

Objetivos

La presente tesis se propone contestar a las siguientes preguntas:
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• Cómo modelar los flujos de energía conjuntamente con es-
trategias de planificación;

• Cómo modelar la incertidumbre para conseguir modelos ro-
bustos de toma de decisiones en planificación de sistemas en-
ergéticos;

• Cómo gestionar el riesgo en estos modelos;

• Cómo debe ser un SAD efectivo para tratar con modelos,
datos y soluciones;

Por tanto, los principales objetivos de la tesis son, por una parte el
desarrollo de modelos de optimización estocástica capaces de tratar
efectivamente la incertidumbre inherente al proceso de decisión, los
flujos de energía y el riesgo, y por otra el desarrollo de un marco
de trabajo para SAD que favorezca el necesario diálogo entre stake-

holders.

Metodología

Para el desarrollo de los modelos se ha seguido una estrategia se-
cuencial, escalando desde modelos sencillos deterministas hasta mod-
elos estocásticos multi-etápicos bajo una visión sistémica. Así, un
primer modelo determinista con decisiones operacionales y estratég-
icas y restricciones técnicas presenta el problema de forma fácil-
mente comprensible. La función objetivo será el coste total a lo
largo del horizonte de decisión, la cual se pretende minimizar. Este
primer modelo, que se encuentra en el Capítulo 3, se ilustra con un
primer ejemplo numérico. En el Capítulo 4 el modelo determinista
se extiende a la versión estocástica en dos etapas. Manteniendo la
formulación sencilla, con pocas variables y parámetros, el modelo
bi-etápico es desarrollado proporcionando las primeras pinceladas
del valor de estos modelos a través del VSS (Value of Stochastic

Solution, valor de la solución estocástica) y de la gestión del riesgo
a través del CVaR (Conditional Value at Risk, valor a riesgo condi-
cionado). El ejemplo determinista es igualmente extendido a su ver-
sión estocástica, mostrando la utilidad de las soluciones obtenidas.
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En el siguiente paso se vuelve al modelo determinista para desar-
rollarlo y ampliarlo incluyendo características como la obsolescencia
de las tecnologías, selección de contratos, emisiones o eficiencia, así
como el balance de energía de forma global en el edificio. Este
modelo determinista evolucionado se encuentra en el Capítulo 5.
A continuación, el modelo con todas las características se extiende
de nuevo a su versión estocástica en el Capítulo 6. En este caso
el modelo finalmente utilizado es multi-etápico, resultando en una
formulación compacta por nodos, en vez de aquella por escenarios
que fue utilizada en el modelo bi-etápico. Estos nuevos modelos
son también ilustrados mediante ejemplos numéricos. Finalmente,
en el Capítulo 7 se añade al modelo multi-etápico la gestión del
riesgo a través del CVaR, incluyendo en la función objetivo un tér-
mino de riesgo que puede ser modelado de acuerdo a las preferencias
del decisor: neutro al riesgo, aversión al riesgo, etc. Además, esta
formulación final permite seleccionar el objetivo entre tres posibil-
idades: minimizar el coste, las emisiones, o el consumo de energía,
expandiendo así el uso de CVaR más allá de la clásica selección de
carteras óptimas, y aportando la posibilidad de incluir como obje-
tivo la minimización del riesgo de altas emisiones o alto consumo
energético.

En cuanto al marco de trabajo para SAD, éste se desarrolla bajo
el paradigma de la investigación reproducible en el Capítulo 8 con la
vista puesta en la principal misión del SAD: el diálogo entre stake-

holders. Se muestran estructuras de datos basadas en técnicas de
Programación Orientada a Objetos, conteniendo tanto el modelo
como los datos del problema concreto o instancia. Se proporcionan
directrices para la implementación del marco de trabajo, y se realiza
una implementación del mismo utilizando el software estadístico y
lenguaje de programación R y el software de modelización y opti-
mización GAMS. A tal efecto se ha desarrollado una librería llamada
optimr. Un ejemplo integral ilustra todas las fases descritas en la
tesis.

vi



Conclusiones

La investigación contenida en esta tesis se ha llevado a cabo en el
contexto del proyecto EnRiMa (Energy Efficiency and Risk Manage-
ment in Public Buildings, eficiencia energética y gestión del riesgo
en edificios públicos) financiado por el Séptimo Programa Marco de
la Unión Europea. Los resultados de esta investigación, tanto los
modelos como el marco de trabajo y su filosofía, han sido aplicados
con éxito en dicho proyecto y sus edificios de prueba. Las principales
aportaciones de esta tesis son:

• La modelización de flujos de energía a nivel de edificio de
forma global, conjuntamente con las características y evolu-
ción del equipamiento en el edificio tales como obsolescencia,
o renovación, en un mismo modelo;

• Tanto los modelos deterministas como los estocásticos han
sido probados en edificios reales obteniendo resultados coher-
entes con el desempeño real de los mismos;

• La modelización de la incertidumbre ha demostrado la util-
idad de la programación estocástica en optimización de sis-
temas energéticos y cómo modelos deterministas nos llevan a
escenarios no factibles;

• Se ha propuesto una nueva aplicación del gestión del riesgo
más allá de riesgos económicos, considerando riesgos ambien-
tales y sociales;

• La aplicación de métodos de investigación reproducible en
implementaciones reales de optimización es tambén novedosa;

• Este enfoque de investigación reproducible junto con el diál-
ogo entre stakeholders proporciona a los SAD que adopten el
marco de trabajo propuesto grandes posibilidades de éxito;

• La librería desarrollada es un resultado en sí mismo, aunque
el marco de trabajo puede implementarse utilizando otras tec-
nologías;
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• El ejemplo integral demuestra un ciclo completo de investi-
gación reproducible haciendo uso de los modelos, los datos y
el marco de trabajo desarrollados en esta tesis.

Futuras líneas de trabajo del autor incluirán las siguientes:

• Estudio e implementación de métodos de generación de esce-
narios, especialmente para determinar distribuciones de prob-
abilidad a largo plazo y eventos extremos;

• La comparación de los modelos bi-etápicos y multi-etápicos
desde distintos puntos de vista: eficiencia computacional, mejora
obtenida con modelos más complejos frente a otros más sencil-
los, o validación de las asunciones realizadas en la generación
de escenarios;

• En cuanto al marco de trabajo y la librería desarrollada,
la extensión a otros formatos más allá de los utilizados en
la primera implementación (LATEX y GAMS), la mejora del
código y la documentación, así como la publicación en repos-
itorios públicos, son tareas a abordar en el futuro.
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Abstract

Energy Systems Optimization is increasing its importance due
to regulations and de-regulations of the energy sector and the set-
ting of targets such as the European Union’s 20-20-20. This raises
new types of dynamic stochastic energy models incorporating both
strategic and operational decisions (short-term decisions have to be
made from long-term perspectives) involving standard technological
as well as market-oriented financial options. Thus, buildings man-
agers are challenged by decision making processes to achieve robust
optimum portfolio and they are encouraged to adopt an active role
in energy markets. Moreover, those decisions must be made under
inherently uncertain conditions. Scaling from simple deterministic
models to complex stochastic models under a systemic view, an inte-
grated framework for the representation and solution of such energy
systems optimization problems is proposed. Such models are to be
implemented in Decision Support Systems (DSSs) for robust deci-
sion making at the building level, as well as to assess current and
potential policies to face rising economic and environmental global
challenges. As the combination of operational and strategic deci-
sions in the same model induces risk aversion in strategic decisions,
it is needed to include quantile-based measures such as Conditional
Value at Risk (CVaR). Furthermore, two different approaches are
developed: a two-stage model where first-stage decisions are the
strategic, long-term decisions and a multi-stage model where first-
stage decisions are both operational and strategic decision for the
first long-term period.

Such complex energy systems need to be accurately described in
a condensed way representing the huge amount of variables, pa-
rameters and constraints. Thus, a systemic view on all interactions
of energy sub-systems, their interdependencies, possible systemic
risks, which may propagate through the system, magnify and cause
system’s collapse, is followed. A comprehensive Symbolic Model
Specification (SMS) development is part of the research work, en-
compassing a number of features covering all the energy types used
in a building, as well as investments, renovation, technologies’ ob-
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solescence, emissions, efficiency, and even operations in a unified
model. An integrated framework is proposed to cover the needs
of the whole decision making problem, ranging from data analysis
and estimation to effective representation of models and decisions to
be consumed for both humans and machines. Furthermore, such a
framework shall allow to communicate with different types of opti-
mization software. The proposed framework is suitable to be imple-
mented in DSSs. An implementation of such framework is also part
of this thesis, entailing a novel approach based on the stakeholders

dialog and Reproducible Research philosophy.
The research has being carried out in the context of the EnRiMa

project (Energy Efficiency and Risk Management in Public Build-
ings), funded by the European Commission (EC) within the Seventh
Framework Program. The results of this work have been applied to
real test sites within the project.
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1. Introduction

1.1. Global Changes, Local

Challenges

1.1.1. Overview

Energy systems optimization is increasing its importance due to
deregulations in energy markets and the setting of targets such as
the European Union (EU) 20-20-20. In turn, those targets usually
embody policies that motivate new regulations aimed at the achieve-
ment of such objectives. For example, emissions trading schemes,
renewable-energy and/or efficient generators subsidies, or efficiency
requirements such as buildings labeling, among others. This new sit-
uation is motivated by several concerns of the post-industrial era,
namely:

• Global warming;

• Economy globalization;

• Resources scarcity;

• Awareness for sustainability.

In spite of the above-mentioned globalization, usually those global
changes must be tackled at a regional or local scale. Thus, utilities
and fuel producers, yet global, must fulfill localized market require-
ments, e.g., enough amount of electricity for a given city. Moreover,
final users of energy have their own requirements which satisfaction
depends on decisions made at the shop-floor stage. Users’ comfort,
security, and energy availability are challenges for decision makers
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1. Introduction

at the building level, who have to deal with limited budgets in ad-
dition to the regulations regardless their global, regional or local
scope. Furthermore, new tariffs alternatives, as well as new tech-
nologies and refurbishment options are available and continuously
evolving, widening the range of choices for decision makers.

1.1.2. Relevant Policies

In the last decades several regulatory and market changes have al-
tered the way energy is being used. As stated by Jamasb and Pollitt
(2005), those changes in Europe were mainly focused on electricity
markets. Nevertheless, more recent regulations try to deal with en-
ergy as a whole. In the following, some of the most relevant policies
are outlined. Even though they refer to Europe, similar schemes are
being adopted in other areas of the world.

• The EU climate and energy package1 aims to ensure the
European Union meets its ambitious climate and energy tar-
gets for 2020. These targets are known as the 20-20-20 tar-

gets, namely:

– A 20% reduction in EU greenhouse gas emissions from
1990 levels;

– Raising the share of EU energy consumption produced
from renewable resources to 20%;

– A 20% improvement in the EU’s energy efficiency.

The targets were set in March 2007 and were enacted through
the climate and energy package in 2009. Afterwards, the Eu-
ropean Commission (EC) analyzed options to move beyond
20% greenhouse gas emissions through the Commission Com-
munication SEC (2010) 650.

• The EU Energy Efficiency Plan 20112 was adopted by
the EC for saving more energy through concrete measures. It

1http://ec.europa.eu/clima/policies/package/index_en.htm
2http://ec.europa.eu/energy/efficiency/action_plan/action_

plan_en.htm
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1.1. Global Changes, Local Challenges

included measures for a wide range of sectors, including build-
ing, transportation, or manufacturing, among others. Some
of the measures included in this plan are the Energy Perfor-

mance of Buildings Directive, the Labeling Directive, and the
Energy End-Use Efficiency and Energy Services. More re-
cently, the Energy Efficiency Directive3 2012/27/EU has
been adopted by the EU, establishing a common framework
of measures for the promotion of energy efficiency within the
Union in order to reach the efficiency target in the climate
and energy package.

• As for the liberalization of energy markets, the first lib-
eralization directives were adopted in 1996 (electricity) and
1998 (gas), and the second ones in 2003. The third liberaliza-
tion package includes new legislative proposals to strengthen
competition in electricity and gas markets, based on the Com-
mission’s energy package as of 2007.

• Regarding renewable sources, the Directive 2009/28/EC of
the European Parliament and of the Council on the promotion

of the use of energy from renewable sources established a com-
mon framework for the production and promotion of energy
from renewable sources. The Directive takes also into account
energy from biofuels and bioliquids. Some systems-related
topics stemmed from these new regulations: Net-Zero Energy
Building (NZEB) strategies, whose aim is to achieve buildings
with zero net energy consumption and zero carbon emissions
annually. Hernandez and Kenny (2010) go beyond this con-
cept from an economical ecologics perspective and introduce
new concepts. A classification and description of NZEBs can
be found in Pless and Torcellini (2010); Net metering is a pol-
icy for consumers who own renewable energy facilities which
allows them to use the energy when it is needed through a
sort of balance with the market. In contrast to net metering,
feed-in-tariffs’ policies foster the direct sale of energy to the

3http://ec.europa.eu/energy/efficiency/eed/eed_en.htm
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1. Introduction

grid. According to Hardesty (2013), US favors net metering
while Europe and Japan feed-in tariffs.
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1.2. Energy Systems

1.2.1. Scope

Energy is a wide topic which can be tackled from different scien-
tific and technical disciplines, from biology to engineering. Energy
systems are conceived in this work as the technologies and devices
used to provide people with the energy needed for their everyday
activities. From this standpoint, different types of energy systems
can be found, namely:

• Appliances: the final elements of a net that consumes a given
amount of energy to produce a given service to a user. For
example, a bulb consumes electricity and provide light to a
room in a household;

• Nets: The wires and passing devices that transport the energy
throughout the whole system;

• Generation and transformation technologies. Energy can not
be created, however generation is an accepted term when talk-
ing about energy transformation from one type to another.
For example Photovoltaic (PV) panels generate solar irradia-
tion into electricity; Combined Heat and Power (CHP) units
transform Natural Gas (NG) into electricity and heat. Some-
times these technologies do not change the type of energy but
are considered, for example, to reflect energy losses;

• Storage technologies. Some types of energy can be stored in
storing devices such as batteries or reservoirs;

• Passive technologies. There are different types of technologies
whose target is not to reduce the level of service received,
but to mitigate the energy needs to achieve it. For example,
demand response technologies allow to shift the moment in
which the energy is consumed in order to avoid peak periods;
Other innovations could be refurbishment or renovation.
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In what follows, the building level extent is assumed. Thus, the
focus is on the consumer side. The meaning of building in this case
can refer to different aggregation typologies, such as single build-
ings, set of buildings, or spaces of public or private use. Examples
of buildings under this conception are university campuses, sports
centers, administrative buildings, hospitals, or airports. Therefore,
primary energy generation by utility companies and distribution
networks are not considered. Likewise, household buildings such
as apartment blocks and isolated houses are not yet as mature as
needed to adopt the models and approaches presented hereby. Nev-
ertheless, the building sector can benefit of them when planning new
buildings as, in spite of the focusing on large energy consumers, the
models could also be also applied at a domestic level. In summary,
the target buildings are those that are managed by an identified
party (individual or organization) that can make decisions regard-
ing energy systems.

The models developed in chapters 3 to 7 are based on the En-
ergy Efficiency and Risk Management in Public Buildings (EnRiMa)
project test sites. The EnRiMa project is described in more detail
in Section 2.1. Its test sites are:

• The FASAD building. It is an integration center for hand-
icapped people in Siero (Asturias, Spain) that belongs to
the Asturian Foundation for Attending Handicapped People
(Fundación asturiana de atención y protección a personas con
discapacidades y/o dependencias, FASAD);

• The Pinkafeld campus. It is a university campus of the Uni-
versity of Applied Sciences in Pinkafeld (Burgenland, Aus-
tria).

1.2.2. Energy Systems Dynamics

Buildings’ energy flows can be represented by Sankey diagrams (see
Schmidt 2008) providing a straightforward way of visualizing the
building energy systems’ dynamics. Figure 1.1 shows an actual
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Sankey diagram for the Pinkafeld campus EnRiMa test site. The
energy flows from the supply side (left) to the demand side (right)
throughout technologies (boxes). On the supply side there may be
markets, such as the electricity macro grid, and renewable sources,
such as solar irradiation. Different types of energy are transformed
into others to meet the users demand.

1.2.3. Strategic and Operational Decisions

Two types of decisions can be made regarding energy systems. On
the one hand, there are decisions on which systems are available.
These are strategic decisions. On the other hand, there are deci-
sions on how to use the available systems. These are operational

decisions. Strategic decisions are made in the long term, e.g.,
years, whereas operational decisions are made in the short term,
e.g., hours. Examples of strategic decisions are: type of contract
to sign with the grid; number of PV panels to install; renovation
of building’s envelope elements. Examples of operational decisions
are: how much electricity to buy from the grid at a given hour; how
much NG to input into a CHP generator. Note that both types of
decisions are interdependent as only systems that are available can
be used, and decisions on investing on new equipment or renovation
depend on how they can be used to meet the overall requirements.

In the Sankey diagram shown in Figure 1.1, the numbers in the
white boxes over the arrows and technologies are operational de-
cisions. Some of them are the result of other real decisions. For
example, the energy output from a technology might be determined
by the energy input (real decision) and the conversion ratio. The
strategic decisions are the cinnamon-colored boxes: which technolo-
gies are available in the building and their capacity.

The proposed framework focuses on long-term strategic decisions.
However, operational decisions are included in the process in order
to take into account the short-term systems performance through
dynamic strategic models.
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Figure 1.1.: Sankey diagram example for the Pinkafeld Campus
EnRiMa test site.
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1.3. Decision Making Under

Uncertainty

1.3.1. The Role of Uncertainty

Rational decision making must be based on evidence. Some de-
cisions are made under perfect information, i.e., knowing all the
outcomes and relevant facts affecting such decisions. For example,
one can decide whether to vent a room or not knowing the inside
and outside temperatures and one’s desired comfort level. All the
data are known. However, this is not always the case. In many
decision making processes, there is uncertainty pertaining relevant
facts and figures around the decision. In particular, decision mak-
ing on energy systems is strongly affected by both short-term and
long-term uncertainties. Some of these sources of uncertainty are:

• Energy demand (short-term). The amount of energy de-
manded depends on things like weather or building occu-
pancy. Even though in the short term accurate estimations
can be made, long-term perspectives, which are much more
volatile, are needed for strategic decision making;

• Energy costs (short-term). Even for long-term contracts, en-
ergy prices are subject to volatility throughout the time. More-
over, new price schemes are emerging such as Time of Use
(ToU) or intra-day tariffs;

• Investment costs (long-term). Systems investment cost on the
long term is uncertain as it depends on future market evolu-
tion and eventual policy changes. Subsidies can be considered
part of this kind of uncertainty;

• Availability of new technologies (long-term). New types of
energy systems (more efficient, cheaper, or cleaner) might ap-
pear throughout the decision horizon. This fact may change
decisions made today.
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1.3.2. Decision Support Systems (DSSs)

Several scientific and technical disciplines deal with decision mak-
ing. Under several denominations, e.g. decision science, decision
engineering, or decision analytics, the underlying foundations are
those from Decision Analysis. When making decisions, three ap-
proaches can be followed:

• Intuition;

• Rules;

• Analysis.

Decisions based on intuition are often inconsistent and biased.
Decisions based on rules are clear and require less effort, but may
be too rigid for changing environments. Decisions based on analysis
require the adoption of a model that summarizes and simplifies the
problem in order to understand the real problem and find a way to
solve it.

Decision making problems can be classified according to several
criteria. Bell et al. (1988) proposed a taxonomy based on three cat-
egories: descriptive, normative and prescriptive. According to the
level at which decisions are made within an organization, decisions
can be strategic, tactical, or operational. In Klein et al. (1993) and
French et al. (2009) an instinctive level is added at the bottom of
this pyramidal classification. Note that strategic and operational
levels are also linked to the long- and short-term scope of decisions
described in Section 1.2. The nature and number of stakeholders,
the objectives and the availability of information are other classifi-
cation criteria.

In order to identify the most appropriate technique for a decision
making problem, the following questions are helpful:

• Who is (are) the decision maker(s)?

• Which are the objectives?

• What are the uncertainty sources?

12
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• How does time affect the process?

• Which are the requirements of the system?

• Who is (are) affected by decisions?

In the case at hand, some of the questions have been already
answered: building managers and operators decide; they are also
affected by decisions, along with the building users and other stake-
holders; two different time resolutions (short- and long-term) are
involved in the problem; uncertainty sources have been identified
mainly on prices and demand. As for the objective, the most fre-
quent case is the minimization of costs. These costs are a function
of the decisions made and the data available. Other possible ob-
jectives, likely conflicting, may also be used, e.g., emissions mini-
mization or efficiency maximization. On the other hand, there are
some systems requirements and limitations, such as the energy bal-
ance between demand and supply, and the capacity of systems and
markets.

The problem described so far, is suitable to be modeled as a Math-
ematical Programming problem, where the objective is to optimize
(maximize or minimize) an objective function, subject to a set of
constraints. The strategic models developed in Part II are linear,
i.e., both the objective and the constraints are linear combinations
of the decision variables. Therefore, Linear Programming (LP) is
applicable. Moreover, as uncertainty is a key part of the prob-
lem, Stochastic Programming (SP) will be used. These techniques
are encompassed within the Operations Research (OR) discipline.
Other approaches can be followed, and some of them are remarked
in Chapter 2.

Considering the complexity of the problem, the use of a Decision

Support System (DSS) is unavoidable. Usually defined as an

information system that supports decision making with more or less
detail, the term has been often abused in Computer Science and in
Management. Thus, any information system could claim to be a
DSS. However, more specific boundaries are needed to capture the

13



1. Introduction

Algorithms

Model
Symbolic model
Variables, relations
Underlying theory
Methodology, technique
Uncertainty modelling

Data
Deterministic data
Uncertain data -
Stochastic processes
Data analysis

Solution
Data treatment
Analysis
Interpretation

DSS

Interpretation

Figure 1.2.: Decision Support System (DSS) diagram.

essence in the first sentence of this section. In this regard, French
(2010) proposes “a typology of DSSs in relation to their context of
use and the support that they offer.”

Under that paradigm, followed in the framework proposed, the
model plays an important role in a DSS. This can be seen in Fig-
ure 1.2. Both the model and the data are the basis for the decisions.
Appropriate algorithms are applied once the model is defined and
the data is available. The DSS should be also capable of preparing
the data in a model-suitable way. The model must be based on
strong scientific knowledge. Decisions obtained by the DSS, regard-
less their category (descriptive, normative, or prescriptive), should
include interpretation and analysis, probably requiring some poste-
rior data analysis.

1.4. Dissertation Outline

1.4.1. Outlook

The framework is presented in a similar flow of that in Figure 1.2.
Starting from the model, a bottom-up approach is followed so as to
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reach a good understanding of the models before extending them up
to the realistic final problem. The successive models are illustrated
with simplified numerical examples. Then, before analyzing solu-
tions, some DSS enveloping matters are explained. The framework
is eventually used to solve realistic model instances.

In spite of focusing on energy systems modeling, some of the
present work can be easily extended to further problems. In partic-
ular, the stochastic models are suitable for problems where strategic
and operational decisions appear at the same time. Furthermore, as
a framework, the features in Chapter 8 are valid for any optimiza-
tion problem.

There is a short reference glossary in Appendix A. It may be ad-
visable to check it at this point, before reading the whole document.

1.4.2. A Baseline Example

To illustrate the problem, a simple example will be used. It is in-
spired by the classical news vendor problem used in many textbooks,
see for example Birge and Louveaux (2011).

Example 1. Toy example: Suppose a building manager can
decide each year the energy capacity x of the building. For
simplicity in the exposition, aggregated values and decisions are
assumed. The price of each unit of capacity, e.g., kW , is c.
Usually there is a limit x, 0 ≤ x ≤ x for the capacity in the
building, for example due to physical limitations. During the
year, the energy demand varies following a probability distribu-
tion described by a random variable ξ. If the demand is higher
than the capacity, i.e., ξ > x, then the building manager has
to increase the capacity in order to fulfill the demand, but at a
higher cost d+ > c. If the demand is lower than the capacity x,
i.e., ξ < x then the building manager can sell energy at a lower
price d− < c. Let y− (y+) be such excess (shortage) of capacity.
Then, the cost function for the building energy procurement is:
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cx+ d+y+(ξ)− d−y−(ξ). (1.1)

Note that in these types of problems, there are strategic first-
stage decisions x that are to be made before uncertainty ξ is
resolved and operational second-stage decisions y that are made
once uncertainty is resolved. As seen above, the optimal value of
the second stage decision depends on both the random variable
ξ and the first-stage decision x: y+∗

= max{0, ξ−x} and y−
∗
=

max{0, x−ξ}. Therefore, the expected value of the cost function
to be minimized, i.e., Equation (1.1) can be expressed as:

C = cx+ Eξ

[

d+y+(ξ)− d−y−(ξ)
]

=

cx+ Eξ

[

d+max{0, ξ − x} − d−max{0, x− ξ}
]

, (1.2)

where E[·] is the mathematical expectation function. Developing
the following optimality condition:

C ′(x) =
∂C

∂x
= 0, (1.3)

where C ′(x) denotes the first order derivative of C(x) evaluated
at x, yields the following expression:

P [ξ < x] =
d+ − c

d+ − d−
, (1.4)

where P[·] is the probability function. So, the probability of
the demand being higher than the strategic decision is fixed by
the data. Given that d+ > c > d−, Equation (1.4) assures a
level of security for the solution. This solution, in turn, depends
on the probability distribution of ξ. Therefore, the solution of
two-stage stochastic problems ends up in the fulfillment of some
security level. Such solutions are optimal for all the scenarios at
a time, thereby providing robust solutions for strategic deci-
sions. In contrast, the solution of the deterministic problem, i.e.,
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substituting the uncertain parameters ξ by its expectation E [ξ]

and solving the optimization problem, returns the solution for
the average scenario, which might never occur. Likewise, solving
the worst case scenario, i.e., using max{ξ} as fixed, would be too
conservative and unrealistic, consequently leading to very high
costs.

In the example presented, both first- and second-stage decisions
are made within comparable periods of time. In reality, the opera-
tional decisions are made within the strategic periods. The challenge
arises when having strategic (long-term) and operational (short-
term) decisions within the same model. Due to the own structure of
the problem, operational decisions induce risk aversion on strategic
decisions. On the other hand, as the operational periods are embed-
ded into the strategic ones, the size of the problem tremendously
increases as elements are added to the model. Several modeling ap-
proaches to deal with these issues are detailed and compared in the
following chapters.

1.4.3. Main Questions Addressed

The main questions that will be addressed in the following chapters
and, hopefully, answered by the results are:

• How to model the energy flows jointly with strategic issues;

• How to model uncertainty in order to make the models robust;

• How to manage risks within the model;

• What should be a DSS like to better deal with the model, the
data and the solution;

• What are the advantages, if any, of using more detailed mod-
els instead of simpler, aggregated ones.
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1.4.4. Conventions and Structure

The following conventions regarding the notation apply throughout
this work, unless another interpretation is specified:

• Variables are identified by small Latin letters, usually using
the last letters of the alphabet, e.g., x, y, z. More than one
letter can be used;

• Parameters are identified almost always by capital Latin let-
ters, usually using the first letters of the alphabet, e.g., A,D.
An exception applies for well-known generic model formula-
tion, e.g., right-hand-side vector bbb in LP;

• For both variables and parameters, when the symbol appears
in bold face refers to a vector or matrix, e.g., AAA;

• Examples are identified by a vertical gray line to the left of
the text from the beginning to the end of the example;

• Uncertain values or vectors are represented by Greek letters,
e.g., ξ;

• The special functions for the expectation of a random vari-
able and the probability function are represented by E and P

symbols respectively;

• Acronyms are shown in full form, i.e., including both written
out form and acronym, at least the first time they appear in
the text. The complete list of acronyms can be consulted just
after the table of contents;

• Code is shown in teletype font with a light-grey background.
Input code may be shown with colored syntax. Output code
lines are always preceded by two comment symbols, i.e., ##;

• The names of software applications and programming lan-
guages are printed in sans-serif font, e.g., R , Python. The
names of functions, objects, and classes are printed within
the text in teletype font, e.g., optimSMS.
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After this introductory chapter providing an overview of the prob-
lem, the following structure completes the dissertation:

• Chapter 2 provides the scientific and technical background
that applies, including a review of the literature and the state
of the art;

• In Chapter 3, the simplest model is presented. Few variables
and parameters under a deterministic perspective allow to
understand the essence of the problem and the need for apply
more sophisticated techniques;

• Chapter 4 extends the deterministic model to a stochastic
two-stage model;

• Chapter 5 broaden the deterministic model in Chapter 3 in
order to include more options reflecting the reality of a build-
ing;

• Finally, Chapter 6 contains the multi-stage stochastic model
gathering all the features;

• Chapter 7 implements risk management in the model. In
addition to the treatment of uncertainty inherent to SP, risk
terms and weights are added to the model in order to deal
with risk aversion;

• Chapter 8 presents a framework for DSSs based on a repro-
ducible research approach, and its implementation;

• Chapter 9 summarizes the findings and present conclusions
and further research;

• Finally, three appendices are available for reference: a glos-
sary of terms, the code used in Chapter 8, and the session
information where the code was run.
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2. Background

2.1. The EnRiMa Project

The framework proposed in this work has been applied to the EnRiMa
project1. EnRiMa (EnRiMa project consortium 2010-2014) is a
7th Framework Program (FP7) research project funded by the EC,
whose overall objective is to develop a DSS for operators of energy-
efficient buildings and spaces of public use. The consortium is
formed by nine partners from six European countries:

• Stockholms Universitet (SU), Sweden;

• University College London (UCL), United Kingdom;

• International Institute for Advanced Systems Analysis (IIASA),
Austria;

• Universidad Rey Juan Carlos (URJC), Spain;

• Center for Energy and innovative Technologies (CET), Aus-
tria;

• Minerva Consulting and Communication (MCC), Belgium;

• Stiftelsen for Industriell og Teknisk Forskning (SINTEF), Nor-
way;

• Tecnalia Research & Innovation (TECNALIA), Spain;

• Hidrocantábrico Energía (HCE), Spain.

1http://www.enrima-project.eu
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The project started in October 2010, with a duration of 42 months.
At the time this is written all the planned milestones have been
achieved and the project advances have been disseminated at both
technical and non-technical levels, see for example Cano et al. (2012b)
and Groissböck et al. (2013b). The EnRiMa DSS would help man-
agers of public buildings to find operational policies for controling
energy resources, such as energy purchases as well as small-scale, on-
site Distributed Generation (DG) with CHP applications for using
recovered heat, and loads, which may be available for curtailment or
shifting via storage technologies. The installation of renewable en-
ergy technologies based on biomass, biogas, and solar power is also
considered whenever applicable. A key innovation of the project is
to combine the proven methodology for modeling energy flows in
buildings with recent advances in effective coping with uncertainty,
which provides the DSS that would aid the operators in integrated
management of conflicting goals such as cost reduction, meeting en-
ergy, efficiency, and CO2 emissions targets while considering toler-
ance for comfort and risks, especially due to uncertainties in energy
prices and loads, e.g., by the use of financial contracts to provide
protection against adverse movements in energy prices and loads.
The functionality of the EnRiMa DSS is summarized in Figure 2.1.

This dissertation is, in part, the result of the contributions to
the project, and the knowledge acquired from it. The models de-
veloped in Chapters 3 to 7 are the result of fruitful discussions and
cooperation with URJC colleagues and with other project partners’
teams. Likewise, the spirit of the framework described in Chapter
8 has been applied while developing the Solver Manager, an impor-
tant component of the EnRiMa DSS. Furthermore, such a Solver
Manager uses the optimr library developed, whose functionality is
explained in Chapter 8. The EnRiMa Solver Manager structure can
be seen in Figure 2.2. The Solver Manager is part of the EnRiMa
DSS Engine, along with the Scenario Generator and the DSS Kernel.
A diagram of the EnRiMa DSS architecture and the relationship be-
tween the Solver Manager and the rest of the modules can be seen
in Figure 2.3.
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Figure 2.1.: EnRiMa DSS functionality.

One of the EnRiMa project’s innovations is the capability to opti-
mize adoption and deployment of energy-efficient equipment taking
into account long- and short-term decisions. Thus, two different
models have being developed: strategic and operational. Moreover,
strategic decisions are influenced by the operational performance,
while operations depend on historic strategic decisions. Operational
decisions are those involving the dispatch of installed technologies in
the short term, whereas strategic decisions concern, in the long term,
to which technologies to install and (or) decommission, or which
contracts to select from the market. In an attempt to tackle short-
and long-term decisions as a whole, the strategic model includes a
simplified version of operational energy-balance constraints. The
operational model, in turn, includes the realization of the strategic
decisions as parameters. Figure 2.4 shows the interplays between
both models and their Decision Variables (DVs) and constraints.
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Figure 2.2.: EnRiMa Solver Manager structure.

Figure 2.3.: EnRiMa DSS Architecture.
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Thus, two different models have been developed for the EnRiMa
DSS, namely: a strategic model and an operational model. A third
extension of both models is the upper-level operational model, im-
plementing the upper-level constraints, decisions and parameters to
deal with several energy types in the short term. In this work, only
the strategic model, which is importantly affected by uncertainties,
is taken into account.

25



2. Background

EnRiMa DSS
Strategic

Module
Strategic DVs

Strategic
Constraints

Upper-Level
Operational DVs

Upper-Level
Energy-Balance

Constraints

Operational

Module

Lower-Level
Operational DVs

Lower-Level
Energy-Balance

Constraints

Figure 2.4.: EnRiMa project DSS Schema.

2.2. Methodology

2.2.1. Operations Research (OR)

In the introductory chapter, the problem tackled in this work was
framed within the OR discipline. The Institute for Operations Re-
search and the Management Sciences (INFORMS) defines OR as
“the discipline of applying advanced analytical methods to help
make better decisions”2. Thus, DSSs fit perfectly into OR. A num-
ber of techniques are used within OR in order to apply Science to
decision making. Some of the more relevant are:

• Simulation;

• Optimization;

• Probability and Statistics.

Other underlying tools used in OR are network theory, queuing
theory, inventory theory, or scheduling, among others. Historically,

2http://www.scienceofbetter.org/
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OR originated during the World War II to describe operative as-
pects, in contrast to technical aspects, and the term Operations
Research was coined by the Bawdsey Research Station superinten-
dent A.P. Rowe in the UK in 1937.

OR requires mainly two skills: modeling and optimizing. The
former allows to obtain an abstraction of a real system in terms of
mathematical entities (variables, constants, parameters, etc.) and
their relations. The latter applies algorithms to understand how the
system works and unveil how the decision maker can take action over
it to get an optimal performance under certain goals.

A field related to OR from which decision making problems sim-
ilar to the ones studied here can be tackled is Game Theory. It is
more suitable when different decision makers interact with the sys-
tem, usually with conflicting goals and where different strategies are
available, and a sort of equilibrium is pursued. The foundations for
Game Theory were set by Von Neumann and Morgenstern (1953).
A comprehensive OR methods compendium can be found in Taha
(2011).

2.2.2. Mathematical Programming

Mathematical Programming, also known as Mathematical Opti-
mization, is one of the optimization techniques used in OR, see
Shapiro (1979). It consists on the selection of the best option among
several available alternatives. This set of alternatives, namely the
feasible set, is usually constrained by certain restrictions. Thus, a
mathematical programming problem can be formulated as follows:

min
xxx

f(xxx), (2.1)

s.t. gi(xxx) ≤ 0, i = 1, . . . , n,

hj(xxx) = 0, j = 1, . . . ,m,

where the goal is to get the values for the vector xxx that minimize the
objective function f(xxx), subject to the sets of constraints gi(xxx) and
hj(xxx). Such xxx vector contains the decisions that can be made and
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is usually referred to as decision variables. In general, the problem
might result in the following situations:

1. The feasible set is empty, and therefore there is no solution
to the problem;

2. The problem is unbounded, and therefore there is not an op-
timal solution;

3. There is a subset of solutions that are better than the rest of
the feasible set, but none of them is an optimum;

4. There is an optimal solution xxx∗ whose objective function value
is better than any other from the feasible set.

Linear Programming (LP)

A particular case of mathematical optimization is when both the ob-
jective function and the constraints are linear functions, i.e., they are
linear combinations of the decision variables’ vector xxx. In this case,
the mathematical method to be used is Linear Programming (LP).
It was first formulated by G.B. Dantzig in 1947, who proposed the
simplex algorithm for its solution, see Dantzig (1965). In general, a
LP problem can be formulated in the canonical form as follows:

min
xxx

cccTxxx, (2.2)

subject to : AAAxxx ≤ bbb,

xxx ≥ 0,

where xxx is the vector of unknown decisions, ccc is the vector of known
costs, AAA is the known matrix of coefficients, and bbb is the so-called
vector of right-hand-side (rhs) coefficients, which are also known.
Every linear programming problem, namely primal problem, can
be converted into its dual problem. The dual problem provides an
upper bound to the optimal value of the primal problem. Thus, the
dual of problem (2.2) is:

28



2.2. Methodology

min
yyy

bbbTyyy, (2.3)

subject to : AAATyyy ≥ ccc,

yyy ≥ 0.

There is a strong relationship between the objective values of the
primal and dual problems which is useful in order to analyze the
model and the solution.

In order to apply the simplex algorithm, the problem must be
formulated in augmented form, i.e.:

min
xxx

cccTxxx, (2.4)

subject to : AAAxxx = bbb,

xxx ≥ 0.

Note that regardless the original linear problem form, it can al-
ways be formulated in canonical or augmented form by reshaping
the model without changing the interpretation of the results:

• Maximize an objective function is equivalent to minimize the
objective function multiplied by -1;

• Likewise, the direction of an inequality can be changed by
multiplying by -1 both sides;

• An inequality can be converted into an equality by adding
slack variables;

• If a variable is unrestricted in sign, or its upper bound is
negative, it can be easily redefined.

Optimization software usually transforms the model automati-
cally, so it is not needed to do any changes before calling the solver.
Slack variables can provide additional information about the deci-
sions.
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Problem (2.2) assures that the feasible set is convex. Moreover,
the objective function is convex and concave, as it is linear. There-
fore, a local minimum is also a global minimum. This is the basis
of the simplex method, which basically consists on moving through
the boundaries (frontier) of the feasible region from one vertex, i.e.,
extreme point, to the next. Other important algorithm, actually
family of algorithms as both have evolved throughout time, is the
interior-point algorithm, see Karmarkar (1984), Gill et al. (1986), or
the seminal book by Fiacco and McCormick (1968). Also based on
convex optimization, it improves a feasible interior solution point
by steps through the interior, rather than around the frontier. In
depth explanations of LP algorithms and applications can be found
in Dantzig and Thapa (1997) and Dantzig and Thapa (2003).

Extensions of LP problems include those in which some or all the
decision variables must be integer numbers. More specific cases in-
clude binary variables that can only be zero or one. Mixed Integer
Programming (MIP) methods are then to be used. Some of those
methods are extensions of LP methods. In other cases, approxi-
mate methods and heuristics are used. For pure Integer (Linear)
Programming (IP) problems, exact algorithms like cutting plane or
brunch and cut can be used. Non-convex, non-linear, and combi-
natorial optimization are other types of mathematical optimization
problems that are out of the scope of this work.

2.2.3. Stochastic Optimization (STO)

In the methods described above, the model parameters are assumed
to be known. However, in many cases this is not true and there is
uncertainty about the real values of the data affecting the system.
This is especially the case in dynamic models where parameters re-
fer to future values of certain characteristics of the system or its
environment. Moreover, strategic models include long-term per-
spectives, which are even more difficult to predict. Energy prices,
demand or investment costs were identified in Chapter 1 as the
more relevant uncertainties in the problem studied here. When
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uncertainty appears, optimization problems become Stochastic Op-
timization (STO) problems, and parameters are actually random
variables, see Subsection 2.2.4 for a brief introduction to uncetainty
modeling. The STO term may include further numerical methods
and algorithms such as optimal search, among others. To make a
distinction, it is common to use also the term Stochastic Program-
ming (SP) for the stochastic extension of mathematical program-
ming problems. Formally, instead of having functions of the vector
of decisions xxx, the model includes functions of both decisions xxx and
uncertain data represented by a vector of random variables ξξξ, whose
probability distribution is assumed to be known, e.g., through its
cumulative distribution function. The random variables are defined
by a given sample space ω ∈ Ω. Therefore, the real values of ξξξ are
only known after the experiment or observation, ξξξ = ξξξ(ω). Thus,
model (2.1) is formulated in the following general form:

min
xxx

f(xxx,ξξξ), (2.5)

s.t. gi(xxx,ξξξ) ≤ 0,

hj(xxx,ξξξ) = 0.

A simplistic way to deal with these types of problems is to esti-
mate the parameter values through its expected value and solve the
corresponding deterministic problem:

min
xxx

f (xxx,Eω [ξξξ(ω)]) , (2.6)

s. t. gi (xxx,Eω [ξξξ(ω)]) ≤ 0,

hj (xxx,Eω [ξξξ(ω)]) = 0.

This approach may lead to wrong decisions for several reasons.
First, it provides degenerated optimal solutions for the average sce-
nario. Eventually, this solution will not be optimal for the actual
situation, or even it could lead to a really bad outcome. Second,
the average scenario may never occur. And, more importantly, the
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solution for the average scenario can be infeasible for the real sce-
nario, resulting on certain risks, e.g., not enough capacity to fulfill
the real demand of energy. As a straightforward metaphor, would
anyone go to a hospital whose patients receive treatment according
to the average body temperature of all of them?

Example 2. Toy example (cont.): In the baseline example, the
deterministic solution would be the following:

x∗det =











0 if E [ξ] ≤ 0

x if E [ξ] > x

E [ξ] otherwise

. (2.7)

This degenerated solution may result in shortfalls in case there
are restrictions on the second stage decisions. Moreover, it min-
imizes the objective function for the expected value of the de-
mand, but the real value will be different to the expected value,
and the real cost may be much higher.

Instead of using expected values as known data, a SP problem is
formulated as the optimization of the expected value of the objective
function:

min
xxx

C = Eω [f (xxx,ξξξ(ω))] , (2.8)

s.t. gi(xxx,ξξξ(ω)) ≤ 0 ∀ω, (2.9)

hj(xxx,ξξξ(ω)) = 0 ∀ω.

The solution of SP problems are in general not optimal for any
possible scenario. In addition, the value of the objective function for
the SP problem solution is always worse compared to the value of
the objective function of the deterministic problem solution. Never-
theless, this solution is the best one considering all the plausible sce-
narios, and therefore it is a robust solution. In fact, the solution
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of the deterministic problem results always in a worse value of the
objective function considering all the scenarios. Madansky (1960)
demonstrated these inequalities, and later Birge (1982) defined the
Value of Stochastic Solution (VSS) as the difference between the
value of the expected objective function (2.8) using the determinis-
tic problem solution xxx∗det and the value of the expected objective
function using the solution of the SP problem xxx∗sto, that is:

C(xxx∗det)− C
(

xxx∗sto
)

. (2.10)

The solution of an SP problem depends on the probability dis-
tribution of the vector of uncertain parameters ξξξ. It can be seen in
the simple example introduced in Chapter 1.

Example 3. Toy example (cont.): The SP problem in example 1
can be formulated as follows:

min
x,y+,y−

cx+ d+y+(ξ)− d−y−(ξ), (2.11)

subject to: x+ y+ = ξ,

x ≤ x,

y− ≤ x,

x, y+, y− ≥ 0.

From Equations (1.2)–(1.3), the optimal solution of this sim-
ple example is:

x∗ =















0 if d+−c
d+−d−

< F (0)

x if d+−c
d+−d−

> F (x)

F−1
(

d+−c
d+−d−

)

otherwise

, (2.12)

where F−1(α) is the α-quantile of the cumulative distribution
function F (ξ). Note that F (ξ) = P [ξ ≤ x] = 1−P [ξ > x], which

33



2. Background

expression was obtained in Example 1. Therefore, an accurate
cumulative distribution function of the demand, i.e., F (ξ), is
needed in order do provide a concrete decision.

Examples 1–3 describe a basic recourse program. In these types of
problems, introduced by Dantzig (1955), some of the decisions are
made before uncertainty is resolved. These decisions are called first-
stage decisions or here-and-now decisions. In two-stage stochastic
problems, the rest of the decisions are second-stage decisions or
wait-and-see decisions. They are made after new information arrives
about the random variates. Formally, these types of problems are
formulated as follows:

min
xxx,yyy(ω)

cccTxxx+ Eξξξ

[

minqqq(ω)Tyyy(ω)
]

, (2.13)

s. t. AAAxxx ≤ bbb,

TTT (ω)xxx+WWWyyy(ω) = hhh(ω),

xxx ≥ 0, yyy ≥ 0.

An alternative way of representing the model is the following:

min
xxx

cccTxxx+ Eξξξ [Q(xxx, ω)] , (2.14)

s. t. AAAxxx ≤ bbb,

xxx ≥ 0,

where:

Q(x) =min
yyy(ω)

qqq(ω)Tyyy(ω), (2.15)

s. t. TTT (ω)xxx+WWW (ω)yyy(ω) = hhh(ω),

yyy(ω) ≥ 0.
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For the first-stage decisions, vectors ccc and bbb, and matrix AAA are
known. In the second stage, a number of random events ω ∈ Ω

may occur. For each of these events, the second-stage vectors qqq and
hhh, and matrices TTT and WWW become known. Again, the probability
distribution of ξξξ is also known.

Through the characterization of uncertainty by means of scenar-
ios, i.e., Ω = {ω1, . . . , ωT }, SP problem (2.13)–(2.15) can be con-
verted into its Deterministic Equivalent Program (DEP):

min
xxx,yyy(ω)

z = cccTxxx+
∑

ω∈Ω

P(ω)qqq(ω)Tyyy(ω), (2.16)

subjet to: AAAxxx = bbb,

TTT (ω)xxx+WWW (ω)yyy(ω) = hhh(ω) ∀ω ∈ Ω,

xxx ∈ X,yyy(ω) ∈ Y ∀ω ∈ Ω, (2.17)

where P[ω] is the probability of scenario ω. In multi-stage SP prob-
lems, Constraints (2.17) must include nonanticipativity constraints,
which guarantee that decisions at early stages are the same for all
the scenarios. In a multi-stage SP problem with n stages, there are
first-stage decisions, second-stage decisions, . . . , n-stage decisions.
At each stage, new information about the random parameters ar-
rives, and decisions are made. Two-stage SP problems are special
cases of multi-stage problems. In practice, two types of notation can
be used to represent and solve SP problems, namely: node-variable
formulation and scenario-variable formulation. Node-variable for-
mulation is also known as compact form, see for details Alonso Ayuso
et al. (2009) or Conejo et al. (2010). It will be used in Chapter 6.

For certain problems where SP is not suitable for some reason,
e.g., due to high dimensionality, other STO techniques can be used.
In the books by Marti et al. (2006), Marti (2008), Marti et al. (2010),
Ermoliev et al. (2012a) some of them can be found, including recent
approaches.
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2.2.4. Uncertainty Modeling

Since the uncertain parameters affecting the system are actually
random variables, some background on this topic is needed to solve
SP problems. Several techniques for estimation, forecasting, sce-
nario generation and scenario reduction, which are not included in
this work, are available in, for example, Conejo et al. (2010) or
Dupac̆ová et al. (2003).

Theory of Probability and Statistics are the most important knowl-
edge areas to deal with uncertainty. In what follows, a summary of
the main concepts used in this work are outlined. Most of the con-
cepts can be found in the international standard ISO 3534-1:2006
(ISO, 2006).

In probability theory, event is an essential concept. Roughly, an
event is a possible outcome of a random experiment or observation.
Formally, an event ω is a subset of the sample space Ω, which is the
set of all possible outcomes. The uncertainty of those events are
then modeled by means of a probability function P. The following
types of events can be defined:

• Event ω, ωi: subset of the sample space Ω;

• Complementary event ωc is the sample space excluding the
given event, {Ω \ ω};

• Events are independent if they can not occur at the same
time;

• Elementary event: contains only a single event of the sam-
ple space. Elementary events are independent and mutually
exclusive;

• Empty event ∅ is the event that none of the events in the
sample space occur;

• Sure event is the sample space Ω event.

The probability function assigns to each event a probability of
occurrence. A probability function is defined by the following ax-
ioms:
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1. P[ω] ∈ R,P[ω] > 0 ∀ω ∈ Ω;

2. P[Ω] = 1;

3. P[ω1 ∪ω2 ∪ . . .] =
∑

i∈I P[ωi], where I is a set of independent
events in the sample space Ω.

Some consequences:

1. P[ωi] ≤ P[ωj ] ∀ωi ⊆ ωj ;

2. P[∅] = 0;

3. 0 ≤ P[ω] ≤ 1 ∀ω ∈ Ω;

4. P[ωi ∪ ωj ] = P[ωi] + P[ωj ]− P[ωi ∩ ωj ];

5. P[ωc] = 1− P[ω];

6. P[ωi∩ωj ] = 0 ∀i, j ∈ I, i 6= j, where I is a set of independent
events in the sample space Ω.

Another important concept for probability calculus is the condi-
tional probability. The probability of the event ωi given that the
event ωj occurs is:

P(ωi|ωj) =
P[ωi ∩ ωj ]

P[ωj ]
.

Finally, the following important theorems are widely used when
modeling uncertainty:

Theorem 1. Law of total probability: If ωj are n independent events

and
n
⋃

j=1
ωj = Ω, then for any event ωi ∈ Ω:

P[ωi] =
n
∑

j=1

P[ωi|ωj ] · P[ωj ].

Theorem 2. Bayes’ theorem:

P[ωi|ωj ] =
P[ωj |ωi] · P[ωi]

P[ωj ]
.
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Random variables

Formally, a random variable ξ is a function defined on a sample
space Ω where the values of the function are ordered k-tuplets of
real numbers. In short, a random variable assigns a number to an
event of the sample space Ω. A random variable can be continuous
or discrete.

Probability mass function For a discrete random variable, the
probability mass function gives the probability that the random
variable equals a given value:

fξ(x) = P[ξ = x],

where fξ(x) is defined for all the possible values of the random
variable ξ.

Probability density function For continuous variables, the prob-
ability defined above has no sense, as the probability of an exact
point in the real numbers is equal to zero. Instead, the probability
density function is defined as a function over a random variable with
the following characteristics:

1. fξ(x) ≥ 0 ∀x;

2.
∫∞

−∞
fξ(x)dx = 1.

Thus, in continuous functions the probability of the random vari-
able to be between two values can be computed as follows:

P[a ≤ ξ ≤ b] =

∫ b

a

fξ(x)dx.
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Cumulative distribution function The cumulative distribu-
tion function is often referred simply as distribution function, and
by definition it is:

Fξ(x) = P(ξ ≤ x).

Therefore, for discrete random variables:

Fξ(x) =
∑

xi≤x

fξ(xi),

and for continuous distributions:

Fξ(x) =

∫ x

−∞

fξ(x)dx. (2.18)

There is a direct and important relationship between the cumu-
lative distribution function and the density function of a continuous
variable:

F ′
ξ(x) =

dFξ(x)

dx
= fξ(x). (2.19)

The inverse function of the cumulative distribution function is
the α-quantile, defined as the value of the random variable ξ equal
to the infimum of all x ∈ ξ such that the cumulative distribution
function is greater than or equal to α:

F−1
ξ (α) = inf

x∈ξ
{P[ξ ≤ x] ≥ α} .

Mathematical expectation Expectation is defined for func-
tions of random variables as:

E[gξ(x)] =

∫

ξ

gξ(x)dF (x).
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In the case of discrete variables, a summation applies instead of
an integral:

E[gξ(x)] =
∑

xi∈ξ

gξ(xi)dF (x).

When the function used in the expectation is just a power of order
r of the random variable, the expectation is the moment of order r.
The mean µ of the random variable is the moment of order 1, for
continuous distributions:

µ = E[ξ] =

∫

ξ

xdF (x), (2.20)

and for discrete distributions:

µ = E[ξ] =
∑

xi∈ξ

xiP[xi].

Some useful properties of the expectation are:

E[ξ + a] = E[ξ] + a, (2.21)

E[ξ1 + ξ2] = E[ξ1] + E[ξ2], (2.22)

E[aξ] = aE[ξ]. (2.23)

Variance The variance σ2 is a measure of variability of the ran-
dom variable, and it is defined by the 2nd central moment, i.e., about
the mean, of the random variable:

σ2 = V [ξ] = Eξ

[

(x− µ)2
]

.
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Therefore, for continuous variables:

V [ξ] =

∫

ξ

(x− µ)2 dF (x),

and for discrete variables:

V [ξ] =
∑

xi∈ξ

(xi − µ)2P(xi).

The standard deviation σ is the positive square root of the vari-
ance. The variance can be also computed with the following alter-
native formula:

V [ξ] = E[ξ2]− (E[ξ])2 .

Other important properties of the variance are:

• V [ξ + a] = V [ξ];

• V [aξ] = a2V [ξ];

• V [aξ1 + bξ2] = a2V [ξ1] + bV [ξ2] + 2abCov [ξ1, ξ2],

where Cov [ξ1, ξ2] is the covariance between two random variables,
defined by:

Cov [ξ1, ξ2] = E[(ξ1 − µ1)(ξ2 − µ2)].

2.3. Decision Support

Systems (DSSs) for Optimization

2.3.1. General Framework

In Chapter 1, the main ideas about DSS guiding the framework
proposed were outlined. Under this approach, an authentic DSS
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should be based not only on data and information technology, but
also on models. One step beyond, an effective DSS must be able to
provide an environment for stakeholders dialog. Figure 2.5 updates
the DSS diagram in Chapter 1. Usually decision making is not a
static action without continuity, but rather an iterative process, re-
gardless the time cycle duration. Therefore, the outcomes of the
process provide endogenous feedback to the own DSS. Moreover,
this feedback is not only quantitative in order to improve the accu-
racy of the estimation of data or distributions. Useful analyses at
different levels must be provided by the DSS that enforce the nec-
essary stakeholders dialog. The purpose of this dialog is twofold:
On the one hand, a dialog between the stakeholders and the DSS;
on the other hand, between the stakeholders, likely with different
motivations and targets. Examples of the former are:

• Comprehensive and understandable output reporting. It should
be self-contained, pointing to the details for different stake-
holders;

• The DSS output should tell the decision maker and other
stakeholders not only the recommended optimal decisions,
but also about the interpretation of the results, consequences,
implementation, and usefulness;

• Some examples of stakeholders are decision makers, consul-
tants, modelers, or data managers. All of them interact with
the DSS in a continuous base through the feedback received
in form of new inputs;

• Sometimes the output of the DSS is to be used externally, e.g.,
by policy makers or mass media. This requires a different type
of dialog, but consistent with the inner one.

Examples of the dialog between stakeholders are:

• Often data managers or operators are different to modelers,
and a fluid communication between them is crucial for the
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Algorithms

Model
Symbolic model

Variables, relations

Underlying theory

Methodology, technique

Uncertainty modelling

Data
Deterministic data

Uncertain data -

Stochastic processes

Data analysis

Solution
Data treatment

Analysis

Visualization

DSS

Stakeholders Dialog

Interpretation

Figure 2.5.: DSS updated diagram: stakeholders dialog.

accurateness of the inputs. Not for nothing the subsequent
results will be based on these inputs;

• Decision making based on analysis relies on the abstraction of
the reality using models. Sometimes, for varied reasons, the
models do not appropriately fit into the reality, and dialog
between modelers and, let us say, process owners is decisive.
Depending on the problem at hand, such process owner can
be the own decision maker, or any other recipient of the DSS
output, e.g., advisors, operators, technicians, or managers;

• Dialog with external stakeholders may be necessary at some
point of the decision making process, e.g., between data man-
agers and data providers, between managers and policy mak-
ers, mass media, shareholders, etc. Notice that this dialog
may also provide exogenous feedback to the process.

Considering the premises outlined above, some desirable features
for a DSS framework would be:

• Data analysis capabilities, including: statistical analysis and
data cleaning;

• Data visualization capabilities;
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• Generation of information both human and machine readable;

• Reporting capabilities;

• Implementable in user interfaces, including web interfaces;

• Interfaces to data sources;

• Interfaces to specialized optimization software;

• Flexibility for different representation systems;

• Flexibility for different algorithms and solvers;

• Adaptability to changes.

The developed framework includes innovative features and pro-
vides a flexible environment fulfilling all the features enumerated
above, and can be implemented in usable DSSs through the appro-
priate interfaces. The use of both human and machine readable
formats through the use of Algebraic Modeling Languages (AMLs)
boosts the dialog between stakeholders remarked in this subsection.
On the other hand, the reproducible research approach (see Leisch
2002) adopted in Chapter 8 allows to record and track consistent
updates throughout the time, and to provide a sort of balance score-

card to stakeholders, consistently with all the components of the
DSS. Furthermore, the results are made reproducible for any of
the stakeholders, which increase the efficiency in multi-disciplinary
and changing environments, and the quality of the communication
processes.

2.3.2. The Model

Within the structure of the DSS, the model component is repre-
sented by the Symbolic Model Specification (SMS). The SMS de-
fines the mathematical representation of the optimization model,
including all relevant subsystems and their interactions. This math-
ematical representation is composed of variables, parameters, and
relations between them. Such relations are, in turn, represented
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by equations and inequations. Sets are used to represent parame-
ters and variables membership, as well as domains and conditions
within equations. The models applied to the specific problem of en-
ergy systems optimization at the building level will be developed in
the forthcoming chapters, from the baseline example in Chapters 1
and 2. In order to generically represent the SMS within the DSS, in
Chapter 8 specific data structures are proposed and the framework
is implemented in R .

The proposed framework relies on the use of Algebraic Model-
ing Languages (AMLs), in contrast to the use of whole matrices
to represent the optimization problems. The advantages of AMLs
versus matrix-like systems have been largely discussed, see for ex-
ample Fourer (1983) or Kuip (1993). Recent advances on AMLs
can be found in Kallrath (2012a). Nevertheless, usually optimiza-
tion software accepts matrix files with the model coefficients and
actually modeling software generates the matrix from the algebraic
language. The process however is usually more straightforward and
less prone error when using AMLs, as the modeler has just to write
the model, and the coefficients are generated combining the data
and the model. MPL and LP are the most used file formats for
matrix data models.

According to Kallrath (2012c), AMLs are “declarative languages
for implementing optimization problems”. They are able to include
the elements of optimization problems in a similar way they are
formulated mathematically using a given syntax that can be in-
terpreted by the modeling software. This approach is essential for
representing the models not only for machines, but also for hu-
mans, and allow the stakeholders dialog. One of the capabilities of
the framework is to represent the models in LATEX format, which
is one of the “Practioner’s Wish List Towards Algebraic Modeling
Systems” expressed by Kallrath (2012b). The following list enumer-
ates some of the most important AMLs. A reference with the initial
steps of them is provided:

• GAMS (General Algebraic Modeling System, Bisschop and
Meeraus 1982) has its origin in the World Bank during the
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late 1970s;

• AMPL (A Mathematical Programming Language, Fourer et al.
1990);

• AIMMS (Advanced Interactive Multidimensional Modeling Sys-
tem, Bisschop 2006) is historically an evolution from GAMS;

• CMPL (COIN Mathematical Programming Language, Schleiff
and Steglich 2013) is an AML within the Computational In-
frastructure for Operations Research (COIN-OR) project;

• MathProg is the algebraic language used by GLPK (GNU Lin-
ear Programming Kit), implements a subset of AMPL;

• Pyomo (Python Optimization Modeling Objects, Hart et al.
2012) is a Python package, part of the A Common Optimiza-
tion Python Repository (Coopr) software library, which in-
cludes modeling capabilities in a high-level language.

Despite AMLs have been selected to build the framework, it is
important to remark that other structured formats, e.g., markup
languages, can be used as far as they are useful to accomplish the
DSS main mission, i.e., the stakeholders dialog. For example, Opti-
mization Services (OS)3 is a COIN-OR4 project that uses the XML
format to represent optimization problems and that is suitable to
effectively communicate within an eventual DSS.

2.3.3. The Data

Some of the AMLs described above and some of the software pack-
ages in the next subsection include data import and export capabil-
ities, and even some analysis functionality. However, it is common
that analysts and modelers use specific data analysis software to
make the data available for the DSS. In this regard, there are a

3https://projects.coin-or.org/OS
4http://www.coin-or.org
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wide range of options both commercial and open source. A non-
exhaustive list would include:

• STATA5: widely used in econometrics;

• SPSS6: time-honored statistical software, recently acquired by
IBM;

• SAS7: The leader in business analytics;

• Minitab8: Well-known statistical software for quality control
and improvement;

• R9: The R statistical software and programming language is
a free, open source software that is increasing its use as data
analysis and visualization software in academics, governmen-
tal agencies, and companies.

The data component of a DSS can be also developed using general-
purpose programming languages such as C++ or Java, or specific
programming language libraries, e.g., pandas and matplotlib for Python.
Moreover, interfaces to diverse data sources may be needed in or-
der to import and export data from/to the existing data sources.
For SP, scenario generators are also needed to combine the data
and the uncertainty modeling in order to provide the DSS with the
appropriate inputs.

2.3.4. The System

There is a component of the DSS in charge of running the opti-
mization. Usually it is a piece of software containing the algorithms
to solve the optimization problem, and it is in general named the

5http://www.stata.com/
6http://www-01.ibm.com/software/analytics/spss/
7http://www.sas.com/
8http://www.minitab.com/
9http://www.r-project.org/
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solver. Solvers are usually available as standalone, low-level appli-
cations that can be embedded in high-level applications, i.e., with
a user interface. Solvers may be specific for a given optimization
type of problem, e.g., LP, Non Linear Programming (NLP), or for
different types of problems. The following is a non-exhaustive list
of commonly used solvers:

• CPLEX10: For linear and quadratic problems;

• lp_solve11 is an open source solver for MIP problems;

• CLP12, the LP solver of the COIN-OR project;

• BARON: For non-convex, non-linear problems;

• MINOS: For NLP, developed by the Systems Optimization
Laboratory at Stanford University;

• CONOPT: Another non-linear solver;

• IPOPT: for large scale nonlinear optimization of continuous
systems, is part of the COIN-OR project;

• GUROBI: The authors of this successful collection of solvers
claim that they were developed from the ground.

More open source solvers can be found in the COIN-OR projects’
website13. In addition to solvers’ projects, developer tools and in-
terfaces can also be found. For example, the OS project14, whose
objective is “to provide a set of standards for representing optimiza-
tion instances, results, solver options, and communication between
clients and solvers in a distributed environment using Web Services”.

10http://www-01.ibm.com/software/commerce/optimization/

cplex-optimizer/index.html
11http://lpsolve.sourceforge.net/5.5/
12http://www.coin-or.org/projects/Clp.xml
13http://www.coin-or.org/projects/
14https://projects.coin-or.org/OS
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The AMLs explained above, as well as other optimization soft-
ware, contain solvers that are called once the model and the data
are available. The list of solvers available from each optimization
software is proveded in the documentation of each system. For
example, the list of solvers supported by GAMS can be consulted
at http://www.gams.com/solvers/. The use of some commercial
solvers may require additional licenses.

In addition to AMLs, other software packages can be used for
optimization. For example, scientific software such as Matlab15,
SciLab16, or Mathematica17, among others, include modules to solve
mathematical programming problems, or to call further solvers.
OpenOpt18 is an open source option. Last but not least, spread-
sheets such as Microsoft EXCEL or LibreOffice Calc can solve opti-
mization problems.

In summary, it is common to find the components of a DSS dis-
seminated and, more importantly, disconnected between them. A
heterogeneous set of tools is often being used for similar tasks. Def-
initely, this fact blocks stakeholders dialog. In contrast, the pro-
posed framework, whose implementation using R is in Chapter 8,
propounds an integration of all the components under the Repro-
ducible Research paradigm. Nevertheless, the framework can be im-
plemented using different technologies according to the stakeholders
needs, as far as their dialog is assured.

2.4. State of the Art

Different approaches to DSS can be found in the literature. Some
of them focus on the model as a way to provide decision support,
other focus on the infrastructure of the DSS, or on a particular ap-
plication, e.g., Salewicz and Nakayama (2004) propose a web-based

15http://www.mathworks.de/products/matlab/
16https://www.scilab.org
17http://www.wolfram.com/mathematica/
18http://openopt.org/
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DSS for managing large international rivers. Tanaka et al. (1995)
proposed a DSS for multicriteria decision making which includes de-
cision maker interaction. González et al. (2009) presented a generic
core to build optimization-based DSSs and Boza et al. (2010) de-
fined a framework for developing a DSS with web services. A brief
history of DSS can be found in Power (2007). Some of the top-
ics discussed in Shim et al. (2002) are tackled in the framework
proposed in this work. An important implementations of machine-
readable models is the Structure Modeling Language (SML) (Geof-
frion 1992a; Geoffrion 1992b). Though a cutting-edge topic, only
very recent works deal extensively with Reproducible Research, such
as the book edited by Stodden et al. (2013).

Regarding the operational module (see Figure 2.4), at the lower
level the operational module models building physics and system
thermodynamics in order to make certain end use energy demands
(such as those for space heat and cooling) endogenous. The op-
erational module takes installed equipment, the building envelope,
and financial positions as given. In modeling the lower-level en-
ergy flows, the operational low-level model relies upon the literature
on building physics (Engdahl and Johansson 2004; Xu et al. 2008;
Platt et al. 2010) or on combining optimization techniques with an
accurate representation of the thermodynamics and physics of the
building as in Liang et al. (2011). The detailed operational model
can be found in Groissböck et al. (2013a).

As far as the strategic module is concerned, different approaches
can be found in the literature about energy systems planning. Some
of them deal with specific technologies, for example Siddiqui et al.
(2005), or Stadler et al. (2009), focus on Distributed Energy Re-
sources (DER) technologies, while Lund (2005) focus on wind tech-
nologies. Other optimization models are designed from the produc-
tion point of view, like Hobbs (1995) or more recently El-Khattam
et al. (2004) and Heydari and Siddiqui (2010). Villumsen and
Philpott (2012) apply STO to capacity planning of electricity trans-
mission networks with transmission switching. Cai et al. (2008) fo-
cus on a regional perspective. Only recent papers tackle systems
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planning at the building level. Salvador and Grieu (2012) evaluate
the energy impact of buildings equipped with energy production and
storage systems on the electricity grid. Kumbaroğlu and Madlener
(2011) rely on aggregated demand for optimal retrofit investment
options.

In terms of ICT solutions for energy-efficient buildings and areas
of public use, most of the existing analyses follow either a power
systems engineering framework, e.g., Weinberg et al. (1991), or Van
Sambeek (2000). Other works, such as Hobbs (1995), Siddiqui et al.
(2005), King and Morgan (2007), Marnay et al. (2008), and Stadler
et al. (2009) follow a deterministic optimization approach that is
unable to provide robust decisions against inherent uncertainties,
as stated by Ermoliev and Wets (1988). Even though stochastic
optimization has been applied for a long time to cope with uncer-
tainties in other fields, there were not approaches based on the use
of STO techniques in order to treat uncertainties for energy effi-
ciency in buildings. This work focuses on the use of SP (Birge and
Louveaux 2011) for the development of models suitable to be used
within strategic decision making.

The solution of the stochastic problem involves adjusting op-
erational decisions to hit long-term targets if additional informa-
tion about prices, demand, weather is revealed in the future, see
Gritsevskii and Ermoliev (1999) and Gritsevskii and Nakicenovic
(2000)). A key innovation of the stochastic EnRiMa DSS is a com-
bination of the proven methodology for modeling energy flows in
buildings (Siddiqui et al. 2005) with the advances in effective cop-
ing with uncertainty (Ermoliev and Wets 1988; Gritsevskii and Er-
moliev 2012; Ermoliev et al. 2012b).

It is important to remark the difference between the models pre-
sented here and the classical capacity expansion models (Buehring
et al. 1984). The traditional Operations Research approach to ca-
pacity expansion in the energy sector (Hobbs 1995) mentions MIP
problems for resource planning. Capacity expansion models have a
utility focused approach, while the models described in this work
follow a customer perspective. Discussions on the difficulties of
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adapting capacity expansion models to the building level, e.g., de-
mand charges, storage, CHP, etc. can be consulted in the literature,
see for example Siddiqui et al. (2007). In fact, the management of
a building behaves in a different way to the energy management
of a whole energy grid. For instance, capacity expansion models
do not deal with passive measures on the buildings side, and only
cost minimization is normally used. In the same vein, the structure
of some Transmission Expansion Planning (TEP) models is simi-
lar to the optimization models presented in this work. However,
that kinds of models are applied to a different problem far from the
building level. Moreover, classical TEP models may not be suit-
able for deregulated markets (Hobbs 1995), including more recent
proposals, such as Garcés et al. (2009), game-theoretic aspects.
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3. The Basic Problem

3.1. Introduction

3.1.1. Scope

In this chapter, a basic deterministic model for strategic decision
making concerning planning of energy systems in buildings is devel-
oped. As outlined in Chapter 2, the deterministic model relies on
average values of stochastic parameters. Moreover, it includes few
options in order to better understand the modeling at this stage.
Nevertheless, the model will evolve throughout the rest of the chap-
ters of Part II of the dissertation. The model is illustrated with a
numerical example, which will be also extended in the next chapter,
see also Cano et al. (2014). The model presented in this chapter
approaches the real world from the baseline example in Chapters 1
and 2. Now, long- and short-term periods are included in the model,
different technologies and types of energy are considered, and other
features as efficiency and pollution are added.

3.1.2. Model Overview

Investment and operational decisions concern demand and supply
sides of different energy loads and resources (electricity, gas, heat,
etc.). The demand side is affected by old and new equipment and
activities including such end uses as electricity only, heating, cool-
ing, cooking, new types of windows and shells, and energy-saving
technologies, etc. For example, new activities may change peak
loads. Accumulators such as batteries may considerably smooth
energy demand-supply processes.
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The supply side is affected by decisions on new technologies. The
notion of technology must be understood in a rather broad sense.
This may be either direct generation of electricity and heat, or
the purchase of certain amounts of, e.g., electricity from a mar-
ket, i.e., the market can also be viewed as energy generating tech-
nology with specific cost functions. Independently of the content,
different options i are available at time t to satisfy energy demand,
i ∈ I = {1, . . . , I}, t ∈ T = {1, . . . , T}. For each case study, feasible
options at time t have to be characterized explicitly.

The model is dynamic and the planning horizon comprises T

years. Uncertainties pertaining to demands, fuel prices, operational
costs, and the lifetime of technologies are considered. Demand may
be affected by weather conditions. It may also substantially differ
by the time of the day and the day of a week. However instead of
considering 8760 hourly values, demands and prices are aggregated
into J periods representatively describing the behavior of the system
within a year. Similar approaches can be found in the literature. For
example, Conejo et al. (2007) aggregate hourly energy pool prices
and demands for electricity in 72 prices/demands periods for annual
planning of energy provision, considering, per month, Monday peak
and off-peak values, working day (other than Monday) peak and
off-peak values, and Saturday and Sunday values.

3.2. Building the Model

3.2.1. The Simplest Case

The demand profile within each year t, can be adequately charac-
terized by the demand within representative periods j, j ∈ J =

{1, . . . , J}. This time structure is represented in Figure 3.1, where
Dt

j , COt
i,j denote the energy demand and costs of technology i in

period j of year t, and yti,j are operational decisions for technology
i in period j of year t. The goal of the strategic model is to find
technologies i and their capacities xti, installed at the beginning of
year t in order to satisfy demands Dt

j , in each period j.
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Figure 3.1.: Temporal resolutions of the strategic planning
model.

Formally, assume planning time horizon of T years. Let xti be the
additional capacity of technology i installed in year t, and sti the
total capacity by i available in t. Then

x t
i ≥ 0 ∀i ∈ I, t ∈ T , (3.1)

sti = s t−1
i + x t

i − x
t−LT i

i ∀ i ∈ I, t ∈ T , (3.2)

where LTi is the lifetime of technology i and s0i is initial capacity of
i existent before t = 1. For each period j within t production plan
decisions yti,j defining how much of technology i operates in period
j to satisfy demand Dt

j are introduced:

∑

i∈I

y ti,j = D t
j ∀ j ∈ J , t ∈ T , (3.3)

y ti,j ≤ G t
i,j · s

t
i ∀ i ∈ I, j ∈ J , t ∈ T , (3.4)

y ti,j ≥ 0 ∀i ∈ I, j ∈ J , t ∈ T , (3.5)

where Gt
i,j , 0 ≤ Gt

i,j ≤ 1, may be interpreted as the availability
factor corresponding to the technology operating in period j in t

(Gt
i,j = 0 for not yet existing technologies).
The deterministic dynamic strategic planning problem is to min-

imize the total cost:
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∑

t∈T





∑

i∈I

CI ti · x
t
i +

∑

i∈I,j∈J

CO t
i,j ·DT t

j · y
t
i,j



 , (3.6)

where CI ti is the unit investment cost for technology i in year t,
CO t

i,j is the unit production cost (including fuel costs) for i in period
j in t, and DT t

j is the duration of period j in t.

3.2.2. Adding Features

Efficiency

The energy efficiency and aging processes may be introduced in
equation (3.2) as

sti = E t
i · s

t−1
i + x t

i − x
t−LT i

i ∀ i ∈ I, t ∈ T , (3.7)

where Et
i denotes “depreciation” (aging) rate in t. Aging can be

also modeled as a dynamic process in a detailed technology-based
manner. This will be done in Chapter 5, where the deterministic
model will be extended with further features.

Budget

An investment constraint may also be introduced for each t as:

∑

i∈I

CI ti · x
t
i ≤ ILt ∀ t ∈ T . (3.8)

Energy Types

In general cases, there is a set K of available energy types (electricity,
gas, heat, possibly also solar radiation). Each technology i is then
characterised by its set of input-output conversion coefficients At

i,l,k,
l, k ∈ K, which convert the unit input energy type l into At

i,l,k units
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of energy type k. In this case, i denotes different energy technology
i ∈ I to satisfy demand Dt

j,k of energy type k in period j in t. Let
us define nonnegative decisions yti,j,k operating in period j of energy
type k. Therefore,

∑

i∈I,l∈L

At
i,l,k · y

t
i,j,k = D t

j,k ∀ j ∈ J , t ∈ T , k ∈ K, (3.9)

y ti,j,k ≤ G t
i,j · s

t
i ∀ i ∈ I, j ∈ J , t ∈ T , k ∈ K. (3.10)

Thus,
∑

i,l A
t
i,l,k ·y

t
i,j,k is the input of energy type l required to sat-

isfy demand in energy type k by production plan yti,j,k for technology
i. The operational costs of technology i are spread over technology
life LTi. The total operational cost COt

i,j,l,k includes now fuel costs
and conversion costs from l to k, and the objective function is to be
modified accordingly.

Remark 1. (Purchasing, energy efficiency and availability factors).
The purchased electricity can be modeled as a technology, with elec-
tricity on both input and output and the purchase cost on the input.
The total available electricity would be a sum of the electricity gen-
erated by technologies and the electricity purchased from the mar-
ket. The availability factor Gt

i,j defines if the whole (Gt
i,j = 1) or

only a certain portion of the capacity/output sti can be used during
time t and period j. This may apply, e.g. for wind-power plants and
heating devices (Karlsson et al. 1995). If equation (3.10) is turned
into an equality, the portion defined by Gt

i,j has to be used during
each time period. This may describe/introduce efficiency improve-
ments (energy conservation). For wall insulation (Henning 1997),
which has a certain time-dependent influence on the heat demand,
Dt

j,k is large in the winter but small in the summer.

Pollution Constraints

Besides cost minimization and investment constraints, there may
exist environmental constraints, e.g., on feasible CO2 and other pol-
lutants h ∈ H emissions:
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∑

i,j,l,k

PH i,l,k,h · A
t
i,l,k · y

t
i,j,k ≤ PLt

h ∀ t ∈ T , h ∈ H, (3.11)

where PHi,l,k,h is the amount of pollutant from technologies, and
PLt

h is the emissions limit. Note that the left hand side of equation
(3.11) could become an objective function if the decision maker’s
objective is emissions minimization.

Batteries

Storage processes can be explicitly represented in operational mod-
els. In the case of a strategic model, the load profiles are approxi-
mated by a proper number of periods j. In this case, it is possible
to represent the accumulators by additional decision variables wt

j,k,
utj,k on energy storage and its use at t and j. Equation (3.9) then
can be modified as:

∑

i∈I,l∈L

At
i,l,k · y

t
i,j,k ≥ D t

j,k + w t
j,k −M t

j,k · u
t−1
j,k (3.12)

∀ j ∈ J , t ∈ T , k ∈ K,

and the following constraints added:

Q t
k ≥

∑

j∈J

w t
j,k ∀ t ∈ T , k ∈ K, (3.13)

∑

j∈J

w t
j,k ≥

∑

j∈J

ut
j,k ∀ t ∈ T , k ∈ K, (3.14)

w t
j,k ≥ 0 ∀j ∈ J , t ∈ T , k ∈ K, (3.15)

ut
j,k ≥ 0 ∀j ∈ J , t ∈ T , k ∈ K, (3.16)

where Qt
k is the capacity of accumulators for energy k at time t, M t

j,k

loss per unit stored energy, wt
i,j energy storage, and uti,j is storage

60



3.3. Numerical Example

use. Note that parameters Qt
k and M t

j,k should reflect the effect
of aging (degradation) of batteries throughout the decision time
horizon. These equations in an aggregate manner redistribute loads
among periods. With a shorter time scale, it may be reasonable to
introduce shifts of demands in time by substituting utj,k in (3.14)

with ut−1
j,k .

3.3. Numerical Example

The model presented in this chapter evolves throughout Chapters 4
to 7. In the same vein, a first simple numerical example, which will
also evolve with the models, is constructed in this section. Inten-
tionally, it does not include all the features described in previous
sections in order to make it easily understandable. The example
has been implemented using the framework described in Chapter 8.

Example 4. Basic deterministic model. Let us consider the
simplest model defined by (3.1)–(3.6):

min
∑

t∈T





∑

i∈I

CI ti · x
t
i +

∑

i∈I,j∈J

CO t
i,j ·DT t

j · y
t
i,j





s.t. : sti = s t−1
i + x t

i − x
t−LT i

i ∀ i ∈ I, t ∈ T
∑

i∈I

y ti,j = D t
j ∀ j ∈ J , t ∈ T

y ti,j ≤ G t
i,j · s

t
i ∀ i ∈ I, j ∈ J , t ∈ T

The demand Dt
j in Table 3.1 is based on the FASAD EnRiMa

test site in Asturias (Spain), see Section 2.1. Starting from an
annual demand of 213.50 MWh, projections on the demand level
have been simulated for all the periods.

For the sake of simplicity, only four representative periods
(set J ) have been defined: winter, spring, summer and autumn.
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3. The Basic Problem

The input technologies (set I) are Regulated Tariff of Electric-
ity (RTE), Photovoltaic (PV) and Combined Heat and Power
(CHP). In this simple example with only electricity demand,
it is assumed that the heat produced by the CHP technology
is not used. Regarding the technologies availability, RTE and
CHP are always available (Gt

i,j = 1), whereas PV availability
depends on the season as shown in Table 3.2 (assuming the same
values for all the years). A Sunmodule SW 245 by Solarworld
has been considered (http://www.solarworld.de/en/home/).
The availability factor has been computed using the on-line
PGIS tool (Photovoltaic Geographical Information System) by
the European Commission Joint Research Center – Institute for
Energy and Transport, http://re.jrc.ec.europa.eu/pvgis/
apps4/pvest.php.

As for investment costs CIti , a yearly cost reduction for
generating technologies (5% for PV, 10% for CHP) from the
current prices (1,326.65 and 3,673.77 EUR/kW respectively)
is assumed. The price for the PV panels has been taken
from the PREOC price database (http://www.preoc.es/ re-
trieved 2013-02-12), whilst the price for the CHP has been
gathered from the on-line seller myTub (http://www.mytub.
co.uk/product_information.php?product=465447, retrieved
2013-02-12). A 40% reduction has been applied to the in-
vestment costs in order to take into account available sub-
sidies in the market (http://www.faen.es/nueva/Intranet/
documentos/3577_Bases.pdf). This parameter also gathers a
cost of contracting RTE of 50 EUR/kW, which increases at the
same rate as the energy cost. For the operational costs COt

i,j ,
the fuel prices for electricity and natural gas are 0.134571 EU-
R/kWh and 0.05056 EUR/kWh for RTE and CHP respectively,
based on the EnRiMa project deliverable D1.1 “Requirement
Assessment”, considering an increase of 10% and 3% per year
for electricity and NG respectively) and no cost for PV. As a
short horizon is considered, the lifetime parameter LTi, which
has been set to 20 years, has no influence on the result. Finally,
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3.3. Numerical Example

the duration time is set to 91 days × 8 hours, considering 13
weeks each period.

The total cost for the optimal solution amounts to 65,213
EUR. The optimal values for the operational decisions are dis-
played in Figure 3.2. Table 3.3 shows how technologies are in-
corporated to the building as costs evolve.

Table 3.1.: Electricity demand level (kW)

j t Dt
j

winter 2013 17.06
spring 2013 21.93
summer 2013 34.12
autumn 2013 24.37
winter 2014 18.77
spring 2014 24.13
summer 2014 37.53
autumn 2014 26.81
winter 2015 20.64
spring 2015 26.54
summer 2015 41.29
autumn 2015 29.49
winter 2016 22.71
spring 2016 29.20
summer 2016 45.42
autumn 2016 32.44
winter 2017 24.98
spring 2017 32.11
summer 2017 49.96
autumn 2017 35.68
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Figure 3.2.: Energy dispatch for Example 4.

64
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Table 3.2.: PV technology availability (ratio)

i j t Gt
i,j

PV winter 2013-2017 0.30
PV spring 2013-2017 0.48
PV summer 2013-2017 0.63
PV autumn 2013-2017 0.25

Table 3.3.: Total technologies investment (EUR)

i t CI ti × xt
i

PV 2013 45891.10
PV 2014 1630.44
RTE 2013 1031.47
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4. Adding Uncertainty:

Two-stage Problems

4.1. Introduction

Since uncertainties may seriously affect long-term decisions, the
model should be formulated as a STO problem. Among the main
stochastic parameters are fuel prices and demands. In the presence
of uncertainties, there is a dilemma to choose an efficient technologi-
cal portfolio in real time while pursuing long-term goals. Therefore,
the solution of the problem involves the so-called two-stage dynamic
stochastic optimization models with a rolling horizon. A two-stage
stochastic model is proposed, where some decisions (first-stage de-
cisions) including investments into new energy technologies have to
be taken before uncertainties are resolved and some others (second-
stage decisions) will be taken once values for uncertain parameters
become known, thereby providing a trade-off between long- and
short-term decisions.

The main goal of the dynamic stochastic two-stage strategic plan-
ning model is to find such a combination of technologies installed at
the beginning of each year t, so that the mixture of these tech-
nologies operating in each period j would ensure a safe energy
“provision” plan minimizing investment costs, possibly determin-
istic equipment maintenance costs and stochastic operational costs
(which may include stochastic fuel prices). Schematically, the struc-
ture of the modeling framework is similar to Figure 3.1.
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4. Adding Uncertainty: Two-stage Problems

4.2. A Basic Two-stage Dynamic

Model

The basic dynamic deterministic model presented in Chapter 3 can
be generalized to formulate a stochastic version in a similar manner.
For the simplicity of notation only the case in which the evolution
of costs CI ti, COt

i,j , and demands Dt
j is uncertain. Strategic first

stage investment decisions xti, are made at the beginning of the plan-
ning horizon t = 1 using a perception of potential future scenarios
CI ti(ω), COt

i,j(ω), Dt
j(ω) of costs and energy demands dependent

on the stochastic parameter ω. Here ω is used to denote a sequence
ω = (ω1, ω2, . . . , ωt, . . . , ωT ) of uncertain vectors ωt of, in general,
interdependent parameters which may affect outcomes of the strate-
gic model, e.g., market prices or weather conditions. In general,
there are different components of ωt, e.g., components ωdem

t charac-
terizing the variability of the demand, and other components ωstr

t ,
ω
ope
t characterizing uncertainties associated with strategic and oper-

ational costs. Therefore, functions CI ti(ω), COt
i,j(ω), D

t
j(ω) depend

in general only on some components of ωt, although dependence on
ω is indicated for simplicity of notation. There are essential dif-
ferences between the basic deterministic model (3.1)–(3.6) and its
stochastic version. Because strategic decisions xti depend only on
t, equations (3.1) and (3.2) remain the same. Second stage adap-
tive operational decisions yti,j are made after observing real demands
and costs. They depend on observable scenario ω, i.e., yti,j = yti,j(ω).
Therefore, any choice of investments decisions xxx = xti, may not yield
feasible second stage solutions yyy(ω) = yti,j(ω) satisfying the follow-
ing equations for all ω:

∑

i∈I

y ti,j(ω) = D t
j(ω), ∀ j ∈ J , t ∈ T , (4.1)

y ti,j(ω) ≤ G t
i,j · s

t
i , ∀ i ∈ I, j ∈ J , t ∈ T , (4.2)

y ti,j(ω) ≥ 0, ∀ i ∈ I, j ∈ J , t ∈ T , (4.3)

where
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4.2. A Basic Two-stage Dynamic Model

sti = s t−1
i + x t

i − x
t−LT i

i , ∀ i ∈ I, t ∈ T , (4.4)

x t
i ≥ 0, ∀i ∈ I, t ∈ T . (4.5)

The feasibility of constraints (4.1)–(4.3) for any scenario ω can be
guaranteed by assuming the existence of a back-stop technology
with high operating costs that can also be viewed as purchasing
without delay but at high price. Without loosing generality it can
be assumed that for any period j and time t it is the same technol-
ogy i = 1. Then the basic dynamic stochastic two-stage model is
formulated as the minimization of the expected total cost function:

F(x) = Eω



min
y(ω)

∑

i∈I,t∈T

(

CI ti(ω) · x
t
i+ (4.6)

∑

j∈J

CO t
i,j(ω) ·DT t

j · y
t
i,j(ω)







 =

=
∑

i∈I,t∈T

(

CI ti · x
t
i+

Eω



min
y(ω)

∑

j∈J

CO t
i,j(ω) ·DT t

j · y
t
i,j(ω)







 ,

where E[·] is the expectation function. Thus, CIti is the expected
investment cost, CIti = Eω

[

CIti (ω)
]

. Because the back-stop tech-
nology is available in unlimited amount, CIt1 = 0, t ∈ T ; COt

1,j = C

for all j where C is a large enough positive number. If the optimal
yt1,j is positive for some scenarios ω, then this indicates that there
is a risk of installed technologies (excluding i = 1) not being able to
satisfy demands. Example 5 illustrates this risk and the advantages
of stochastic models.
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4. Adding Uncertainty: Two-stage Problems

Example 5. (Back-stop technology and induced risks). As this
simple example shows, the back-stop technology i = 1 induces
critically important safety constraints connected with a type of
Value at Risk (VaR) measures of risks.

It is assumed that T = {1}, J = {1}, costs COt
i,j do not de-

pend on ω, costs COt
i,j include DT t

j , i.e., COt
i,j → COt

i,j ·DT t
j ,

and there are only two electricity supplying technologies I =

{1, 2}, where i = 1 is the back-stop technology enabling instan-
taneous “purchasing” electricity at a high price CO1

1,1; and i = 2

is a traditional technology that may require investments with
expected unit costs CI12 > 0, whereas CI11 = 0. Demand D1

1

depends on ω. In this case the model (4.1)–(4.6) is formulated
as the minimization of the function

F(x) =CI 12 · x
1
2+

Eω

[

min
y(ω)

{

CO1
1,1 · y

1
1,1(ω) + CO1

2,1 · y
1
2,1(ω)

}]

,

subject to:

y11,1(ω) + y12,1(ω) = D1
1(ω),

s12 = x12,

y12,1(ω) ≤ s12,

x12 ≥ 0, y11,1(ω) ≥ 0, y12,1(ω) ≥ 0,

where s02 = 0, G1
2,1 = 1. The capacity of the back-stop tech-

nology i = 1 is assumed to be unlimited, and CO1
1,1 > CI12 >

CO1
2,1. Therefore, the back-stop technology i = 1 ensures the

satisfaction of the constraints (4.2) at high operational costs
CO1

1,1 · y
t
1,1.

For any strategic decision x12 and scenario ω there may be sit-
uations: x12 ≥ D1

1(ω) or x12 < D1
1(ω). From the structure of costs

it follows that the corresponding optimal operational decisions
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4.2. A Basic Two-stage Dynamic Model

are y12,1
∗
(ω) = D1

1(ω) = x12 −max{0, x12 −D1
1}, y

1
1,1

∗
(ω) = 0 or

y12,1
∗
(ω) = x12, y11,1

∗
(ω) = D1

1(ω) − x12 = max{0, D1
1(ω) − x12}.

Therefore,

F(x) =CI 12x
1
2 + CO1

2,1x
1
2−

CO1
2,1E

[

max{0, x12 −D1
1(ω)}

]

+

CO1
1,1E

[

max{0, D1
1(ω)− x12}

]

.

Only the case in which ω has a continuous probability density,
i.e. function F(·) is continuously differentiable is considered.
Otherwise a more complicated analysis must be used. It is clear
that an optimal strategic decision x12 is positive, therefore, the
optimality condition F

′(x12) = 0 yields the following important
equations:

CI 12 + CO1
2,1−CO1

2,1 · P
[

D1
1(ω) < x12

]

−

CO1
1,1 · P

[

D1
1(ω) ≥ x12

]

= 0 ⇔

CI 12 +
(

CO1
2,1 − CO1

1,1

)

· P
[

D1
1(ω) ≥ x12

]

= 0 ⇔

P
[

D1
1(ω) ≥ x12

]

=
CI 12

(

CO1
1,1 − CO1

2,1

) , (4.7)

where P[·] is the probability function. Under large enough back-

stop unit costs CO1
1,1, the value CI 12

(CO1
1,1−CO1

2,1)
< 1, i.e. the opti-

mal solution satisfies important safety constraints (4.7). There-
fore, the use of back-stop technologies induces the safety con-
straints (4.7). These types of constraints are used in reliabil-
ity theory, insurance industry, and financial applications. The
safety level, i.e., right hand side of equation (4.7), can be regu-
lated by the back-stop unit cost CO1

1,1. The simplicity of this ex-
ample easily illustrates the advantages of using stochastic mod-
els. If D1

1(ω) is substituted by deterministic average value D1
1,
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4. Adding Uncertainty: Two-stage Problems

the optimal solution is x12 = D1
1 and the value of the determin-

istic objective function is (CI 12 + CO1
2,1)D

1
1. In fact, its real

value is F(D1
1) taking into account the variability D1

1(ω) of the
demand. Definitely, F(D1

1) > F(x1∗2 ), where x1∗2 is an optimal
solution of the stochastic model, see section 4.4.

4.3. Numerical Methods

The model (4.1)–(4.6) is formulated in the space of variables
(

xti, y
t
i,j(ω), i ∈ I, t ∈ T , ω ∈ Ω

)

,

where the set of scenarios Ω may include a finite number of im-
plicitly given scenarios, e.g., by scenario trees. This often induces
models of extremely large size. In this regard, Kaut et al. (2013)
propose a method that has been applied in the EnRiMa project to
deal with multi-horizon trees. A realistic practical model (4.1)–(4.6)
excludes analytically tractable solutions, although the model has an
important block-structure that is usually utilized for most effective
numerical solutions. In particular, the second stage submodels often
have simple solutions as in Example 5. In this case the two stage
model is reduced to the optimization in the space of only strate-
gic solutions xti, similar to the optimization of function F(·) in that
Example.

In a rather general case, Ω contains or can be approximated by
scenarios ωs, s ∈ S, characterized by probabilities ps, s ∈ S. Then
the model (4.1)–(4.6) is formulated as the minimization of the func-
tion:

∑

s∈S

ps





∑

i∈I,t∈T



CI ti(ωs) · x
t
i+ (4.8)

∑

j∈J

CO t
i,j(ωs) ·DT t

j · y
t
i,j(ωs)







 ,
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subject to:

∑

i∈I

y ti,j(ωs) = D t
j(ωs) ∀ j ∈ J , t ∈ T , s ∈ S, (4.9)

y ti,j(ωs) ≤ G t
i,j · s

t
i ∀ i ∈ I, j ∈ J , t ∈ T , s ∈ S, (4.10)

y ti,j(ωs) ≥ 0 ∀ j ∈ J , t ∈ T , s ∈ S, (4.11)

sti = s t−1
i + x t

i − x
t−LT i

i ∀ i ∈ I, t ∈ T , (4.12)

x t
i ≥ 0 ∀i ∈ I, t ∈ T . (4.13)

Example 6. Two-stage extension of the basic deterministic

model example. In example 4, it was assumed that in the next
years the fuel prices would rise 10% and 3% per year for electric-
ity and natural gas respectively, the cost of technologies would
decrease 10% and 5% per year for CHP and PV respectively,
and the demand would increase 10% per year. New informa-
tion about the possible evolution of the market and the demand
of the building is available and summarized in Table 4.1. The
stochastic optimization problem (4.8)–(4.13) is now solved for all
the scenarios ωs. As a result, the value of the objective function
is 62,701 EUR. The optimal values for the strategic first-stage
decision variables are displayed in Figure 4.1.

Note that, even though there is no much difference in terms
of total cost between the deterministic solution of the first sce-
nario in Example 4, which is the most probable, the strategic
decisions, (whose effect in terms of risk might be crucial) that are
to be made are different. Moreover, that difference could con-
siderably increase if other scenarios eventually occur, as shown
in Table 4.2. In this table, the solution for the most probable
scenario (s1) and the stochastic solution are evaluated for each
one of the scenarios (columns “Deterministic cost“ and “Stochas-
tic cost”). It is clear that the cost of the stochastic solution for
the most probable scenario (s1) is slightly higher than the cost
of the deterministic solution. However, if either scenario s2 or
s4 (whose probabilities of occurrence are still high) correspond
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4. Adding Uncertainty: Two-stage Problems

Table 4.1.: Annual incremental ratios for each scenario

ωs ps ∆ CICHP ∆ CIPV ∆ CORTE ∆ CONG ∆ D

s1 0.24 -0.10 -0.05 0.10 0.03 0.10
s2 0.19 -0.15 -0.10 0.10 0.05 0.05
s3 0.18 -0.15 -0.08 0.12 0.03 0.10
s4 0.20 -0.10 -0.05 0.06 0.03 0.05
s5 0.19 -0.15 -0.08 0.12 0.05 0.10

Table 4.2.: Objective function assessment for each scenario
(EUR).

Scenario Deterministic cost Stochastic cost ∆ Stochastic

s1 65,212.56 65,352.15 139.59
s2 65,126.75 57,995.54 -7,131.21
s3 66,370.24 66,714.09 343.85
s4 63,000.01 56,567.34 -6,432.66
s5 66,370.24 66,714.09 343.85

to the real situation, the deterministic solution results in much
higher costs.

Remark 2. Two-stage models with rolling horizons. The initial
model is focused on time horizon [1, T ]. The robust strategic solu-
tion can be written as:

xxx[1,T ] =
(

x
1,[1,T ]
i , . . . , x

T,[1,T ]
i

)

, i ∈ I.

Solutions
(

x
1,[1,T ]
i

)

, i ∈ I, are implemented at t = 1. This pro-

vides a basis for readjustments of scenarios ω[1,T ] perceived at the
beginning of time horizon [1, T ]. Then, a new set of scenarios ω[2,T ]

is evaluated, new robust strategic solutions
(

x
2,[1,T ]
i

)

, i ∈ I, are

obtained, and so on. Thus, initially a long-term strategic trajectory
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Figure 4.1.: Capacity to be installed for Example 6.

x[1,T ] is evaluated, the first time interval solutions
(

x
1,[1,T ]
i

)

, i ∈ I,

are implemented, new data are received, new scenarios ω[2,T+1] are
adjusted, and so on.

4.4. Value of Stochastic Solution

In this section the value of stochastic optimization models, already
introduced in Chapter 2, Subsection 2.2.3, is discussed. It is often
termed as the Value of Stochastic Solution (VSS), see for example
Birge (1982) or Delage et al. (2012). This notion has a misleading
character because the two-stage models incorporate both ex-ante
deterministic first stage decisions chosen before observations of un-
certain parameters (events) and ex-post stochastic adaptive deci-
sions chosen when additional information becomes available. It has
to be emphasized that the VSS or may be better known as the
Value of Stochastic Modeling (VSM) is different from the Expected
Value of Perfect Information (EVPI), which is defined as the im-
provement of the objective function by learning perfect information
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about parameters of the true deterministic model. In other words,
the EVPI is the advantage of using deterministic models with ex-
act values of parameters which are the mean values of observable
random variables. On the contrary, the VSS considers deterministic
models as an approximation of real stochastic optimization models
with inherently uncertain parameters which cannot be evaluated by
using real observations. Disadvantages of using deterministic ap-
proximations of stochastic models become clear from Example 5.
In this example only demand D1

1(ω) is uncertain because the stock
of back-stop technology is unbounded. In the deterministic version
of the model D1

1(ω) is replaced by the mean value D1
1 = E

[

D1
1(ω)

]

.
Accordingly, the stochastic strategic planning model is reduced to
the minimization of the cost function

CI 12 · x
1
2 + CO1

1,1 · y
1
1,1 + CO1

2,1 · y
1
2,1,

subject to:

y11,1 + y12,1 = D1
1,

s12 = x12,

y12 ≤ s12,

x12 ≥ 0, y11,1 ≥ 0, y12,1 ≥ 0,

that clearly has trivial degenerated solution x12 = D1
1, y11,1 = 0,

y12,1 = D1
1. This solution assumes that the future demand is exactly

known, therefore the operational decision coincides with the strate-
gic decision. Definitely, this is an unrealistic solution because the
average energy demand D1

1 never occurs in reality. The strategic
robust solution of stochastic energy supply model may be signifi-
cantly different from the mean value as it is indicated by equation
(4.7).

In this case, the VSS is calculated by the non-negative difference:

F(x∗det)− F(x∗sto), (4.14)
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where F(x) is defined by (4.6), x∗det is the optimal solution of the
deterministic model (3.1)–(3.6) used in the objective function of the
stochastic model, i.e., Equation 4.6, and x∗sto is the optimal solu-
tion of this stochastic model. Non-negativity is due to the fact that
the feasible set of the stochastic model includes the feasible set of
the deterministic model. The solution x∗det is often combined with
the parameters, e.g., demand, which have been substituted by mean
values. This analysis may be rather misleading because sensitivity
analysis of the deterministic model with respect to variations of the
deterministic model is focused on one only scenario (mean value)
that may never occur in reality. As Equation (4.7) demonstrates,
the robust solution of the stochastic model depends on the whole
probability distribution, therefore variations in the mean values may
be misleading especially for multimodal distributions. For example,
in the case with two scenarios −10,+10 with probability 0.5, the
mean value is even outside the set of feasible scenarios. In addition
to the sensitivity analysis, the so-called scenario analysis is applied,
i.e. a set of possible future “trajectories” of uncertain parameters is
considered and for each of them optimal solutions of the determinis-
tic model are calculated. This generates a set of degenerated deter-
ministic solutions without identifying a solution that is good enough
(robust) with respect to all potential scenarios. Again, Example 5
nicely illustrates this: any scenario ωs, s ∈ S, of the deterministic
model has trivial solution x12 = D1

1(ωs), y11,1 = 0, y12,1 = D1
1(ωs),

s ∈ S. The analysis ignores the essential specifics of strategic so-
lutions which have to be made before scenarios ωs, s ∈ S, become
known. The strategic stochastic optimization (programming) model
aims to find solutions robust with respect to all potential scenarios.
Equation (4.7) shows that solutions of such models depend on the
whole probability distribution, i.e. on all scenarios.

Example 7. VSS in example 6. In order to compute the VSS
in example 6, expected values of the random variables defined
for each stochastic parameter in Table 4.1 have been calculated.
Table 4.3 shows the total cost for the solution of the following
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models:

• Model 1 is the particular instance of the deterministic op-
timization problem defined by (3.1)–(3.6) using the ex-
pected values described above;

• Model 2 is the deterministic optimization in Example 4
for scenario 1;

• Model 3 is the stochastic optimization in Example 6;

• Model 4 shows the cost of the stochastic optimization,
fixing as first-stage decisions those obtained from model
2;

• Model 5, whose solution is infeasible, would correspond to
the cost of the stochastic optimization fixing as first-stage
decisions those obtained from model 1.

Notice that model 5, i.e., the stochastic optimization problem
defined by (4.8)–(4.13) using as first-stage decisions those ob-
tained from the solution of model 1 is infeasible, due to the fact
that the solution of model 1 is not feasible for all the scenarios.
This result demonstrates by itself the usefulness of the stochastic
optimization approach on building energy systems planning. In
this case, as F(x∗det) is infeasible, it is considered infinite (Birge
1982) and therefore the VSS is infinite:

F(x∗det)− F(x∗sto) = ∞− 62,701 = ∞.

It is important to remark that even if F(x∗det) is feasible,
the VSS is positive, and the magnitude will depend of the un-
certainty structure. As an example, this difference can be cal-
culated using the deterministic solution obtained for model 2
(the model based on the scenario with the highest probability in
Example 4) in order to fix the first-stage decisions. Therefore,
following the notation in (4.14), F(x∗det) is the cost for model 4
and F(x∗sto) is the cost for model 3:
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Table 4.3.: Objective value for the models described.

Model Description Total Cost

1 Expected Values Optimization 62,124
2 Deterministic Optimization 65,213
3 Stochastic Optimization (SO) 62,701
4 SO given deterministic solution 62,743
5 SO given expected values Infeasible

F(x∗det)− F(x∗sto) = 62,743 − 62,701 = 42 EUR.

Definitely, the value F(x∗sto) is smaller than F(x∗det) because,
as already mentioned, the stochastic model has a richer set of
feasible solutions, i.e., the deterministic solution x∗det is a de-
generated version of x∗sto .
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5. A Comprehensive

Deterministic Problem

5.1. Introduction

In this Chapter, a comprehensive deterministic model including
more features both strategic and operational is presented. The
strategic model has been designed in order to make strategic deci-
sions concerning which technologies to install and/or decommission
in the long term, that is, the energy technologies portfolio plan-
ning. Besides technologies, this planning includes forward contracts
in energy markets. The operational model jointly developed within
the EnRiMa project, deals with decisions involving the dispatch-
ing of energy through the installed technologies in the short term
or through purchases in spot markets, that is, the energy portfolio
selection.

In an attempt to tackle short- and long-term decisions simulta-
neously, the strategic model includes a simplified version of opera-
tional energy-balance constraints. The operational model, in turn,
includes the realization of the strategic decisions as parameters. Fig-
ure 5.1 summarizes the relationship and interaction between both
approaches. This thesis focuses on the strategic module, where the
optimal values of strategic DVs are the target of the decision maker,
that is, decisions on investment on new energy technologies such as
DER, renewable energy generators, or batteries among others, as
well as long-term energy contracts. These strategic DVs are con-
strained by strategic constraints, e.g., physical limit for technologies,
emissions limits, or budget limits. At that stage, it can found in the
literature strategic optimization models whose energy-balance con-
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EnRiMa DSS
Strategic

Module
Strategic DVs

Strategic
Constraints

Upper-Level
Operational DVs

Upper-Level
Energy-Balance

Constraints

Operational

Module

Lower-Level
Operational DVs

Lower-Level
Energy-Balance

Constraints

Figure 5.1.: EnRiMa project DSS Schema.

straints (which assures covering the building energy demand) are
aggregated in the long term, for example the tool by International
Atomic Energy Agency (2001). This approach does not allow the
decision maker to take into account the performance of the installed
technologies in the short term, leading to optimal solutions that may
result in unrealistic implementations. In order to avoid this draw-
back, the strategic module includes operational DVs that manage
the energy flows from inputs to outputs through technologies. More-
over, a simplified version of the energy-balance constraints models
the relations among the energy subsystems at an upper level.

Real complex systems such as the ones modeled in the EnRiMa
project should also take into account as much relevant information
as possible. In this regard, the models to be implemented contain
additional information of the systems performance beyond energy
dispatching and systems installation, such as technologies decom-
missioning, technologies aging, energy storing, or passive technolo-
gies, i.e., those that save energy. Furthermore, the deterministic
model presented in this chapter has been extended to a stochas-
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tic optimization formulation, see Chapter 6. Hence, uncertainties
about the stochastic parameters, mainly prices and demands, are
taken into account, becoming a risk management tool for building
managers. All in all, resulting in a holistic DSS for energy efficient
building management.

This chapter focuses on the strategic deterministic part, explain-
ing how some of the interrelations described above are tackled,
and the time scaling between different time spans. In particular,
technologies aging modeling and accounting for operational perfor-
mance, are novel contributions to the state-of-the-art. Thus, ig-
noring the aging and therefore the decay of equipment can have
consequences for buildings mid- and long-term management. Like-
wise, this model allows the inclusion of operational parameters in
addition to the strategic modeling, which is something new regard-
ing existing proposals. Moreover, the model has been designed so
that it is straightforwardly used within a stochastic programming
approach in Chapter 6. Finally, a numerical example using data
from an EnRiMa project test site and other simulated or publicly
available data illustrates the model.

5.2. Time Modeling

In the strategic model, where decisions are made in the long term,
e.g., years, operational decisions and constraints are embedded in
order to take into account the energy systems performance and de-
cisions in the short-term, e.g., hours. To achieve this goal, instead
of including all the possible hours for each year, i.e., 8760, which
will likely result in unacceptable computational time, a given num-
ber of representative “in-between” mid-term periods are considered,
similarly to Conejo et al. (2007). In this way, different parameter
values for different performance scenarios can be consider concur-
rently, e.g., day/night hours, hot/cold seasons, and so on.

The SMS tackles this multiple time resolution including three
time sets: P for long-term periods (usually years), M for mid-
term representative periods, and T for short-term periods (usually
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hours). Decision variables and parameters including the counterpart
indices p, m, and t gather this logic. In order to scale between differ-
ent time resolution terms, the parameters DT and DM p,m contain
the time duration for each time span. The value of DT is supposed
to be the same during all the decision time horizon. In general
cases, operational decisions are made each hour. Then, DT = 1. It
is used, for example, to compute the maximum amount of energy
that a technology can provide during each short-term period. On
the other hand, the value of DM p,m can be different for each long-
and mid-term periods. For example, a representative mid-term pe-
riod for m = ‘hot season’ might have a different number of days
one year and another because of weather forecasts and climate pre-
dictions. In addition, every mid-term period m may be different
to each other. For example a representative mid-term period for
m = ’cold season’ is likely to have a different number of days than
the ‘hot season’ one.

It is important to remark that the decisions to be actually made
after solving the model are only the strategic decisions for the first
long-term period (p = 1). Nevertheless, a long-term decision hori-
zon is needed in the model in order to consider the systems per-
formance throughout the time, and to allow a long-term objective
optimization, e.g. minimize global cost during the next, for exam-
ple, 25 years.

The set A = {0, . . . , |P|−1} is used to model technologies’ aging.
It is used to allow a variable efficiency of technologies throughout
their lifetime (the older, the less effective) and a variable Operation
and Maintenance (OM) cost (the older, the more expensive OM
cost).

5.3. Technologies Modeling

In the strategic model proposed, both installation and decommis-
sioning of energy systems are considered. As decisions are made
throughout a long-term horizon, within each long-term period there
is a variable capacity available for generating or storing energy for
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each technology. Technologies are modeled through the I set, for
energy-generation technologies such as CHP, or PV; and the J set,
for storage technologies, such as batteries. Thus, variables repre-
sented by si

p
i and xi

p
j are the actual decisions for the decision maker

about which technologies to install; sd
p
i , xd

p
j are the decisions for

regarding technologies to be decommissioned; and variables repre-
sented by s

p
i and x

p
j are used to dynamically calculate the available

capacity of each technology i ∈ I and j ∈ J throughout the decision
horizon p ∈ P:

s
p
i = Gi

∑

0≤a ′≤p

AG
p−a ′

i



sia
′

i −
∑

a′<a ′′≤p

sd
a ′,a ′′

i



 , (5.1)

x
p
j = GS j

∑

0≤a ′≤p

AS
p−a ′

j



xia
′

j −
∑

a′<a ′′≤p

xd
a ′,a ′′

j



 . (5.2)

Equations (5.1) and (5.2) compute the capacity of each energy tech-
nology during a long-term period. Note that while the installation
variables have only one long-term period index, the decommission-
ing ones have two, being the former for the installation period,
and the latter for the decommissioning period. For example, sd2,15PV

means ‘number of PV panels to be decommissioned during the 15th

year, from the ones that were installed during the 2nd year’. In addi-
tion to the installation-decommissioning flow, these equations reflect
another fact influencing the amount of available systems capacity:
the effect of aging on the systems capacity through the parameters
AGa

i and ASa
j .

In general, technologies are considered as devices which can be
installed in the building. Each device has a nominal capacity, repre-
sented in the SMS with the parameters Gi and GS j . For example,
the building manager can decide how many PV panels to install
at the building site and the total capacity of the PV technology
is obtained by multiplying the total devices by the nominal capac-
ity of the device. Therefore, the variables si

p
i , sd

p,q
i , xipj and xd

p,q
j

are, in general, integer variables, while s
p
i and x

p
j are continuous
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variables. In order to reduce the number of integer variables (and
so the solution time), technologies that can be considered contin-
uous can be distinguished, i.e., the capacity (kW) to be installed
and/or decommissioned can be decided directly, by splitting the
set I into subsets IC and ID for continuously-sized and discretely-
sized energy-generation technologies respectively. Likewise, the set
of storage technologies can be partitioned so that J = JC ∪ JD.

Usually, a physical limit must be considered for the number of
devices that can be installed as a function of the building char-
acteristics, e.g., the total surface suitable to allocating PV panels.
Equations (5.3) and (5.4) model that limit:

s
p
i ≤ GL

p
i , (5.3)

x
p
j ≤ SL

p
j , (5.4)

where the parameters GL
p
i and SL

p
j are a function of the build-

ing and each technology physical characteristics. For example, ‘PV
panel surface’ vs. ‘building suitable surface for PV (ground + roof)’.
Note that the capacity may be different each year.

As far as technologies decommissioning is concerned, there is an
obvious constraint that must be set: devices must had been installed
before decommissioning them. Equations (5.5) and (5.6) for all i, j, p
are in charge of this control:

∑

q>p

sd
p,q
i ≤ si

p
i , (5.5)

∑

q>p

xd
p,q
j ≤ xi

p
j . (5.6)

5.4. Strategic modeling

Further strategic constraints to the model are added in order to deal
with certain policy or economic restrictions:
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∑

m∈M

DM p,m ·





∑

i∈I,t∈T

∑

k∈KI

LH i,k,l · y
p,m,t
i,k

+
∑

k∈K

∑

n∈NBP ,m′∈MB

LC k,l,n · up,m,t,m′

k,n



 ≤ PL
p
l . (5.7)

Equation (5.7) sets a limit by pollutant l ∈ L for the total emis-
sions during each long-term period p. Both on-site and off-site en-
ergy production generate pollution. In-site emissions are calculated
through the energy used as input to technologies yp,m,t

i,k using the pa-
rameter LH i,k,l, which only applies for the input type of energy (KI)
and off-site emissions through the energy purchased in the market
u
p,m,t,m′

k,n and the parameter LC k,l,n. Note that this constraint and
the following one are classified as “strategic” due to their nature and
the fact that they apply to long term. However, the decision vari-
ables involved are “operational”, i.e., in the short term. The y

p,m,t
i,k

decision variable is the amount of a type of energy that is used as
input in an energy-generation technology during each short-term
period. The u

p,m,t,m′

k,n variable is the amount of a type of energy to
be purchased in the market during each short-term period. This
variable and the w

p,m,t,m′

k,n one in constraint (5.9) below include two
indices for the mid-term period set, namely: m and m′. This fea-
ture allows energy trading in forward markets, where energy can be
purchased (sold) during mid-term period m′ to be delivered dur-
ing mid-term period m. Note that for spot markets m′ = m. See
Section 5.8 for a discussion on this aspect of the model.

Efficiency constraints are also included in the model:

ep,m,t =
∑

k∈K,m′∈MB





∑

n∈NBP

Bk,n · up,m,t,m′

k,n +

+
∑

n∈NGNF

u
p,m,t,m′

k,n



 , (5.8)
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∑

k∈K,p∈P,m∈M,t∈T



D
p,m,t
k +

∑

n∈NS ,m′∈MS

w
p,m,t,m′

k,n





≥ EF ·
∑

p∈P,m∈M,t∈T

ep,m,t. (5.9)

The total primary energy not from a fictitious market, e.g., re-
newables, consumed by the building during each short-term period
is computed by Equation (5.8) which is the sum of the processed
energy, n ∈ NBP , of each type and the one that is used as an in-
put fuel on site, n ∈ NGNF . Then, Equation (5.9) constraints the
global building efficiency during the decision time horizon by setting
a minimum efficiency factor required by the building EF . On the
left hand side of Equation (5.9), the energy consumed (Dp,m,t

k ) and
the energy sold (wp,m,t

k,n ) in spot markets NS are added up.
Also budget constraints are considered for the available economic

resources for each long-term period:

∑

i∈I
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p,p−a ′

i ·Gi ·



si
p
i −

∑

a′<a ′′≤p

sd
a ′,a ′′

i





+
∑

0≤a ′<p

CD
p,p−a ′
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p
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j





+
∑

0≤a ′<p

CDS
p,p−a ′

j · xda ′,p
j



 ≤ IL. (5.10)

Note that the left hand side of Equation (5.10) is part of the
total cost described in Section 5.6. For energy-generation technolo-
gies, the investment cost depends on the technology capacity. Thus,
CI

p,0
i represents the investment cost per kW . For a > 0, OM costs
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by kW are also allowed, in addition to OM costs depending on
energy production (per kWh) included in operational terms of the
objective function, see Section 5.6. Similarly, CIS p,0

j is for the in-
vestment costs for storage technologies (in this case, by kWh). On
the other hand, decommissioning costs are also considered through
the parameters CD

p,a
i and CDS

p,a
j . Note that it is possible to have

negative costs if the decommissioned technology can be sold.

5.5. Operational Constraints

Energy Balance The main equation that models the energy
flows is the “energy balance” constraint. This constraint models
the energy flow by decision variables that, for each short-term pe-
riod, amount the energy flowing from markets to loads, through
technologies:

∑

i∈I

z
p,m,t
i,k +

∑

n∈NB (k),m′∈MB

u
p,m,t,m′

k,n −
∑

i∈I

y
p,m,t
i,k

−
∑

n∈NS (k),m′∈MS

w
p,m,t,m′

k,n −
∑

j∈JSto

ri
p,m,t
j,k

= D
p,m,t
k −

∑

j∈JSto

ro
p,m,t
j,k . (5.11)

Figure 5.5 represents this energy flow modeling. Variable u de-
cides on how much energy needs to be acquired from the market. In
order to take into account renewables, fictitious markets are allowed,
e.g., solar radiation, wind. This energy can be directly supplied to
the demand side, used to generate energy with energy-generation
technologies, stored in storage technologies, or sold again in the
market. Conversion rates are applied using the appropriate param-
eters to model the flows. Thus, y is the energy that actually inputs
the energy generator, z is the generated energy to supply the de-
mand, w is the energy sold to the market, and ri and ro decide the
input and output energy of the storage respectively. The “inventory”
variable r calculates the energy stored during each period.
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Market

Demand

Purchases

Fictitious

Generation

Storage

N

K

J

I

Sales

K y

u

u

u

w

u

w

z

ri
ro

ri

Technologies

Technologies

r

Equation (5.11) balances the energy flow that meets the demand
load. On the left side, the terms add up the energy available for the
demand side. This total amount of energy is composed by the total
energy generated for the loads z plus the total energy purchased u,
minus the energy used by the energy-generation technologies y, the
energy sold in the market w, and the energy added to the storage.
On the left side, the energy released from the storage is subtracted
from the total energy demanded. The equation allows different mar-
kets for buying (NB(k)) and selling (NS(k))) energy. When only
spot markets are considered, m′ = m. Otherwise, the subsets MB

and MS are to be explicitly defined to reflect the appropriate peri-
ods when energy can be bought or sold in advance respectively, see
Section 5.8.

Generation Technologies Constraints The energy produced
by an energy-generation technology i is determined by the conver-
sion coefficient EC:

z
p,m,t
i,k ′ =

∑

k∈KI (i)

EC i,k,k′ · y
p,m,t
i,k , (5.12)

where there are two indexes for the set K; k is for the input type
of energy, k′ is for the output type of energy, and the input type of
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energy is obtained through the subset KI . Note that usually only
one type of energy is possible and the summation can be ignored.
Equation (5.12) computes the energy output of each technology and
adds up all of the output energy of each energy type during each
period.

The energy output of each technology is limited by the capacity
installed of each technology:

z
p,m,t
i,k ≤ DT · AF p,m,t

i · spi . (5.13)

Note that Equation (5.13) is the link between the strategic de-
cisions and the operational systems performance. The availabil-
ity factor AF

p,m,t
i models situations such as intra-day technologies

availability (e.g., solar ratiation is not available during the whole
day) or any other availability issue.

Storage Technologies Constraints In the energy balance equa-
tion (5.11) the demand side was diminished through the use of stor-
age technologies. Energy storage is modeled as follows:

r
p,m,t
j,k = OS j,k · r

p,m,t−1
j,k +OI j,k · ri

p,m,t−1
j,k

−OO j,k · ro
p,m,t−1
j,k , (5.14)

ro
p,m,t
j,k ≤ OX j,k · r

p,m,t
j,k . (5.15)

Equation (5.14) computes the energy stored at each period. Be-
tween two consecutive periods, the energy stored is affected by the
storing ratio OS , representing the portion of energy that remains in
the storage between two periods. In addition, the inflows and out-
flows are calculated by adjusting the energy added to the storage,
ri , and the energy released from the storage, ro, using the charging
and discharging ratios respectively, OI and OO . Once the amount
of energy stored at each short-term period is calculated, Equation
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(5.15) adds the constraint for the decision variable ro, i.e., the en-
ergy that is released from the storage to supply the demand. This
amount of energy is also affected by loses which are undertaken by
the parameter OX .

Finally, the link between the strategic decisions and the opera-
tional systems performance is modeled. The amount of stored en-
ergy is constrained by the available capacity during each long-term
period calculated in Equation (5.2). Storage technologies usually
need a minimum amount of residual energy stored in order to avoid
damages to the battery cells. Similarly, it is advisable not to store
the entire capacity of the storage technology for a better systems
performance. Thus, in Equation (5.16):

OAj,k · x
p
j ≤ r

p,m,t
j,k ≤ OB j,k · x

p
j , (5.16)

OA and OB adjust the total energy that can be stored, r, within
the total capacity installed, x.

5.6. Objective Function

In principle, let us consider that the optimization objective is to
minimize the total cost of the energy subsystems throughout the
long-term decision horizon. Such a total cost is composed by: (i)
the operational cost as a result of the energy dispatching in the short
term, i.e., the purchases of primary fuels in the market, and the OM
costs; and (ii) the strategic costs, regarding the investment costs in
new technologies. The following objective function gathers all the
costs stemmed from the energy systems model described above:

∑

p∈P





∑

i∈I





∑

0≤a ′≤p

CI
p,p−a ′

i ·Gi ·



si
p
i −

∑

a′<a ′′≤p

sd
a ′,a ′′

i





+
∑

0≤a ′<p

CD
p,p−a ′

i · sda ′,p
i



 (5.17)
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+
∑

m∈M

DM p,m ·
∑

i∈I,k∈K,t∈T

CO
p,m,t
i,k · z p,m,t

i,k (5.19)

+
∑

m∈M

DM p,m ·
∑

j∈J ,k∈K,t∈T
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p,m,t
j,k · rp,m,t

j,k (5.20)

+
∑

m∈M

DM p,m ·
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k∈K,t∈T
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k,n · up,m,t,m′
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−
∑

m∈M

DM p,m ·
∑

k∈K,t∈T

∑

n∈NS ,m′∈MS
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p,m,t,m′

k,n · wp,m,t,m′

k,n (5.22)

−
∑

i∈I

SU
p
i ·Gi · si

p
i

)

. (5.23)

Terms (5.17) and (5.18) gather investment costs (a = 0) and
“fixed” OM costs (a > 0) for both types of technologies, energy-
generation technologies and energy-storage technologies. Invest-
ment costs are usually expressed as unitary costs by kW or kWh

installed. So the number of installed devices is multiplied by the
nominal capacity and the investment cost by unit. Moreover, lump-
sum capital costs are used regardless how investment is paid. De-
commissioning costs are also considered. Terms (5.19) and (5.20)
compute the operation cost for energy-generation and storage tech-
nologies respectively. The more time a technology is operating, the
higher the cost. So, the unitary costs are by kWh, and the to-
tal cost is obtained by multiplying the unitary cost by the energy
generated or stored during each short term period, and scaled to
a whole long-term period through the mid-term duration parame-
ter DM . Similarly, term (5.21) computes the total cost for energy
purchases, and term (5.22) the total incomes from energy sales in
the market. Finally, if there are any subsidies in the market where
the DSS is used, term (5.23) subtract the effect from the total cost,
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where the parameter SU indicates the amount received by each kW

installed.
At the beginning of this section it was remarked that in princi-

ple the objective is to minimize the total cost. This is the usual
situation when the decision maker is a building manager with lim-
ited resources and lacking other objectives. More complex decision
making processes may prioritize other objectives, such as maximiz-
ing the building energy efficiency or minimizing pollutant’s emis-
sions. In such a case, it is apparent that it would be enough telling
the solver that the objective is an appropriate version of Equation
(5.7) or (5.9) when generating the instance from the SMS and the
real data. Moreover, multiobjective algorithms can be used in case
the decision maker needs a trade-off solution between adverse ob-
jectives. Risk mitigation can be also be considered as discussed in
Chapter 7 through stochastic programming.

5.7. Numerical Example

In this section, a problem instance is built following the logic of the
chapter, defining the sets and parameters of a hypothetical imple-
mentation, and eventually solving the problem. For the sake of sim-
plicity no equipment at time p = 0 is considered, though the model
can be easily extended to allow this fact. The example is based on a
real building, specifically the FASAD building in Asturias (Spain).
It is a test site for the EnRiMa project whose characteristics and as-
sessment data are defined on the EnRiMa project deliverables D1.1
(HCE et al. 2011) and D2.2 (UCL et al. 2012). Some simplification
assumptions have been made for the example clarity.

Example 8. Comprehensive deterministic example. Notice that
all the referred tables and figures are at the end of the chapter.

Time Let us consider the decision making process of a build-
ing manager that, at the end of year 0 (e.g., 2013) has to plan
the investment strategy on energy systems for year 1 (e.g., 2014).
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The decision time horizon considered is 25 years, P = {2014, . . . ,
2038}. During each year, every single day can be classified into
one of the four representative periods M = {winter, spring, sum-
mer, fall}. To compute the DM parameter, it is assumed that,
in that region, the extreme seasons (i.e., Winter, Summmer) last
80 days, and the warm seasons (i.e., Spring, Fall) last 100 days:
DMp,spring = DMp,fall = 100, DMp,winter = DMp,summer = 80.
For short-term periods, a whole day is divided into six periods
of four hours (T = {0-4, 4-8, 8-12, 12-16, 16-20, 20-24}). There-
fore, DT = 4 hours.

Technologies Three energy-generation technologies are con-
sidered, I = {CHP, PV, WG}, Combined Heat and
Power (Dachs 5.5 http://www.baxi-senertec.co.uk/html/

baxi_senertec_dachs.htm), Photovoltaic (Solarworld Sun-
module SW 245 http://www.solarworld.de/en/products/

products/solarmodule/overview/), and Wind Generators
(Fortis Passat wind turbine http://www.fortiswindenergy.

com/products/wind-turbines/passaat), with capacities Gi =

{5.5, 0.245, 1.4} kW. For all technologies, the aging factors AGa
i

are assumed to be equal to 1 for a = 0 and to 0.8 for a = 24, at
a constant decreasing rate. Emissions and efficiency constraints
are neither considered. A physical limit for the number of de-
vices to be installed GL

p
i is set to 4, 1500, and 10 for CHP, PV,

and WG respectively.
As for the costs of technologies, investment costs are CI

1,0
i =

{3710, 1327, 5467} EUR/kW (Sources: http://www.mytub.co.

uk/product_information.php?product=465447, http://www.
preoc.es/, and http://www.allsmallwindturbines.com/,
with a constant decrease of 5% per year. For the example, fixed
OM costs are 5% of investment costs per year and decommis-
sioning costs are not taken into account.

Energy Types and Markets The real test site building uses
some natural gas-fired boilers with and without heat recovery to
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generate different types of heat, namely: space heating, hot wa-
ter, pool heating, Domestic Hot Water (DHW), and hot water.
For the sake of simplicity, aggregated heating demand is consid-
ered, that can be met through the CHP unit or directly with
a sort of NG energy. Electricity is the other type of energy
from the demand side. In addition, radiation and wind speed
are the input energy types for PV and Wind Generator (WG)
respectively. Therefore, K = {electricity, heat, NG, radiation,
windspeed}.

Only spot markets are considered (see Section 5.8 for a dis-
cussion on this topic). The markets needed for the technologies
and types of energy used are N = {RTE, RTG, Sun, Wind},
where the first two are regulated tariffs of electricity and gas,
and the last two are fictitious markets. Figure 5.2 represents
this simplified building’s energy flow. The Electricity bought in
the market is used for supplying the electricity demand; let’s as-
sume that NG can also supply the building heat demand. Thus,
NB(heat) = {RTG} and NB(electricity) = {RTE}. Electricity
can be also be sold to the grid: NS(electricity) = {RTE}.

Operation To set the demand parameter values D
p,m,t
k , the

annual demand of the test site in HCE et al. (2011) is used:
213.50 MWh for electricity and 1,553 MWh for total heat. To
simulate the demand for all the periods, the different represen-
tative profiles and operational periods are weighed and add ran-
dom noise is added. The resulting demand data for the first
year is represented in Figure 5.3. For the subsequent years,
an increase of 5% and 1% is assumed for electricity and heat
demand respectively. The conversion factors ECi,k,k′ for each
input/output energy of technologies are those in Table 5.1.

As for the availability factor AF
p,m,t
i , different availabil-

ity for PV and WG for different short and long-term pe-
riods are simulated. Table 5.2 shows estimated availabil-
ity factors for WG based on its annual yield at 6 m/s
(3.2 MWh) and the historical average wind speed at the
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site location (Sources: http://www.fortiswindenergy.com/

products/wind-turbines/passaat, http://datosclima.es/

Vientostad.php. Note that more complex analysis should me
made in order to better estimate the availability factors for real
applications. A similar reasoning (Sources: http://re.jrc.ec.
europa.eu/pvgis/, http://www.solarworld.de/) is applied to
compute the availability factor for PV in Table 5.3. More accu-
rate estimations can be made using sophisticated combinations
of mid- and short-term periods, or even taking into account pre-
dictions in the long term, e.g., climate change.

Objective The objective function defined in section 5.6 is to
be optimized. Technologies costs (Investment, OM) have been
set above. Regarding energy costs, they are simulated taking
as baseline the information in HCE et al. (2011). Note the m′

index disappears as only spot markets are considered. Subsidies
are neither being considered for the example:

• PP
1,m,t
electricity,RTE = 0.1436 EUR/kWh,

• PP
1,m,t
NG,RTG = 0.0506 EUR/kWh,

• SP
1,m,t
electricity,RTE = 0.1634 EUR/kWh,

and then apply an increase of 5% each year for purchasing prices.
As for selling prices, they reduce during the first five years up
to meeting the purchasing prices, and then a similar increase
to the one for purchases is applied. Random noise is added to
those variation coefficients in order to simulate the market prices
volatility. Figure 5.4 shows the evolution of these parameters.

Solution The model instance resulting of the above build-
ing and market configuration has been solved using the GAMS
(http://www.gams.com) software version 23.9.5 and the OSIC-
PLEX (http://www.coin-or.org/projects/Osi.xml) solver.
It was composed of 13,429 equations and 37,129 variables and
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the execution time was 0.163 seconds in a 64 bits Linux laptop.
The R statistical software and programming language (R Core
Team 2013a) was used for data preparation, simulation and vi-
sualization. Tables 5.4 and 5.5 show the strategic decisions to be
made by the building manager regarding the building’s energy
systems equipment. Note that the decisions that can actually
be made are those for p = 1. Nevertheless, the whole solution
provides more information about the envisaged performance and
evolution of the energy systems. Thus, CHP and PV technolo-
gies should be installed the first year. The market evolution
will prompt PV equipment renovation during the decision time
span. Moreover, later on WG technologies deployment will be
affordable. Figure 5.5 shows the building’s energy systems ca-
pacity throughout the whole decision horizon whilst Figure 5.6
represents the installation and decommissioning decisions. This
kind of output from a DSS can eventually help building man-
agers to plan their financial positions. As discussed in previous
sections, the strategic decisions are supported by the short-term
performance of the building energy systems, whose expected out-
comes can be visualized in Figure 5.7 (energy purchases), Figure
5.8 (energy sales), Figure 5.9 (energy input to technologies), and
Figure 5.10 (energy output from technologies).

5.8. Model Evolution

The model will be extended to a SP framework in Chapter 6. In
addition to the scenario tree needed changes, some other changes
affecting the energy systems modeling are made in the formulation,
which are explained therein. Furthermore, while generating problem
instances and numerical examples for the deterministic model, some
needed improvements emerged, which are briefly outlined in this
subsection.

At the beginning, energy-generation and energy-absorbing tech-
nologies (both energy storage and passive measures) were separated
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in two different sets (I and J ) because of their differentiated na-
ture: the former transforms one type of energy into another one, the
latter do not. Nevertheless, it seems that both types of technologies
can be merged into one set, reducing the number of symbols in the
model and, therefore, having a simpler deterministic model, easier
to be reformulated in the stochastic notation.

Despite the fact that the current configuration of the test sites
described in HCE et al. (2011) does not include forward contracts,
both UCL et al. (2012) and URJC et al. (2012) include indices
and sets in the energy-balance equations and in the SMS which
could allow building managers to make decisions for other contracts
rather than the ones in spot markets. Even though the equations
work under certain conditions, it is difficult to make these conditions
compatible with the profiles approach of the mid-term periods, due
to the fact that under this approach the M set is not ordered,
and usually not compatible with real trading periods. A practical
use of the model with such indices could be applying the strategic
model at mid-term time resolution, turning the decision variables
concerning technologies availability into parameters with the actual
configuration of the building, and filling the M set with realistic
contracting options. This approach could eventually be useful for
next-day decisions, such as those regarding ToU tariffs. Otherwise,
for strategic long-term decision making a single index will be used
as it can be seen in the following chapter.

Table 5.1.: Conversion factors for energy-generation
technologies.

i k k′ ECi,k,k′

CHP NG Heat 0.61
CHP NG electricity 0.27
PV Radiation electricity 1.00
WG windspeed electricity 1.00
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Figure 5.2.: Simplified building systems for the deterministic
example.
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Table 5.2.: Availability factor for WG technology

t Avg. Wind speed (m/s) AF
p,m,t
WG

winter 4.7 0.20
spring 3.9 0.17
summer 5 0.22
fall 7.8 0.34
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Table 5.3.: Availability factor for PV technology

t winter spring summer fall

0-4 0.00 0.00 0.00 0.00
4-8 0.02 0.09 0.08 0.01

8-12 0.42 0.50 0.52 0.37
12-16 0.47 0.53 0.56 0.41
16-20 0.05 0.13 0.12 0.03
20-24 0.00 0.00 0.00 0.00

Table 5.4.: Technologies to install

i p units

CHP 1 4
PV 1 1500
PV 10 1500
PV 17 1500
PV 22 1500
WG 11 10.00

Table 5.5.: Technologies decommissioning

i p q units

PV 1 10 1500
PV 10 17 1500
PV 17 22 1500

102



5.8. Model Evolution

0

5

10

15

20

0

100

200

300

0

5

10

C
H

P
P

V
W

G

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Years

k
W

Technologies capacity (kW)

Figure 5.5.: Technologies capacity

0

1

2

3

4

0

500

1000

1500

0.0

2.5

5.0

7.5

10.0

C
H

P
P

V
W

G

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Year

U
n
it
s

Installed

1

10

17

Technologies installation and decommissioning

Figure 5.6.: Technologies deployment.

103



5. A Comprehensive Deterministic Problem

0

10000

20000

30000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Years

k
W

h

Energy Type

electricity

heat

NG

radiation

windspeed

Energy purchases (kWh)

Figure 5.7.: Energy purchasing decisions.

electricity

0

2000

4000

6000

8000

R
T

E

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Total per year

k
W

h

Energy Sales (kWh)

Figure 5.8.: Energy sales decisions.

104



5.8. Model Evolution

NG radiation windspeed

0

2000

4000

6000

0

2000

4000

6000

0

100

200

300

C
H

P
P

V
W

G

12345678910111213141516171819202122232425 12345678910111213141516171819202122232425111213141516171819202122232425

Years

k
W

h

Energy Input to technologies (kWh)
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105





6. Stochastic Multi-stage

Model

6.1. Evolution of the SMS

This chapter extends the deterministic model in Chapter 5 to a
STO problem that deals with uncertainty, in order to overcome
the drawbacks of a deterministic approach using average values for
stochastic parameters as explained in Subsection 2.2.3, Chapter 2.
Furthermore, a multi-stage approach was finally adopted within the
project and uncertainty is modeled through the use of scenario trees
gathering the uncertainty throughout the decision horizon. More-
over, a different mathematical notation is used for this complete
model. Instead of using the by-scenario notation in Chapter 4, a
by-node notation is followed. As the by-node notation is more com-
pact, it is suitable for large model instances as the foreseen real
ones. Moreover, while developing the stochastic model some im-
provements have been added to the systems modeling. Note that
the computation of the VSS is also possible for multi-stage mod-
els, see for example Escudero et al. (2007). The new multi-stage
approach entails essential differences with respect to the two-stage
model developed in Chapter 4. In particular, the nature and inter-
pretation of the first-stage decisions is distinct:

• Two-stage dynamic strategic model. Under this approach, all
the strategic variables are first-stage decisions and are made
before uncertainty is resolved. The optimal strategic decisions
will provide a sort of trajectory throughout the long-term
periods. All the operational decision variables are second-
stage decisions, and are made once uncertainty is unveiled.
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The optimal operational decisions will provide the adjust-

ments to the trajectory within each long-term period. The
model has a rolling horizon, i.e., at the end of each strate-
gic period it is run again, getting a new trajectory ideally
adjusted by the actual operational performance during the
period;

• Multi-stage strategic model. Both strategic and operational
Decisions to be made before the first tree branching are first-
stage decisions. These include the decisions to be made right
now, i.e., on the root node, both strategic and operational.
Second-stage decisions are those to be made when new infor-
mation arrives, from the branched node until a new branch-
ing, and so on. In this case, there is no trajectory for strategic
decisions, but a sort of strategy based on if-then rules like in
chess game.

In summary, the two-stage model provides a route which leads
to the average objective. At each crossroads, i.e., strategic decision
point, that route is re-calculated. The multi-stage model provides
a roadmap with all the possibilities. This roadmap will be also
evaluated again at each crossroads to get a new roadmap. A priori,
the multi-stage model is more complex not only in terms of modeling
and instance generation, but also in terms of interpretation. See
Section 9.3 for future steps on this topic.

6.2. Improvements in Systems

Modeling

The deterministic model presented in Chapter 5 contains all the
features of a holistic energy system within a building. Nonethe-
less, during the tests run afterwards and the transformation into a
stochastic model, some improvements have been implemented. In
this section these improvements and changes are explained.
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Changes in nomenclature Some symbols initially set can be
incompatible with some reserved words used by the optimization
software. Other symbols have been changed just to be a little more
informative, without losing the general rules for the representation:
small letters for variables and capital letters for parameters. Thus,
the following changes apply:

• A new variable (h) has been added for contract selection. This
feature substitutes the selection of forward markets through
the profile set M, see Section 9.2.2 in Chapter 9 for further
details on this issue;

• Consistently with the previous point, the set N stands for
contracts instead of markets;

• Moreover, a new parameter (ME ) has been added to set the
maximum power that can be purchased or sold according to
the contract. For fictitious contracts limit does not exist;

• A distinction between variables for generation technologies
and energy-absorbing technologies is not necessary. Instead,
a single variable symbol (x) is used for technologies, and the
different types of technologies are defined through subsets.
Therefore variables s, si, sd disappear. As a consequence, also
parameters non-specific for storage technologies disappear;

• To appropriately compute the available capacity throughout
the decision horizon, a new variable is used for the number
of units installed of each technology and possible age. Thus,
variable x is for the units installed and xc is for the available
capacity;

• Availability factor A changes to AF to avoid using the same
symbol that set A;

• Parameter C changes to LC;

• Parameter E changes to EC;
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• Parameter H changes to LH;

• A new parameter for physical limit of installed technologies
has been added (LP ), along with a related equation;

• The investment costs and the maintenance costs are now dif-
ferent parameters, which clarifies the notation. Thus, former
CI parameter has been split into CI just for investment, and
CM for maintenance;

• A new parameter (XZ) has been added in order to consider
the existing devices in a building;

• Some of the parameters related to storage change their symbol
or description for a better energy systems modeling. This also
affects to the equation in charge of calculating the energy
stored (inventory), and a new equation has been added to
model the charging process. See the details below;

• It was also needed to add a limit for energy to be sold, limiting
it to the amount of energy produced using generating tech-
nologies. Otherwise, the model became unsolvable for those
particular situations in markets where the subsidies are higher
than the gap between purchasing and sale energy price.

Another improvement in the formulation is the clarification of
the sets’ roles. In this regard, the following sets classification is fol-
lowed, which is linked with the implementation in the optimization
software easing the interpretation and reproducibility of the code
(see Appendix A for definitions of these and other concepts):

• Normal set;

• Set alias;

• Subset;

• Conditional set.
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Conditional sets are used to map the elements of the sets and they
are used both in equations’ domains and as conditions in sums. The
conditional sets are also named multidimensional sets, as they are
related at least with two sets. Depending on the type of relationship,
the resulting set may contain one single element or several. In one-
to-many relationships, there may be several items for only one input

set. For example, a technology i may have several types of energy
output. On the contrary, one-to-one or many-to-one relationships
result in single elements. For example, the principal output of a
technology is unique (one-to-one). There maybe also many-to-many
relationships.

6.3. Scenario Tree Representation

As remarked above, a by-node notation is adopted, instead of the
by-scenario notation followed in Chapter 4. Therefore, instead of
adding an index for the scenarios, the index for the periods (p) had
been substituted by a node index (v), and new data structures for
the nodes have been introduced (parent node, period, and proba-
bility).

This section contains an explanation of the symbols used for the
scenario tree as well as the relationship between the tree nodes
and other entities in the model. Scenario trees are widely used
in stochastic programming to discretize the huge, usually infinite,
number of possible outcomes of the random variables in a stochastic
model. Thus, a scenario tree gathers the most probable scenarios
resulting from a combination of all random variables (stochastic
parameters using the SMS language). Several size-reduction tech-
niques can be used in order to make the problems computationally
tractable. See Conejo et al. (2010) for a thorough explanation of
scenario trees applied to energy markets.

Note that the stochastic model needs knowledge about the uncer-
tainties, that is to say, the probability distribution of the stochastic
parameters. Using this knowledge, a DSS for STO needs an appro-
priate scenario generator in order to generate as many scenarios as
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the optimization software is capable to solve. Scenario generation
is out of the scope of this work. Nevertheless, for scenario genera-
tion in the examples it has been followed a similar strategy to the
approach used in EnRiMa. This strategy relies in the assumption
that short-term stochastic parameters vary over the long-term, but
can be modeled within each long-term period by means of profiles,
using a multi-horizon approach. This scenario generation approach
can be consulted in Kaut et al. (2013). Typical scenario trees are
implicitly represented within the whole SMS. For the sake of clarity,
the scenario trees used in the model are briefly explain next.

A scenario tree can be graphically represented as an acyclic graph
consisting of nodes and arcs, where the root node has no parent
(predecessor node), each node may have one or more children, and
each node can only have one parent. The number of terminal nodes
(leaves), which do not have children, determines the number of sce-
narios considered. Each scenario is a path from the root node to
a leaf node. Nodes represent states of the system at a particular
time, where decisions are made. The root node corresponds to the
beginning of the planning horizon. Arcs represent the precedence
relationship between nodes with an associated probability of occur-
rence. Therefore, in addition to the node identifier (v in the SMS),
the following information is required:

• The parent node of each node. It is represented by the con-
ditional set Vv

Pa.

• The probability of each node. It is represented by the param-
eter PRv.

• The time period of each node. It is represented by the pa-
rameter PT v.

In addition, the conditional set Ai,v
Ages is defined as the possible

technologies’ ages at a given node for a given technology. For ex-
ample, if period of node 3 is equal to 3, and at the beginning of
the planning horizon a unit of CHP technology whose age was 5
years was already in the building, then the possible ages for that
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Figure 6.1.: Scenario tree symbolic representation.

technology at node 3 are {0,1,2,3,8}.

Figure 6.1 shows a simple scenario tree with all the symbols and
expressions used in the SMS. Circles represent nodes with the node
index (v) displayed inside. Nodes in the same column correspond
to the same time period (PT v). Each node is linked to its parent
through the conditional set Vv

Pa and has a probability (PRv) asso-
ciated to its parent’s branching. The represented tree corresponds
to a three-stage stochastic problem, where new information arrives
at periods 1 and 4.

6.4. Symbolic Model Specification

In this section the complete SMS of the stochastic multi-stage model
is detailed. In the subsequent subsections the following information
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about the mathematical representation of the entities in the model
can be found:

• Sets, including standard sets, aliases, subsets, and conditional
sets;

• Constants (scalars, in GAMS language);

• Decision variables (DV);

• Parameters;

• Equations, that model the relationship between energy sys-
tems.

6.4.1. Sets

The information presented for each set is:

• Symbol. Small Latin letter for sets and aliases, see below for
subsets and conditional sets;

• Short description;

• Domain, representing the set by calligraphic capital letters;

• Long description.

Normal sets

a Technology age, a ∈ A. This set is used to model the effect of
aging on the capacity and the costs of technologies.

i Energy technology, i ∈ I. Equipment available in the building, or
suitable to be installed. This equipment can be: (1) Energy
generator, (2) Energy storage, or (3) Energy saver. Each
element of the set is a specific model of a type of technology
(e.g., CHP), with different features.

k Energy type, k ∈ K. Type of energy that will be used in the
building.
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l Type of pollutant, l ∈ L. Energy generation and consumption
generate emissions to the environment. The amount of a
building’s emissions of each pollutant depends on the emission
ratios. The total emissions can be constrained by policy mak-
ers. Their minimization can also be an objective for certain
decision makers.

m Operational profile, m ∈ M. This set gathers the representative
profiles considered in the model to link the short- and long-
term performance of the energy systems in the building: this
short-term performance is scaled to the long term through a
weight factor given as a parameter value.

n Energy tariff, n ∈ N . This set contains the tariffs available
throughout the decision time span. It is possible that not
all the tariffs are available at each scenario tree node.

t Short-term period, t ∈ T . These are the periods when operational
decisions are made. Such decisions concern how much energy
of each type must flow through the building energy systems,
from markets to demand.

v Tree node, v ∈ V. This set contains the nodes in the scenario tree.
For each node, its time period (cf., p index in the deterministic
model), probability, and parent node must be specified

Sets aliases

k′ Output energy type, k′ ∈ K. This index is used in order to
distinguish the input and output typeS of energy when using
generators.

t′ Last short-term period, t′ ∈ T . This index is used to balance the
energy stored between periods.

v′ Parent nodes, v′ ∈ V. This index is used to map the parent node
of each node.
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Subsets

Subsets are represented through the symbol of the set in which they
are contained in calligraphic font and the symbol of the subset as
subscript in italics.

ANew Age = 0, ANew ⊂ A. This set contains only the element 0
from the age set.

AOld Age != 0, AOld ⊂ A. This set contains all the elements except
0 from the age set.

ICon Continuously-sized technologies, ICon ⊂ I. Technologies are
continuously sized if they do not have a nominal capacity and
the investment can be done by power units.

IDs Discretely-sized technologies, IDs ⊂ I. Technologies are dis-
cretely sized if they have a nominal capacity and the invest-
ment has to be done by devices.

IGen Energy-generation technologies, IGen ⊂ I. Technologies that
receive energy as input and return other type(s) of energy as
output.

IPU Passive technologies (unitary), IPU ⊂ I. Passive technologies
which have a multiplicative effect on the demand, that is,
the higher the demand, the higher the savings. They entail
savings over the use of the energy regardless of the building
dimensions.

ISto Storage technologies, ISto ⊂ I. Devices that store a type of
energy from the market or the generation technologies and can
release this energy to meet the demand. These technologies
are subject to losses both at the input and at the output. The
storage is also uncharged at a given ratio even if energy is not
released to be consumed.

KEpur Energy to purchase, KEpur ⊂ K. Types of energy that can
be purchased.
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KES Energy to be sold, KES ⊂ K. Types of energy that can be
sold.

NTpur Purchasing tariffs, NTpur ⊂ N . This subset contains the
tariffs available to buy energy.

NTS Sales tariffs, NTS ⊂ N . This subset contains the tariffs avail-
able to sell energy.

VFut Future nodes, VFut ⊂ V . All the nodes that are not the root
node.

VRoot Root node, VRoot ⊂ V. This subset only contains the root
node, and it is intended to identify states at time 0, for ex-
ample, existing technologies.

Conditional sets

Conditional (or multidimensional) sets are represented as the sym-
bol of the main set in calligraphic font, the symbol of the conditional
set as subscript in italics font, and the index of the ‘input’ set(s) as
superscript.

Ai,v
Ages Possible ages of a technology at a node, i ∈ I, v ∈ V. This

conditional set provides all the possible ages that technologies
may have at a given node.

Ki
In Input energy types for a technology, i ∈ IGen . Generation

technologies can utilize different types of energy to generate
the output.

Ki
Po Principal energy of technologies, i ∈ I. Each generation tech-

nology has a principal output type of energy (when more than
one). For storage technologies, the input and output types of
energy are the same. For passive measures, it is the type of
energy which is saved.

Ki
Out Output energy types for a technology, i ∈ IGen . Generation

technologies provide one or more output energy types.
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N k
Pur Purchase tariffs for each energy type, k ∈ K. Conditional set

to make purchase tariffs for energy types available.

N k
Sal Sales tariffs for each energy type, k ∈ K. Conditional set to

make sales tariffs for energy types available.

N k
Tr Contracts under which each type of energy can be actually

traded, k ∈ K. This conditional set is the union of N k
Pur and

N k
S , and excluding fictitious markets.

T m
First First short-term period in a profile, m ∈ M.

T m
Tm Short-term periods by profile, m ∈ M. Each profile can con-

tain several operational periods, whose duration is modeled
through the DM parameter.

T m
Last Last short-term period in a profile, m ∈ M.

Vv
Pa Parent for each node, v ∈ V . This conditional set contains

the relationship between each node and its parent. Note that
the parent node is represented as Pa(v) when it is used as an
index in an expression.

6.4.2. Constants

DR Discount rate, per year.

6.4.3. Parameters

For each parameter (applies also to variables), the following infor-
mation is shown:

• Expression, formed by the parameter/variable symbol and the
sets’ indices that apply;

• Short description;

• Measurement units;

• Domain for the indices of the expression;
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• Long description.

In principle, all the parameters including an index for the node (v)
are suitable to be stochastic. The eventual stochastic parameters
are decided while generating scenarios, being the values of non-
stochastic ones constant throughout the scenario tree and, therefore,
the decision time horizon.

AF
v,m,t
i Availability factor for a technology (kWh/kWh). i ∈ I,

v ∈ V , m ∈ M, t ∈ T m
Tm . The capacity of a technology may

be different throughout the optimization horizon. For exam-
ple, photovoltaic panels do not have the same performance
during the day and they even do not work during the night.
The factor can also be used to model the availability of future
technologies.

AGa
i Technology aging factor (kW/kWh). i ∈ I, a ∈ A. This pa-

rameter adjusts the total capacity of a technology throughout
its lifetime. The superindex is for the age. Thus, at age 0, a
given technology (e.g., CHP Dachs 5.5) has factor 1, and it
reduces at some rate each year.

Bk,n Primary energy needed to produce final-use energy (kWh/kWh).
k ∈ K, n ∈ N k

Pur . Units of primary energy required to pro-
duce one unit of a type of energy available from a market
where processed energy can be bought.

CD
v,a
i Technology decommissioning cost (EUR/kW). i ∈ I, v ∈ V,

a ∈ A. Decommissioning a technology may lead to a removal
cost or revenue from selling the equipment (in such a case,
the value of the parameter is negative). It can be related to
the installation cost.

CI vi Technology installation cost (EUR/kW). i ∈ I, v ∈ V.
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CM v
i Technology maintenance cost (EUR/kW, EUR/kWh). i ∈ I,
v ∈ V . This is a fixed cost per capacity installed. It may be
linked to the installation cost.

COv
i,k Technology operation cost (EUR/kWh). i ∈ I, k ∈ Ki

Out ,
v ∈ V. This parameter is used when the supplier/maintainer’s
tariff is quoted per operated ‘kWh’.

D
v,m,t
k Energy demand (kWh). k ∈ K, v ∈ V , m ∈ M, t ∈ T m

Tm .
Total energy load of the building for a type of energy, during
each short-term (operational) period.

DMm Weight (scaling factor) for the operational profile (days).
m ∈ M. This parameter is used to scale the operational
system performance (energy, cost) to the strategic time reso-
lution.

DTm Duration of the short-term period within a given profile (hours).
m ∈ M. The sum over the durations of all the operational
periods must correspond to a whole day. This parameter is
used to convert energy to power or vice versa.

EC v
i,k,k′ Output energy generated from one unit of input energy

(kWh/kWh). i ∈ IGen , k ∈ Ki
In , k ′ ∈ Ki

Out , v ∈ V . This is a
conversion factor. It is applied to the input energy of a tech-
nology, to compute the output energy of this technology. Both
types of energy can be the same or different. There may also
be several types of output and input energy (e.g., gas, biogas).

EF v Required building energy efficiency (unitless). v ∈ V.
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Gi Technology capacity (kW/Device). i ∈ I. Nominal capacity of
each device of a given technology. For continuous technolo-
gies, its value is 1.

ILv Investment limit (EUR). v ∈ V. This is needed when the build-
ing has a budget limit for investing on technologies.

LC v
k,l,n Pollution emissions by energy purchases (kg/kWh). k ∈ K,

l ∈ L, n ∈ N k
Pur , v ∈ V. Mean rate of emission of a pollutant

from processed energy purchased in the market.

LH v
k,l Pollution emissions by generating technologies (kg/kWh).

k ∈ Ki
In , l ∈ L, v ∈ V. Amount of pollutant that is emitted

by a generation technology during its operation, for each type
of input energy.

LPv
i Physical Limit (Devices/KW/kWh). i ∈ I, v ∈ V. Number

of units or capacity of a technology that can be installed at
the site at a time.

MEk,n Maximum purchase/sale of a type of energy under a given
contract (kW). k ∈ K, n ∈ N k

Tr .

OAv
i,k Fraction of storage lower limit (kWh/kWh). i ∈ ISto , k ∈

Ki
Po , v ∈ V . Minimum fraction of the capacity that must be

charged in an energy-storage technology.

OBv
i,k Fraction of storage upper limit (kWh/kWh). i ∈ ISto , k ∈

Ki
Po , v ∈ V . Maximum fraction of the capacity that must be

charged in an energy-storage technology.
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ODv
i,k Energy demand reduction for a passive technology (kWh/kWh).

i ∈ IPU , k ∈ Ki
Po , v ∈ V . For each unit of a passive technol-

ogy, the total demand, is reduced by some value.

OI vi,k Charging ratio to storage (kWh/kWh). i ∈ ISto , k ∈ Ki
Po ,

v ∈ V. Units of energy available for each unit sent to energy-
storage technology.

OOv
i,k Discharging ratio from storage (kWh/kWh). i ∈ ISto , k ∈

Ki
Po , v ∈ V. Units of energy needed to be discharged from

storage in order to deliver one unit of energy to the demand.

OS i,k Energy storage availability (kWh/kWh). i ∈ ISto , k ∈ Ki
Po .

This parameter models the loss of a storage technology over
the time. It represents the units of energy available for each
unit of energy stored after each operational period.

OX v
i,k Max. discharge rate (kW/kWh). i ∈ ISto , k ∈ Ki

Po , v ∈ V .
Maximum energy discharge rate per unit of storage capacity.

OY v
i,k Max. charge rate (kW/kWh). i ∈ ISto , k ∈ Ki

Po , v ∈ V .
Maximum energy charge rate per unit of storage capacity.

PLv
l Pollution limit (kg). l ∈ L, v ∈ V . Maximum emissions al-

lowed for the building, at each node.

PP
v,m,t
k,n Energy purchasing cost (EUR/kWh). k ∈ K, n ∈ N k

Pur ,
v ∈ V , m ∈ M, t ∈ T m

Tm . This is the cost of the energy in
markets where it can be bought. If there is no ToU tariff,
the cost is equal for all operational periods within the same
strategic period.
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PRv Probability of the node (unitless). v ∈ V.

PT v Time period of the node (unitless). v ∈ V.

SP
v,m,t
k,n Energy sales price (EUR/kWh). k ∈ K, n ∈ N k

Sal , v ∈ V ,
m ∈ M, t ∈ T m

Tm . For the types of energy that can be sold,
there is a price for each operational period.

SU v
i Subsidies for a technology (EUR/kW). i ∈ I, v ∈ V . Policy

makers can subsidize the investment of some efficient tech-
nologies. Usually an amount per kW is paid.

XZ a
i Existing devices (Devices/kW/kWh). i ∈ I, a ∈ A. Number

of existing devices of each technology at the start of the op-
timization horizon of with a given age.

6.4.4. Variables

Some aggregated computed variables are in the model for conve-
nience. For such aggregated variables long descriptions are omitted
as they are implicitly described in their counterpart split variables.
In general, short-term decision variables are scaled to yearly ag-
gregated, per node, variables, through the weight parameter. See
equations below for a clarification on the role of each variable.

cnv Total cost at a node (EUR). v ∈ V . This is a computed vari-
able (see equations).

dnv
k Total demand at a node (kWh). k ∈ K, v ∈ V.

ev,m,t Primary energy consumed per operational period (kWh). v ∈

V , m ∈ M, t ∈ T m
Tm . This is a computed variable for the
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energy consumption of the building during each short-term
period.

env Total energy consumed at a node (EUR). v ∈ V.

epv Energy consumed and sold (kWh). v ∈ V.

et Total averaged energy consumed (EUR). The minimization of
this variable can be an objective.

hv
k,n Tariff choice (binary) (unitless). k ∈ K, n ∈ N k

Tr , v ∈ V . This
is the decision for selecting among different tariffs. The choice
is done for the subsequent period.

mnv
i Fixed (maintenance) cost at a node (EUR). i ∈ I, v ∈ V.

p Total averaged pollutants emissions (EUR). The minimization of
this variable can be an objective.

pnv
l Total emissions at a node (EUR). l ∈ L, v ∈ V.

r
v,m,t
i,k Energy stored (kWh). i ∈ ISto , k ∈ Ki

Po , v ∈ V , m ∈ M,
t ∈ T m

Tm . This is an inventory of the amount of energy that is
stored in the energy-storage technologies during each short-
term period. It is calculated using the operational decisions
and the technology parameters.

rav
i,k Sum of energy stored at the beginning of short term periods

(kWh). i ∈ I, k ∈ K, v ∈ V . This aggregated value must be
averaged using the total hours in a long-term period in order
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to be informative.

rcvi Total storage operational cost at a node (kWh). i ∈ I, v ∈ V.

ri
v,m,t
i,k Energy input to storage (kWh). i ∈ ISto , k ∈ Ki

Po , v ∈ V ,
m ∈ M, t ∈ T m

Tm . Addition to energy storage for each type
of energy during each short-term period.

rnv
i,k Total energy input to storage at a node (kWh). i ∈ I, k ∈ K,

v ∈ V.

ro
v,m,t
i,k Energy output from storage (kWh). i ∈ ISto , k ∈ Ki

Po ,
v ∈ V , m ∈ M, t ∈ T m

Tm . Release from each energy-storage
technology of each type of energy during each operational pe-
riod.

rpvi,k Sum of energy output from storage at a node (kWh). i ∈ I,
k ∈ K, v ∈ V. This aggregated value must be averaged using
the total hours in a long-term period in order to be informa-
tive.

snv
i Strategic (investment) cost at a node for a technology (EUR).

i ∈ I, v ∈ V.

u
v,m,t
k,n Energy to purchase, under a given tariff (kWh). k ∈ K,

n ∈ N k
Pur , v ∈ V, m ∈ M, t ∈ T m

Tm . Energy purchased in the
market for each type of energy, to be delivered during each
operational period.
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ucvk,n Total energy purchases costs at a node for each energy type
and contract (EUR). k ∈ K, n ∈ N , v ∈ V.

unv
k,n Total energy purchases at a node for each energy type and

contract (kWh). k ∈ K, n ∈ N , v ∈ V.

w
v,m,t
k,n Energy to sell, under a given tariff (kWh). k ∈ K, n ∈ N k

Sal ,
v ∈ V , m ∈ M, t ∈ T m

Tm . Energy of each type of energy to
be sold in the market during each operational period.

wcvk,n Total energy sales income at a node for each energy type and
contract (EUR). k ∈ K, n ∈ N , v ∈ V.

wnv
k,n Total energy sales at a node for each energy type and con-

tract (kWh). k ∈ K, n ∈ N , v ∈ V.

x
v,a
i Installed units of a given age for each technology and node

(Devices/kW/kWh). i ∈ I, v ∈ V , a ∈ A. This is a com-
puted variable.

xcvi Available capacity of a technology at each node (kW or kWh
(storage)). i ∈ I, v ∈ V . This capacity is computed through
the decisions and the parameters.

xd
v,a
i Number of units of a technology to be decommissioned (De-

vices or kW). integer for i ∈ IDs , v ∈ V, a ∈ AOld ; continuous
for i ∈ ICon , v ∈ V , a ∈ AOld . For continuously-sized tech-
nologies, this is the total capacity to be decommissioned. For
discretely-sized technologies, it denotes number of devices to
decommission.
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xivi Number of units of a technology to be installed (Devices or kW).
integer for i ∈ IDs , v ∈ V ; continuous for i ∈ ICon , v ∈ V .
For discretely-sized technologies, this is an integer variable,
whilst for continuously-sized technologies, it is a continuous
one.

y
v,m,t
i,k Energy generator input (kWh). i ∈ IGen , k ∈ Ki

In , v ∈ V ,
m ∈ M, t ∈ T m

Tm . Amount of energy used as input to an
energy-creating technology, for each type of energy, opera-
tional profile and period.

ynv
i,k Total energy input at a node for each technology and type of

energy (kWh). i ∈ I, k ∈ K, v ∈ V.

z
v,m,t
i,k Energy generator output (kWh). i ∈ IGen , k ∈ Ki

Out , v ∈ V,
m ∈ M, t ∈ T m

Tm . Amount of energy as output from an
energy-creating technology, for each type of energy, opera-
tional profile and period.

zcvi Total energy generation (operation) costs at a node for each
technology (EUR). i ∈ I, v ∈ V.

znv
i,k Total energy generated at a node for each technology and en-

ergy type (kWh). i ∈ I, k ∈ K, v ∈ V.

6.4.5. Equations

The following equations model the relationship between the energy
systems in the building along with the energy flows. They are clas-
sified into the following groups:

1. Strategic. These equations deal with strategic decisions,
such as investments and contracts;
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2. Operational. These equations deal with operational deci-
sions, such as energy trade, generation, or storage;

3. Strategic-operational links. These equations link the op-
erational performance with the strategic decisions or policies;

4. Computations. These equations are for computing auxiliary
variables in order to simplify the largest equations as well
as allowing the reuse of such auxiliary variables in different
equations;

5. Aggregations. These equations aggregate values of oper-
ational decisions or variables per node scaling through the
profile features. Those values are useful for visualization and
post-analysis purposes;

6. Objectives. In this model, three magnitudes can be mini-
mized: total cost, total emissions, or total energy consumed.
Once selected the objective, the other two equations become
constraints to compute the overall values.

Each equation is preceded by a short title and a brief description.
Nonetheless this description is omitted for some computed variables
for aggregation by node as the description is redundant.

(1) Strategic

Available new technologies (devices) at each node

The available new devices of a technology (age zero) are equal
to the ones installed at each node:

x
v,a
i = xivi ∀ i ∈ I, v ∈ V, a ∈ ANew . (6.1)

Available old technologies (devices) at future nodes

The available devices whose age is not zero are equal to the
ones available at the previous node, minus the number of
decommissioned ones:

x
v,a
i = x

v ′,a−1
i − xd

v,a
i (6.2)

∀ i ∈ I, a ∈ AOld , v ∈ VFut , a ∈ Ai,v
Ages , v

′ ∈ Vv
Pa .
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Available old technologies (devices) at root node

For technologies existing before the start of the optimization
horizon, the number of devices available at the root note is
equal to the number of existing devices minus those decom-
missioned at the beginning of the first period:

x
v,a
i = XZ a

i − xd
v,a
i (6.3)

∀ i ∈ I, a ∈ AOld , v ∈ VRoot , a ∈ Ai,v
Ages .

Technology capacity calculation

The total capacity of a technology is the sum of the capacities
of the installed devices at any age, corrected by the aging
factors and nominal capacity:

xcvi = Gi ·
∑

a∈A
i,v
Ages

AGa
i · x

v,a
i ∀ i ∈ I, v ∈ V. (6.4)

Investment limit

An upper limit may be imposed on the total installation, and
decommissioning cost:

∑

i∈I

snv
i ≤ ILv ∀ v ∈ V. (6.5)

Purchase tariff choice

Only one purchase tariff is allowed per energy type:

∑

n∈N k
Pur

hv
k,n = 1 ∀ v ∈ V, k ∈ KEpur . (6.6)

Sales tariff choice

Only one sales tariff is allowed per energy type:

∑

n∈N k
Sal

hv
k,n = 1 ∀ v ∈ V, k ∈ KES . (6.7)
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Physical limit

There is a limit for installing technologies, usually established
by the space available in the site. :

∑

a∈A
i,v
Ages

x
v,a
i ≤ LPv

i ∀ i ∈ I, v ∈ V. (6.8)

(2) Operational

Storage available

The energy stored at the beginning of each period is the en-
ergy stored in the previous period, plus the energy sent to
storage, minus the energy released from storage. All flows are
corrected by their respective loss ratio parameter:

r
v,m,t+1
i,k = OS i,k · r

v,m,t
i,k +OI vi,k · ri

v,m,t
i,k −OOv

i,k · ro
v,m,t
i,k

(6.9)

∀ v ∈ V, m ∈ M, i ∈ ISto , t ∈ T m
Tm , k ∈ Ki

Po .

Storage level between periods

The storage level at the first short-term period must be equal
to the level at the final period (in the same strategic period):

r
v,m,t
i,k = OS i,k · r

v,m,t ′

i,k +OI vi,k · ri
v,m,t ′

i,k −OOv
i,k · ro

v,m,t ′

i,k

(6.10)

∀ v ∈ V, m ∈ M, i ∈ ISto , k ∈ Ki
Po , t ∈ T m

First , t
′ ∈ T m

Last .

Energy balance

The energy supplied must meet the energy demand minus the
energy saved due to passive technologies. It is composed of
the energy produced with energy-creating technologies plus
the energy purchased in the market minus the energy sold,
energy for storage and energy for production. On the demand
side, the energy saved with passive technologies diminish the
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total demand:
∑

i∈IGen

z
v,m,t
i,k −

∑

i∈IGen

y
v,m,t
i,k (6.11)

+
∑

n∈N k
Pur

u
v,m,t
k,n −

∑

n∈N k
Sal

w
v,m,t
k,n

+
∑

i∈ISto

(

ro
v,m,t
i,k − ri

v,m,t
i,k

)

= D
v,m,t
k ·



1−
∑

i∈IPU

ODv
i,k · xc

v
i





∀ k ∈ K, v ∈ V, m ∈ M, t ∈ T m
Tm .

Sales limit by generation

The energy sold can not be greater than the energy produced:
∑

n∈N k
Sal

w
v,m,t
k,n ≤

∑

i∈IGen

z
v,m,t
i,k (6.12)

∀ v ∈ V, m ∈ M, k ∈ KES , t ∈ T m
Tm .

(3) Strategic-operational links

Technology output limit

The energy that can be supplied by a technology is con-
strained by the availability of the technology and its capacity:

z
v,m,t
i,k ≤ DTm · AF v,m,t

i · xcvi (6.13)

∀ v ∈ V, m ∈ M, i ∈ IGen , k ∈ Ki
Po , t ∈ T m

Tm .

Storage release limit

The amount of energy that can be discharged from any energy-
storage technology is limited by the installed capacity and the
maximum discharge rate:

ro
v,m,t
i,k ≤ OX v

i,k ·DTm · xcvi (6.14)

∀ v ∈ V, m ∈ M, i ∈ ISto , t ∈ T m
Tm , k ∈ Ki

Po .
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Storage charge limit

The amount of energy that can be charged to any energy-
storage technology is limited by the installed capacity and
the maximum charge rate:

ri
v,m,t
i,k ≤ OY v

i,k ·DTm · xcvi (6.15)

∀ v ∈ V, m ∈ M, i ∈ ISto , t ∈ T m
Tm , k ∈ Ki

Po .

Lower storage limit

The amount of energy that can be stored in any energy-
storage technology must be greater than the capacity installed,
corrected by the minimum charge required:

r
v,m,t
i,k ≥ OAv

i,k · xc
v
i (6.16)

∀ v ∈ V, m ∈ M, i ∈ ISto , t ∈ T m
Tm , k ∈ Ki

Po .

Upper storage limit

The amount of energy that can be stored in any energy-
storage technology must be lower than the capacity installed,
corrected by the maximum charge allowed:

r
v,m,t
i,k ≤ OBv

i,k · xc
v
i (6.17)

∀ v ∈ V, m ∈ M, i ∈ ISto , t ∈ T m
Tm , k ∈ Ki

Po .

Purchasing limit by contract

The amount of energy that can be purchased at a given node
must not exceed the amount stipulated in the previously signed
contract:

u
v,m,t
k,n ≤ hv

k,n ·MEk,n ·DTm (6.18)

∀ v ∈ V, m ∈ M, k ∈ KEpur , n ∈ N k
Pur , t ∈ T m

Tm .

Sales limit by contract

The amount of energy that can be sold at a given node must
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not exceed the amount stipulated in the previously signed
contract:

w
v,m,t
k,n ≤ hv

k,n ·MEk,n ·DTm (6.19)

∀ v ∈ V, m ∈ M, k ∈ KES , n ∈ N k
Sal , t ∈ T m

Tm .

Required efficiency

The amount of energy consumed and sold must be larger than
the amount of primary energy consumed corrected by the ef-
ficiency parameter:

epv ≥ EF v · env ∀ v ∈ V. (6.20)

Emissions limit

The total emissions of each considered pollutant cannot ex-
ceed a specified limit:

pnv
l ≤ PLv

l ∀ l ∈ L, v ∈ V. (6.21)

(4) Computations

Strategic investment in a technology at a node

Strategic investments include investment costs reduced by the
subsidies, and decommissioning costs:

snv
i = (CI vi − SU v

i ) ·Gi · xi
v
i +

∑

a∈A
i,v
Ages

CD
v,a
i ·Gi · xd

v,a
i

(6.22)

∀ i ∈ I, v ∈ V.

Output energy calculation

The amount of output energy is calculated from the input
energy and the conversion factor:

z
v,m,t
i,k ′ =

∑

k∈Ki
In

EC v
i,k,k′ · y

v,m,t
i,k (6.23)

∀ v ∈ V, m ∈ M, i ∈ IGen , k
′ ∈ Ki

Out , t ∈ T m
Tm .
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Primary energy calculation

The primary energy (not from a fictitious market) consumed
is the sum of the processed energy of each type and the energy
used as an input fuel:

ev,m,t =
∑

k∈K,n∈N k
Pur

Bk,n · uv,m,t
k,n (6.24)

∀ v ∈ V, m ∈ M, t ∈ T m
Tm .

Total cost at a node

Total cost includes investment and decommissioning cost, main-
tenance cost, and operational cost. The latter includes pur-
chases, generation and storage operational cost, and is dimin-
ished by the income from energy sales:

cnv =
∑

i∈I

snv
i +

∑

i∈I

mnv
i (6.25)

+
∑

k∈K,n∈N k
Pur

ucvk,n −
∑

k∈K,n∈N k
Sal

wcvk,n

+
∑

i∈IGen

zcvi +
∑

i∈ISto

rcvi ∀ v ∈ V.

Energy consumed and sold calculation

This total output energy from the building, regardless its des-
tination, is used to compute the efficiency of the building:

epv =
∑

m∈M

DMm ·
∑

k∈K,t∈T m
Tm



D
v,m,t
k +

∑

n∈N k
Sal

w
v,m,t
k,n





(6.26)

∀ v ∈ V.

Emissions of a pollutant at a node calculation

Total emissions come from both energy input to generation
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technologies and energy purchases in the market:

pnv
l =

∑

m∈M

DMm ·
∑

t∈T m
Tm





∑

k∈Ki
In

LH v
k,l · y

v,m,t
i,k (6.27)

+
∑

k∈K,n∈N k
Pur

LC v
k,l,n · uv,m,t

k,n





∀ l ∈ L, v ∈ V.

(5) Aggregations

Aggregated maintenance cost at each node

mnv
i = CM v

i · xc
v
i ∀ i ∈ I, v ∈ V. (6.28)

Aggregated energy purchases for a type of energy at a node

unv
k,n =

∑

m∈M

DMm ·
∑

t∈T m
Tm

u
v,m,t
k,n (6.29)

∀ k ∈ K, v ∈ V, n ∈ N k
Pur .

Energy purchases aggregate cost at a node

ucvk,n =
∑

m∈M

DMm ·
∑

t∈T m
Tm

PP
v,m,t
k,n · uv,m,t

k,n (6.30)

∀ k ∈ K, v ∈ V, n ∈ N k
Pur .

Aggregated energy sales for each type of energy at a node
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wnv
k,n =

∑

m∈M

DMm ·
∑

t∈T m
Tm

w
v,m,t
k,n (6.31)

∀ k ∈ K, v ∈ V, n ∈ N k
Sal .

Energy sales aggregated income at a node

wcvk,n =
∑

m∈M

DMm ·
∑

t∈T m
Tm

SP
v,m,t
k,n · wv,m,t

k,n (6.32)

∀ k ∈ K, v ∈ V, n ∈ N k
Sal .

Aggregated energy generated at a node

znv
i,k =

∑

m∈M

DMm ·
∑

t∈T m
Tm

z
v,m,t
i,k (6.33)

∀ v ∈ V, i ∈ IGen , k ∈ Ki
Out .

Energy generation aggregated cost at a node

zcvi =
∑

m∈M

DMm ·
∑

t∈T m
Tm

COv
i,k · z

v,m,t
i,k (6.34)

∀ v ∈ V, i ∈ IGen , k ∈ Ki
Po .

Energy storage aggregated cost at a node

rcvi =
∑

m∈M

DMm ·
∑

t∈T m
Tm

COv
i,k · ro

v,m,t
i,k (6.35)

∀ v ∈ V, i ∈ ISto , k ∈ Ki
Po .
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Aggregated input energy to each technology at a node

ynv
i,k =

∑

m∈M

DMm ·
∑

t∈T m
Tm

y
v,m,t
i,k (6.36)

∀ v ∈ V, i ∈ IGen , k ∈ Ki
In .

Aggregated storage (divide by 8760 to get ‘average use‘)

rav
i,k =

∑

m∈M

DMm ·
∑

t∈T m
Tm

r
v,m,t
i,k (6.37)

∀ v ∈ V, i ∈ ISto , k ∈ Ki
Po .

Aggregated energy input to storage

rnv
i,k =

∑

m∈M

DMm ·
∑

t∈T m
Tm

ri
v,m,t
i,k (6.38)

∀ v ∈ V, i ∈ ISto , k ∈ Ki
Po .

Aggregated energy output from storage

rpvi,k =
∑

m∈M

DMm ·
∑

t∈T m
Tm

ro
v,m,t
i,k (6.39)

∀ v ∈ V, i ∈ ISto , k ∈ Ki
Po .

Aggregated demand at a node for each type of energy
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dnv
k =

∑

m∈M

DMm ·
∑

t∈T m
Tm

D
v,m,t
k (6.40)

∀ k ∈ K, v ∈ V.

Aggregated primary energy consumed at a node

env =
∑

m∈M

DMm ·
∑

t∈T m
Tm

ev,m,t ∀ v ∈ V. (6.41)

(6) Objectives

Total discounted expected cost

Mathematical expectation of the total cost throughout the
decision horizon, using the value at each node and the node
probability. Discount rate is used to get the present value:

c =
∑

v∈V

(1 +DR)−PTv

· PRv · cnv. (6.42)

Total averaged primary energy

Mathematical expectation of the total primary energy con-
sumed throughout the decision horizon, using the value at
each node and the node probability:

et =
∑

v∈V

PRv · env. (6.43)

Total averaged emissions

Mathematical expectation of the total emissions throughout
the decision horizon, using the value at each node and the
node probability:

p =
∑

v∈V

PRv ·
∑

l∈L

pnv
l . (6.44)
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6.5. Numerical Example

This section contains a numerical example of the optimization prob-
lem defined in this chapter with a limited number of SMS entities.
The following information is included:

1. The set elements in each SMS set used in the instance.

2. Parameter values used in the instance. When the table is
large enough, the first and last rows are shown. A graphical
representation for some parameters is shown.

3. The result of the optimization. Similarly to the parameters,
values and charts are presented for the decision variables op-
timal values.

The following features apply to the example:

• Three long-term periods;

• Six short-term periods, four hours each;

• Four representative profiles;

• One generation technology, no existing technologies;

• Two possible contracts;

• Stochastic parameters: demand, energy prices, investment
costs and subsidies;

• Emissions and efficiency have not been considered for this
example;

• Only investment costs have been considered;

• The objective was to minimize total expected cost.

Both the model and the instance have been built using the frame-
work described in Chapter 8. After building the model and in-
stance, the solution has been obtained through the same framework
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using GAMS 23.9 as optimization and modeling software, and OS-

ICPLEX as solver. The solution time was 0.137 seconds. Tables and
charts have been moved to the end of the chapter for the sake of
clarity.

6.5.1. Scenario Tree

Figure 6.2 shows the representation of the scenario tree for this
simple example with two equiprobable scenarios; two branches after
the first-stage decisions at period time 1, node 1; and two more
periods for second-stage decisions.

1
PTv = 0

4
PTv = 1

5
PTv = 2

Scenario 2

PR v
= 0.5

2
PTv = 1

3
PTv = 2

Scenario 1

PR
v = 0.5

Figure 6.2.: Scenario tree for the multi-stage model numerical
example.

6.5.2. Sets

The following sets and subsets elements are used in the instance:

• A= {0, 1, 2};

• I= {PV};

• K= {electricity, radiation};

• N= {normalRTEp, touRTEp, fictitious};
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• V= {1, 2, 3, 4, 5};

• M= {profile1, profile2, profile3, profile4};

• T = {time1, time2, time3, time4, time5, time6};

• IDs= {PV};

• ANew= {0};

• AOld= {1, 2};

• IGen= {PV};

• VRoot= {1};

• NTpur= {normalRTEp, touRTEp, fictitious};

• KEpur= {electricity, radiation};

• VFut= {2, 3, 4, 5}.

The multidimensional set mapping energy types and contracts is
in Table 6.1. Table 6.2 shows the input/output multidimensional
sets. The tree structure is managed by the mapping of parent nodes
in Table 6.3. The possible technology age at each node is in Ta-
ble 6.4. Finally, each representative profile has the same short-term
periods as shown in Table 6.5.

6.5.3. Parameter Values

In addition to the mapping between parent nodes, the tree structure
also needs the period times in Table 6.6 and the nodes’ probabilities
in Table 6.7. Investment costs and subsidies have been simulated for
the two scenarios in the example and are shown in Tables 6.8 and
6.9 respectively. For the sake of space, large tables for operational
parameters are omitted and graphical representations are provided
instead. Figure 6.3 shows the availability of solar irradiation, Fig-
ure 6.4 represents the energy demand, and Figure 6.5 contains the
electricity prices. The following parameter values complete the set
of data:
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• DTm = 4;

• DMm = 90;

• GPV = 0.245;

• AGa
PV = 1;

• EC v
i,k,k′ = 1;

• LPV
PV = 1500;

• ME electricity,n = 276.8;

6.5.4. Solution

The total expected cost is 71,699 EUR. Table 6.10 shows the op-
timal strategic decisions on investment. In this extremely simple
example, the decision is not to invest now (period 0). Figure 6.6
shows the available units of PV technologies. It can be seen how
the foreseen decisions vary from one scenario to another: in one of
them investments are recommended during period 1, whilst in the
other one investments are delayed one more year. Notice also how
the model takes into account technologies age. Figure 6.7 shows the
available capacity of PV technologies in the building. Note that this
capacity gathers the technologies aging features, as the model takes
into account the age of the units as can be seen in Figure 6.6. In any
case, for the next period the optimization must be run again and
the new information and knowledge about uncertainties might re-
sult in different decisions. Moreover, operational decisions are useful
to provide the decision maker with insights about the future per-
formance of the building energy systems. For example, Figure 6.8
shows the energy purchases throughout the tree nodes. It can be
seen how investment decisions combined with uncertainties also af-
fect tariff selection decisions, as in scenario 2 (nodes 4 and 5) a
tariff switch is foreseen the second year (node 4). Of course those
strategic decisions also affect operational decisions, as far as when
energy is produced, see Figure 6.9, less purchases are needed.

142



6.5. Numerical Example

Tables and Charts

Table 6.1.: N k
Pur multidimensional set

k n

electricity normalRTEp
electricity touRTEp
radiation fictitious

Table 6.2.: Energy input/output multidimensional sets

i Ki
In Ki

Out Ki
Po

PV radiation electricity electricity

Table 6.3.: Vv
Pa multidimensional set

v v′

2 1
3 2
4 1
5 4
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Table 6.4.: Ai,v
Ages multidimensional set

i v a

PV 1 0
PV 2 0
PV 2 1
PV 3 0
PV 3 1
PV 3 2
PV 4 0
PV 4 1
PV 5 0
PV 5 1
PV 5 2

Table 6.5.: T m
Tm multidimensional set

m t

profile1 time1 time2 time3 time4 time5 time6
profile2 time1 time2 time3 time4 time5 time6
profile3 time1 time2 time3 time4 time5 time6
profile4 time1 time2 time3 time4 time5 time6

Table 6.6.: PT v parameter

v value

1 0
2 1
3 2
4 1
5 2
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Table 6.7.: PRv parameter

v value

1 1.00
2 0.50
3 0.50
4 0.50
5 0.50

Table 6.8.: CI vi parameter

i v value

PV 1 1326.65
PV 2 1061.32
PV 3 849.06
PV 4 1193.99
PV 5 1074.59

Table 6.9.: SU v
i parameter

i v value

PV 1 663.33
PV 2 530.66
PV 3 721.70
PV 4 1014.89
PV 5 913.40
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Table 6.10.: xivi variable

i v value

PV 3 317
PV 4 336
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7.1. Introduction

In Chapters 4 and 6, uncertainty was added to the optimization
problems, formulating the models as SP problems. Indeed, taking
into account uncertainty is needed in order to reduce risks. How-
ever, the models formulated so far are risk neutral, as this risk is
not modeled. Ignoring risk management might result on an optimal
average value for the objective function, but very bad outcomes for
some extreme scenarios. In the case at hand, the optimal invest-
ment plan leading to the minimum expected cost could be very bad
for the actual scenario that eventually occurs. To overcome such
drawback, a risk measure should be included in the formulation. In
this chapter an overview of the most used risk measures is provided,
and the implementation adopted in the models in Chapters 4 and 6
is presented.

7.2. Risk Measures

A risk measure, or risk function, characterizes the risk associated
with a given decision. Throughout the time different risk measures
have been proposed for SP. It can be found in the literature detailed
descriptions and comparisons between them, see for example Kall
and Mayer (2005), Krokhmal et al. (2011), or Alonso Ayuso et al.
(2009) for general problems; Conejo et al. (2010) focuses on energy
markets. However, since Rockafellar and Uryasev (2000) published
the minimization of Conditional Value at Risk (CVaR) method, it
has been proved as a breakthrough risk measure. It has the desir-
able properties stated by Artzner et al. (1999), namely: translation
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invariance, subadditivity, positive homogeneity, and monotonicity,
hence becoming a coherent risk measure. The more basic risk mea-
sure that can be used is the variance. Markowitz (1959) first pro-
posed the mean-variance model that minimized the risk (variance)
requiring a given average objective. Variance can be also included
in the objective as a weighted combination of risk and reward. Note
that this type of models were formerly used for portfolio optimiza-
tion, where the objective is to maximize reward. Nevertheless, it is
straightforward to apply the ideas to minimization of cost, as in the
models developed hereby.

A thorough survey of risk measures properties is out of the scope
of this work. Some of the more prominent are shortfall probability,
expected shortage, or the more recent advances on stochastic domi-
nance, see for example Ogryczak and Ruszczynski (1999), Ogryczak
and Ruszczynski (2002), Dentcheva and Ruszczyński (2003), or Dentcheva
and Ruszczyński (2006). VaR and CVaR are explained in the fol-
lowing section, as they are used in the developed models.
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7.3. Conditional Value at

Risk (CVaR)

The approach followed in this work to model risk is the CVaR model
by Rockafellar and Uryasev (2000). First, it is needed to define
Value at Risk (VaR). VaR is one of the most known measures in
financial risk management (see, for example, Duffie and Pan 1997)
though it can be applied to other sectors as will be shown later. Even
though it is usually defined for profits, i.e., maximization, here it is
used the minimization of costs meaning. Given a confidence level α,
0 < α < 1, typically a large value, e.g., 0.95, the VaR is the lowest
cost λ that ensures a probability lower than 1− α of getting a cost
higher than such value. Note that this risk measure includes both
the loss size and the probability of loss through the use of quantiles,
and can be mathematically expressed as:

VaR(α,xxx) = min {λ : P [ω|f(ω,xxx) > λ] ≤ 1− α} , (7.1)

where ω is the sample space and f(ω,xxx) is the objective function,
see Chapter 2. Therefore, the VaR is the (1 − α)-quantile of the
cost distribution. For example, a VaR of 100 monetary units for a
confidence level of 95% means that the probability of having a cost
higher than 100 monetary units is lower than 5%.

In spite of the good properties and widely spread use by banking
institutions, VaR has two main drawbacks. First, it is not a coherent
measure, as it does not satisfy the subaditivity property. Second,
the measure does not provide information about the cost distribu-
tion beyond the VaR, and therefore fat tails are not detected. To
overcome these shortcomings, CVaR is defined as the conditional
expectation of losses Λ that exceed the VaR level λ, i.e.:

CVaR = min {Λ : E [f(ω,xxx) > λ]} . (7.2)

According to this definition, a CVaR of 100 monetary units for a
confidence level of 95% means that the average of worst case losses
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that may occur with 5% probability is 100 monetary units. The key
to success of the CVaR risk measure is that it is easy to implement
in SP problems keeping the good properties of both the risk mea-
sure and the SP problem. In general, the CVaR can be added to
the optimization problem by adding a weighted risk term R to the
objective function:

R = λ−
1

1− α

∑

ω∈Ω

P[ω]s(ω), (7.3)

where λ is a decision variable representing the VaR and s(ω) is an
auxiliary variable, which is the solution of:

max {0, λ− f(ω,xxx)} .

The following constraints are also needed for all ω ∈ Ω:

λ− f(ω,xxx) ≤ s(ω), (7.4)

s(ω) ≥ 0. (7.5)

The implementation is slightly different in by-scenario formula-
tions and by-node formulations. In the following sections, both
approaches are detailed for the models in Chapters 4 and 6 respec-
tively.

7.4. CVaR in the Two-stage Model

In model (4.1)–(4.6) the variability of outcomes is characterized by
the stochastic second stage operational decisions yti,j(ω) with unit
costs COt

i,j(ω). Although the strategic first-stage decisions xti have
random costs CIti (ω), the total cost function (4.6) ignores their
variability by using mean values CIti = E

[

CIti (ω)
]

. If the total
stochastic costs

∑

i∈I CIti (ω) ·x
t
i cannot well enough approximate a

normal distribution, then instead of the mean value of these costs
it is advantageous to use in equation (4.6) the median or other
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quantiles, especially when these costs may be affected by extreme
events. This variability can be easily modeled by additional decision
variables vt ≥ 0 representing the VaR which jointly with variables
xti, y

t
i,j minimize the function

∑

t∈T

(

vt +
(

ρt
)−1

· E

[

max

{

0,
∑

i∈I

CIti (ω) · x
t
i − vt

}]

+E





∑

j∈J

COt
i,j(ω) · y

t
i,j(ω)







 , (7.6)

subject to constraints (4.1)–(4.5). The minimization of function
(7.6) includes now additional subproblems on minimization with
respect to vt, t ∈ T ,

R = vt +
(

ρt
)−1

· E

[

max

{

0,
∑

i∈I

CIti (ω) · x
t
i − vt

}]

, (7.7)

subject to vt ≥ 0, where ρt is a risk factor controling that stochastic
costs

∑

i∈I CIti (ω) · x
t
i do not exceed a desirable robust safety level

vt (VaR). If the safety vector ρt < 1, then the minimization of the
risk function (7.6) yields optimal values vt ∗ satisfying the following
safety constraints, known in financial applications as the Value at
Risk indicator (Rockafellar and Uryasev 2000):

P

[

∑

i∈I

CIti (ω) · x
t
i ≥ vt

]

= ρt ∀ t ∈ T . (7.8)

Subproblem (7.7) corresponds to the Conditional Value at Risk
(CVaR) minimization. This problem has the following interpreta-
tion. Foreseen investments costs

∑

i∈I CIti (ω) · x
t
i at time t are

planned to be covered by ex-ante credit at price ρt < 1 and ex-post
borrowing

max

{

0,
∑

i∈I

CIti (ω) · x
t
i − vt

}
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for relatively greater price. This provides more flexibility (robust-
ness) compared only with ex-ante planning of investments using
mean values of perceived unit costs E

[

CI ti(ω)
]

. It is also impor-
tant to remark that the ex-ante credit is evaluated by (7.8) as the
quantile with desirable safety levels ρt, t ∈ T , rather than mean
values which are especially misleading in the case of non-normal
distributions.

7.5. Risk Meausures in the

Multi-stage Model

Several updates are needed in the formulation of the stochastic
model (6.1)–(6.44) in order to manage risk. First of all, as CVaR
refers to the worst scenarios, it is needed a mapping between nodes
and scenarios. In order to deal with this feature, a new set of sce-
narios s ∈ S is defined. Considering that a scenario is actually
a path of nodes, whose leaf node is unique, mulditimensional sets
Vs
Leaf and Vs

Path are defined for the leaf node and the nodes that are
in the path of the scenario, respectively. On the other hand, two
new variables are needed to model risk: vr for the VaR, that refers
to the whole decision horizon; and the auxiliary variable sr s, per
scenario, to calculate the CVaR. Thus, the implementation of the
risk term (7.3) is made by a new variable rt:

rt = vr + (1−AL)−1 ·
∑

s∈S

PRLeaf (s) · sr s, (7.9)

where AL is the confidence level α. The risk constraints (7.4) for
cost minimization would be the following:

∑

v∈Vs
Path

(1 +DR)−PTv

· cnv − vr ≤ sr s ∀ s ∈ S. (7.10)

Finally, the objective is now to minimize the weighted cost and
risk through the following objective function:
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oc = (1−BE) · c +BE · rt , (7.11)

where BE is the risk weight β that models the risk aversion of the
decision maker. Note that the problem whose BE = 0 is the risk-
averse problem, i.e., without risk management.

In Subsection 6.4.5 of Chapter 6, three different objectives were
propounded: minimization of cost, emissions, or energy consump-
tion. Even though CVaR is mostly used for monetary risks, this
dissertation includes as a novelty taking into account the risk of
high emissions, or the risk of high energy consumption. Under the
context outlined in Chapter 1, it is necessary to consider emissions
and energy consumption as a threat, especially by certain stakehold-
ers such as policy makers. Therefore, keeping the same formulation
for the risk term (7.9), one of the following equations replaces the
risk constraints (7.10) for either emissions or energy consumption
minimization:

∑

l∈L,v∈Vs
Path

pnv
l − vr ≤ sr s ∀ s ∈ S, (7.12)

∑

v∈Vs
Path

env − vr ≤ sr s ∀ s ∈ S, (7.13)

and the counterpart objective function replaces (7.11), namely:

op = (1−BE) · p +BE · rt , (7.14)

oe = (1−BE) · et +BE · et . (7.15)

The complete model with risk has been tested with real data
from the EnRiMa test sites. Some numerical results are shown in
Chapter 9.
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8. An Integrated

Framework

8.1. Introduction

The term Optimization is often used to denote the entire process of
Operations Research that lead to scientific based decisions. How-
ever, the optimization step is only one of the tasks within the whole
decision making process. This optimization step may be carried out
by a solver, i.e., a piece of software implementing the algorithm, that
receives the problem data and returns the problem solution. Indeed,
the algorithm implemented on the solver is the actual workhorse for
the decision making problem solution. However, the tasks out of
the “black box” are not trivial, and they require a large amount of
research time.

Many of these tasks are related to statistical analysis, including
descriptive statistics, graphics, or inference. More often than not,
analysts use several applications during their research, e.g. spread-
sheets, statistical software, text editors, etc. Finally, a consolidated
report containing the results of the optimization as well as the data
analysis has to be generated. The integrated framework proposed in
this work allows to perform a whole decision making process regard-
ing energy systems optimization at the building level. This process
is summarized in Fig. 8.11. The solver is the core of the process. It
receives information about:

• The model: symbols and descriptions of the mathematical

1Note that this is a simplified version of the DSS general scheme in
Figure 2.5.
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formulation;

• The instance: actual elements in the sets, parameters, esti-
mations, etc. It is sometimes also termed as concrete model
or case.

The solver returns the solution of the problem, i.e., the optimal
values for the decision variables and the objective based on the al-
gorithm selected. This result should be analyzed and end up in
a comprehensive report for the decision maker or any other stake-
holder. Such a process needs the following elements:

• Statistical software;

• Data visualization;

• Mathematical representation;

• Solver input generation;

• Solver invocation;

• Documentation output.

Figure 8.1.: Elements in an optimization decision making
process.

As remarked in Chapter 2, the proposed framework relies on the
use of Algebraic Modeling Languages (AMLs). Despite AMLs have
been selected to build the framework, it is important to remark
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that other structured formats, e.g., markup languages, can be used
as far as they are useful to accomplish the DSS main mission, i.e.,
the stakeholders dialog, see Section 2.3 in Chapter 2. For exam-
ple, Optimization Services (OS)2 is a Computational Infrastruc-
ture for Operations Research (COIN-OR)3 project that uses the
eXtended Markup Language (XML) format to represent optimiza-
tion problems and that is suitable to effectively communicate within
an eventual DSS. OS aims at providing “a set of standards for rep-
resenting optimization instances, results, solver options, and com-
munication between clients and solvers in a distributed environment
using Web Services” (Fourer et al., 2010). Another example is For-
mal Mathematical Language (FMathL) by Neumaier (2014). There
are several AMLs available both commercial and open source. The
one selected for the first implementation of the framework has been
GAMS. Nonetheless, the classes explained below can be easily ex-
tended to other languages. This is possible due to the fact that
the SMS is generically represented within the DSS using specific
data structures developed in the programming language and sta-
tistical software R (R Core Team 2013a). R provides functionality
for all the required tasks within the DSS, including data analysis,
visualization and representation tasks, allowing communication to
different optimization software packages through inner interfaces.
For example, the gdxrrw4 package by Dirkse and Jain (2013) can be
used for reading and writing data in GAMS .gdx binary files. Data
cleaning and management can also be done with R. A description
on how R can be used for data preparation for optimization can be
found in Pitz (2012). Eventually, user interfaces can be easily im-
plemented, both through other technologies such as php5, or .NET6,

2https://projects.coin-or.org/OS
3http://www.coin-or.org
4http://support.gams-software.com/doku.php?id=gdxrrw:

interfacing_gams_and_r. Further examples can be found at
http://www3.lei.wur.nl/gamstools/.

5http://php.net
6http://asp.net
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or through R libraries devoted to user interfacing, such as shiny7.
Note that the spirit of the framework can be also applied using other
programming and analysis tools.

8.2. A Reproducible Research

Approach

Against the copy-paste approach frequently used to reach the final
outcome of a decision making problem, the reproducible research
one adopted in the framework developed has a series of advantages
worthy to consider, namely:

• When coming back to the research in the future, the results
can be easily obtained again;

• In case other researchers have to contribute to the work, all
the process is at hand;

• Changes on any step of the process (e.g. a new index in the
mathematical model) are made seamlessly just changing the
appropriate data object. The whole analysis is made again
using the new or updated information and the changes are
automatically reflected in the output results;

• The results can be verified by independent reviewers. This is
particularly important in health research and other disciplines
where security is an issue. A paradigmatic example to realize
the importance of reproducible research is the scandal of the
Duke cancer trials (CBS 2012; The New York Times 2011).
For an example on energy issues see Jelliffe (2010).

Reproducible Research is a relatively recent crossing topic and
suitable for any discipline. See for example Gentleman and Tem-
ple Lang (2007), Vandewalle et al. (2009), Stodden (2009), Xie

7http://www.rstudio.com/shiny/
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(2013b), Xie (2013c), Baggerly and Coombes (2009), or Koenker
and Zeileis (2009).

In order to fulfill the requirements for a DSS detailed in Section
2.3 under the reproducible research approach, an R library has been
developed. The R Project for Statistical Computing is becoming
the “de-facto standard for data analysis” according to more and
more authors from a variety of disciplines, from Ecology to Econo-
metrics, see for example Cano et al. (2012a). “R is a system for
statistical computation and graphics. It consists of a language plus
a run-time environment with graphics, a debugger, access to certain
system functions, and the ability to run programs stored in script
files” (Hornik 2013). As mentioned above, decision making needs
statistical software in order to prepare, analyze, and present data.
Some of the advantages of choosing R as the statistical software for
DSSs are:

• It is Free and Open Source;

• It has Reproducible Research and Literate Programming ca-
pabilities (Leisch 2002);

• It can be used as an integrated framework for models, data
and solvers;

• It supports advanced data analysis (pre- and post-processing),
graphics and reporting;

• Interfacing with other languages, as C or Fortran is possible,
as well as wrapping other programs within R scripts.

These capabilities allow the researcher to apply innovative meth-
ods and coherent results increasing the productivity and reducing er-
rors and unproductive time. Some of the strengths of the R project
are:

• The system runs in almost any system and configuration and
the installation is easy;
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• There are thousands8 of contributed packages for a wide range
of applications of R, covering statistics, econometrics, opti-
mization, simulation, data mining, graphics, and many other
topics. The packages are freely available in repositories like
The Comprehensive R Archive Network (CRAN9);

• The system can be extended with new libraries and functions,
either public or private, to fulfill any requirement, for exam-
ple: customization, deployment of new methods, integration
with existing systems and databases, etc;

• The system can be adapted to the needs of any user. If there is
a function that a user would like to perform in a different way,
they can accordingly modify it to meet their needs. Moreover,
it is easier to detect bugs and errors as one can dig into the
code;

• The active and high-qualified R-Core development team and
the huge community of R users provide an incredible sup-
port level (without warranty, skeptics would say), difficult to
surpass by other support schemes. Furthermore, it is also
possible to get professional support by commercial companies
if needed10;

• New methods, tools or algorithms can be deployed very quickly.
A company or organization can develop and deploy an inno-
vative method from its R&D department or from the result
of other published research.

8+5000 at the Comprehensive R Archive Network (CRAN) on December,
2013. Other repositories are bioconductor, omegahat, r-forge, and
github.

9http://cran.r-project.org
10Visit, for example, http://www.revolutionanalytics.com/
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8.3. The optimr R Package

8.3.1. Overview

An R package11 called optimr has been developed as part of the
framework described in this chapter to deal with the model, the
data, and the solutions. The optimr package revolves around two
classes of objects: optimSMS and optimInstance. The former con-
tains the SMS, i.e., the mathematical model including all the entities
such as parameters and variables and their interrelations. The lat-
ter contains the data of the particular instance of the problem to be
solved. Figure 8.2 shows an outline of the package structure. The
optimSMS and optimInstance classes are S4 classes, which allows
to use Object Oriented Programming (OOP) techniques through
the use of slots and methods, see R Core Team (2013b) for details
about the R Language.

Figure 8.2.: The optimr package structure.

The model in an optimSMS object can be represented in both
human and machine readable formats through standard data struc-

11‘package’ and ‘library’ are used interchangeably in the R jargon.
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tures such as R data frames, which are similar to database tables,
with rows and columns whose data is of a given type. Thus, from
a data-driven perspective, all the elements in the SMS are stored
in data objects, and they can be used for any purpose. Likewise,
the specific data in an optimInstance object, which are accurately
linked to a generic SMS through common symbols, can be analyzed,
visualized, and exported to be used by eventual stakeholders. Note
how this feature links with the stakeholders dialog emphasized in
Section 2.3 of Chapter 2. Important actions that will help during
the optimization research are:

• Fetch the symbols and descriptions to represent the items and
equations of the model, formatted in the appropriate syntax
(e.g. LATEX);

• Form complex structures as equations;

• Generate instances for solvers in the required format, e.g.,
GAMS and MPS;

• Solve the optimization problem, calling the appropriate inter-
faces;

• Import the solution, making it available for post-treatment.

A SMS is stored in optimSMS class objects. The basic informa-
tion stored for each item of a SMS is: The symbol that represents
the item (symbol); A short description (sDes); A long description
(lDes). Variables and parameters need also the indices (ind) that
apply for them. Other columns such as units, dataType, nature, or
tag complete the information about each entity. Sets, variables and
parameters are stand-alone objects. However, in order to represent
the equations, a more sophisticated structure is needed. Each equa-
tion has its own symbol and descriptions in addition to equation-
specific information, such as the domain or the relation (equality
or inequality). Moreover, an equation can be formed by an unde-
termined number of terms (variables and parameters), adding and
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multiplying at several levels, and even nested among them. There-
fore, a tree structure defining the terms in the equations and their
relationship is implemented in the optimSMS class. On the other
hand, a specific instance of the optimization problem, composed
by the actual elements in the sets and the values for each param-
eter, are stored in optimInstance class objects, where the results
returned by the solver will be also stored for representation and
analysis purposes.

8.3.2. Details

The optimSMS class is composed by the following slots:

• Descriptive characters: name, sDes, and lDes;

• Model entities: consts, sets, vars, and pars for constants
(scalars), sets, decision variables and model parameters re-
spectively;

• Relations: eqs and terms contain the equations and the terms
respectively, using a tree structure.

It also has a bunch of methods to get and represent the SMS,
some of the most relevant are (the names are self-meaningful):

• To get expressions: getAliases, getConsts, getEq, getEqs,
getExpr, getModel, getMultiSets, getPars, getSets, getSubsets,
getSymbol, getVars. The main arguments to be passed are
the optimSMS object, the entity identifier, and the format, e.g.
‘tex’ or ‘gams’;

• To get the R data frames with the information: SMSconsts,
SMSeqs, SMSpars, SMSsets, SMSterms, SMSvars.

The creation and addition of elements in a SMS is made through
the specific functions newSMS, newSMSconst, newSMSeq, newSMSpar,
newSMSset, and newSMSvar.
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As for the instance, i.e., the concrete model to be solved using
specific data, it is stored in optimInstance class objects, whose
slots are:

• Descriptive information: characters name, sDes, lDes; integer
id;

• An sms slot with the optimSMS object to which the instance is
referred. Note that this is not a link, but a copy created when
the optimInstance object is created. In this way, changes can
be done to the SMS within the instance;

• Input data frames: lists sets and pars containing the data
frames with the data;

• Output data frames: list vars containing the data frames
with the data imported from the solver;

• Equations definition for the model instance: a list eqs with
two vectors objectives and constraints containing the equa-
tions identifiers that apply for the instance;

• Result summary: A list with three single-valued vectors: solve
and model for the solver and model output codes from the op-
timization software respectively, and obj for the optimal value
of the objective function (if any).

The names of the data frames mentioned above are the symbols
of their counterpart entities (set, variable, or parameter). Simi-
larly to the optimSMS class, the slots of an optimInstance object
can be also accessed using self-explained functions: instanceSets,
instancePars, and instanceVars. Other methods of the optimInstance
class are:

• wProblem: writes the problem in a given format to be solved;

• exportPars: exports parameter values in a given format to
be used for other software, for example XML or .gdx (GAMS
binary format);
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• importGams: imports the solution from .gdx files into an
optimInstance object;

• getTree: returns a data.frame, a plot, or both for the sce-
nario tree of a SP problem.

8.4. Illustrative Example

In this section, a complete example of the framework implemen-
tation is presented. The objects are created sequentially following
the logic of a real case. Finally, an example of a reproducible re-
port containing the model, the data, and the analysis is provided.
Models in Chapters 3 and 4 are used for the example, and a new
instance will be generated simulating 100 scenarios. Some excerpts
of the code are shown within the text. The complete reproducible
code can be found in Appendix B.

8.4.1. The Model

To create the deterministic model in Chapter 3 the following code
should be used12:

model1SMS <- newSMS(name = "Deterministic1",

sDes = "A Basic Case",

lDes = "The simplest model, only electricity")

newSMSset(sms = model1SMS,

list(symbol = "i",

sDes = "Technology",

setType = "set"))

# ... ...

newSMSpar(sms = model1SMS,

list(symbol = "D",

sDes = "Demand Level",

units = "kW",

12For the sake of space, only one example of each entity is shown.
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ind = as.array(list(c(2,3)))))

# ... ...

newSMSvar(sms = model1SMS,

list(symbol = "x",

sDes = "Capacity to be installed",

units = "kW",

positive = TRUE,

ind = as.array(list(c(1,3)))))

# ... ...

newSMSeq(sms = model1SMS,

list(id = 5,

symbol = "eqCapacity",

sDes = "Technologies capacity",

relation = "lte",

nature = "constraint",

domain = as.array(list(c(1,2,3)))),

list(id = 1,

side = "l",

nature = "vars",

item = 2),

list(id = 2,

side = "r",

nature = "pars",

item = 3),

list(id = 3,

side = "r",

nature = "vars",

item = 3,

parent = 2))

Once the SMS is in an optimSMS object, any expression can be
easily obtained. For example, the last command of the code above
adds Equation (3.4) to model1SMS object, whose class is optimSMS,
using the newSMSeq function. The equation expression in GAMS
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format13 is retrieved as follows:

cat(getEq(object = model1SMS, getid = 5,

format = "gams"))

## eqCapacity(i,j,t) ..

## y(i,j,t) =l= G(i,j,t)*s(i,t)

## ;

Note that combining different expressions and working with text
in R, complex representations of the models can be produced. In
fact, this is what more elaborated methods, e.g., wProblem, do to
create comprehensive representations of the model.

8.4.2. The Instance

An instance always refers to a model, and therefore to create an
optimInstance object it is needed an optimSMS object to exist.
Once the instance has been created, elements (actual sets, param-
eter values and equations to include) are added to the instance,
related to its SMS14:

model1Instance1 <- newInstance(sms = model1SMS,

name = "model1Instance1")

newInstanceSet(instance = model1Instance1,

set = "i",

c("RTE", "PV", "CHP"))

# ... ...

newInstancePar(instance = model1Instance1,

par = "DT",

data.frame(

j = rep(model1Instance1@sets[["j"]][,2],

13And similarly in LATEX or, potentially, further formats.
14Again, only one example of each type is printed.
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each = 5),

t = model1Instance1@sets[["t"]][,2],

value = 91*8))

# ... ...

defInstanceEqs(instance = model1Instance1,

constEqs = c(3, 4, 5),

objEqs = 6)

8.4.3. The Solution

Finally, the optimization problem can be written in the appropriate
format and be solved as follows:

wProblem(model1Instance1,

filename = "./data/model1Instance1.gms",

format = "gams",

solver = "LP")

gams("./data/model1Instance1.gms

--outfile=./data/model1Instance1.gdx")

importGams(model1Instance1) <-

"./data/model1Instance1.gdx"

The first command calls the wProblem method over the model1Instance1
object, whose class is optimInstance. This command creates an in-
put file for GAMS; the second command calls the GAMS R interface
included in the gdxrrw library, creating an output file with the so-
lution; the last command imports the solution from the file to the
model1Instance1 object. Note that at any point data analysis and
visualization can be straightforwardly performed over the data, as
they are stored in homogeneous and consistent data structures. For
example, Figures 8.3 and 8.4 show possible visualizations for the
solution of the deterministic model in Chapter 3.
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Figure 8.3.: Visualization of operational decisions example.

Figure 8.4.: Visualization of strategic decisions example.
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8.4.4. Extending the Instance

One step beyond, it is not needed to create the model in Chapter 4,
i.e., equations (4.8)–(4.13), from scratch. It is enough to create a
copy of model1SMS object and add the new information in the SMS
regarding scenarios:

model2SMS <- model1SMS

newSMSset(sms = model2SMS,

list(symbol = "n",

sDes = "Scenario",

setType = "set"))

model2SMS@vars[2, ][["ind"]] <- list(c(1,2,4,3))

# ... ...

newSMSpar(sms = model2SMS,

list(symbol = "P",

sDes = "Scenario Probability",

ind = as.array(list(c(4)))))

# ... ...

Instead of using the numerical example in Section 4.3, a new in-
stance will be created to illustrate data treatment concerns. In this
new numerical example, the forecasted evolution of the stochastic
parameters CIi, COt

i,j , and Dt
i,j is that in Table 8.1: from base

present values, the future values increase or decrease at a given av-
erage ratio, with a given standard deviation. Normal distributions
for these annual variations is assumed.

Scenarios can be generated within the framework using the R

capabilities, for example to simulate the demand parameter the fol-
lowing code can be used15:

15And similarly the rest of stochastic parameters, see Appendix B.
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Table 8.1.: Base parameter values an uncertain evolution

Parameter Base value Average variation Variation
Std.Dev.

CI RTE 50.00 0.10 0.04
CI CHP 795.99 -0.10 0.05
CI PV 2204.26 -0.05 0.06
CORTE 0.13 0.10 0.04
CORTG 0.05 0.03 0.02
D 24.37 0.10 0.05

setJ <- instanceSets(model2Instance2, "j")

setN <- instanceSets(model2Instance2, "n")

deltaMean <- c(-0.10, -0.05, 0.10, 0.03, 0.10)

deltaSD <- c(0.05, 0.06, 0.04, 0.02, 0.05)

baseD <- ((213.50*(10^3))/(365*24))

corrSeason <- c(0.7, 0.9, 1.4, 1)

set.seed(1111)

newInstancePar(instance = model2Instance2,

par = "D",

rbind.fill(lapply(seq(along = setN),

function (y) {

data.frame(j = setJ,

n = setN[y],

t = rep(setT, each = 4),

value = rep(sapply(0:4,

function(x){

(1 + rnorm(1, deltaMean[5],

deltaSD[5]))^x

} ),

each = 4) * rep(baseD * corrSeason, 5))

})))
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Finally, the new instance is solved like in Subsection 8.4.3. Post
analysis and reporting over the data has then endless possibilities,
for example charts like those in Figure 8.5 can be produced. Integra-
tion in a reproducible research framework is possible using specific
file formats such as html, pdf or markdown.
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Figure 8.5.: Integrated graphics for input data.

8.4.5. Comprehensive Reproducible Example

Given the decision making problem described so far, in this section
the different actions to be made over the data are described, and
some of the usual procedures are reviewed. Then, a detailed exam-
ple gathering all the tasks performed during a research is presented,
using the integrated framework proposed in this work. Please note
that some of the topics covered have been already treated through-
out the dissertation, but they are included again for the example
completeness.

Data Preparation and Pre-analysis

In Table 8.1, a series of values are given to solve the problem in-
stance. But, where do they come from? In the case at hand, there
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are data regarding costs, energy demand and technologies. En-
ergy costs may come from annual contracts with energy companies.
In deregulated environments, it is more and more usual to have
daily and intra-day prices that can be estimated analyzing time se-
ries. Regarding energy demand, depending on the Information and
Communication Technologies (ICT) infrastructure installed in the
building, there may be sensors gathering data about the building
occupancy and energy consumption. Jointly with the information
about the building envelope, the demand can be estimated using
statistical techniques such as regression or data mining. Finally,
the information about technologies can be stored in some database
within the building ICT infrastructure.

One way to analyze data and calculate the parameter values is to
acquire raw data from the sources using different methods, and then
treat them separately, for example using spreadsheets or statistical
software. When the process must be documented, a text editor can
be used to present graphics, describe the analysis and, eventually,
publish the document.

Problem Solution

Once all the information needed to create the problem instance is
ready, it is time to look for the solution. Depending on the problem
type, an appropriate solver must be selected. The solver contains
the algorithm that will return the solution, i.e., the optimal values
and further information, e.g., slackness, using the instance of the
problem as input. Furthermore, maybe an optimization or modeling
software is going to be used to call the specific solver. The problem
instance must be packaged in a compatible format, either for the
solver or for the optimization software. For example, Mathemati-
cal Programming System (MPS) is a well known format accepted
by many solvers and optimization programs, though formats using
AMLs such as AMPL or GAMS are replacing “matrix-like” formats
in the last decades, see Section 2.3. In any case, the parameter val-
ues and the equations must be arranged into an input file for the
solver. Then, a call to the solver is made, sending the input infor-
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mation and returning the output, usually in form of files and direct
output to the device from which it was called, e.g., Graphical User
Interface (GUI) or console.

The input file can be created using programming languages to
manipulate data and write files directly, for example C++. Special-
ized software packages and programming languages such as Matlab

or R are another option. Optimization and modeling software, e.g.,
GAMS, use their own language to manipulate and prepare data in
the appropriate format before calling the solver. The call to the
solver can be made through a command on the system console, or
from the optimization software using its own capabilities, e.g., exe-
cutables or GUI).

As far as optimization software is concerned, GAMS is one of the
most used in industry. Mathematical software such as Matlab and
its open source counterpart Octave, or Mathematica are other power-
ful options. R itself can be used as optimization software. There is a
“Task View” within the R project devoted to Optimization16, main-
tained by Theussl (2014), where a set of packages and resources
are listed and briefly outlined. R can communicate with a num-
ber of solvers and optimization software, for example: CPLEX17;
lp_solve, see Berkelaar and others (2013); or GNU Linear Program-
ming Kit (GLPK)18, see Theussl and Hornik (2013), among others.
The COIN-OR19 project also contains optimization solvers, some of
them interfaced from R.

Post-analysis and Reporting

Similarly to the pre-analysis tasks, results must be analyzed and
presented to the decision maker in a meaningful way. Moreover,
results should be stored within the building’s ICT infrastructure
for future use. For example, data can be saved in databases, and

16http://cran.r-project.org/web/views/Optimization.html
17http://www-01.ibm.com/software/commerce/optimization/

cplex-optimizer/
18http://www.gnu.org/software/glpk/
19http://www.coin-or.org/
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reports in documentation repositories.
The copy-paste approach mentioned in Sec. 8.2 is, unfortunately,

the most spread way of finalizing a long and hard research. Re-
searchers gather all the “chunks” of information scattered through-
out their computers and start composing a document merging data,
charts, results, text and other stuff in a final report. In the short
term, this procedure may seem the faster one. But this is an illu-
sion, because some of the following facts may arise, resulting in a
painful and discouraging ending of the work:

• Several people have been working in the research. Some prob-
lems may arise, for example different location of the resources,
or undocumented code only understandable for the one who
wrote it;

• Different levels of reporting needed. Summaries and technical
reports are very different, but the sources should be the same;

• Changes on initial data that affect subsequent results, see
Section 9.2.4 in Chapter 9;

• New intermediate actions or methods to include. For exam-
ple, a change on the way the parameters are estimated in-
cluding regression analysis result;

• Validation and/or verification by internal or external review-
ers. Many reasons can prompt these actions, for example
quality control or regulations.

On the contrary, the example presented in the following subsec-
tion makes use of reproducible research techniques, avoiding the
drawbacks of an unstructured procedure. On the downside, this
way of work requires some training at the beginning, and a com-
mitment to be disciplined when applying it. Nonetheless, this will
end up in better results and a more gratifying undertaking. Fur-
thermore, the integrated framework proposed using R provides a
coherent environment to speed up the research’s outcomes.

181



8. An Integrated Framework

All Together

A whole decision making process described above is now put in prac-
tice. The Task View at CRAN entitled “Reproducible Research”
(Kuhn, 2014) gathers a set of resources which can be used in R
for reproducible research. The core of reproducible research ca-
pabilities in R is the Sweave function (Leisch, 2002). It is based
on the “noweb syntax” (Ramsey, 1998), which is usually used for
literate programming (Knuth, 1984). Inside Sweave files (with ex-
tension .Rnw), chunks of R code are inserted into LATEX code, result-
ing in outstanding documents mixing the best of two great worlds:
LATEX for high-quality typesetting, and R for data analysis. It is im-
portant to remark that the R capabilities for reproducible research
are not constrained to LATEX: Open Document and HTML formats
are also supported. Nevertheless, LATEX produces stunning print-
able documents in PDF, ready to be delivered to DSS stakeholders.
Moreover, splitting the source code files and using them appropri-
ately, they can be combined into different final documents, such as
HTML pages, PDF documents, or presentations. There are several
contributed packages that extend, improve or ease the Sweave base
capabilities. Some of the most valuable ones are: Hmisc (Harrell Jr
et al., 2014), knitr (Xie, 2013a), or xtable (Dahl, 2013).

A basic skeleton of a Sweave file is the following:

%

\documentclass[a4paper]{article}

\usepackage{Sweave}

\title{<Here a title>}

\author{<Author/s>}

%

\begin{document}

\maketitle

%<here LaTeX code and text>

<< [Sweave options] >>=

#here R code

@

%More LaTeX code
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\end{document}

Chunks of R code are delimited by the lines <<>>= and @. Be-
tween them any R command can be included and control the effect
in the document through the options written between the << and
>> symbols on the preamble line of the chunk. Thus, the classes
and packages can be loaded with no effect in the pdf document by
including the options echo=FALSE, results=hide. Similarly, the
graphics, output or layout can be managed, see the Sweave manual
for in depth details in Leisch and R-core (2013). It is good practice
to have the logic of the analysis and the results of the research in
different files when the code is lengthy. Thus, a large R script may
be saved in a separate file, whose contents can be run with a single
command within a chunk. For the example, whose complete code
can be found in Appendix B, the following pieces will be used:

1. A chunk of code to load the classes, data, and packages to be
used;

2. An introductory text and a chart with some of the parameter
values;

3. A chunk providing the document with one of the equations of
the model;

4. The code to solve the model with GAMS, including the in-
stance file generation;

5. Presentation of the solution in tables and charts.

It is important to remark that these pieces can be as complex
as needed, even though for the sake of simplicity very simple ones
are used. Furthermore, other formats and solvers might be used,
see Chapter 9. Provided the .Rnw file is in the R working direc-
tory, scripts are in a data subdirectory, and GAMS appropriately
installed, the report is automatically generated, and therefore any
change is updated, just through the following commands:
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Sweave("comprehensiveExample.Rnw")

library(tools)

texi2pdf("comprehensiveExample.tex")

The content of the .Rnw file as well as all the R scripts used
can be consulted in Appendix B. The final document obtained after
“sweaving” the .Rnw file is reproduced in Figures 8.6 to 8.8. Note
that it is needed having installed a distribution of LATEX, which is
freely available for different platforms, as well as some additional R
packages, whose installation is straightforward. Appendix C con-
tains the session information in which the example and the rest of
the code in this work was executed.
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Comprehensive Example for “An Integrated

Framework for the Representation and Solution

of Stochastic Energy Optimization Problems”

Emilio L. Cano

January 6, 2014

1 Introduction

This document is an example on how to use R as an integrated environment for
optimization. It is assumed that the optimr package is installed.

Here we can include any statistical analysis, for example a time series analysis
to forecast the future energy prices, saving the values as parameters. We can
also show graphical representations of the parameter values, as in Figure 1, or
tables with data, e.g. Table 1.
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Figure 1: Parameter values for the stochastic parameters.

The equations or any item of the model can be printed automatically from
the model2SMS object. For example, the following command fetches the objec-
tive function:

> cat("$$", getEq(model2SMS, 6, "tex", only = "rExpr"), "$$")

∑
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1

Figure 8.6.: Page 1 of the report generated through the
example.
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j n t value
1 winter 1 2013 17.06
2 spring 1 2013 21.93
3 summer 1 2013 34.12
4 autumn 1 2013 24.37
5 winter 1 2014 19.89
6 spring 1 2014 25.58

Table 1: Example D parameter values (first 6 values).

2 Solving the problem

Once we have the instance in an optimInstance object, it can be solved and
the solution imported (see source code). Results checking is also possible as this
information is also stored:

We can embed calculations within the text, for example the value of the
objective function (68595), or we can print pretty LATEX tables with the optimal
values, as the ones in Tables 2 and 3, or any other analysis and representation
(see Figure 2). See the .Rnw source file to see the code.

i t value
RTE 2013 45.65
PV 2013 57.65
PV 2014 1.78

Table 2: Optimal values for x

i j n t value
RTE winter 1 2014 2.31
RTE winter 1 2015 4.27
RTE winter 1 2016 8.96
RTE winter 1 2017 7.92
RTE winter 2 2014 1.76
RTE winter 2 2015 5.21

Table 3: Optimal values for y (first 6 values)

3 Conclusion

This document can be compiled at any time, by any researcher. Note that if
any value is changed, for example in the script that contain the parameters
("../data/model2Instance2.R"), the whole report is updated automatically
(including tables, equations and charts). If we use simulation during the re-
search, we can simply fix the seed to allow the verification of the results by
third parties. Different reports for different stakeholders can be produced using
a common structure and tailoring the outputs.

2

Figure 8.7.: Page 2 of the report generated through the
example.

186



8.4. Illustrative Example

0

10

20

30

2013 2014 2015 2016 2017

Year

k
W

Technology

RTE

PV

Optimal production plans (Autumn)

Figure 2: Output data representation.

3

Figure 8.8.: Page 3 of the report generated through the
example.
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9. Conclusions

9.1. Results

This thesis tackles Stochastic Optimization (STO) from two quite
different scopes. On the one hand, the application to a specific prob-
lem such as energy systems planning at the building level. On the
other hand, a global perspective of Decision Support System (DSS).
Regarding the former, comprehensive models including energy sys-
tems modeling, uncertainty, and risk management have been devel-
oped and tested on real sites. As for the DSS extent, new ideas have
been contributed regarding stakeholders dialog and reproducible re-
search. The following is a summary of the contributions of this
work:

• Innovative energy systems modeling at the building level un-
der a holistic approach. The models integrate different types
of energy and technologies and include novel features such as
technologies’ aging, refurbishment, efficiency and emissions in
a single model;

• Both the deterministic and the stochastic models have been
tested for real sites getting coherent results with the actual
performance of the buildings, hence demonstrating their va-
lidity;

• The uncertainty modeling demonstrated the usefulness of SP
in energy systems optimization and how deterministic models
lead to unfeasible scenarios;

• A new application of risk management through CVaR is pro-
posed, not only considering economic risks, but also environ-
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mental and social risks, i.e., emissions and energy consump-
tion;

• The application of Reproducible Research methods in Oper-
ations Research is also something new as a real world imple-
mentation;

• This Reproducible Research approach, jointly with the stake-
holders dialog viewpoint proposed, must empower DSSs that
adopt the developed framework;

• The own library developed for the proposed framework is an-
other outcome, though the framework is suitable to be imple-
mented using further technologies;

• A comprehensive example using the models, the data, and the
framework demonstrates a whole reproducible research cycle
applying the developments in this thesis.

As an example of these results, Figure 9.1 shows the energy bal-
ance for heating in the FASAD EnRiMa test site after running the
calibrating optimization with real data and existing technologies.
Likewise, Table 9.1 shows the solution results for several values of
the risk-aversion weight β in the risk model in Chapter 7. It can
be seen how the risk aversion affects the total cost and the opera-
tional decisions (Energy generated and energy purchased) induced,
in turn, by the strategic ones. The solution time for each run com-
pletes the table.

Table 9.1.: Optimization results for the complete risk model.

β Sol.Time Cost En.Gen En.Pur
0.00 2.84 284,903 96,692 99,867
0.25 3.27 288,037 96,557 100,003
0.50 3.08 291,161 96,215 100,345
0.75 3.18 294,218 95,789 100,770
1.00 4.17 297,277 90,742 105,817
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Figure 9.1.: Energy Heating demand and output from tech-
nologies in the test site.

9.2. Discussion

9.2.1. Stochastic Energy Systems Planning

Improving energy efficiency in public buildings is a critical com-
ponent of the EU’s policy for reaching its climate target goals for
2020, i.e., reduction by 20% of the total energy consumption, 20%
contribution of renewable energies to total energy production, and
20% reduction of greenhouse gases such as CO2 below 1990 emis-
sions. The EnRiMa project seeks to develop an ICT-based DSS with
enhancements to the existing state-of-the-art research in terms of
modeling energy flows, generating scenarios for dealing with uncer-
tainties, and handling stochastic optimization at the building level.
In this thesis, the focus was on strategic energy planning decisions.
To this aim new models have been developed using stochastic pro-
gramming techniques, which aim to find robust solutions taking into
account all potential scenarios. The described models are flexible
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enough to include strategic decision variables such as equipment
installation, financial positions and retrofits involving passive mea-
sures, and therefore can be adapted to different configurations of
buildings and new arising technologies. The numerical examples
presented in this work show how stochastic models can be applied
to decision making in strategic energy planning.

9.2.2. Deterministic Modeling

The deterministic version of the strategic model to be used in the
DSS of the EnRiMa project was presented in Chapter 5. The ap-
proach of the EnRiMa project allows to consider the short-term
performance of the building throughout a long-term decision time
resolution. The model contains, in a comprehensive way, innovative
modeling of several important aspects at the building level, namely:
technologies aging, emissions, efficiency, and the energy-balance re-
quirements. It can also deal with several types of energy, as well
as different objectives depending on the decision maker interests
or needs. An illustrative numerical example was solved combining
real data from the project and simulated data to demonstrate the
usefulness of the eventual DSS results.

The deterministic model was a preliminary step to develop the
final stochastic model presented in Chapter 6. During early stages of
the EnRiMa project, a two-stage stochastic programming problem
was propounded, see Chapter 4.

9.2.3. Stochastic Multi-stage Modeling

The stochastic strategic model faces uncertainties pertaining mainly
to energy prices and building occupancy. This uncertainty is tack-
led by the generation of scenario trees and a full formulation using
a compact structure was presented in Chapter 6. In spite of the
model size reduction attained through the use of representative mid-
term periods (profiles), the stochastic problem complexity increases
very fast with the number of scenarios considered, and can eventu-
ally result into computational times which are not acceptable. In
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this regard, the multi-level scenario trees generation of the EnRiMa
project has been assumed.

The stochastic strategic model was built from the basis of the
deterministic problem defined in Chapter 5. Some changes were
needed, which are explained in Chapter 6. Risk Management through
CVaR was finally incorporated to the model for different objectives
in Chapter 7, extending the traditional financial scope to environ-
mental threats considering risk management on emisssions and en-
ergy consumption.

9.2.4. A Framework for DSS

A research on optimization is a complex process that requires not
only getting the optimal values for a given problem, but also a set of
complementary tasks aimed at achieving consistent and high-quality
results. Energy systems optimization problems can become really
huge projects, whose related information may come from several
sources, and must result in coherent reports for DSS stakeholders.
The traditional “copy-paste” way is clearly inefficient, and innova-
tive techniques as the ones presented in this thesis can improve the
achievements of the research, as well as rise the overall satisfaction
of stakeholders, e.g., researchers, companies, or customers, through
the necessary stakeholders dialog. To this aim, an integrated frame-
work has being developed under the reproducible research approach,
which is flexible enough to include different tools in order to cover
a wide range of needs.

The integrated framework for DSS proposed in Chapter 8, starts
from an atomic representation of the optimization problem compo-
nents: just symbols and values. Thus, any evolved format can be
reached, given that the syntax can be implemented through pro-
gramming languages. Moreover, by attaining a trade-off between
a layer-based research and comprehensive environments, the break-
through capabilities of reproducible research can be exploited. The
environment used for the framework implementation, R, is used
all over the world by scientists, statisticians, mathematicians and
computer scientists. Besides the statistical and data analysis ca-
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pabilities, it comprises a programming language. Definitely, R is a
good choice to apply the ideas in this thesis. Nonetheless, there is
room for improvement. Though recent advances have been made,
it is a challenge for R to reach the computational efficiency level
of other systems. In this sense, the last versions of R include ad-
vanced parallel computing and “Big Data” capabilities, which will
lead to overcome the current limitations. Other important issue the
R community is taken up is certification. R detractors blame on
the “ABSOLUTELY NO WARRANTY” phrase when starting R to
use commercial software. But, is there anything more verifiable or
certifiable than an open source program? In any case, the goal of
this work is to use R as a framework, allowing the researcher us-
ing different tools at any stage of the project, including commercial
solvers and/or optimization software.

The optimr R package is available at the author’s webpage (http:
//www.proyectum.es) and it is already being used in the EnRiMa
DSS. However it is not finished work and new features will be added
as an aftermath work, see Section 9.3.

As a final consideration, a recall of the examples presented through-
out the dissertation and the final report in chapter 8 is proposed.
It is a real problem, with thousands of variables, several months
of data analysis work, and so on. The real report would probably
consist on hundreds of pages. If some time after delivering the re-
port the model must be re-shaped, for example by adding a new set
which was not considered at the beginning of the research, a high
percentage of the results, both final and intermediate, would change.
One can decide how to tackle this issue: starting again to generate
partial results and cut-copy-paste throughout the document, or just
adding the new information in the correct place, change only the
affected parts, and rebuild the report getting automatically the up-
dated layout and content.
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9.3. Further Research

9.3. Further Research

The results of this thesis are the starting point for future research.
Regarding the optimization models, beyond the EnRiMa project
lifetime they will be applied to further public buildings. The under-
taking of this task will be defined by the project’s exploitation plan,
which is being done at the time this thesis is being finished. On the
other hand, new fields of application other than public buildings are
foreseen by the research group in which the author is involved. At
the time this is written, project proposals are being prepared that
hopefully will result in new funded projects. Regardless the sce-
nario generation was out of the scope of this thesis, new directions
of post-doc research might be new methods of estimation for long-
term perspectives for the stochastic parameters considered in the
models, specially to determine probability distributions as accurate
as possible. Furthermore, the benchmarking between the two-stage
approach in Chapter 4 and the multi-stage approach finally adopted
in the EnRiMa project, i.e., Chapter 6 model, is likely one of the
forthcoming topics to tackle by this researcher.

As for the framework, there is a wide field to develop and extend
it. Even though the current implementation includes LATEX and
GAMS formats, the extension to other formats for both humans
and machines is foreseen, e.g., HTML, GLPK, etc. Even though
the package is already available, it will be also contributed to public
repositories once the documentation is improved, which is another
task to tackle.
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A. Glossary

Alias A second name for a set, usually used in order to distin-
guish between different parameter or variable indices within
an equation, or even within the same variable or parameter.
For example, for energy input and energy output.

Conditional set A special type of subset whose content depends on
other sets. Example: Input (or output) energy for each tech-
nology. When the conditional set only contains one element,
it can be seen as a function of other sets’ elements.

Constant A fixed scalar value that does not depend on any set
index.

Constraint An equation that restricts the possible values of vari-
ables.

DSS Kernel The DSS component that is responsible for providing
functionality needed to manage the system data and to run
the scenario generator tool and solver.

Equation A mathematical relationship between parameters and vari-
ables. For simplicity, we gather both mathematical concepts
of equation (equality relationship) and inequation (inequality
relationship) under the common notion “equation”.

Expression Combination of variable and parameter symbols with
their set symbols as super- or sub-indices.

Multidimensional set A way of implementing conditional sets in
the optimizer. Multidimensional sets provide mappings be-
tween elements of different sets. Thus, one of the dimensions
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A. Glossary

is a subset of a given set and the rest of the dimensions are the
values of other sets that are related to the former. There may
be one-to-one (e.g., parent nodes) and many-to-many (e.g.,
output types of energy for a technology) mappings.

Objective A function of variables and parameters that the decision
maker wants to optimize (minimize or maximize).

Optimizer Software application capable to deal with optimizations
problems. Optimizers usually can be configured to use differ-
ent solvers. Besides the optimization itself, these applications
can perform other related tasks, such as modeling, data anal-
ysis, or data visualization. Examples: GAMS, AMPL, Matlab,
Pyomo.

Parameter A known or uncertain characteristic inherent to a set
element or a combination of set elements, which is fixed and
cannot be changed by the decision maker. Examples: Gener-
ation capacity of a given model of PV generator, the energy
demand during a specific time span.

Set Collection of elements of a given class that are related and
combined with other sets elements to parameters and decision
variables. Example: technologies, types of energy.

Solver Computational algorithm that solves an optimization prob-
lem, i.e., receives input data and returns a problem solution.
Examples: CPLEX, lp_solve.

Solver Manager (SM) The module of the EnRiMa DSS that runs
the Optimizer using the input provided by the Interface and
prepares the solution returned by the Optimizer for the In-
terface.

Solver Manager Core Script The main script within the Solver Man-
ager. It is started by the SM Interface, prepares input and
output data, manages files, and interacts with the Optimizer.
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Solver Manager Interface The component of the Solver Manager
that is responsible for the communication between the core of
the Solver Manager and the DSS Kernel.

Stochastic Optimization For the scope of this document, Stochas-

tic Optimization has the same meaning as Solver Manager, for
consistency with the deliverable names in the DoW. Stochas-
tic optimization model, stochastic optimization problem, and
similar compound forms refer to the inherent mathematical
concepts.

Subset Elements in a set that are similar with respect to some char-
acteristic. Example: Generation technologies, storage tech-
nologies.

Symbol The representation for a set, variable, parameter, or equa-
tion within a SMS.

Symbolic Model Specification The mathematical representation (com-
posed of variables, parameters, and relations between them)
of the stochastic model of all relevant energy subsystems and
their interactions.

Variable A variable, or decision variable, is a characteristic of a set
element or combination of set elements, which is unknown
and that the decision maker can change, given that the con-
straints are satisfied. Example: number of PV panels to be
installed at a given year. For convenience, calculated vari-

ables can be defined through an equation. For example, the
available capacity of a given technology during a given year
is calculated from other variables and parameters.
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B. Code for example in

Chapter 8

B.1. File comprehensiveExample.Rnw

\documentclass [ a4paper ] { a r t i c l e }
\usepackage {Sweave}

\ t i t l e {Comprehensive Example f o r
``An Integ ra t ed Framework f o r the
Representat ion and So lu t i on o f S t o cha s t i c
Energy Optimizat ion Problems ' '}
\ author {Emil io L . Cano}

<<intro , echo=FALSE, r e s u l t s=hide>>=
## System requi rements
## − The R so f tware and the packages loaded below
## − A l i c e n c ed GAMS i n s t a l l a t i o n . I f GAMS d i r e c t o r y
## i s other than "~/app/gams23 . 9" , change the l i n e
## ' igdx ("~/app/gams23 . 9 " ) '

## − A LaTeX d i s t r i b u t i o n f o r the cur rent system

## Load needed packages
l i b r a r y ( kn i t r )
l i b r a r y ( optimr )
l i b r a r y ( gdxrrw )
l i b r a r y ( xtab l e )
l i b r a r y ( ggp lot2 )
l i b r a r y ( g r id )

## Te l l gdxrrw where GAMS i s i n s t a l l e d
igdx ("~/app/gams23 . 9 " )

## Run s c r i p t s with data
## Dete rm in i s t i c model
source ( " . / data/model1SMS .R")
## Stocha s t i c ex tens i on
source ( " . / data/model2SMS .R")
## Instance with 100 s c e na r i o s
source ( " . / data/model2Instance2 .R")
@
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\ begin {document}
\SweaveOpts{ concordance=TRUE}

\ maket i t l e

\ s e c t i o n { In t roduc t i on }
This document i s an example on how to use \ t e x t s f {R} as an

in t e g r a t ed
environment f o r opt imiza t i on . I t i s assumed that the \ t e x t s f {

optimr} package i s i n s t a l l e d .

Here we can inc lude any s t a t i s t i c a l ana l y s i s , f o r example a
time s e r i e s a n a l y s i s

to f o r e c a s t the fu tu r e energy pr i c e s , sav ing the va lue s as
parameters . We can

a l s o show graph i c a l r e p r e s e n t a t i o n s o f the parameter values ,
as in Figure~\ r e f { f i g : examplepar } , or t ab l e s with data , e .
g . Table~\ r e f { tab : exampletable } .

\ begin { f i g u r e } [ htp ]
\ begin { cente r }
<<examplepar , f i g=TRUE, echo=FALSE, width=10>>=
## Demand
dtoPlot <− i n s tancePar s ( model2Instance2 , "D")
dtoPlot$ id <− 1 :20
pD <− ggp lot ( data = dtoPlot , aes ( x = id , y = value , group=n ,

c o l=n) )
pD <− pD + geom_path ( )
pD <− pD + sca l e_x_disc re te (name = "" , breaks = seq (1 ,21 , by

=5) , l a b e l s = 2013 :2017)
pD <− pD + g g t i t l e (" Energy demand")
pD <− pD + scale_y_continuous (name ="Demand l e v e l (kW) ")
pD <− pD + theme ( legend . p o s i t i o n = "none ")
pD <− pD + stat_summary ( fun . y=mean , co l our="darkred " , geom="

l i n e " , aes ( group=1) , s i z e =1)

## Investment co s t
dtoPlot <− i n s tancePar s ( model2Instance2 , "CI")
pCI <− ggp lot ( data = dtoPlot , aes ( x = t , y = value , group=n ,

c o l=n) )
pCI <− pCI + geom_path ( )
pCI <− pCI + face t_gr id ( i ~ . )
pCI <− pCI + scale_x_continuous (name = "")
pCI <− pCI + g g t i t l e (" Investment co s t ")
pCI <− pCI + scale_y_continuous (name ="EUR/kW")
pCI <− pCI + theme ( legend . p o s i t i o n = "none ")
pCI <− pCI + stat_summary ( fun . y=mean , co l ou r="darkred " , geom="

l i n e " , aes ( group=1) , s i z e =1)

## Operation co s t
dtoPlot <− i n s tancePar s ( model2Instance2 , "CO")
dtoPlot$ id <− 1 :20
pCO <− ggp lot ( data = dtoPlot , aes ( x = id , y = value , group=n ,
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B.1. File comprehensiveExample.Rnw

c o l=n) )
pCO <− pCO + geom_path ( )
pCO <− pCO + face t_gr id ( i ~ . )
pCO <− pCO + sca le_x_disc re te (name = "" , breaks = seq (1 ,21 , by

=5) , l a b e l s = 2013 :2017)
pCO <− pCO + g g t i t l e (" Energy p r i c e ")
pCO <− pCO + scale_y_continuous (name ="EUR/kWh")
pCO <− pCO + guides ( c o l o r = guide_colourbar ( t i t l e = " Scenar io

") )
pCO <− pCO + stat_summary ( fun . y=mean , co l our="darkred " , geom="

l i n e " , aes ( group=1) , s i z e =1)

g r id . newpage ( )
vpAll <− viewport ( layout = gr id . layout (2 , 3 ,

widths = c (1/3 , 1/3 , 1/3) ,
h e i gh t s = c ( 0 . 1 , 0 . 9 ) ) )

vpT <− viewport ( layout . pos . c o l = 1 : 3 , layout . pos . row = 1 , name
= " t i t l e ")

vpD <− viewport ( layout . pos . c o l = 1 , layout . pos . row = 2 , name =
"D")

vpCI <− viewport ( layout . pos . c o l = 2 , layout . pos . row = 2 , name
= "CI")

vpCO <− viewport ( layout . pos . c o l = 3 , layout . pos . row = 2 , name
= "CO")

sp l o t <− vpTree ( vpAll , vpLis t (vpT , vpD , vpCI , vpCO) )
pushViewport ( s p l o t )
seekViewport (" t i t l e ")
g r id . t ex t ("100 s c e na r i o s s imu la t i on " , gp = gpar ( cex=2) )
seekViewport ("D")
p r i n t (pD, newpage = FALSE)
seekViewport ("CI")
p r i n t (pCI , newpage = FALSE)
seekViewport ("CO")
p r i n t (pCO, newpage = FALSE)
@

\ capt ion {Parameter va lue s f o r the s t o c h a s t i c parameters . }
\ l a b e l { f i g : examplepar}

\end{ cente r }
\end{ f i g u r e }

<<echo=FALSE, r e s u l t s=tex>>=
xtab l e ( head ( in s tancePar s ( model2Instance2 , "D") ) ,

l a b e l = " tab : exampletable " ,
capt ion = "Example $D$ parameter va lue s ( f i r s t 6 va lue s

) . " )
@

The equat ions or any item o f the model can be pr in ted
automat i ca l l y from the

\ t e x t s f {model2SMS} ob j e c t . For example , the f o l l ow i n g command
f e t c h e s the

ob j e c t i v e func t i on :
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<<r e s u l t s=tex>>=
cat (" $$ " , getEq (model2SMS , 6 , " tex " , only = "rExpr ") , "$$ ")
@

\ s e c t i o n { So lv ing the problem}

Once we have the in s t ance in an \ t e x t t t { opt imInstance } object ,
i t can be so lved and the s o l u t i o n imported ( see source

code ) . Resu l t s check ing i s a l s o p o s s i b l e as t h i s
in fo rmat ion i s a l s o s to r ed :

<<so l , echo=FALSE, r e s u l t s=hide>>=
wProblem( model2Instance2 ,

f i l ename = " ./ data/model2Instance2 . gms" ,
format = "gams" ,
s o l v e r = "LP")

r e s <− gams ( " . / data/model2Instance2 . gms −−o u t f i l e =./data/
model2Instance2 . gdx ")

data (gamsOut )
i f ( r e s == 0) {

importGams ( model2Instance2 ) <− " ./ data/model2Instance2 . gdx"
message (" Optimizat ion ok\n" ,

"\ tModel Status : " ,
as . cha rac t e r ( subset ( gamsModelStatusCode ,

id == model2Instance2@result$model , desc , drop =
TRUE) ) ,

"\n\ tSo l v e r Status : " ,
as . cha rac t e r ( subset ( gamsSolverStatusCode ,

id == mode l2 Instance2@resu l t$so lve , desc , drop =
TRUE) ) )

} e l s e {
warning ("Check the l i s t i n g f i l e , something was wrong : " ,

subset ( gamsOutCode , id == res , desc , drop = TRUE) )
}
@

We can embed c a l c u l a t i o n s with in the text , f o r example the
value o f the

ob j e c t i v e func t i on (\ Sexpr{round ( mode l2Instance2@resu l t$obj ) })
, or we can pr i n t pre t ty

\LaTeX~tab l e s with the optimal values , as the ones in Tables \
r e f { tab : x} and \ r e f { tab : y} , or any

other an a l y s i s and r ep r e s en t a t i on ( see Figure~\ r e f { f i g : r e s }) .
See the \ t e x t t t { .Rnw} source f i l e to s ee the code .

<<r e s u l t s=tex , echo=FALSE>>=
pr in t ( x tab l e ( ins tanceVars ( model2Instance2 , "x") ,

"Optimal va lue s f o r $x$ " ,
" tab : x") , i n c lude . rownames = FALSE)

pr in t ( x tab l e ( head ( ins tanceVars ( model2Instance2 , "y") ) ,
"Optimal va lue s f o r $y$ ( f i r s t 6 va lue s ) " ,
" tab : y") , i n c lude . rownames = FALSE)

@
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\ begin { f i g u r e } [ htp ]
\ begin { cente r }
<<bar , echo=FALSE, f i g=TRUE>>=
df2p l o t <− subset ( ins tanceVars ( model2Instance2 , "y") , j == "

autumn")
d f 2p l o t <− aggregate ( va lue ~ i + t , data = df2p lot , FUN = mean

)
d f 2p l o t $ t <− as . i n t e g e r ( as . cha rac t e r ( d f 2p l o t $ t ) )
p <− ggp lot ( d f2p lot , aes ( x=t ) )
p <− p + geom_area ( aes ( y=value , f i l l =i ) )
p <− p + labs ( t i t l e = "Optimal product ion plans (Autumn) " , x =

"Year " , y = "kW")
p <− p + s c a l e_ f i l l _ d i s c r e t e (" Technology ")
p r i n t (p)
@
\end{ cente r }
\ capt ion {Output data r ep r e s en t a t i on . \ l a b e l { f i g : r e s }}
\end{ f i g u r e }

\ s e c t i o n {Conclus ion }
This document can be compiled at any time , by any r e s e a r ch e r .

Note that i f any
value i s changed , f o r example in the s c r i p t that conta in the

parameters
(\ t e x t t t { " . . / data/model2Instance2 .R"}) , the whole r epo r t i s

updated automat i ca l l y
( i n c l ud ing tab l e s , equat ions and char t s ) .
I f we use s imu la t i on during the research , we can simply f i x

the seed to a l low
the v e r i f i c a t i o n o f the r e s u l t s by th i rd p a r t i e s . D i f f e r e n t

r epo r t s f o r d i f f e r e n t s t ak eho ld e r s can be produced us ing a
common s t ru c tu r e and t a i l o r i n g the outputs .

\end{document}

B.2. File model1SMS.R

## SMS
model1SMS <− newSMS(" Dete rmin i s t i c 1 " ,

"A Basic Case " ,
"The s imp l e s t model only with e l e c t r i c i t y

")

## Sets

newSMSset (model1SMS , l i s t ( symbol = " i " , sDes = "Technology " ,
setType = " s e t ") )

addItem (model1SMS , " s e t s ") <− l i s t ( symbol = " j " , sDes = "
Period " , setType = " s e t ")

addItem (model1SMS , " s e t s ") <− l i s t ( symbol = " t " , sDes = "Year
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" , l o c = "sup " , setType = " s e t ")

##Var iab l e s

newSMSvar (model1SMS , l i s t (
symbol = "x" ,
sDes = "Capacity to be i n s t a l l e d " ,
un i t s = "kW" ,
p o s i t i v e = TRUE,
ind = as . array ( l i s t ( c ( 1 , 3 ) ) ) ) )

addItem (model1SMS , " vars ") <− l i s t (
symbol = "y" ,
sDes = "Production plan " ,
un i t s = "kW" ,
p o s i t i v e = TRUE,
ind = as . array ( l i s t ( c ( 1 , 2 , 3 ) ) ) )

addItem (model1SMS , " vars ") <− l i s t (
symbol = " s " ,
sDes = " Ava i l ab l e capac i ty " ,
un i t s = "kW" ,
p o s i t i v e = TRUE,
ind = as . array ( l i s t ( c ( 1 , 3 ) ) ) )

## Constants

#unity constant to get prev ious year
addItem (model1SMS , " cons t s ") <− l i s t (

symbol = "1" ,
va lue = 1)

#Parameter f o r l i f e time
addItem (model1SMS , " pars ") <− l i s t (

symbol = "LT" ,
sDes = " L i f e t ime " ,
un i t s = " years " ,
ind = as . array ( l i s t ( c (1 ) ) ) )

#Equation to c a l c u l a t e precedent year : t = t−1
addItem (model1SMS , " eqs ") <− l i s t (

symbol = "aux1 " ,
sDes = "The precedent year " ,
r e l a t i o n = "eq " ,
nature = "aux ")

addItem (model1SMS , " terms ") <− l i s t (
eq = 1 ,
s i d e = " l " ,
nature = " s e t s " ,
item = 3)

addItem (model1SMS , " terms ") <− l i s t (
eq = 1 ,
s i d e = " r " ,
nature = " s e t s " ,
parent = 0 ,
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item = 3)
addItem (model1SMS , " terms ") <− l i s t (

eq = 1 ,
s i d e = " r " ,
nature = " cons t s " ,
parent = 0 ,
s i gn = "−",
item = 1)

#Equation to get when to decommission ob s o l e t e techno logy
addItem (model1SMS , " eqs ") <− l i s t (

symbol = "aux2 " ,
sDes = "Obsolete Technology decommission " ,
r e l a t i o n = "eq " ,
nature = "aux ")

addItem (model1SMS , " terms ") <− l i s t (
eq = 2 ,
s i d e = " l " ,
nature = " s e t s " ,
item = 3)

addItem (model1SMS , " terms ") <− l i s t (
eq = 2 ,
s i d e = " r " ,
nature = " s e t s " ,
parent = 0 ,
item = 3)

addItem (model1SMS , " terms ") <− l i s t (
eq = 2 ,
s i d e = " r " ,
nature = "pars " ,
s i gn = "−",
parent = 0 ,
item = 1)

#Equation to c a l u l a t e the a v a i l a b l e capac i ty
addItem (model1SMS , " eqs ") <− l i s t (

symbol = " eqAvai l " ,
sDes = " Ava i l ab l e t e chno l o g i e s capac i ty c a l c u l a t i o n " ,
r e l a t i o n = "eq " ,
nature = " con s t r a i n t " ,
domain = as . array ( l i s t ( c (1 , 3 ) ) ) )

addItem (model1SMS , " terms ") <− l i s t (
eq = 3 ,
s i d e = " l " ,
nature = " vars " ,
item = 3)

addItem (model1SMS , " terms ") <− l i s t (
eq = 3 ,
s i d e = " r " ,
nature = " vars " ,
parent = 0 ,
item = 3 ,
setSubEq = as . array ( l i s t ( c (1 ) ) ) )

addItem (model1SMS , " terms ") <− l i s t (
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eq = 3 ,
s i d e = " r " ,
nature = " vars " ,
item = 1 ,
parent = 0 ,
s i gn = "+")

addItem (model1SMS , " terms ") <− l i s t (
eq = 3 ,
s i d e = " r " ,
nature = " vars " ,
item = 1 ,
parent = 0 ,
s i gn = "−",
setSubEq = as . array ( l i s t ( c (2 ) ) ) )

#Parameter f o r demand
newSMSpar(model1SMS , l i s t (

symbol = "D" ,
sDes = "Demand Level " ,
un i t s = "kW" ,
ind = as . array ( l i s t ( c ( 2 , 3 ) ) ) ) )

#Equation f o r demand
addItem (model1SMS , " eqs ") <− l i s t (

symbol = "eqDemand" ,
sDes = "Production plan f o r demand" ,
r e l a t i o n = "eq " ,
nature = " con s t r a i n t " ,
domain = as . array ( l i s t ( c (2 , 3 ) ) ) )

addItem (model1SMS , " terms ") <− l i s t (
eq = 4 ,
s i d e = " l " ,
nature = " vars " ,
setSums = as . array ( l i s t ( c (1 ) ) ) ,
item = 2)

addItem (model1SMS , " terms ") <− l i s t (
eq = 4 ,
s i d e = " r " ,
nature = "pars " ,
item = 2)

#Parameter f o r a v a i l a b i l i t y
addItem (model1SMS , " pars ") <− l i s t (

symbol = "G" ,
sDes = "Technology Ava i l a b i l i t y " ,
un i t s = "kW/kW" ,
ind = as . array ( l i s t ( c ( 1 , 2 , 3 ) ) ) )

#Equation f o r capac i ty
newSMSeq(model1SMS ,

l i s t ( id = 5 ,
symbol = " eqCapacity " ,
sDes = " Techno log ie s capac i ty " ,
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r e l a t i o n = " l t e " ,
nature = " con s t r a i n t " ,
domain = as . array ( l i s t ( c ( 1 , 2 , 3 ) ) ) ) ,

l i s t ( id = 1 ,
s i d e = " l " ,
nature = " vars " ,
item = 2) ,

l i s t ( id = 2 ,
s i d e = " r " ,
nature = "pars " ,
item = 3) ,

l i s t ( id = 3 ,
s i d e = " r " ,
nature = " vars " ,
item = 3 ,
parent = 2) )

#Var iab le co s t
addItem (model1SMS , " vars ") <− l i s t (

symbol = "z " ,
sDes = "Total co s t " ,
un i t s = "EUR" ,
p o s i t i v e = FALSE,
nature = " ob j e c t i v e ")

#Parameters f o r investment and opera t i on co s t
addItem (model1SMS , " pars ") <− l i s t (

symbol = "CI" ,
sDes = " Investment Cost " ,
un i t s = "EUR/kW" ,
ind = as . array ( l i s t ( c ( 1 , 3 ) ) ) )

addItem (model1SMS , " pars ") <− l i s t (
symbol = "CO" ,
sDes = " Operat iona l Cost " ,
un i t s = "EUR/kWh" ,
ind = as . array ( l i s t ( c ( 1 , 2 , 3 ) ) ) )

addItem (model1SMS , " pars ") <− l i s t (
symbol = "DT" ,
sDes = "Duration time o f per iod " ,
un i t s = "hours " ,
ind = as . array ( l i s t ( c ( 2 , 3 ) ) ) )

#Equation f o r t o t a l co s t
addItem (model1SMS , " eqs ") <− l i s t (

symbol = "Cost " ,
sDes = "Total Cost " ,
nature = " ob j e c t i v e " ,
r e l a t i o n = "eq " ,
o b j e c t i v e = "min")

addItem (model1SMS , " terms ") <− l i s t ( #1.z
eq = 6 ,
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s i d e = " l " ,
nature = " vars " ,
item = 4)

addItem (model1SMS , " terms ") <− l i s t ( #2.1
eq = 6 ,
s i d e = " r " ,
nature = " cons t s " ,
item = 1 ,
setSums = array ( l i s t ( c (3 ) ) ) )

addItem (model1SMS , " terms ") <− l i s t ( #3.CI
eq = 6 ,
s i d e = " r " ,
nature = "pars " ,
parent = 2 ,
item = 4 ,
setSums = as . array ( l i s t ( c (1 ) ) ) )

addItem (model1SMS , " terms ") <− l i s t ( #4.x
eq = 6 ,
s i d e = " r " ,
nature = " vars " ,
item = 1 ,
parent = 3)

addItem (model1SMS , " terms ") <− l i s t ( #5.CO
eq = 6 ,
s i d e = " r " ,
nature = "pars " ,
parent = 2 ,
item = 5 ,
s i gn = "+",
setSums = as . array ( l i s t ( c (1 , 2 ) ) ) )

addItem (model1SMS , " terms ") <− l i s t ( #6.DT
eq = 6 ,
s i d e = " r " ,
nature = "pars " ,
item = 6 ,
parent = 5)

addItem (model1SMS , " terms ") <− l i s t ( #7.y
eq = 6 ,
s i d e = " r " ,
nature = " vars " ,
item = 2 ,
parent = 6)

B.3. File model2SMS.R

# Creat ion o f the s t o c h a s t i c model from the d e t e rm i n i s t i c one
model2SMS <− model1SMS
model2SMS@name <− " Stocha s t i c 1 "

#New se t f o r s c e n a r i o s
addItem (model2SMS , " s e t s ") <− l i s t (
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symbol = "n" ,
sDes = " Scenar io " ,
setType = " s e t ")

# update i n d i c e s
model2SMS@vars [ 2 , ] [ [ " ind " ] ] <− l i s t ( c ( 1 , 2 , 4 , 3 ) )
model2SMS@pars [ 2 , ] [ [ " ind " ] ] <− l i s t ( c ( 2 , 4 , 3 ) )
model2SMS@pars [ 4 , ] [ [ " ind " ] ] <− l i s t ( c ( 1 , 4 , 3 ) )
model2SMS@pars [ 5 , ] [ [ " ind " ] ] <− l i s t ( c ( 1 , 2 , 4 , 3 ) )

#Parameter f o r p r obab i l i t y
addItem (model2SMS , " pars ") <− l i s t (

symbol = "P" ,
sDes = " Scenar io Probab i l i t y " ,
ind = as . array ( l i s t ( c (4 ) ) ) )

#update co s t equat ion
addItem (model2SMS , " eqs ") <− l i s t (

id = 6 ,
symbol = "CostSto " ,
sDes = "Total Cost " ,
nature = " Object ive " ,
r e l a t i o n = "eq ")

addItem (model2SMS , " terms ") <− l i s t ( #1.z
id = 1 ,
eq = 6 ,
s i d e = " l " ,
nature = " vars " ,
item = 4)

addItem (model2SMS , " terms ") <− l i s t ( #2.p
id = 2 ,
eq = 6 ,
s i d e = " r " ,
nature = "pars " ,
item = 7 ,
setSums = array ( l i s t ( c (4 ) ) ) )

addItem (model2SMS , " terms ") <− l i s t ( #3.1
id = 3 ,
eq = 6 ,
s i d e = " r " ,
nature = " cons t s " ,
item = 1 ,
parent = 2 ,
setSums = array ( l i s t ( c (3 ) ) ) )

addItem (model2SMS , " terms ") <− l i s t ( #4.CI
id = 4 ,
eq = 6 ,
s i d e = " r " ,
nature = "pars " ,
parent = 3 ,
item = 4 ,
setSums = as . array ( l i s t ( c (1 ) ) ) )

addItem (model2SMS , " terms ") <− l i s t ( #5.x
id = 5 ,
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eq = 6 ,
s i d e = " r " ,
nature = " vars " ,
item = 1 ,
setSums = NULL,
s i gn ="",
parent = 4)

addItem (model2SMS , " terms ") <− l i s t ( #6.CO
id = 6 ,
eq = 6 ,
s i d e = " r " ,
nature = "pars " ,
parent = 3 ,
item = 5 ,
s i gn = "+",
setSums = as . array ( l i s t ( c (1 , 2 ) ) ) )

addItem (model2SMS , " terms ") <− l i s t ( #7.DT
id = 7 ,
eq = 6 ,
s i d e = " r " ,
nature = "pars " ,
item = 6 ,
parent = 6)

addItem (model2SMS , " terms ") <− l i s t ( #8.y
id = 8 ,
eq = 6 ,
s i d e = " r " ,
nature = " vars " ,
item = 2 ,
parent = 7)

# Update c on s t r a i n t s domain
model2SMS@eqs [ 4 , "domain " ] [ [ 1 ] ] <− l i s t ( c ( 2 , 4 , 3 ) )
model2SMS@eqs [ 5 , "domain " ] [ [ 1 ] ] <− l i s t ( c ( 1 , 2 , 4 , 3 ) )

B.4. File model2Instance2.R

l i b r a r y ( p ly r )

## cr ea t e i n s t anc e o f the problem
model2Instance2 <− newInstance (model2SMS)

## Sets o f the in s t anc e
newInstanceSet ( model2Instance2 , " i " , c ("RTE" , "PV" , "CHP") )
newInstanceSet ( model2Instance2 , " j " , c (" winter " , " sp r ing " , "

summer" , "autumn") )
newInstanceSet ( model2Instance2 , "n" , 1 : 100 )
newInstanceSet ( model2Instance2 , " t " , c (2013 :2017) )

## Short v a r i a b l e s f o r conv in i ence
s e t I <− i n s t an c eS e t s ( model2Instance2 , " i ")
s e tJ <− i n s t an c eS e t s ( model2Instance2 , " j ")
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setN <− i n s t an c eS e t s ( model2Instance2 , "n")
setT <− i n s t an c eS e t s ( model2Instance2 , " t ")

## Parameters
## Li f e t ime
newInstancePar ( model2Instance2 , "LT" ,

data . frame ( i = se t I ,
va lue = 20) )

## Duration o f pe r i od s (8 h . per day )
newInstancePar ( model2Instance2 , "DT" ,

data . frame ( j = rep ( setJ , each = 5) ,
t = setT ,
va lue = 91∗8) )

#s c ena r i o s 0 . 4 0 . 1 0 .2 0 .1 0 .2
#probScn <− c ( 0 . 4 , 0 . 1 , 0 . 2 , 0 . 1 , 0 . 2 )
#probScn <− c ( 0 . 2 4 , 0 . 1 9 , 0 . 1 8 , 0 . 2 0 , 0 . 1 9 )
#symSets <− model2Instance2@sets [ [ " n " ] ] [ , 2 ]
newInstancePar ( model2Instance2 , "P" ,

data . frame (n = setN ,
va lue = 1/ length ( setN ) ) )

## Di s t r i bu t i on o f the v a r i a t i o n s
## CI_CHP, CI_PV, CO_RTE, CO_RTG, D

deltaMean <− c (−0.10 , −0.05 , 0 . 10 , 0 . 03 , 0 . 10 )
deltaSD <− c ( 0 . 0 5 , 0 . 06 , 0 . 04 , 0 . 02 , 0 . 05 )

#valScn <− matrix ( c (
# −0.10 , −0.05 , 0 . 10 , 0 . 03 , 0 . 10 , # example1 s c ena r i o
# −0.15 , −0.10 , 0 . 10 , 0 . 05 , 0 . 05 , # low inv cos t s ,

normal oper cos t s , normal demand
# −0.15 , −0.08 , 0 . 12 , 0 . 03 , 0 . 10 , # normal inv cos t s ,

high gap between oper cos t s , high demand
# −0.10 , −0.05 , 0 . 06 , 0 . 03 , 0 . 05 , # high inv cos t s ,

low oper cos t s , low demand
# −0.15 , −0.08 , 0 . 12 , 0 . 05 , 0 . 1 0 ) , # low inv cos t s ,

high oper cos t s , high demand
# byrow = TRUE, nrow = 5 )
#valScn <− cbind ( valScn , probScn )
#rownames ( valScn )<− paste (" s " , 1 : 5 , sep="")
#colnames ( valScn ) <− c (" invCHP" , "invPV" , "operRTE" , "operNG" ,

"Demand" , " Probab i l i t y ")

baseD <− ( (213 .50∗ (10^3) ) /(365∗24) )
corrSeason <− c ( 0 . 7 , 0 . 9 , 1 . 4 , 1)

s e t . seed (1111)
newInstancePar ( model2Instance2 , "D" , rbind . f i l l ( l app ly ( seq (

along = setN ) , f unc t i on (y ) {
data . frame ( j = setJ ,

n = setN [ y ] ,
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t = rep ( setT , each = 4) ,
va lue = rep ( sapply ( 0 : 4 , f unc t i on (x ) {

(1 + rnorm (1 , deltaMean [ 5 ] ,
deltaSD [ 5 ] ) )^x

} ) ,
each = 4) ∗ rep ( baseD ∗ corrSeason , 5) )

}) ) )

availPV <− ( c ( 0 . 39 + 0.57 + 0 .78 ,
0 .88 + 0.94 + 1 ,
1 .7 + 1.03 + 0 .96 ,
0 .66 + 0.41 + 0 . 41 ) / 24) / 0 .245

newInstancePar ( model2Instance2 , "G" , data . frame ( i = rep ( s e t I ,
each = 20) ,

j = setJ ,
t = setT ,
va lue = c ( rep (1 , 20) , rep ( availPV , 5) , rep (1 , 20) ) ) )

s ub s i d i e s <− c (0 , 0 . 4 , 0 . 4 )
baseCI <− c (50 , 325 .03 / 0 .245 , 20205 .72/5 .5 ) ∗ (1− s ub s i d i e s )
#parCI <− rbind . f i l l ( l app ly ( seq ( along = setN ) , f unc t i on (y ) {
# data . frame ( i = rep ( s e t I , each = 5) ,
# n = setN [ y ] ,
# t = rep (2013 :2017 , 3) ,
# value = c ( t ( baseCI ∗ sapply ( 0 : 4 , f unc t i on (x ) {
# (1 + valScn [ y , c (3 , 2 , 1) ] ) ^x
# })
# ) ) )
# }) )

newInstancePar ( model2Instance2 , "CI" ,
rbind . f i l l ( l app ly ( seq ( along = setN ) , f unc t i on (y ) {

data . frame ( i = rep ( s e t I , each = 5) ,
n = setN [ y ] ,
t = rep (2013 :2017 , 3) ,
va lue = c ( t ( baseCI ∗ sapply ( 0 : 4 , f unc t i on (x )

{
(1 + rnorm (3 , deltaMean [ c (3 ,

2 , 1) ] , deltaSD [ c (3 , 2 , 1 ) ] )
)^x

})
) ) )

}) ) )

baseCO <− c (0 .134571 , 0 .05056)
newInstancePar ( model2Instance2 , "CO" ,

rbind . f i l l ( l app ly ( seq ( along = setN ) , func t i on (y ) {
data . frame ( i = rep ( s e t I [ −2] , each = 20) ,

j = rep ( setJ , 5) ,
n = setN [ y ] ,
t = rep (2013 :2017 , each = 4) ,
va lue = rep ( c ( t (baseCO ∗ sapply ( 1 : 5 ,
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f unc t i on (x ) {
(1 + rnorm (2 , deltaMean [ c

(3 , 4 ) ] , deltaSD [ c (3 , 4 )
] ) )^x

}) ) ) ,
each = 4) )

}) ) )

de f Ins tanceEqs ( model2Instance2 , constEqs = c (3 , 4 , 5) , objEqs
= 6)

B.5. File comprehensiveExample.Rnw

\documentclass [ a4paper ] { a r t i c l e }
\usepackage {Sweave}

\ t i t l e {Comprehensive Example f o r
``An Integ ra t ed Framework f o r the
Representat ion and So lu t i on o f S t o cha s t i c
Energy Optimizat ion Problems ' '}
\ author {Emil io L . Cano}

<<intro , echo=FALSE, r e s u l t s=hide>>=
## System requi rements
## − The R so f tware and the packages loaded below
## − A l i c e n c ed GAMS i n s t a l l a t i o n . I f GAMS d i r e c t o r y
## i s other than "~/app/gams23 . 9" , change the l i n e
## ' igdx ("~/app/gams23 . 9 " ) '

## − A LaTeX d i s t r i b u t i o n f o r the cur rent system

## Load needed packages
l i b r a r y ( kn i t r )
l i b r a r y ( optimr )
l i b r a r y ( gdxrrw )
l i b r a r y ( xtab l e )
l i b r a r y ( ggp lot2 )
l i b r a r y ( g r id )

## Te l l gdxrrw where GAMS i s i n s t a l l e d
igdx ("~/app/gams23 . 9 " )

## Run s c r i p t s with data
## Dete rm in i s t i c model
source ( " . / data/model1SMS .R")
## Stocha s t i c ex tens i on
source ( " . / data/model2SMS .R")
## Instance with 100 s c e na r i o s
source ( " . / data/model2Instance2 .R")
@

\begin {document}
\SweaveOpts{ concordance=TRUE}
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\ maket i t l e

\ s e c t i o n { In t roduc t i on }
This document i s an example on how to use \ t e x t s f {R} as an

in t e g r a t ed
environment f o r opt imiza t i on . I t i s assumed that the \ t e x t s f {

optimr} package i s i n s t a l l e d .

Here we can inc lude any s t a t i s t i c a l ana l y s i s , f o r example a
time s e r i e s a n a l y s i s

to f o r e c a s t the fu tu r e energy pr i c e s , sav ing the va lue s as
parameters . We can

a l s o show graph i c a l r e p r e s e n t a t i o n s o f the parameter values ,
as in Figure~\ r e f { f i g : examplepar } , or t ab l e s with data , e .
g . Table~\ r e f { tab : exampletable } .

\ begin { f i g u r e } [ htp ]
\ begin { cente r }
<<examplepar , f i g=TRUE, echo=FALSE, width=10>>=
## Demand
dtoPlot <− i n s tancePar s ( model2Instance2 , "D")
dtoPlot$ id <− 1 :20
pD <− ggp lot ( data = dtoPlot , aes ( x = id , y = value , group=n ,

c o l=n) )
pD <− pD + geom_path ( )
pD <− pD + sca l e_x_disc re te (name = "" , breaks = seq (1 ,21 , by

=5) , l a b e l s = 2013 :2017)
pD <− pD + g g t i t l e (" Energy demand")
pD <− pD + scale_y_continuous (name ="Demand l e v e l (kW) ")
pD <− pD + theme ( legend . p o s i t i o n = "none ")
pD <− pD + stat_summary ( fun . y=mean , co l our="darkred " , geom="

l i n e " , aes ( group=1) , s i z e =1)

## Investment co s t
dtoPlot <− i n s tancePar s ( model2Instance2 , "CI")
pCI <− ggp lot ( data = dtoPlot , aes ( x = t , y = value , group=n ,

c o l=n) )
pCI <− pCI + geom_path ( )
pCI <− pCI + face t_gr id ( i ~ . )
pCI <− pCI + scale_x_continuous (name = "")
pCI <− pCI + g g t i t l e (" Investment co s t ")
pCI <− pCI + scale_y_continuous (name ="EUR/kW")
pCI <− pCI + theme ( legend . p o s i t i o n = "none ")
pCI <− pCI + stat_summary ( fun . y=mean , co l ou r="darkred " , geom="

l i n e " , aes ( group=1) , s i z e =1)

## Operation co s t
dtoPlot <− i n s tancePar s ( model2Instance2 , "CO")
dtoPlot$ id <− 1 :20
pCO <− ggp lot ( data = dtoPlot , aes ( x = id , y = value , group=n ,

c o l=n) )
pCO <− pCO + geom_path ( )
pCO <− pCO + face t_gr id ( i ~ . )
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pCO <− pCO + sca le_x_disc re te (name = "" , breaks = seq (1 ,21 , by
=5) , l a b e l s = 2013 :2017)

pCO <− pCO + g g t i t l e (" Energy p r i c e ")
pCO <− pCO + scale_y_continuous (name ="EUR/kWh")
pCO <− pCO + guides ( c o l o r = guide_colourbar ( t i t l e = " Scenar io

") )
pCO <− pCO + stat_summary ( fun . y=mean , co l our="darkred " , geom="

l i n e " , aes ( group=1) , s i z e =1)

g r id . newpage ( )
vpAll <− viewport ( layout = gr id . layout (2 , 3 ,

widths = c (1/3 , 1/3 , 1/3) ,
h e i gh t s = c ( 0 . 1 , 0 . 9 ) ) )

vpT <− viewport ( layout . pos . c o l = 1 : 3 , layout . pos . row = 1 , name
= " t i t l e ")

vpD <− viewport ( layout . pos . c o l = 1 , layout . pos . row = 2 , name =
"D")

vpCI <− viewport ( layout . pos . c o l = 2 , layout . pos . row = 2 , name
= "CI")

vpCO <− viewport ( layout . pos . c o l = 3 , layout . pos . row = 2 , name
= "CO")

sp l o t <− vpTree ( vpAll , vpLis t (vpT , vpD , vpCI , vpCO) )
pushViewport ( s p l o t )
seekViewport (" t i t l e ")
g r id . t ex t ("100 s c e na r i o s s imu la t i on " , gp = gpar ( cex=2) )
seekViewport ("D")
p r i n t (pD, newpage = FALSE)
seekViewport ("CI")
p r i n t (pCI , newpage = FALSE)
seekViewport ("CO")
p r i n t (pCO, newpage = FALSE)
@

\ capt ion {Parameter va lue s f o r the s t o c h a s t i c parameters . }
\ l a b e l { f i g : examplepar}

\end{ cente r }
\end{ f i g u r e }

<<echo=FALSE, r e s u l t s=tex>>=
xtab l e ( head ( in s tancePar s ( model2Instance2 , "D") ) ,

l a b e l = " tab : exampletable " ,
capt ion = "Example $D$ parameter va lue s ( f i r s t 6 va lue s

) . " )
@

The equat ions or any item o f the model can be pr in ted
automat i ca l l y from the

\ t e x t s f {model2SMS} ob j e c t . For example , the f o l l ow i n g command
f e t c h e s the

ob j e c t i v e func t i on :

<<r e s u l t s=tex>>=
cat (" $$ " , getEq (model2SMS , 6 , " tex " , only = "rExpr ") , "$$ ")
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@

\ s e c t i o n { So lv ing the problem}

Once we have the in s t ance in an \ t e x t t t { opt imInstance } object ,
i t can be so lved and the s o l u t i o n imported ( see source

code ) . Resu l t s check ing i s a l s o p o s s i b l e as t h i s
in fo rmat ion i s a l s o s to r ed :

<<so l , echo=FALSE, r e s u l t s=hide>>=
wProblem( model2Instance2 ,

f i l ename = " ./ data/model2Instance2 . gms" ,
format = "gams" ,
s o l v e r = "LP")

r e s <− gams ( " . / data/model2Instance2 . gms −−o u t f i l e =./data/
model2Instance2 . gdx ")

data (gamsOut )
i f ( r e s == 0) {

importGams ( model2Instance2 ) <− " ./ data/model2Instance2 . gdx"
message (" Optimizat ion ok\n" ,

"\ tModel Status : " ,
as . cha rac t e r ( subset ( gamsModelStatusCode ,

id == model2Instance2@result$model , desc , drop =
TRUE) ) ,

"\n\ tSo l v e r Status : " ,
as . cha rac t e r ( subset ( gamsSolverStatusCode ,

id == mode l2 Instance2@resu l t$so lve , desc , drop =
TRUE) ) )

} e l s e {
warning ("Check the l i s t i n g f i l e , something was wrong : " ,

subset ( gamsOutCode , id == res , desc , drop = TRUE) )
}
@

We can embed c a l c u l a t i o n s with in the text , f o r example the
value o f the

ob j e c t i v e func t i on (\ Sexpr{round ( mode l2Instance2@resu l t$obj ) })
, or we can pr i n t pre t ty

\LaTeX~tab l e s with the optimal values , as the ones in Tables \
r e f { tab : x} and \ r e f { tab : y} , or any

other an a l y s i s and r ep r e s en t a t i on ( see Figure~\ r e f { f i g : r e s }) .
See the \ t e x t t t { .Rnw} source f i l e to s ee the code .

<<r e s u l t s=tex , echo=FALSE>>=
pr in t ( x tab l e ( ins tanceVars ( model2Instance2 , "x") ,

"Optimal va lue s f o r $x$ " ,
" tab : x") , i n c lude . rownames = FALSE)

pr in t ( x tab l e ( head ( ins tanceVars ( model2Instance2 , "y") ) ,
"Optimal va lue s f o r $y$ ( f i r s t 6 va lue s ) " ,
" tab : y") , i n c lude . rownames = FALSE)

@

\begin { f i g u r e } [ htp ]
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\ begin { cente r }
<<bar , echo=FALSE, f i g=TRUE>>=
df2p l o t <− subset ( ins tanceVars ( model2Instance2 , "y") , j == "

autumn")
d f 2p l o t <− aggregate ( va lue ~ i + t , data = df2p lot , FUN = mean

)
d f 2p l o t $ t <− as . i n t e g e r ( as . cha rac t e r ( d f 2p l o t $ t ) )
p <− ggp lot ( d f2p lot , aes ( x=t ) )
p <− p + geom_area ( aes ( y=value , f i l l =i ) )
p <− p + labs ( t i t l e = "Optimal product ion plans (Autumn) " , x =

"Year " , y = "kW")
p <− p + s c a l e_ f i l l _ d i s c r e t e (" Technology ")
p r i n t (p)
@
\end{ cente r }
\ capt ion {Output data r ep r e s en t a t i on . \ l a b e l { f i g : r e s }}
\end{ f i g u r e }

\ s e c t i o n {Conclus ion }
This document can be compiled at any time , by any r e s e a r ch e r .

Note that i f any
value i s changed , f o r example in the s c r i p t that conta in the

parameters
(\ t e x t t t { " . . / data/model2Instance2 .R"}) , the whole r epo r t i s

updated automat i ca l l y
( i n c l ud ing tab l e s , equat ions and char t s ) .
I f we use s imu la t i on during the research , we can simply f i x

the seed to a l low
the v e r i f i c a t i o n o f the r e s u l t s by th i rd p a r t i e s . D i f f e r e n t

r epo r t s f o r d i f f e r e n t s t ak eho ld e r s can be produced us ing a
common s t ru c tu r e and t a i l o r i n g the outputs .

\end{document}
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C. Session Info

All materials of this thesis have been produced under the Repro-

ducible Research approach (see Leisch, 2002). Thus, the source files
contain both the text and the data analysis, as well as all the related
code. The interface used for the development has been Eclipse 4.21

and StatET 3.32. The information of the R 3 session where all the
code has been run is the following:

print(sessionInfo(), locale = FALSE)

## R version 3.0.2 (2013-09-25)

## Platform: x86_64-pc-linux-gnu (64-bit)

##

## attached base packages:

## [1] splines grid tools

## [4] stats graphics grDevices

## [7] utils datasets methods

## [10] base

##

## other attached packages:

## [1] Hmisc_3.14-0 Formula_1.1-1

## [3] survival_2.37-7 lattice_0.20-24

## [5] lpSolve_5.6.7 gdxrrw_0.3.1

## [7] reshape2_1.2.2 plyr_1.8

## [9] psych_1.4.1 lubridate_1.3.3

## [11] knitr_1.5 ggplot2_0.9.3.1

1http://www.eclipse.org
2http://www.walware.de/goto/statet
3http://www.R-Project.org
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## [13] xtable_1.7-1 optimr_0.0-10

## [15] rj_1.1.3-1

##

## loaded via a namespace (and not attached):

## [1] cluster_1.14.4

## [2] colorspace_1.2-4

## [3] dichromat_2.0-0

## [4] digest_0.6.4

## [5] evaluate_0.5.1

## [6] formatR_0.10

## [7] gtable_0.1.2

## [8] highr_0.3

## [9] labeling_0.2

## [10] latticeExtra_0.6-26

## [11] MASS_7.3-29

## [12] memoise_0.1

## [13] munsell_0.4.2

## [14] proto_0.3-10

## [15] RColorBrewer_1.0-5

## [16] rj.gd_1.1.3-1

## [17] scales_0.2.3

## [18] stringr_0.6.2

## [19] tcltk_3.0.2

Sys.time()

## [1] "2014-01-31 18:39:09 CET"

##

## Machine:

## Intel(R) Core(TM) i5-2430M CPU @ 2.40GHz

## MemTotal: 8090440 kB

The GAMS 4 version used was:

4http://www.gams.com
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## GAMS program:

## LEX-LEG 23.9.5 x86_64/Linux
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