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ABSTRACT 

As wind energy proliferates in onshore and offshore 

applications, it has become significantly important to predict 

wind turbine downtime and maintain operation uptime to 

ensure maximal yield. Two types of data systems have been 

widely adopted for monitoring turbine health condition: 

supervisory control and data acquisition (SCADA) and 

condition monitoring system (CMS). Provided that research 

and development have focused on advancing analytical 

techniques based on these systems independently, an 

intelligent model that associates information from both 

systems is necessary and beneficial. In this paper, a 

systematic framework is designed to integrate CMS and 

SCADA data and assess drivetrain degradation over its 

lifecycle. Information reference and advanced feature 

extraction techniques are employed to procure 

heterogeneous health indicators. A pattern recognition 

algorithm is used to model baseline behavior and measure 

deviation of current behavior, where a Self-organizing Map 

(SOM) and minimum quantization error (MQE) method is 

selected to achieve degradation assessment. Eventually, the 

computation and ranking of component contribution to the 

detected degradation offers component-level fault 

localization. When validated and automated by various 

applications, the approach is able to incorporate diverse data 

resources and output actionable information to advise 

predictive maintenance with precise fault information. The 

approach is validated on a 3 MW offshore turbine, where an 

incipient fault is detected well before existing system shuts 

down the unit. A radar chart is used to illustrate the fault 

localization result. 

1. INTRODUCTION 

With the rapid increase in the adoption of wind power for 

renewable energy generation, wind farm development and 

wind capacity installation have seen extensive growth. As 

Global Wind Energy Council (2012) pointed out, global 

capacity has reached 237 GW in 2011 and is projected to 

achieve 759 GW, which is more than three times current 

capacity, by the year of 2020.  

Meadows (2011) shows that a 1975 MW offshore capacity 

has been installed in Europe, whereas a 135 MW capacity is 

available in China; for the United States, the forecast of 

offshore capacity is 10 GW by 2020 and 54 GW by 2030. 

However, availability and reliability of offshore turbines are 

imposing challenges for productive and efficient offshore 

wind farms.  

A comprehensive report by National Renewable Energy 

Laboratory (2010) provided similar insight that: U.S. 

offshore wind power has great potential of supporting a 

considerable percentage of electricity needs; while the 

improvement of reliability through condition monitoring is 

one of major technology trends that will greatly support 

operations and maintenance for turbines both onshore and 

offshore.   

CMS has been an emerging technology for monitoring 

turbine health status and diagnosing component failures. A 

study by LeBlanc and Graves (2011) shows that, the 

application of CMS is rising despite initial doubt of its 

capability. In certain offshore wind farm guidelines, CMS is 

even mandatory for turbine monitoring (GL Renewables 

Certification, 2012). A framework of CMS is provided in 

the study as well, where typical requirements of sensor 

locations are shown. The benefit of adopting CMS is 

discussed and justified, based on failure rates of key 

components and related cost. It proves that, on average, 
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predicting one gearbox failure can clearly justify the budget 

of deploying a CMS on the turbine system. In addition, 

McMilan and Ault (2007) investigated Markov model 

between drivetrain components and quantified revenue and 

risk of condition monitoring, based on reliability data of the 

components. 

As detailed by ISET (2005), CMS utilizes various types of 

communication infrastructure to transfer real time sensor 

data and control information to data centers, where servers 

are used to host and process the data. Another study 

(Amirat, Benbouzid, Al-Ahmar, Bensaker and Turri, 2009) 

also provided a review of data collection schemes for the 

electrical system, blade and drivetrain condition monitoring.  

In literature, much research is being conducted for condition 

monitoring of wind turbines based on data infrastructure.  

Lu, Li, Wu and Yang (2009) gave a diagnosis review of the 

gearbox, bearing generator, power electronics, rotor, blades 

and overall system with condition monitoring techniques 

including vibration, torque, oil debris, temperature, acoustic 

emission and electric current & power analyses. Hameed, 

Hong, Cho, Ahn and Song (2009) provided a related review 

of fault detection methods for global and subsystem levels 

based on CMS. Crabtree, Feng and Tavner (2010) 

developed a multivariate approach that combines vibration 

and oil debris analysis for detecting gearbox failure at an 

early stage. Entezami (2010) proposed an overview and 

approach to connect the control system with turbine 

condition monitoring. Sheng and Veers (2011) described the 

gearbox reliability collaborative research at the National 

Renewable Energy Laboratory, where a fully instrumented 

drivetrain test bed is built for generating lab test data. 

Furthermore, SCADA system is also frequently used for 

monitoring wind turbine condition. Commonly used 

variables in different SCADA systems are shown in Table 1. 

Category Variable Examples 

Ambient Temperature, wind direction, wind speed 

Blades Pitch angle 

Controller Hub temperature, Ground temperature. 

Gear Gear bearing temperature, oil temperature 

Generator Bearing temperature, rotation speed 

Grid Production voltage, current, power factor 

Hydraulic Hydraulic oil temperature 

Nacelle Direction, temperature 

Production Average power, accumulated power 

Rotor Rotation speed 

System Logs of active alarms, turbine state 

Hour 

Counter 
Service hours 

Table 1. Commonly Used SCADA Variables 

In a study by Qiu, Feng, Tavner, Richardson, Erdos and 

Chen (2012), SCADA data from an onshore turbine is used 

for alarm analysis and probability-based reliability 

modeling. SCADA data is also suitable for evaluating 

turbine power generation performance, which is 

complicated by the dynamic environment parameters and 

operation conditions (Lapira, Siegel, Zhao, Brisset, Su, 

Wang, AbuAli and Lee, 2011).  

In most of the available literature, CMS and SCADA 

systems are used separately for condition monitoring 

purposes, mainly due to the issue of data availability in 

certain research activities. Moreover, the majority of tools 

and techniques are developed and validated on lab-scale test 

beds. To address such issues, a degradation assessment 

framework is proposed to integrate CMS data and SCADA 

variables for the evaluation of drivetrain degradation. 

Although usually used for a different purpose than a CMS, 

SCADA provides operational information that can assist the 

screening and processing of CMS data. In addition, some 

SCADA systems can provide variables that can serve as 

health indicators of drivetrain components. Previous 

research, including Qiue et al. (2009) and Edwin, Theo, 

Henk, Luc, Xiang and Simon (2008), show that SCADA 

variables can be used for fault detection at early stage, 

especially through analyzing temperature measurement from 

drivetrain components. The framework is eventually 

validated with an offshore turbine drivetrain. 

 

The remainder of the paper is organized as following: 

Section 2 describes the methodology of integrating SCADA 

system data and CMS data, extracting and selecting 

features, assessing drivetrain degradation and identifying 

fault location; Section 3 demonstrates an application of the 

methodology in monitoring the drivetrain for a 3 MW 

offshore turbine, as well as a monitoring platform prototype 

with visualization tools; Section 4 discusses the conclusion 

of presented work, and plan for future development and 

validation; acknowledgement and references ensue as the 

last portion of paper. 

2. METHODOLOGY 

The overall framework integrates selected information from 

both SCADA and CMS systems, provides global 

degradation assessment of the drivetrain, and identifies 

faulty component(s) when fault detection is determined to 

be positive. The systematic methodology is shown in Figure 

1. 

SCADA variables that are related with wind turbine 

operation are initially used to assist in deciding if individual 

CMS data instances can represent the true degradation 

condition for drivetrain. CMS data from all sensors in 

retained instances are then processed by a set of feature 

extraction tools, while SCADA variables that indicate 

drivetrain conditions are selected. CMS features and 
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SCADA variables are then concatenated and input to a 

degradation assessment method, to evaluate how the overall 

condition differs from a baseline. When degradation is 

significant and fault detection is confirmed, the location of 

the fault is decided based on each component’s contribution 

to the overall degradation. Eventually, the analytical results 

are visually presented.  

 

Figure 1. The integrated framework for drivetrain 

degradation assessment and fault localization 

The rationale and techniques for each step are described as 

follows. 

2.1. CMS Instance Selection 

In applications of condition monitoring systems for wind 

turbines, it is a common practice to configure the sampling 

scheme as a routine program, so that several seconds or 

minutes worth of vibration waveforms with high sampling 

frequency from all instrumented sensors are acquired and 

stored at certain time instances throughout a day. This 

strategy is due to the limitation of proper infrastructure for 

data acquisition and transferring, and the concern of 

computational capacity for large-scale wind farms. In a few 

cases, vibration data is processed and only its features will 

be archived for further investigation; nevertheless the 

feature extraction is usually still time-based with a static 

period.  

For a condition monitoring system that utilizes multiple 

accelerometers to measure the vibratory behavior of the 

drivetrain, it is important to decipher the quality of vibration 

data before actually processing the data. If the instance of 

data waveforms does not characterize the drivetrain's true 

health at the time of acquisition, including such instance in 

later analysis will generate false health information and 

affect decision making for maintenance. With rule-based 

criteria learned from wind farm operation and the control 

mechanism, irrelevant CMS data instances should be 

discarded based on SCADA measurements and only 

meaningful instances are kept for subsequent analysis. For 

example, if it is detected that the rotor speed has been zero 

for certain duration and there has been no rotation for the 

drivetrain, CMS data instance collected within this duration 

is determined to not contain vibration information that can 

be used for degradation assessment. Such instances should 

be rejected prior to further analysis. 

2.2. SCADA Variable Selection 

For majority of SCADA systems, some variables, measured 

by sensors within close proximity to the drivetrain, are also 

incorporated. They are valuable additional indicators for 

deciding the degradation condition of the drivetrain and its 

components, and sometimes can provide incipient failure 

detection with superior performance (Feng, Qiu, Crabtree, 

Long and Tavner, 2011). Examples of these variables 

include temperature readings of the rotor, gearbox and 

generator, as well as the gearbox oil pressure. 

A heuristic method is used to select SCADA variables based 

on variable name and measurement location. Given that 

SCADA data is typically recorded more frequently than 

CMS data in wind power applications, SCADA records are 

selected only when a retained CMS instance exists at 

matching time interval.  

2.3. CMS Data Feature Extraction 

For health assessment and diagnosis, values of SCADA 

variables can be directly used as health indicators, whereas 

for CMS data features are normally computed to reduce its 

dimension and obtain representative indicators. A toolbox of 

signal processing techniques for vibration-based wind 

turbine monitoring has been designed and developed 

(Siegel, Zhao, Lapira, AbuAli and Lee, 2013), to extract 

features corresponding with key drivetrain components such 

as bearings, shafts, and gears respectively. 

2.3.1. Time Domain Features 

Time domain features provide statistical measures of a 

variable. Three commonly used features for vibration 

analysis are root mean square (RMS), kurtosis and crest 

factor (Lebold, MacClintic, Campbell, Byington and 

Maynard, 2000). For a data vector 𝑋! , 𝑖 = 1,2,3…𝑁, these 

features are defined as: 

𝑅𝑀𝑆 =
𝑋!
!!

!!!

𝑁
 (1) 

SCADA CMS

Instance 
Selection

Feature 
Extraction

Variable 
Selection

Degradation Assessment
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Fault Detection

Visualization

Yes
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𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
𝑋! − 𝑋

!!

!!!

𝑁

𝑋! − 𝑋
!!

!!!

𝑁

!

 (2) 

𝐶𝑟𝑒𝑠𝑡  𝐹𝑎𝑐𝑡𝑜𝑟 = 𝑚𝑎𝑥 𝑋! 𝑅𝑀𝑆 (3) 

RMS is calculated as the vector’s Euclidean norm, divided 

by the square root of vector length, as shown in Eq. (1). It 

represents the magnitude, or energy, of the vibration signal. 

A high RMS value can indicate indefinite or severe 

damages. Kurtosis, computed as Eq. (2), is the ratio between 

the vector’s fourth moment about the mean and square of its 

second moment about the mean. It is essentially a measure 

of signal peakedness, which normally increases when 

damage causes impulses and unevenness in data. Crest 

factor can be used to detect high-amplitude impacts, when 

such impacts generate large signal impulse and increase the 

ratio between maximum value and RMS of the signal 

indicated by Eq. (3). 

2.3.2. Spectral Kurtosis Filtering 

To monitor damages in a complex mechanical system like a 

drivetrain, it is necessary to detect impulsive vibration 

behavior stimulated by defective gears or bearings. Time 

domain features of raw data can fulfill the task to a certain 

degree, but the impulsive behavior is often obscured by 

additive noise from irrelevant vibration resources. 

Therefore, band-pass filters in the frequency domain are 

applied to preserve the most impulsive frequency content 

and de-noise the signal. 

Spectral kurtosis filtering (SKF) is a technique to optimize 

the configuration of band-pass filter for noise reduction. 

Based on time-frequency analysis results, it adopts the 

kurtosis computation from the time domain analysis to seek 

the most impulsive frequency band. 

As developed by Antoni (2006) for non-stationary signal 

analysis, the short-time Fourier transform (STFT) of the 

signal is first calculated and denoted as 𝐻 𝑡, 𝑓 . For each 

frequency index decided by the STFT, the kurtosis of its 

amplitude over discrete time is calculated as Eq. (4): 

𝑆𝐾! 𝑓 =
𝐻
!(𝑡, 𝑓)

𝐻!(𝑡, 𝑓) !
− 2 (4) 

A statistical threshold 𝑆! is computed (Antoni and Randall, 

2006) to decide the significance of spectral kurtosis given 

level of significance 𝛼: 

𝑆! = 𝑢!!!

2

𝐾
 (5) 

where 𝑢!!! is the quantile with significance level 𝛼, and 𝐾 

is the number of time windows in STFT analysis.  If the SK 

value for certain frequency is higher than the threshold, a 

Wiener filter is multiplied with the frequency spectrum of 

the original signal, where the multiplier is square root of the 

SK value. Therefore, the frequency content that is originally 

impulsive with high SK level is further amplified, whereas 

the other content is attenuated. The signal is eventually 

transformed back to a time series for extracting time domain 

features. 

An example for effect of spectral kurtosis filtering is shown 

in Figure 2, where filtered data (bottom plot in red) 

apparently accentuate impulsive behavior more than raw 

data (top plot in blue). To quantify the difference, time 

domain kurtosis values before and after the filtering are 5 

and 20.4 respectively; crest factors are 6.1 and 16.3 

respectively.  

 

Figure 2. An example of spectral kurtosis filtering result 

Spectral kurtosis filtering discovers the inherent dynamics 

of vibration spectrum, and automatically de-noises the 

signal without prior knowledge or visual inspection for band 

selection. In research with similar objectives, Barszcz and 

Randall (2009) previously investigated using spectral 

kurtosis for tooth crack detection in wind turbine planetary 

gears. 

2.3.3. Envelope Analysis 

As rolling element bearings and gear wheels rotate around 

their shafts in the gearbox system, bearing damages and 

gear defects often cause multiple impacts per each 

revolution and excite the resonant vibration of the entire 

structure. In vibration data, it results in an amplitude 

modulation phenomenon, where the structural resonance is 

the high-frequency carrier wave and the component fault 

frequency is the low-frequency envelope that modulates the 

waveform in time domain. 
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In frequency domain, modulation behavior is represented 

with concentrated high-amplitude peaks around resonance 

frequency where fault frequencies exist as sidebands spaced 

on both sides of resonance. To extract signatures related 

with specific faults, demodulation is performed with 

following steps: 

• A band-pass filter is designed to filter vibration data 

around the excited resonance frequency. The design 

could be achieved by modal analysis, observation of 

spectrum for collected vibration data, or 

aforementioned spectral kurtosis filtering technique. 

• Envelope analysis of data that is processed with the 

band-pass filter. A frequently used method is Empirical 

Mode Decomposition (EMD), which is an iterative 

filtering process shown as Figure 3 (Peng, Tse and Chu, 

2005). 

 

Figure 3. Empirical Mode Decomposition (EMD) process 

• The method of extracting envelopes with local extrema 

has disadvantages of possible overshoots and 

breakpoints when a cubic spline is applied. To 

overcome such disadvantages, a Hilbert transform 

method is adopted (Liu, Riemenschneider and Xu, 

2006) to find the upper envelope of signal 𝑥 𝑡 , by 

finding the principal value (PV) 𝑦 𝑡  with Eq. (6) first, 

and analytic signal 𝑧 𝑡  with Eq. (7). The envelope is 

eventually the absolute value of analytic signal 𝑧 𝑡 . 

𝑦 𝑡 =
1

𝜋
𝑃𝑉

𝑥 𝜏

𝑡 − 𝜏
𝑑𝜏

!

!!

 (6) 

𝑧 𝑡 = 𝑥 𝑡 + 𝑖𝑦 𝑡  (7) 

• After finding the envelope of band-pass filtered data 

with Hilbert transform, several feature extraction 

methods can be used to further analyze the envelope as 

signature of component defects. For example, bearing 

fault frequencies including ball pass frequency inner-

race (BPFI), ball pass frequency outer-race (BPFO), 

ball fault frequency (BFF) and fundamental train 

frequency (FTF) for faults on bearing inner race, outer 

race, roller element and cage respectively. Furthermore, 

time domain statistics can also be indicators for defects, 

such as RMS and crest factor.  

2.3.4. Wavelet Energy Analysis 

The use of wavelets for time-frequency analysis as a method 

for automated feature extraction has seen a growing interest 

in the area of condition monitoring (Peng and Chu, 2004). 

For CMS vibration analysis, the focus is how to use wavelet 

analysis for feature extraction, and thus the discussion on 

the background of time-frequency analysis and continuous 

wavelet transform is omitted here. The wavelet 

decomposition and the wavelet packet decomposition are 

the more commonly used algorithms for feature extraction 

purposes, particularly in wind turbine monitoring area as 

well (Yang, Tavner and Wilkinson, 2008). The wavelet 

decomposition applies a filtering operation in which the 

signal is divided into an approximation signal (low 

frequency) and a detail signal (high frequency).  The 

approximation signal consists of frequency content from 0 

to approximately 1/4 of the Nyquist frequency (𝐹!"#), while 

the detail signal consists of frequency content from 1/4 of 

the Nyquist frequency to 1/2 of the Nyquist frequency.  This 

represents the decomposition at the first level, and the 

approximation signal is further decomposed to a specified 

number of levels.  The selection of the mother wavelet 

influences the filtering result, wherein higher coefficients 

and values can be obtained when the mother wavelet 

function is a closer match to the original signal (Jiang, Tang, 

Qin and Liu, 2011).   

In general, the frequency content at level 𝑛  for the 

approximation signal is given by Eq. (8) and the frequency 

content for the detail signal at level 𝑛 is given by Eq. (9). 

0 ≤ 𝑓 ≤
𝐹!"#

2!!!
 (8) 

𝐹!"#

2!!!
≤ 𝑓 ≤

𝐹!"#

2!
 (9) 

Raw Data
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Figure 4. Wavelet Decomposition Diagram (Level 4) 

An example wavelet decomposition diagram for level 4 is 

illustrated in Figure 4, where the approximation signal at 

each level is further decomposed.  The wavelet 

decomposition only decomposes approximation signals, 

while the wavelet packet decomposition decomposes both 

approximation and detail signals.   

Mechanical fault signatures for bearing, shaft, and gear 

components create amplitude and frequency modulation 

effects. In addition, these faults can excite the structural 

resonances of the system.  Monitoring the vibration changes 

in different frequency bands from a baseline state is a way 

to monitor the overall health state of the drivetrain.  The 

energy extracted at each node of the wavelet decomposition 

is used for monitoring the changes in the vibration in 

different frequency bands.  The wavelet decomposition 

energy at each node can be calculated using Eq. (10), which 

consists of the squared summation of the coefficients at that 

particular node for the 𝑁 coefficients.  The wavelet energy 

vibration feature is a normalized frequency band vibration 

value, in which the vibration at each node is normalized by 

the total energy in the vibration signal and the feature is 

given as a percentage value.  An example calculation of the 

wavelet energy feature for the approximation signal for a 

level 4 decomposition is provided in Eq. (11).  In this 

equation, the coefficients for the approximation signal are 

denoted as 𝑤!!, and the detail coefficients are denoted as 

𝑤!!, 𝑤!!, 𝑤!!, and 𝑤!! respectively.  For this example of 

level 4 decomposition, 5 wavelet features would be 

extracted, since a feature would be extracted at each level 

for the detail signals, and a feature is extracted for the level 

4 approximation signal.   

𝐸𝑛𝑒𝑟𝑔𝑦  𝐴! = 𝑤!!!
!

!

!!!

 (10) 

100× 𝑤!!
!

𝑤
!!

!
+ 𝑤

!!

!
+ 𝑤

!!

!
+ 𝑤

!!

!
+ 𝑤

!!

!
 (11) 

2.4. Drivetrain Overall Degradation Assessment 

Upon the completion of SCADA variable selection and 

CMS feature extraction, the set of features from all sensors 

and selected SCADA variables are used to evaluate 

drivetrain degradation as explained in subsequent sections 

of the paper. Degradation assessment estimates present 

drivetrain condition by comparing a feature distribution 

model with a known healthy condition as the baseline 

model. As operation conditions change for the wind turbine, 

the drivetrain work regime varies over time and affects its 

response even under comparable health condition. 

Therefore, the features are assumed to comprise 

distributions from multiple models, and a modeling method 

that can learn and represent data with a mixture model is 

preferred. 

Moreover, a distance metric is used to quantify degradation 

by measuring the dissimilarity between present features and 

the baseline. A threshold can be defined as an unacceptable 

level for the distance, and fault detection can be confirmed 

when the distance measure exceeds the threshold. 

In this study, a Self-organizing Maps (SOM) approach is 

used for degradation assessment (Kohonen, 1990). Being a 

type of artificial neural network, SOM is able to 

automatically discover signal patterns and organize signals 

to create spatial separation between clusters. When used for 

unsupervised learning tasks where the data labels are not 

available for classification, SOM can cluster data instances 

so that inter-cluster distance is high and intra-cluster 

distance is low.  

To train a SOM, a 2D map is initialized with 𝑚 neurons 

corresponding with 𝑛 input vectors 𝑥: 

𝑥 = 𝑥!, 𝑥!, . . . , 𝑥!
! (12) 

Each neuron has a weight vector that has the same 

dimension 𝑛 of an input vector: 

𝑤! = 𝑤!!,𝑤!!,… ,𝑤!"
!

, 𝑗 = 1,2,… ,𝑚 (13) 

For each of the input vectors, the Euclidean distance 

between the particular input vector and all weight vectors 

are calculated. The weight vector with smallest distance, 

hence highest similarity is chosen as the Best Matching Unit 

(BMU), 𝑤!, for that input vector, as shown in Eq. (14). 

𝑥! − 𝑤! = min
!

𝑥! − 𝑤!  (14) 

After the first iteration of finding the BMUs, the values of 

weight vectors are updated so that each BMU is 

topologically closer to the input vector. The updated is 

computed as Eq. (15): 

𝑤! 𝑡 + 1 = 𝑤! 𝑡 + 𝛼 𝑡 ℎ!,!! 𝑡 𝑥 − 𝑤! 𝑡  (15) 

Vibration Signal
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where 𝑡 denotes the iteration step; ℎ!,!!  denotes the 

topological neighborhood kernel centered around the BMU, 

which is typically chosen as Gaussian function; and 𝛼 𝑡  

denotes the learning rate, which is monotonically decreasing 

with the training iteration. Through this competitive 

learning process where weight vectors that are closer to 

input space get updated with higher weight, the map of 

weight vectors eventually converge to a certain number of 

clusters. 

Minimum quantization error (MQE) is the distance metric 

for SOM method (Yu and Wang, 2009), computed as the 

Euclidean distance between an input vector and its BMU, as 

shown in Eq. (16). Therefore the training of SOM can be 

viewed as the process of minimizing the average MQE for 

input vectors and achieving the optimal map structure. For a 

testing process, where the present degradation condition is 

assessed, features are used as input vectors for the trained 

map as they are collected. The MQE value is calculated for 

each feature vector against its BMU in the trained SOM 

map, which can be found in the “codebook” of the SOM. 

The larger the MQE value is, the more severe the 

degradation is.  

𝑀𝑄𝐸 = 𝑥 − 𝑤!"#  (16) 

2.5. Fault Localization 

As drivetrain degradation grows and becomes significant, 

the MQE value is expected to exceed its prescribed 

threshold and trigger an alarm for fault. It is desirable to 

locate the fault at component level, so that specific advice 

can be provided for deciding which component is at a more 

critical condition and needs to be repaired. 

With SOM-MQE technique being used, fault localization is 

achieved by computing MQE contribution of features and 

variables from each component. MQE is essentially the 

Euclidean norm of the vector subtraction between an input 

vector and its BMU, as shown in Eq. (17), where 𝑒! is the 

difference for the 𝑖th feature among all 𝑘 features.  

𝑀𝑄𝐸 = 𝑒
!

!
+ 𝑒

!

!
+⋯+ 𝑒

!

! (17) 

The features can be grouped by drivetrain components 

based on their contextual information. CMS vibration 

features are grouped based on location of the sensor that 

generated the feature, whereas SCADA variables are 

grouped based on variable names. For each component, its 

contribution to MQE value is calculated as Eq. (18), where 

𝑒! are features of the same component. 

𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 =
𝑒!
!

𝑀𝑄𝐸!
 (18) 

3. CASE STUDY 

To further validate and implement the aforementioned 

methodology, a case study based on an offshore wind 

turbine is conducted. 

3.1. Description of Turbine and Data 

The test bed is a 3 MW wind turbine. A split torque, three-

stage planetary gearbox is used to connect the rotor and the 

generator on the drivetrain. Schematics of the drivetrain, as 

well as locations of vibration sensors, are shown in Figure 5. 

 

Figure 5. Schematics of test bed drivetrain 

The first two stages each consist of a sun gear, planetary 

gears, a planet carrier and a ring gear, whereas the third 

stage is a parallel stage with a pair of gears and an output 

pinion. The input shaft of the gearbox drives ring gear of the 

first stage and planet carrier of the second stage 

simultaneously with identical rotation speed. For the first 

stage, planet carrier does not rotate, thus planetary gears 

only rotate on their own axes without rolling relative with 

its sun gear. The sun gear, driven by the ring gear through 

rotation of planetary gears, connects with the ring gear of 

the second stage. Therefore all of ring gear, planetary gears 

and planetary carrier rotate for the second stage, to drive the 

rotation of its sun gear. Then the sun gear of second stage 

connects with the third stage, and outputs rotation that 

drives the generator. Parameters of the gears are listed in 

Table 2, where CW means the rotation is clockwise and 

CCW means counterclockwise. The computation of overall 

gear ratio results in 76.64, which is the nominal ratio 

between rotation speeds of generator and rotor shaft. 

Stage Gear No. Of Tooth Rotation Direction 

1
st
  

Sun 66 CW 

Planet (8) 37 CW 

Ring 142 CCW 

2
nd

  

Sun 30 CCW 

Planet (4) 62 CCW 

Ring 154 CW 

3
rd

  
Input 116 CCW 

Pinion 26 CW 

Table 2. List of known gear parameters 

In total, eight (8) accelerometers are installed along the 

drivetrain (Figure 5), with two on the main bearing, four on 

Generator

Axial
Low-freq.
Sensor

Radial
Low-freq.
Sensor

Radial
Sensor

Radial
Sensor

Radial
Sensor

Axial
Sensor

Radial
Sensor

Radial
Sensor

Main
Bearing

Stage 1 Stage 2 Stage 3

Split Torque Gearbox
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the gearbox and two on generator. The sampling rate is 6250 

Hz for all sensors. 

The condition monitoring system is configured to collect 

vibration data from all accelerometers synchronously once 

per day at midnight, with a few exceptions that data is 

collected at a different time of the day or data is collected 

more than once per day. Data duration for all eight channels 

of each collected instance is around 85 seconds.  

SCADA data is also available for the turbine unit, where 

statistics of mean, standard deviation, maximum and 

minimum for over a hundred variables are recorded every 

ten (10) minutes. The total duration of both CMS and 

SCADA data is fifteen (15) months. MATLAB® is used for 

developing all techniques described in previous Section and 

generating results for this case study. 

3.2. Analysis and Results 

A filtering algorithm (Grubbs, 1969) that detects outlier 

observations in a time series is used to reject drastic outliers 

for each SCADA variable in advance. In this algorithm, the 

null hypothesis is defined as there is no outlier in a 

distribution, whereas alternative hypothesis is defined as 

there is at lease one outlier in the distribution. For any given 

sample of the distribution, 𝑋!, a Grubbs’ test statistics 𝐺 is 

generated as Eq. (19), where 𝑋 is the distribution’s mean 

value and 𝜎 is the distribution’s standard deviation. 

𝐺 = 𝑋 − 𝑋! 𝜎 (19) 

A critical value 𝑍 is computed as shown in Eq. (20), where 

𝑁 is distribution sample size and 𝑡 is critical value of the t-

distribution with 𝑁 − 2 degrees of freedom and 𝛼 2𝑁  of 

significance level. If 𝐺 > 𝑍 , 𝑋!  is determined to be an 

outlier and null hypothesis is rejected. 

𝑍 =
𝑁 − 1

𝑁

𝑡!

𝑁 − 2 + 𝑡!
 (20) 

For each SCADA variable, its maximum and minimum 

values are tested with a significance level of 0.05, and 

rejected if they are determined to be outliers. Extrema 

values of the filtered distribution will be tested repeatedly 

until no outlier is detected. 

SCADA records with apparent timestamp error are rejected 

as well. 

For each available CMS data instance, a SCADA record 

with a matching timestamp is selected as the reference for 

deciding whether the CMS instance should be discarded or 

kept. In the case when there is no SCADA record with exact 

same timestamp for a particular CMS instance since data 

sampling between the two systems may not be synchronized 

in most instances, the first SCADA record sampled right 

after the CMS instance is chosen as the reference. 

Four variables in reference SCADA records are then 

examined with following rules: 

• Rotor speed average [rpm] is higher than 0; 

• Generator speed average [rpm] is higher than 0; 

• Average active power [kw] is higher than 0; 

• Average wind speed [m/s] is higher than cut-in wind 

speed, which in this case is 2. 

The corresponding CMS instance is retained when the 

drivetrain is operational, which is indicated, in most cases, 

by all four aforementioned rules being met.  

Reference SCADA records of retained CMS instances are 

kept for future analysis. In these records, four variables are 

selected for degradation assessment: 

• Rotor bearing temperature average; 

• Gearbox stage 1 temperature average; 

• Gearbox stage 2 temperature average; 

• Gearbox stage 3 temperature average. 

The selected temperature readings are then subtracted by the 

variable Environment temperature average, to offset the 

seasonal effect on the absolute reading of the variables. 

For feature extraction of each channel of CMS vibration 

data, four categories of features are extracted: 

• RMS, kurtosis and crest factor are time domain 

features; 

• Spectral kurtosis is used to filter vibration waveform, 

with a beforehand STFT of window size 256 samples 

and 80 percent of overlap. RMS, peak-to-peak and 

kurtosis values are extracted from the filtered time 

domain signal; 

• Envelope analysis is used to demodulate the signal 

around resonance frequencies, where resonance 

frequency is often found at the interval between 1000 

Hz and 1600 Hz. Five features are extracted from the 

demodulated signal: RMS of envelope, RMS of band-

pass filtered data, maximum peak of envelope spectrum 

in low frequency range, frequency index of the peak, 

and crest factor of envelope spectrum. In this specific 

case study, bearing configuration parameters that are 

indispensable for bearing fault frequency calculation 

are not available. Therefore fault frequencies are not 

considered in this example. 

• Wavelet energy analysis is conducted with Daubechies 

4 wavelet, and five features, including four energy 

bands for four levels of detail signal and one energy 

band for level 4 approximation signal, are extracted. 

In this case study, features are extracted only from sensor 1 

to sensor 6 since the gearbox system is of higher interest 

and it is more suitable to study analytical methods that are 

specific for the generator independently.  
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In total, 96 CMS features are extracted with 16 features per 

each accelerometer. With selected SCADA variables, 100 

health indicators are included in SOM-MQE calculation for 

degradation assessment. For this case study, a Monte Carlo 

based statistical method is (Bechhoefer, He & Dempsey, 

2011) adopted to generate a threshold for triggering fault 

detection when MQE value exceeds the threshold. To be 

conservative and avoid users’ disbelief due to false alarms, a 

probability of false alarm (PFA) is set as 10
-6

. Gaussian 

distribution and Rayleigh distribution are fit with the first 30 

MQE instances , where Rayleigh distribution has a lower 

negative log likelihood value and is a better fit for the 

instances. The same test is conducted for varying number of 

instances (25 – 35) and Rayleigh distribution consistently 

outperforms Gaussian distribution, therefore the distribution 

is assumed to be Rayleigh in this case. Threshold values are 

calculated based on the different numbers of training 

instances, and the average is taken to be the eventual 

threshold.  

The reminder of the historical data is used for testing the 

SOM model. Each instance is input to the trained SOM, to 

generate a MQE value. Eventually, the trend of MQE (in 

dB) progression over time is shown in Figure 6. 

 

Figure 6. SOM-MQE result for degradation assessment 

As observed from the SOM-MQE result, there is a short 

duration in the middle of the history when MQE value 

noticeably exceeded the MQE threshold. Due to data 

confidentiality issue, the exact dates cannot be revealed. 

However, it can be found from SCADA variable Average 

active power [kW] that the turbine unit was producing zero 

power for a two-week duration. It was probably triggered by 

simply monitoring the level of SCADA variables and 

pausing the turbine operation due to certain alerts. 

In comparison, the MQE excess occurred about five days 

before the operation pause. The result shows that SOM-

MQE is capable of detecting drivetrain anomaly at an early 

stage. 

After the wind turbine resumes operation, the SOM model is 

re-trained since there might have been component 

replacement and drivetrain behavior should be compared 

with a new baseline. As shown in Figure 6, the new SOM 

model has a new MQE threshold for fault detection as well.  

For fault localization, features are grouped based on sensor 

locations in the schematics and SCADA variable names. 

The components here are denoted as component 1, 2, 3 and 

4, where actual component names are omitted as proprietary 

information. When MQE exceeds its threshold and fault is 

detected, the contribution of MQE increase is calculated for 

each component based on Eq. (18), which results in 0.9, 

0.05, 0.02 and 0.03 for the occurrence of the major 

downtime. Therefore the critical component in this case is 

decided to be component 1.  

A radar chart is created to view component criticality 

simultaneously (Figure 7). In this chart, each axis represents 

the contribution of each component to MQE abnormality. 

The closer the data point is to the center, the smaller the 

contribution is.  

 

Figure 7. Radar chart for fault localization 

3.3. Visualization 

To apply the developed tools for large-scale wind farms, a 

monitoring platform prototype is established for data 

management, visualization, analysis and fault reporting. The 

software modules include a) main interface, which directs 

user to different analytical modules: b) data organization, 

which sorts data instances and convert them to a compatible 

format; c) signal visualization and filtering, which provides 

visual observation of raw signal and configuration of data 

filtering; d) feature extraction, which enables feature 

configuration and extraction for various feature types, as 

well as SCADA variable selection; and e) degradation 

assessment and fault localization. The main module is able 

to invoke any other modules for particular tasks, and results 

from a former module are archived so that a latter module 
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can use them as input. When the analytical methods are 

improved and validated with more turbine units and data, 

the platform can operate in a systematic manner to analyze 

raw SCADA and CMS data and to provide users with direct 

health degradation information.  

4. CONCLUSION AND FUTURE WORK 

In this paper, an integrated methodology of degradation 

assessment and fault localization for wind turbine drivetrain 

components is presented. The result of the methodology is 

achieved by combining input from SCADA system and 

CMS, and validated with a planetary gearbox system of an 

offshore wind turbine. 

Besides using selected SCADA variables, a few feature 

extraction methods are employed to extract health indicators 

from CMS vibration data. The methods include time domain 

features, spectral kurtosis filtering, envelope analysis and 

wavelet energy analysis. A Self-organizing Map and 

minimum quantization error approach is adopted to evaluate 

the degradation condition of drivetrain, and contribution 

calculation is used to decide the location of defect on the 

drivetrain. In the case study, an incipient defect is detected 

and located before detection by the existing system, 

indicating the potential of predictive monitoring with the 

presented methods. 

In terms of future work, there are a few items to be 

considered for improving the methods and applications 

• Regarding wavelet transform for feature extraction, the 

selection of mother wavelet function is crucial for 

obtaining the optimal decomposition results. Rather 

than depending on experience, preference or visual 

inspection, an intelligent method can be designed and 

validated for monitoring either onshore or offshore 

turbine drivetrains. In literature, there has been 

interesting and valuable investigation for reference 

(Rafiee, Tse, Harifi and Sadeghi, 2009). 

• There are other multimodal methods that are applicable 

for degradation assessment. For example, Gaussian 

mixture model (GMM) estimates data distribution as 

linear combination of multivariate Gaussian distribution 

components. A L2 distance metric can be used to 

measure degradation.  

• In the case study, rotation speed for CMS vibration data 

is missing. As a result, there are some techniques that 

could not be evaluated on the test bed, such as time 

synchronous average, especially for the variable speed 

transmission system of wind turbines (Zhang, Wen and 

Wu, 2012). If rotational speed can be made available in 

the future, perhaps through a tachometer signal, more 

in-depth analysis can be conducted to investigate fault 

diagnosis methods. 

• As bearing specifications are not available for the 

presented case study, bearing failure frequencies are not 

inspected and potential bearing faults are not explored. 

Adding bearing-specific knowledge in the future will 

enable bearing diagnosis for different stages of 

drivetrain with given sensors. 

• The CMS instance selection method, which is proposed 

and implemented in this paper, can be incorporated 

with control of data sampling for CMS. CMS can refer 

to SCADA variables to evaluate if certain time duration 

is suitable for vibration data acquisition. An adaptive 

sampling mechanism can be developed to ensure CMS 

data quality, improve computation efficiency, and 

enhance degradation model accuracy. 
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APPENDIX 

Screenshots of software modules discussed in Section 3.3 

are included in this appendix. 

 

a) Main interface 
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b) Data organization module 

 

c) CMS data visualization module 

 

d) SCADA variable filtering module 

 

e) CMS feature extraction module 
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f) Degradation assessment and fault localization module 

Figure 8. Prototype of wind farm monitoring platform 
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