
RESEARCH ARTICLE Open Access

An integrated genomics analysis of
epigenetic subtypes in human breast
tumors links DNA methylation patterns to
chromatin states in normal mammary cells
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Abstract

Background: Aberrant DNA methylation is frequently observed in breast cancer. However, the relationship
between methylation patterns and the heterogeneity of breast cancer has not been comprehensively characterized.

Methods: Whole-genome DNA methylation analysis using Illumina Infinium HumanMethylation450 BeadChip arrays
was performed on 188 human breast tumors. Unsupervised bootstrap consensus clustering was performed to identify
DNA methylation epigenetic subgroups (epitypes). The Cancer Genome Atlas data, including methylation profiles of 669
human breast tumors, was used for validation. The identified epitypes were characterized by integration with publicly
available genome-wide data, including gene expression levels, DNA copy numbers, whole-exome sequencing data, and
chromatin states.

Results: We identified seven breast cancer epitypes. One epitype was distinctly associated with basal-like tumors
and with BRCA1 mutations, one epitype contained a subset of ERBB2-amplified tumors characterized by multiple
additional amplifications and the most complex genomes, and one epitype displayed a methylation profile
similar to normal epithelial cells. Luminal tumors were stratified into the remaining four epitypes, with differences
in promoter hypermethylation, global hypomethylation, proliferative rates, and genomic instability. Specific
hyper- and hypomethylation across the basal-like epitype was rare. However, we observed that the candidate
genomic instability drivers BRCA1 and HORMAD1 displayed aberrant methylation linked to gene expression
levels in some basal-like tumors. Hypomethylation in luminal tumors was associated with DNA repeats and
subtelomeric regions. We observed two dominant patterns of aberrant methylation in breast cancer. One pattern,
constitutively methylated in both basal-like and luminal breast cancer, was linked to genes with promoters in
a Polycomb-repressed state in normal epithelial cells and displayed no correlation with gene expression levels.
The second pattern correlated with gene expression levels and was associated with methylation in luminal
tumors and genes with active promoters in normal epithelial cells.
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Conclusions: Our results suggest that hypermethylation patterns across basal-like breast cancer may have limited
influence on tumor progression and instead reflect the repressed chromatin state of the tissue of origin. On the
contrary, hypermethylation patterns specific to luminal breast cancer influence gene expression, may contribute
to tumor progression, and may present an actionable epigenetic alteration in a subset of luminal breast cancers.

Keywords: Breast cancer, DNA methylation, Histone modification, Gene expression, Copy number alteration,
Mutation, BRCA1, BRCA2, ENCODE, The Cancer Genome Atlas

Background
Breast cancer is the most common cancer and one of

the leading causes of cancer death among women. The

disease is heterogeneous, both clinically and molecularly.

A large number of molecular studies have characterized

breast cancer on the basis of data derived from one or

two genome-wide measurement platforms, typically

using gene expression or DNA copy number platforms

[1, 2]. Arguably the most influential finding to emerge

from these studies is the robust identification of five

gene expression–based molecular subtypes of breast

cancer: two estrogen receptor (ER)-positive subtypes

separated mainly by relatively low (luminal A) and high

(luminal B) expression of proliferation-related genes, a

subtype enriched for ERBB2-amplified tumors [human

epidermal growth factor receptor 2 (HER2)-enriched], a

subtype associated with triple-negative [lacking expression

of ER, progesterone receptor (PR), and HER2] tumors

(basal-like), and a subtype with an expression profile

similar to that of normal breast tissue (normal-like) [3].

Later studies using multiple different platforms, including

exome sequencing, DNA copy number arrays, DNA

methylation arrays, and gene expression arrays, have

highlighted the importance of integrating information

across platforms to identify key characteristics of the

molecular subtypes of breast cancer [4].

DNA methylation patterns and chromatin states are

epigenetic features often found to be altered in cancer

cells [5]. The breast cancer molecular subtypes have

been found to be associated with characteristic DNA

methylation patterns on the basis of limited panels of

CpG sites [6–8]. Typically, three major DNA methyla-

tion subtypes of breast tumors have been identified. One

group is characterized by the lowest levels of DNA

methylation and is associated with basal-like tumors. A

second group is characterized by hypermethylation of pro-

moter CpG sites and is associated with luminal B tumors.

A third group is associated with luminal A tumors,

whereas the HER2-enriched and normal-like gene expres-

sion–based subtypes have been found to have limited as-

sociation with DNA methylation subtypes. Later, these

observations were confirmed using genome-wide sets of

CpG sites located primarily in promoter regions [4] as well

as across the entire genome [9].

There are many links between chromatin states and

DNA methylation [5]. In cancer, widespread correlated

changes in DNA methylation patterns and chromatin

states have been observed [10]. As these features collect-

ively are associated with whether genes are transcrip-

tionally active or inactive, they may underlie phenotypic

changes observed in cancer cells. Furthermore, recent

sequencing efforts have identified mutations of genes

leading to altered epigenetic patterns for many tumor

types [10]. In breast cancer specifically, a number of

links between DNA methylation and chromatin state

have been observed. For example, promoters that are

hypermethylated are often in lineage-commitment genes

that in embryonic stem cells are in a transcription-ready

bivalent chromatin state characterized by both active

and repressive marks [11, 12]. Another example is the

observation of extensive chromatin state changes upon

loss of DNA methylation in breast cancer coupled with

maintaining these hypomethylated regions as transcrip-

tionally silent [13].

However, less is known about how DNA methylation

patterns and epigenetic states on a genome-wide scale

are coupled with breast cancer heterogeneity as reflected

in the breast cancer subtypes. The development of plat-

forms for genome-wide characterization of cells at many

levels, together with large public datasets of normal and

malignant breast samples, have provided opportunities

to address this question. In the present study, we investi-

gated breast cancer heterogeneity on the basis of

genome-wide DNA methylation profiles of human tu-

mors and integrated our findings with various types of

molecular data, including chromatin states in both em-

bryonic stem cells and human mammary epithelial cells

(HMECs) generated in the ENCODE project [14]. In a

discovery cohort with DNA methylation profiles from

188 samples, we identified seven epitypes of breast cancer

that were validated in 669 independent samples from The

Cancer Genome Atlas (TCGA) breast cancer project [4].

By integrating analyses across multiple platforms, we

show that the epitypes are associated with specific gene

expression subtypes, mutations, and DNA copy number

aberrations (CNAs). To characterize epitype-specific

hyper- and hypomethylation patterns, we identified sets

of CpG sites that display differential methylation status
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between normal breast tissue and tumors of an epitype.

These analyses revealed that DNA hypermethylation in

luminal and basal-like tumors occurs in different chro-

matin contexts with different underlying regulatory po-

tential in stem and mammary epithelial cells. Moreover,

hypomethylation in luminal tumors was associated with

DNA repeats and subtelomeric regions. Our results

highlight links between breast cancer subtypes and the

epigenome that could improve understanding of bio-

logical mechanisms underlying breast cancer hetero-

geneity and could eventually contribute to diagnostics

and therapeutic interventions.

Methods

Sample material for methylation analysis

Fresh frozen breast tumor tissues (n = 188) obtained

from the Southern Sweden Breast Cancer Group tissue

bank at the Department of Oncology and Pathology,

Skåne University Hospital (Lund, Sweden), and from the

Department of Pathology, Landspitali University Hospital

(Reykjavik, Iceland), were used as a discovery cohort. The

188 breast tumor tissues were from 181 unique female pa-

tients (183 primary tumor samples, 2 metastatic samples,

and 3 locoregional recurrences; for 3 patients a primary

and a recurrent sample were included, and for 4 patients 2

different primary tumors were included). The study was

approved by the regional ethics committee in Lund, which

waived the requirement for informed consent for the

study (numbers LU240-01 and 2009/658), as well as by

the Icelandic Data Protection Committee and the National

Bioethics Committee of Iceland. For Icelandic patients,

written informed consent was obtained according to

Icelandic national guidelines.

Breast invasive carcinomas from the TCGA project

with 450K methylation data available (based on TCGA

update 27 September 2013) were used as a validation co-

hort [4]. Replicated tumors were removed and female

patients selected, resulting in a validation cohort consist-

ing of 669 breast carcinomas from 666 unique female

patients (665 primary tumor samples and 4 metastatic

samples; for 3 patients a primary and a metastatic sam-

ple were included). For the normal cohort, 96 normal

specimens originating from normal breast tissue from 96

different female patients from the TCGA project were

used (90 of these patients also have a tumor sample in

the validation cohort).

DNA from human mammary fibroblasts, HMECs,

human mammary endothelial cells (ScienCell Research

Laboratories, Carlsbad, CA, USA), and peripheral blood

leukocytes (Promega, Madison, WI, USA) was used to

generate a cohort of normal cell types. DNA methylation

data from subpopulations of human blood cells gener-

ated by Reinius et al. [15] were downloaded from the

National Center for Biotechnology Information (NCBI)

Gene Expression Omnibus (GEO) [16] accession number

[GEO:GSE35069].

DNA methylation analysis

Genome-wide methylation data for the discovery cohort

and the cohort of normal cell types were generated at SCI-

BLU Genomics, Lund University, using the Illumina Infi-

nium HumanMethylation450 BeadChip Array (Illumina,

San Diego, CA, USA) according to the manufacturer’s in-

structions. For the discovery cohort, DNA was extracted

as previously described [6]. DNA was treated with bisulfite

using the EZ DNA Methylation Kit (Zymo Research,

Irvine, CA, USA) according to the manufacturer’s in-

structions. DNA methylation data for the discovery

cohort and the cohort of normal cell types are avail-

able in the NCBI GEO [16] under accession numbers

[GEO:GSE75067] and [GEO:GSE74877], respectively.

The 450K methylation data were processed similarly

for all cohorts. Methylated and unmethylated signal in-

tensities were obtained from GenomeStudio (Illumina)

for the discovery and normal cell type cohorts, and

from TCGA methylation level 2 data for the valid-

ation and normal breast tissue cohorts. Signal inten-

sities were converted into β values [β =methylated/

(methylated + unmethylated)] representing the methylation

levels. CpG sites with detection p values greater than 0.05

or the number of beads for a channel fewer than 3 were

considered missing measurements, and β values were set

to “NA” (with the exception that the number of beads was

not available for the TCGA cohorts). No sample had more

than 10,000 missing values (discovery cohort range 835–

9438, validation cohort range 214–4746, normal breast tis-

sue cohort range 258–2700, normal cell type cohort range

758–1278). For the blood subpopulation data, β values

were obtained as processed in the NCBI GEO.

Adjustment for bias between Infinium I and II assay

CpG probes was performed by using a peak normalization

algorithm. Briefly, for each sample, we performed a

peak-based correction of Illumina I and II chemical

assays inspired by Dedeurwaerder et al. [17] as previously

described [18]. For each chemical assay separately, we

smoothed the β values (Epanechnikov smoothing kernel)

to estimate unmethylated and methylated peaks. The

unmethylated peak was moved to 0 and the methylated

peak to 1 using linear scaling, with β values in between

stretched accordingly. β values less than 0 were set to 0

and values greater than 1 were set to 1.

A DNA hypermethylation score was calculated as de-

scribed elsewhere [19]. The hypermethylation score was

calculated for two sets of CpG sites: a global score in

which all CpG sites on the platform contributed, and a

promoter CpG island score in which CpG sites with

both Illumina annotation TSS1500 or TS200 and Illumina

CpG island annotation contributed.
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Identification and validation of breast cancer epitypes

Unsupervised bootstrap consensus clustering was per-

formed to identify DNA methylation subgroups of tu-

mors using 2000 bootstrap iterations as described

elsewhere [20]. The ward.D agglomerative method with

Pearson correlation–based distance in the R package

hclust was used for both the inner clustering (based on

methylation patterns) and the outer clustering (based on

bootstrap coclustering frequencies). DNA methylation

centroids for an epitype were constructed by taking the

average β value for each CpG site across the tumors in

the epitype in the discovery cohort. Pearson correlations

between tumors in the validation cohort and the centroids

were calculated. Each tumor in the validation cohort was

classified into an epitype on the basis of the centroid to

which the correlation was largest. Principal component

analysis was used to determine that no technical artifacts

influenced the methylation data or the epitypes and that

the epitypes were associated with the dominant variation

in genome-wide methylation data [21].

Gene expression data analysis

Gene expression data from oligonucleotide microarrays

were available for 158 of the tumors in the discovery co-

hort as part of accession number [GEO:GSE25307],

which encompasses 577 breast tumors [22]. The normal-

ized gene expression values (mean-centered across 577

tumors) in accession number [GEO:GSE25307] were

used. Probes were mapped to Entrez Gene IDs, and the

probe with the largest variation in expression across the

577 tumors was selected for each gene, resulting in

relative gene expression levels for 7499 genes in the

discovery cohort. TCGA RNAseq v2 level 3 data were

available for a total of 994 tumors and 106 normal

breast tissue samples, including 661 of the 669 tumors in

the validation cohort. The gene-normalized RSEM count

estimates were offset by a pseudocount of 1, log2-trans-

formed, and mean-centered across the 994 tumor samples

to generate relative gene expression levels for 20,531 genes

in the validation cohort. For some analyses, we were inter-

ested in comparing estimates of the expression levels of

different genes and therefore could not use relative ex-

pression levels across tumors. In these analyses, we took

the effective transcript length into account by using the

gene RSEM scaled estimates (tau) from the TCGA data

transformed into transcripts per million (TPM), and used

log2(TPM+ 1) as a measure of gene expression [23]. The

R package genefu was used to assign expression-based

molecular subtype to tumor samples on the basis of

PAM50 using relative expression levels in both the discov-

ery and validation cohorts [24]. Expression data for 35 and

50 of the 50 PAM50 genes were available in the discovery

and validation cohorts, respectively. The R package iC10

was used to assign IntClust groups to tumor samples in

both the discovery and validation cohorts [25]. For each

cohort, the iC10 package was run with the following

settings: expression data only, probe mapping based on

gene symbols, and normalizing each probe to a Z-score.

Expression data for 346 and 584 of the 612 iC10 genes

were available in the discovery and validation cohorts,

respectively. The activity of eight gene modules, repre-

senting transcriptional programs in breast cancer, was

calculated in each tumor in both the discovery and val-

idation cohorts as the average relative expression level

of the genes in a module [26]. Genes in modules were

mapped to genes in expression data based on Entrez

Gene ID.

Correlation between DNA methylation and gene expression

We calculated correlations between methylation and rela-

tive gene expression levels using the validation cohort be-

cause the number of genes was limited on the expression

platform used in the discovery cohort. Matching on gene

symbol, 324,991 CpG sites were associated with a unique

gene in the TCGA gene expression data and displayed

variation in methylation levels across the validation co-

hort. Pearson correlations of 0.2 and −0.2 between gene

expression and methylation levels were associated

with p values much less than 10−6. Hence, correcting for

multiple hypothesis testing, less than 1 CpG site having a

Pearson correlation greater than 0.2 or less than −0.2 is

expected by chance across the 661 tumors.

Functional classification of gene sets

Enrichment of functional classification of genes in

identified gene sets was analyzed using the DAVID

Functional Annotation Tool [27] with the default Homo

sapiens background and the false discovery rate (FDR) op-

tion to correct for multiple hypothesis testing. Gene set

enrichment analysis was used to investigate the overlap of

genes in identified gene sets with genes in 10,348 gene sets

collected in the Molecular Signatures Database (MSigDB)

[28]. In these analyses, CpG annotation data obtained

from Illumina were used to map CpG sites to genes,

and only CpG sites mapping to a unique gene were

included.

Processing of human genome data

Chromatin states in human embryonic stem cells

(H1hESCs) and HMECs, as well as peak calls for DNase I

hypersensitive sites and EZH2 binding sites in HMECs

from the uniform pipeline, all generated by the ENCODE

consortium, were obtained using the UCSC Genome

Browser [14, 29]. CpG sites were mapped to chromosome

regions with information from ENCODE using the R

package GenomicRanges [30]. CpG sites were mapped to

DNA repeat regions using the repeats_rmsk_hg19.txt table

in the UCSC Genome Browser.
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BRCA1 and HORMAD1 promoter methylation analysis

BRCA1 promoter methylation analysis was performed

using the 450K methylation data. To identify informative

CpG sites, we screened all 44 CpG sites on the platform

located within BRCA1 transcripts or 1 kb upstream for

negative correlation (Pearson correlation less than −0.2)

with BRCA1 gene expression levels using the validation

cohort. We identified 21 informative CpG sites. All in-

formative CpG sites were located within 1 kb centered

on the BRCA1 transcription start site. Tumors were

classified as BRCA1 promoter methylated if the average

β value for the informative CpG sites was greater than

0.2. The average β value for the informative CpG sites

ranged from 0.004 to 0.03 across the 96 normal tissue

samples in the normal cohort. To validate BRCA1 pro-

moter status, we used data available for 71 tumors from

a previous study in the discovery cohort and obtained

with a PSQ HS 96 pyrosequencing system (Biotage,

Uppsala, Sweden) as described [22]. HORMAD1 pro-

moter methylation analysis was performed in the same

way as it was for BRCA1. We identified seven HOR-

MAD1 informative CpG sites among nine CpG sites lo-

cated within HORMAD1 transcripts or 1 kb upstream.

All informative CpG sites were located within 1 kb cen-

tered on the HORMAD1 transcription start site. Tumors

were classified as HORMAD1 promoter unmethylated if

the average β value for the informative CpG sites was

less than 0.8. The average β value for the informative

CpG sites ranged from 0.91 to 0.99 across the 96 normal

tissue samples in the normal cohort.

Somatic mutation analysis

Somatic mutations from exome sequencing were available

from TCGA for 645 of the 669 tumors in the validation co-

hort [mutation annotation format (MAF) file, curated level

2 data, version 2.1.1.0]. For some tumors, the MAF file con-

tained mutations called from multiple exome sequencing

experiments with different reference samples or different

tumor aliquots. (For 34 of the tumors mutations were from

2 experiments, and for 1 tumor mutations were from 3 ex-

periments.) We called gene mutations when genes were

mutated in at least one experiment for the tumor, and the

total number of single-base substitutions for each tumor

was calculated as the average for the multiple experiments.

Copy number analysis

Copy number estimates and CNAs obtained from bacter-

ial artificial chromosome (BAC) arrays were available for

180 of 188 tumors in the discovery cohort from previous

studies [22, 31, 32]. Affymetrix Genome-Wide Human

SNP Array 6.0 (Affymetrix, Santa Clara, CA, USA) level 3

data were available from TCGA for 660 of 669 tumors in

the validation cohort and were used to generate copy

number estimates and CNAs as described elsewhere [33].

The fraction of the genome altered (FGA) by copy number

alterations was estimated as the number of probes with

copy number gain or loss divided by the total number of

probes for the platform. Amplifications were identified

using a previously defined set of significant DNA CNAs in

breast cancer [31]. This set was identified using GISTIC

[34]. GISTIC regions with an average copy number esti-

mate of probes in the region greater than 0.8 were called

as amplifications in both the discovery and validation co-

horts. Complex arm-wise aberration index (CAAI) scores

were calculated for each tumor as described by Russnes et

al. [35]. A case was classified as CAAI-positive if one or

more chromosome arms were affected by complex alter-

ations with a CAAI score greater than 2 for samples in the

discovery cohort or greater than 4 in the TCGA cohort.

The reason for the difference in cutoff between the co-

horts is due to the different platforms from which the

copy number data were generated (Affymetrix Genome-

Wide Human SNP Array 6.0 for TCGA, BAC arrays for

the discovery cohort). The different platforms have differ-

ent responses (platform-related characteristics) to copy

number change (amplitude), and this amplitude is an im-

portant variable in the CAAI calculation.

Statistical analysis

Wilcoxon tests, Kruskal-Wallis tests, χ2 tests, t tests, and

Fisher’s exact tests were performed in R. Adjustment of p

values for multiple-testing correction of these statistical

tests was performed using p.adjust in R with the Benja-

mini-Hochberg method to control the FDR [36]. Sur-

vival analysis was performed in R using the survival

package. Survival functions for patients stratified by epi-

types were estimated using the Kaplan-Meier estimator

and compared using the log-rank test. In the survival ana-

lysis, 169 samples (first primary tumor with available sur-

vival data) were included for the discovery cohort and 654

samples (primary tumor with available survival data) were

included for the validation cohort.

Results
Identification of CpG sites with breast cancer–specific

methylation patterns

We compared the DNA methylation status of more than

480,000 CpG sites between 188 breast cancer samples

(Table 1, discovery cohort) and 96 normal breast tissue

specimens (normal cohort). To identify CpG sites with

different methylation levels in tumors as compared with

normal samples, we first identified 284,627 CpG sites as

being either methylated (β > 0.7) or unmethylated (β < 0.3)

across all 96 samples in the normal cohort (allowing for 2

missing values). Among these CpG sites, we identified

2108 CpG sites that changed methylation status in at

least 5 % (n = 10) of the breast tumors (Additional file 1:

Table S1). Of these, 1016 CpG sites were methylated in
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breast cancer (β < 0.3 in the normal samples and β > 0.7 in

the tumor samples) and 1092 CpG sites were unmethy-

lated in breast cancer (β > 0.7 in the normal samples and

β < 0.3 in the tumor samples). We observed that more than

95 % of these 2108 CpG sites also changed methylation

status in at least 5 % of the tumors in the TCGA validation

cohort. Because we identified CpG sites that display tumor-

specific methylation robustly across cohorts from different

populations, including the TCGA validation cohort with

matched tumor-normal pairs, we concluded that the influ-

ence of single-nucleotide polymorphisms and other germ-

line variants is limited on the identified CpG sites.

Unsupervised identification of seven epitypes in breast

cancer

We performed unsupervised bootstrap consensus clustering

analysis based on the 2108 CpG sites with tumor-specific

methylation levels, and we identified 7 clusters (hereafter

referred to as epitypes ET1–ET7) of breast cancer sam-

ples in the discovery cohort (Fig. 1a, Additional file 2:

Figure S1A). In addition to basing the 7 epitypes on 2000

bootstrap iterations of clustering, we tested the robustness

of the epitypes in several ways. First, we evaluated the

number of epitypes by performing bootstrap clustering

analysis looking for three to ten clusters. Typically, un-

stable clusters, clusters that clearly contained subclusters,

or clusters with fewer than five tumors were identified.

However, for three and seven clusters, robust solutions

were obtained. We decided upon the solution with the lar-

gest number of robust clusters (seven clusters), which pro-

vided a relatively consistent subdivision from the three-

cluster solution (Additional file 2: Figure S1B). Second, the

seven epitypes were robust across different CpG sets in un-

supervised bootstrap clustering analysis (Additional file 2:

Figure S1C, D). Furthermore, although the epitypes were

identified using tumor-specific CpG sites, they were associ-

ated with the dominant variation in the genome-wide

DNA methylation levels as measured by the entire plat-

form (Additional file 2: Figure S1E). Third, technical fac-

tors, such as bisulfite conversion plate or BeadChip array,

influenced neither the genome-wide methylation data nor

the epitypes (Additional file 2: Figure S1E–G). ET1 showed

a methylation pattern most similar to normal samples, ET4

a global hypomethylation pattern, ET5 a promoter CpG is-

land hypermethylation pattern, and ET7 a promoter CpG

island hypomethylation pattern (Fig. 1b). The proliferative

rates of the tumors, as measured by the fraction of cells in

S phase determined by flow cytometry, increased from

ET2 to ET7 (Fig. 1c).

Validation of breast cancer epitypes

We constructed a classifier for the 7 epitypes using the

discovery cohort and the 2108 tumor-specific CpG sites.

Next, we classified 669 independent breast tumors in the

TCGA validation cohort (Table 1). ET4 showed a global

hypomethylation pattern, ET5 a promoter CpG island

hypermethylation pattern, and ET7 a promoter CpG is-

land hypomethylation pattern also in the validation cohort

(Additional file 2: Figure S2A). The epitype classification

explained the dominant variation in the genome-wide

DNA methylation levels (Additional file 2: Figure S2B).

Notably, the epitypes contributed more to the total vari-

ation in DNA methylation than clinicopathological and

technical factors. Again, the epitypes were not associated

with technical factors such as TCGA batch and BeadChip

array (Additional file 2: Figure S2C-D). Moreover, we

performed unsupervised bootstrap clustering analysis

to independently derive epitypes in the validation cohort,

following the same approach as in the discovery cohort.

This analysis resulted in eight clusters of tumors that over-

lapped extensively with the classification into the seven epi-

types (Additional file 2: Figure S2E). The main difference

Table 1 Patient and tumor characteristics of included cohorts

Characteristic Discovery cohort (n) Validation cohort (n)

Total number of samples 188 669

Unique patients 181 666

Primary tumors 183 665

Recurrent tumors 5 4

Median age, years 48 58

Estrogen receptor status

Positive 97 474

Negative 77 142

Tumor size

T1 66 176

T2 81 371

T3 5 86

Node status

Positive 59 356

Negative 91 290

Histological type

Ductal 120 446

Lobular 8 134

Medullary 3 5

Mixed 9 24

Other 18 44

Molecular subtype

Luminal A 41 251

Luminal B 30 144

HER2-enriched 32 73

Basal-like 44 126

Normal-like 11 67

HER2 human epidermal growth factor receptor 2
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was that in the larger validation cohort there was support

to robustly split ET3 into two groups. Together, these re-

sults demonstrate that the breast cancer epitypes are repro-

ducible and can be robustly identified across independent

cohorts.

Epitypes are associated with gene expression phenotypes

The seven epitypes were associated with the molecular

subtypes of breast cancer in both the discovery and

validation cohorts (Fig. 2a). ET1, which showed a methyla-

tion pattern similar to that of normal cells, contained

tumors of all subtypes. Epitypes ET2–ET5 were associated

with luminal cancers and showed, from ET2 to ET5, a

gradual decrease in the fraction of luminal A tumors and

an increase in the fraction of luminal B tumors. In

addition, the luminal epitypes showed a gradual shift away

from the methylation pattern of normal cells (Fig. 1). ET6

showed an association with HER2-enriched tumors, and

ET7 contained the majority of basal-like tumors.

The separation of luminal tumors into luminal A

and B is based primarily on differential expression of

proliferation-related genes. However, the expression of

proliferation-related genes in luminal tumors is a con-

tinuum [37]. Hence, the separation into luminal A and B

depends on the cutpoint in a continuous distribution. This

cutpoint is typically highly dependent on the composition

of tumors in the analyzed dataset, making robust assign-

ment of individual tumors to luminal subtypes particularly

difficult [37–39]. Therefore, we investigated the activity

of eight breast cancer–specific gene expression modules

[26] in both the discovery and validation cohorts and

further substantiated the association between epitypes

and gene expression phenotypes (Fig. 2b, Additional file 2:

Figure S3). As expected, the steroid response module

showed high activity in epitypes ET2–ET5 and low activity

in ET7. The proliferation-related mitotic progression

module displayed increasing expression levels across the

luminal epitypes from ET2 (lowest levels) to ET5 (highest

levels), in agreement with proliferative rates as measured

by the fraction of cells in S phase determined by flow cy-

tometry (Fig. 1c). Moreover, the basal module, containing

basal cell keratins and known to display relatively high ex-

pression in normal breast tissue [1, 26], showed decreased

expression levels across the luminal epitypes from ET2

(highest levels) to ET5 (lowest levels). Together, these re-

sults suggest that luminal tumors display promoter

methylation patterns with a gradual shift away from nor-

mal cells associated with higher proliferative rate, lower

normal cell content, and the luminal B subtype. Moreover,

the results validate the strong association between DNA

methylation patterns and gene expression phenotypes [6].

Characteristics of CpG sites with breast cancer–specific

methylation patterns

Overall, DNA methylation patterns followed the expected

pattern along gene structure, with low methylation levels

near transcription start sites and high methylation levels

in gene bodies, 3′ untranslated regions, and intergenic re-

gions (Fig. 3a). Of the 324,991 CpG sites that mapped to a

unique gene (a total of 18,797 genes) in the validation

gene expression data, 35,329 CpG sites (7169 genes)

showed a positive correlation (Pearson correlation greater

than 0.2) and 48,593 CpG sites (10,724 genes) showed a

negative correlation (Pearson correlation less than −0.2)

between DNA methylation and gene expression levels in

the validation cohort. A total of 4829 genes were associ-

ated with CpG sites with positive correlation as well

as with CpG sites with negative correlation. CpG sites

with negative correlation were enriched near transcription

start sites, and CpG sites with positive correlation were

enriched in gene bodies (Fig. 3b).

Of the 1016 CpG sites methylated in breast cancer

compared with normal samples, 690 were annotated to a

single gene corresponding to a total of 515 unique genes.

Functional analysis of these hypermethylated genes using

DAVID [27] showed significant enrichment for categories

including homeobox genes (FDR = 2e-17), developmental

proteins (FDR = 1e-15), and cell fate commitment (FDR =

(See figure on previous page.)
Fig. 1 Identification of seven DNA methylation epitypes in breast cancer. a DNA methylation epitypes in the discovery cohort based on bootstrap
clustering of 2108 CpG sites with breast cancer–specific methylation levels. The heat map displays β values (rows) ranging from unmethylated (blue) to
methylated (yellow) for three sample groups (columns) comprising 188 breast tumors divided into 7 epitypes by bootstrap clustering, 96 normal breast
tissues from The Cancer Genome Atlas, and 4 normal cell types (HMEC human mammary epithelial cells, HMF human mammary fibroblasts, HMEndoC
human mammary endothelial cells, Blood blood leukocytes). Sample annotations at the bottom display estrogen receptor status, gene expression
subtypes, germline mutations in BRCA1 and BRCA2 (black = yes, white = no, gray= NA). CpG tracks on the left side: GEX correlation between DNA
methylation and gene expression levels across the validation cohort (red = positive correlation, green = negative correlation, gray= low correlation,
white = no associated gene); HMEC-Chrom and H1hESC-Chrom chromatin states in human mammary epithelial cells and H1 human embryonic stem
cells, respectively (red = active promoter, purple= poised promoter, gray = Polycomb-repressed, yellow= enhancer, green = transcribed, blue= insulator,
white = heterochromatin); HMEC-EZH2 EZH2 targets in human mammary epithelial cells; HMEC-DNASE accessible DNA in human mammary epithelial
cells (black = yes, white = no); CpG island track (black = island, gray= shore/shelf, white = open sea). CpG track on the right side: Group CpG sites with
epitype-specific methylation patterns (red =methylated in ET7, light blue=methylated in ET5, green= demethylated in ET4, blue= demethylated in
luminal epitypes, orange = demethylated in ET7). b Global hypermethylation scores for all CpG sites (left) and all CpG sites in promoters and CpG islands
(right) across the epitypes. c Proliferative rates of tumors across the epitypes. In (b) and (c), the number of tumors in each epitype is shown at the top.
ER estrogen receptor, HER2 human epidermal growth factor receptor 2
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8e-7). Of the 1092 CpG sites unmethylated in breast can-

cer, 645 were annotated to a single gene corresponding to

a total of 416 unique genes. These hypomethylated genes

showed significant enrichment for categories that included

glycoproteins (FDR = 6e-15), keratinization (FDR = 3e-4),

and epithelial cell differentiation (FDR = 0.008).

The CpG sites methylated in breast cancer compared

with normal breast samples were enriched in CpG islands

but also in shores, whereas the CpG sites unmethylated in

breast cancer were enriched in open sea (Fig. 3c). More-

over, the CpG sites methylated in breast cancer over-

lapped with DNase I hypersensitive sites associated with

open chromatin and active transcription as well as with

regions bound by EZH2 in HMECs (Fig. 1). To investigate

the genomic context of the CpG sites with tumor-specific

methylation levels in more detail, we used 15 chromatin

states based on genome-wide histone modification

patterns and CTCF binding patterns in both H1hESCs

and HMECs from the ENCODE Consortium [14, 29].

The chromatin states summarize coordinated chroma-

tin marks. For example, trimethylation of lysine 27 on

histone H3 (H3K27me3), H3K4me3, and dimethylation of

lysine 4 on histone H3 (H3K4me2) jointly mark a

bivalent, transcription-ready poised promoter state;

H3K4me3, H3K4me2, histone H3 acetylated on lysine

27 (H3K27ac), and H3K9ac jointly mark an active
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promoter state; H3K27me3 alone marks a Polycomb-

repressed state; and a heterochromatin/low signal

state lacks histone marks [29]. CpG sites unmethylated

in breast cancer compared with normal breast cells

were located in genomic regions in the heterochroma-

tin/low signal state in H1hESCs, and even more so in

HMECs (Fig. 3d). CpG sites specifically methylated in

breast cancer were located primarily in genomic re-

gions in the poised promoter state in H1hESCs. Inter-

estingly, in HMECs, the breast cancer methylated CpG

sites were predominantly enriched in genomic regions

in the poised promoter or in the Polycomb-repressed

state (Fig. 3d). These results confirm the widespread

observation that DNA methylation in cancer occurs in

genes with promoters marked by Polycomb-mediated

H3K27me3 in embryonic stem cells [40], but they also

suggest a potential to further characterize methylation

patterns in breast cancer by using histone modifica-

tion patterns from mammary cells [6].

Identification of CpG sites with epitype-specific

hypermethylation

We observed a gradual increase in methylation across

the luminal epitypes, ET2–ET5, of the CpG sites methyl-

ated in breast cancer, whereas only a subset of these

CpG sites appeared to be methylated in the basal-like

epitype ET7 (Fig. 1a). Consequently, we decided to in-

vestigate the characteristics of CpG sites methylated in

basal-like breast cancer and specifically in luminal breast

cancer, separately. We first identified 39 CpG sites

among the 1016 breast cancer methylated CpG sites that

were methylated in ET7 by selecting CpG sites having
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an average β value greater than 0.5 across the tumors in

ET7 using the discovery cohort. These CpG sites were

not specific to ET7 but were also methylated in ET5

(Additional file 2: Figure S4A). None of the breast can-

cer methylated CpG sites had an average β value greater

than 0.5 in ET7 and an average β value less than 0.1 in

ET5, indicating that methylation in the basal-like epitype

ET7 is not epitype-specific, but rather reflects constitu-

tive methylation present in both basal-like and some lu-

minal breast cancers. Second, we identified 90 CpG sites

that were specifically methylated in the luminal epitypes

by selecting CpG sites having an average β value greater

than 0.5 across the tumors in the hypermethylated

luminal epitype ET5 and an average β value less than

0.1 across the tumors in ET7 using the discovery co-

hort. The CpG sites methylated in ET5 displayed a

gradual increase in methylation across the luminal epi-

types ET2–ET5 (Additional file 2: Figure S4B). The

methylation patterns of the sets of CpG sites methylated

in ET7 and ET5 were both validated in the validation

cohort (Additional file 2: Figure S4).

Functional characteristics of CpG sites with epitype-

specific hypermethylation

Next, we investigated the characteristics of CpG sites

methylated in ET7 and ET5, separately. Of the 39 CpG

sites methylated in ET7, 20 were annotated to a single

gene, corresponding to a total of 17 unique genes. Of

the 90 CpG sites methylated in ET5, 74 were annotated

to a single gene, corresponding to a total of 67 unique

genes. Functional analysis of these two gene sets

using DAVID did not identify significant enrichment

(FDR < 0.01) for any categories except for zinc finger

domains in the genes methylated in ET7 (FDR = 0.003).

To gain further insight into the functions of genes in these

two gene sets, we used gene set enrichment analysis to

investigate their overlap with genes in 10,348 gene sets

collected in the MSigDB [28]. The genes methylated in

ET7 displayed significant overlap with gene sets contain-

ing Polycomb-repressed genes in human embryonic stem

cells (FDR = 0.009 for H3K27me3 targets, FDR = 0.04 for

SUZ12 targets, FDR = 0.04 for EED targets) [41]. The gene

sets with most significant overlaps with genes methylated

in ET5 fell into two categories. First, they were also

enriched in gene sets of Polycomb-repressed genes in

human embryonic stem cells (FDR = 2e-9 for H3K27me3

targets, FDR = 5e-8 for SUZ12 targets, FDR = 5e-8 for

EED targets) [41]. Second, they were enriched in gene sets

associated with different expression patterns between

luminal and basal-like cells: genes downregulated in

luminal-like cell lines compared with mesenchymal-like

ones (FDR = 1e-9) [42], genes upregulated in the basal

subtype (FDR = 3e-8), and genes downregulated in the

luminal B subtype of breast cancer (FDR = 8e-7) [43], as

well as genes upregulated in mammary stem cells

(FDR = 3e-6) and genes downregulated in mature mam-

mary luminal cells (FDR = 7e-6) in both mouse and human

species [44]. These findings support our previous observa-

tion, based on a limited set of CpG sites, that many genes

with subtype-specific expression may be regulated through

methylation in breast cancer [6].

Genomic characteristics of CpG sites with epitype-specific

hypermethylation

The CpG sites methylated in ET5 were located primarily

in islands (68 %) but also in shores (23 %), whereas the

CpG sites methylated in ET7 were located in islands (44 %)

and shores (49 %) in similar proportions. In H1hESCs, the

sets of CpG sites methylated in ET7 and ET5 were both

located primarily in genomic regions in promoter states, in

particular in the poised promoter state (Fig. 4a). However,

in HMECs, the CpG sites methylated in ET7 were not

enriched in genomic regions in the same chromatin states

as the CpG sites methylated in ET5 (Fig. 4b). In HMECs,

the CpG sites methylated in ET5 were enriched in regions

in weak promoter and poised promoter states, whereas the

majority of the CpG sites methylated in ET7 were located

in regions in the Polycomb-repressed state. We used valid-

ation cohort gene expression data to further substantiate

the differences between these two methylation patterns.

We matched 17 of the CpG sites methylated in ET7 to 16

unique genes and 72 of the CpG sites methylated in ET5

to 66 unique genes in the validation gene expression data.

The CpG sites methylated in ET7 displayed no correlation

between methylation and expression levels, and the genes

were expressed at very low levels both in normal breast tis-

sue and across breast cancers of all epitypes (Fig. 4c). On

the contrary, the CpG sites methylated in ET5 displayed

negative correlations between expression and methylation

levels, and the genes were expressed in normal breast tis-

sue and displayed decreasing expression levels across the

luminal epitypes ET2–ET5 in concordance with their

methylation levels (Fig. 4c, Additional file 2: Figure S4B).

Taking these data together, by integrating genomic data

from multiple levels, we show that DNA methylation in

luminal and basal-like breast tumors is associated with

different chromatin states and different gene expression

patterns.

Identification of CpG sites with epitype-specific

hypomethylation

Most CpG sites unmethylated in breast cancer compared

with normal samples were hypomethylated in the globally

hypomethylated luminal epitype ET4 (Fig. 1a). However,

hypomethylation in luminal tumors displayed two dom-

inant patterns: Some CpG sites displayed hypomethyla-

tion more restricted to ET4, whereas others were

hypomethylated in ET4 as well as in other luminal
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epitypes, in particular in ET5 (Fig. 1a). We also observed

that there appeared to be a set of CpG sites specifically

hypomethylated in the basal-like epitype ET7 (Fig. 1a).

Consequently, we decided to investigate epitype-specific

hypomethylation in breast cancer by identifying CpG sites

belonging to these three patterns: hypomethylation

specific to ET4, hypomethylation across luminal epitypes,

and hypomethylation specific to ET7.

First, we identified 110 CpG sites among the 1092

CpG sites unmethylated in breast cancer that were spe-

cifically unmethylated in the globally hypomethylated

epitype ET4 by selecting CpG sites having an average

β value less than 0.5 across the tumors in ET4 and

an average β value greater than 0.7 across the tumors

in both ET5 and ET7 using the discovery cohort

(Additional file 2: Figure S5A). Of these CpG sites, 48

were annotated to a single gene corresponding to 37

unique genes. Second, we identified 261 CpG sites that

were unmethylated in luminal breast cancer by selecting

CpG sites having an average β value less than 0.5 in ET5

and an average β value greater than 0.7 in ET7 using the

discovery cohort. These CpG sites displayed gradual de-

methylation across the luminal epitypes from ET2 to ET5

(Additional file 2: Figure S5A), and 176 of them were an-

notated to a single gene corresponding to 156 unique

genes. Third, we identified 15 CpG sites among the 1092

breast cancer unmethylated CpG sites that were specific-

ally unmethylated in ET7 by selecting CpG sites having

an average β value less than 0.5 across the tumors in ET7

and an average β value greater than 0.7 across the tumors

in ET4 using the discovery cohort (Additional file 2:

Figure S5A). Of the 15 CpG sites, 9 were annotated to a

single gene corresponding to a total of 8 unique genes.

The methylation patterns across epitypes of all three sets
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of hypomethylated CpG sites were validated in the TCGA

validation cohort (Additional file 2: Figure S5A).

Characteristics of CpG sites with epitype-specific

hypomethylation

Both the set of CpG sites demethylated specifically in

ET4 and the set demethylated gradually across luminal

epitypes were located primarily in heterochromatin re-

gions in HMECs (Additional file 2: Figure S5B) and dis-

played positive correlation between methylation and

expression levels (Additional file 2: Figure S5C), but they

were associated with genes with very low expression in

breast cancer (Additional file 2: Figure S5D). These ob-

servations are consistent with findings of Hon et al. that

regions undergoing hypomethylation in breast cancer

typically are maintained in a transcriptionally silent state

[13]. The CpG sites hypomethylated in luminal cancer

were located primarily in open sea (77 %) and shores

(10 %) but not in islands (0.4 %), whereas the CpG

sites hypomethylated specifically in ET4 were located

in open sea (47 %), islands (24 %), and shores (18 %).

Hypomethylation of DNA in cancer has been shown to

occur at long interspersed nuclear element (LINE) and

long terminal repeat (LTR) repetitive elements, as well as

at chromosome ends [45–48]. We found that the CpG

sites demethylated in luminal cancer were significantly as-

sociated with LINE/LTR repetitive elements (p = 0.02 by

Fisher’s exact test; df = 1) (Additional file 2: Figure S5F),

whereas the CpG sites specifically demethylated in ET4

displayed enrichment within the first or last 5 Mb of chro-

mosomes (Additional file 2: Figure S6G) and displayed

shorter distances to the nearest chromosome end than the

other CpG sites on the platform (p = 4e-21 by t test).

It has been observed that DNA repeats can have a

confounding effect on methylation measurements [49].

Our selection criteria identify CpG sites with larger

methylation changes than the typical size of this erroneous

effect [50]. Nevertheless, it is clear that use of bisul-

fite sequencing will help to reveal more details of hypo-

methylation of repeats in luminal cancers. We conclude

that demethylation specific to ET4 and demethylation

more common to all epitypes of luminal cancer may have

different implications for genome function and progres-

sion of luminal tumors.

The CpG sites specifically unmethylated in ET7 were

very few, were slightly enriched in enhancer regions in

HMECs (Additional file 2: Figure S5B), and were primar-

ily in shores (47 %) and in open sea (47 %). These CpG

sites displayed limited correlation between expression

and methylation levels but were associated with genes

expressed in breast cancer using the validation cohort

gene expression data (Additional file 2: Figure S5C, D).

Because tumors of epitype ET7 displayed high expres-

sion levels of immune response genes (Additional file 2:

Figure S3), we investigated the methylation levels of

these CpG sites in a cohort of various subpopulations

of blood cells [15]. We found that these CpG sites

displayed, on average, decreased methylation levels in

blood cells (Additional file 2: Figure S5E), as well as

significant variation in methylation levels across sub-

populations of blood cells, compared with all CpG

sites on the arrays (p = 0.02 by t test). Hence, CpG sites

specifically hypomethylated across basal-like breast

cancer have limited influence on expression levels and

may reflect low methylation levels in infiltrating subpopu-

lations of normal cells, rather than de novo demethylation

in tumor cells.

Epitypes are associated with DNA copy number

aberrations

We investigated DNA copy number changes across the

epitypes in both the discovery and validation cohorts.

Across the luminal epitypes from ET2 to ET5, we found

that the FGA by copy number increased, that the alter-

ations appeared increasingly more complex in terms of

the CAAI [35], and that the number of amplifications

per sample increased (Fig. 5a, b). Tumors of ET6, associ-

ated with HER2-enriched tumors, displayed the most

complex copy number profiles, the largest numbers of

amplifications per sample, and higher FGA than the lu-

minal epitypes. Although tumors of the basal-like epi-

type ET7 displayed the largest FGA, the alterations were

typically not as complex, and these tumors harbored few

amplifications. Reassuringly, we note that the results

were very similar for both the discovery and validation

sets and conclude that the results were robust across

both different tumor cohorts and copy number technolo-

gies (BAC arrays and Affymetrix Genome-Wide Human

SNP Array 6.0 arrays).

With the exception of amplification of 17q12 (ERBB2),

we did not find any particular associations between

specific amplifications and epitypes (Additional file 2:

Figure S6A). ERBB2 was amplified in 83 % of ET6 tumors

in the discovery cohort and in 46 % of ET6 tumors in the

validation cohort. However, it should be noted that only a

relatively small fraction of ERBB2-amplified cases are in

ET6 [10 (21 %) of 48 in the discovery cohort and 13

(22 %) of 60 in the validation cohort]. Similar results

were obtained using the gene expression–based subtype

HER2-enriched (in the discovery cohort 7 (22 %) of 32 of

HER2-enriched tumors in ET6 and 17 (23 %) of 73 in the

validation cohort). A scheme to classify breast cancers into

ten clusters based on CNAs that influence gene expression

patterns (IntClust) has been proposed [51]. In agreement

with our findings for individual amplifications, we observed

only a moderate correspondence between IntClust groups

and epitypes (Additional file 2: Figure S6B). In more detail,

IntClust 10 is the dominant group in ET7, IntClust 5 is the
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dominant group in ET6, IntClust 3 is largest in ET2 and

ET3, and ET4 and ET5 are very mixed with respect to

IntClust groups. Taken together, our analyses of copy

number changes demonstrate a strong association be-

tween epitypes and global patterns of genomic instability.

Although specific aberrations in general were not associ-

ated with the epitypes, we identified a small subtype

enriched for ERBB2-amplified tumors characterized by

the most complex aberrations and a relatively large

number of amplifications in addition to ERBB2.

Epitypes are associated with mutations

We screened for associations between somatic mutations

and epitypes using TCGA exome sequencing data for

the validation set. There were 2205 genes with nonsilent

mutations in at least 5 tumors in the validation set. Of

these, only three genes, PIK3CA, TP53 and CDH1, were

significantly associated with the epitypes correcting for

multiple testing [χ2 test (df = 6), FDR = 1 %] (Fig. 5c).

Overall, the total number of mutations increased from

ET2 to ET7 (Fig. 5c). Germline mutation data were

available for only the discovery cohort. Patients with

germline mutations in BRCA2 were enriched in ET4 in

the discovery cohort [8 (53 %) of 15; p = 8e-5, Fisher’s

exact test (df = 1)]. In the discovery cohort, 22 (85 %) of 26

tumors from patients harboring BRCA1 germline muta-

tions were classified as ET7 [p = 1e-12, Fisher’s exact test

(df = 1)]. In the validation cohort, 7 (58 %) of 12 tumors

with somatic nonsilent BRCA1 mutations were classified

as ET7 [p = 6e-4, Fisher’s exact test (df = 1)].

BRCA1 and HORMAD1 promoter methylation

Tumors of the basal-like epitype ET7 displayed highly

altered genomes, but limited epitype-specific hyper- and
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hypomethylation, compared with normal samples. We

investigated the promoter methylation status of BRCA1

and HORMAD1 to explore if aberrant methylation of

these candidate drivers of genomic instability in basal-

like breast cancer [52, 53] was associated with subsets of

ET7 tumors. Using the 450K methylation data, we iden-

tified 11 (6 %) and 15 (2 %) BRCA1 promoter methyl-

ated tumors in the discovery and validation cohorts,

respectively. BRCA1 promoter methylation status ob-

tained using pyrosequencing was used to validate the

450K data. All 71 tumors in the discovery cohort ana-

lyzed using pyrosequencing displayed identical BRCA1

promoter methylation status with both techniques.

BRCA1 promoter methylated tumors were primarily of

the ET7 epitype [10 (91 %) of 11 in discovery cohort, 12

(80 %) of 15 in validation cohort]. The median correl-

ation of methylation of the 21 promoter CpG sites used

to assess BRCA1 methylation status and BRCA1 expres-

sion was −0.34 across the validation cohort. These CpG

sites were all in the chromatin state active promoter in

both H1hESCs and HMECs. Using the 450K methylation

data, we identified 24 (13 %) and 47 (7 %) HORMAD1

promoter unmethylated tumors in the discovery and

validation cohorts, respectively. HORMAD1 promoter

unmethylated tumors were primarily of the ET7 epitype

(23 (96 %) of 24 in discovery cohort, 40 (85 %) of 47 in

validation cohort). The median correlation of methyla-

tion of the seven promoter CpG sites used to assess

HORMAD1 methylation status and HORMAD1 expres-

sion was −0.63 across the validation cohort. These CpG

sites were all in the heterochromatin/low signal chroma-

tin state in both H1hESCs and HMECs. BRCA1 methy-

lation and HORMAD1 demethylation were not mutually

exclusive (6 of 11 BRCA1 methylated tumors were HOR-

MAD1 unmethylated in the discovery cohort and 3 of 15

in the validation cohort). These results demonstrate a

strong association of BRCA1 methylation and HOR-

MAD1 demethylation with the basal-like epitype ET7.

Moreover, these candidate drivers of genomic instability

in basal-like breast cancer may be regulated by aberrant

methylation in subsets of these tumors.

Methylation differences according to BRCA1 status within

the basal-like epitype

It is unclear if BRCA1 deficiency is associated with a dif-

ferent epigenetic entity within basal-like tumors. There-

fore, we screened for global methylation differences

within the ET7 epitype between BRCA1 promoter meth-

ylated tumors, BRCA1 germline mutated tumors, and

tumors with no known BRCA1 aberration [BRCA1 wild

type (WT)]. We identified only 18 CpG sites with differ-

ent methylation levels between the three tumor groups

in the discovery cohort, even at relatively nonstringent

statistical significance (Kruskal-Wallis test, FDR = 10 %),

and all of these CpG sites were located around the

BRCA1 transcription start site. Similar results were ob-

tained comparing BRCA1 methylated tumors with only

BRCA1 WT tumors. In the validation cohort, we identi-

fied 90 CpG sites with different methylation levels be-

tween BRCA1 WT, BRCA1 methylated, and BRCA1

somatically mutated tumors (Kruskal-Wallis test, FDR =

1 %). Of these, 29 CpG sites were located around the

BRCA1 transcription start site, while the other CpG sites

were scattered across the genome. One sample with both

a somatic missense mutation and promoter methylation

were assigned to the methylation group in these ana-

lyses. Comparing BRCA1 methylated tumors with only

BRCA1 WT tumors in the validation cohort, we identi-

fied 31 significant CpG sites (Wilcoxon test, FDR = 1 %);

all but one located around the BRCA1 transcription start

site. Taken together, separating ET7 tumors into BRCA1

promoter methylated, BRCA1 mutated, or BRCA1 WT

revealed that these three groups have strikingly small

differences in their genome-wide methylation patterns.

Epitypes are associated with clinicopathological features

We investigated associations between epitypes and clini-

copathological features for both the discovery and valid-

ation cohorts (Additional file 3: Tables S2 and S3,

respectively). ER and PR status were significantly associ-

ated with epitypes in both the discovery cohort (p = 1e-

17 and p = 7e-15, respectively; χ2 test) and the validation

cohort (p = 1e-66 and p = 1e-54, respectively), as ex-

pected from the association between epitypes and gene

expression phenotypes. Node status was more weakly as-

sociated with the epitypes with higher fractions of node

positive tumors in ET4 and ET6 and lower fractions in

ET7 (discovery cohort p = 0.02, validation cohort p = 0.03;

χ2 test). Tumor size (in millimeters) was significantly asso-

ciated with epitypes in the discovery cohort (p = 0.004;

Kruskal-Wallis test), with the largest median tumor size in

ET4–ET7 and the median tumor size increased across

luminal epitypes from ET2 to ET4. Tumor size in millime-

ters was not available for the validation cohort. We there-

fore compared T1 tumors (≤20 mm) with larger tumors

(T2 and T3) in this cohort and found that this dichoto-

mized tumor size was associated with epitypes (p = 0.006;

χ2 test). Our observations for the validation cohort were

similar to the results in the discovery cohort: The largest

fractions of large tumors (>20 mm) were in ET4–ET7,

and the fraction of large tumors increased across the lu-

minal epitypes from ET2 to ET5. In general, there were

no associations between histological subtypes and epi-

types. Lobular tumors were associated with the luminal

epitypes (discovery cohort p = 0.11 and validation cohort

p = 7e-7; χ2 test), but they were not associated with a par-

ticular luminal epitype. There was a significant association

between age at diagnosis and epitype (discovery cohort
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p = 0.005 and validation cohort p = 5e-5; Kruskal-Wallis

test). Convincingly, the oldest patients were in ET5 and

the youngest patients in ET7 for both the discovery co-

hort (median age, cohort 48 years, ET5 66 years, ET7

45 years) and the validation cohort (median age, cohort

58 years, ET5 64 years, ET7 53 years).

The epitypes were associated with patient outcome in

both the validation and discovery cohorts. The epitypes

were associated with overall survival using both 10-year

follow-up (discovery cohort p = 0.01, validation cohort

p = 0.02; log-rank test) and the full follow-up (discovery

cohort p = 0.01, validation cohort p = 0.04; log-rank test).

Patient outcome analysis in the validation cohort is ham-

pered by limited follow-up information. Reassuringly, the

epitypes had similar overall survival patterns in both co-

horts (Fig. 6). In particular, ET2 was associated with the

best overall survival, ET5 and ET6 had the largest frac-

tions of early events, and ET4 was characterized by a large

fraction of events occurring 5 years after diagnosis.

Discussion

DNA methylation of CpG sites in the genome is a nor-

mal developmental process that is of interest in cancer

because many sites become aberrantly methylated or

demethylated in the disease state. Moreover, it is often

claimed that DNA methylation processes are of import-

ance for tumor initiation and progression. We con-

ducted a comprehensive analysis of genome-wide DNA

methylation profiles of 188 breast tumor samples. Our

overarching goal was to gain insights into how DNA

methylation patterns on a genome-wide scale are associ-

ated with breast cancer heterogeneity. The findings were

extensively validated in an independent cohort from

TCGA encompassing 669 breast tumor samples. Previ-

ously, TCGA identified five epitypes—essentially corre-

sponding to two luminal A epitypes, two luminal B

epitypes, and a basal-like epitype—in an analysis of a

large tumor set (n = 466) restricted to CpG sites in pro-

moters [4]. The epitypes identified by TCGA provide a

direct extension from the three epitypes typically identi-

fied in smaller studies [6–9]. In the present study, we

identified seven epitypes of breast cancer using unsuper-

vised analysis of genome-wide DNA methylation levels

not restricted to CpG sites in promoters. Our epitypes

give independent support to the five epitypes identified

by TCGA and add a normal like epitype ET1 (normal-

like tumors were very few in the original TCGA analysis)

and an epitype ET6 enriched for HER2-enriched tumors.

We performed an integrative analysis of genomic data at

multiple levels to characterize the breast cancer epitypes.

To a large extent, the four luminal epitypes we identi-

fied (ET2–ET5) were characterized by a gradual increase

of many variables from ET2 to ET5. For example, prolif-

erative rate, fraction of luminal B tumors, promoter

CpG island methylation levels, overall mutation rate,

TP53 mutation frequency, number and complexity of

CNAs, number of amplifications, and tumor size all in-

creased from ET2 to ET5. These findings are consistent

with observations based on gene expression–based ana-

lyses suggesting that the separation of tumors into lu-

minal A and luminal B is not well-defined, but rather

reflects an arbitrary cutpoint in a continuous distribu-

tion of expression levels of proliferation-related genes

[37–39]. Importantly, the luminal epitypes also displayed

specific epigenetic characteristics in particular for the

two more luminal B-like epitypes, ET4 and ET5. ET4

displayed a global hypomethylation phenotype and hypo-

methylation of subtelomeric regions, and was enriched

for tumors with BRCA2 germline mutations. However,

the association between BRCA2 germline mutations and

ET4 remains to be validated in an independent dataset.

ET5 displayed a global hypermethylation phenotype and
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was associated with older patients. The different global

methylation patterns of ET4 and ET5 provide an ex-

ample of the opportunities of going beyond analyses re-

stricted to promoter CpG islands. On the contrary, the

more luminal A-like epitypes ET2 and ET3 seemed to

reflect more of a continuum, and the separation of these

tumors into groups is likely cohort size–dependent. In-

deed, in an unsupervised analysis of the large validation

cohort (n = 669), there was support to separate ET3 into

two groups (Additional file 2: Figure S2D).

HER2-enriched tumors are typically found to display

heterogeneous DNA methylation patterns not associated

with a specific epigenetic subtype [4, 6, 9]. In a previous

study based on CpG sites in promoter regions, re-

searchers identified a subtype associated with HER2-

enriched tumors with a methylation pattern of infiltrat-

ing lymphocytes [54]. Such a subtype shows similarities

to our epitype ET1 that contains relatively many HER2-

enriched tumors and is characterized by high expression

of immune response genes (Additional file 2: Figure S3).

In the present study, we identified, for the first time to

our knowledge, a breast cancer epitype associated with

HER2-enriched tumors not displaying a methylation pat-

tern similar to normal cells (ET6). ET6 contains only a

fraction of the HER2-enriched or ERBB2-amplified tu-

mors (around 20 %), and it is likely that our use of tumor

sets containing many HER2-enriched tumors (Table 1)

was essential to identifying this HER2-associated epitype.

ET6 tumors were characterized by multiple amplifications

beyond HER2 (the epitype with most amplifications per

sample), the most complex genomes,TP53 mutations, and

poor overall survival.

We identified only a few associations between somatic

mutations and epitypes in a screen taking multiple test-

ing into account. As expected, PIK3CA and CDH1 were

frequently mutated in the luminal epitypes and TP53

was frequently mutated in the basal-like and HER2-

enriched epitypes. Many genes were mutated in rela-

tively few samples, and it may be worthwhile to investi-

gate whether mutations in sets of functionally related

genes underlie specific epitypes. BRCA1 mutations were

significantly associated with the basal-like epitype (ET7).

However, we did not identify any methylation differences

within the basal-like epitype when stratified according to

BRCA1 status (either germline or somatic), with the

exception that BRCA1 alone displays promoter methyla-

tion in a subset of tumors with the basal-like epitype.

These observations are consistent with findings reported

by Prat et al., who observed very minor molecular differ-

ences at multiple levels (gene, protein, miRNA, and DNA

methylation) according to BRCA1 status in basal-like

breast cancer [55].

Analyses of whole tumor tissues have revealed that DNA

methylation patterns are heavily influenced by surrounding

or infiltrating stromal cells [18, 54]. We identified an epi-

type with a methylation pattern similar to that of normal

cells (ET1). By collecting tumors with normal-like methyla-

tion patterns into a separate epitype, the characteristics of

the other epitypes are likely to become clearer. The repro-

ducibility of identified subtypes is often assessed by show-

ing that the proportion of cases assigned to each subtype is

similar across different cohorts [51]. However, it is import-

ant to keep in mind that some methods have a bias toward

keeping the proportions of subtypes similar [56]. In the

present study, we analyzed retrospective tumor cohorts es-

sentially generated by collecting as many tumors as pos-

sible, which may have resulted in cohorts with different

characteristics. We found the proportions of samples

assigned to the epitypes somewhat different for the discov-

ery and validation cohorts. ET1 (23 % vs. 14 %), ET6 (6 %

vs. 4 %), and ET7 (24 % vs. 15 %) contained larger frac-

tions of samples in the discovery cohort, whereas ET3

(30 % vs. 15 %) and ET5 (12 % vs. 4 %) contained

larger fractions of samples in the validation cohort.

Reassuringly, these differences reflect differences in the

composition of the cohorts. On one hand, the discovery

cohort is enriched for HER2-enriched tumors [many of

which likely are infiltrated by immune cells (Fig. 1a,

Additional file 2: Figure S3)] and tumors from patients

with BRCA1 germline mutations. On the other hand, the

validation cohort contains a larger fraction of ER-positive

luminal tumors and more tumors from older patients

(Table 1). These interpretable connections between cohort

composition and epitype proportions add support to the

reproducibility and generalizability of our epitypes.

Traditionally, epigenetic reprogramming has been

thought to contribute to tumor progression by silencing

tumor suppressor genes. This model has been challenged

by the finding that most cancer-associated methylation oc-

curs in genes that are already repressed in the normal tis-

sue from which the cancer derives [57, 58]. We identified

two different patterns of cancer-associated DNA methyla-

tion in breast tumors. One set of CpG sites was methyl-

ated in both luminal and basal-like breast tumors and was

thereby considered constitutive, whereas a second set was

specifically methylated in luminal breast cancer. We found

that the set of CpG sites with constitutive methylation

matched the paradigm of being repressed in normal breast

epithelial cells and displaying no correlation between

expression and methylation levels. On the contrary, the

set of CpG sites methylated specifically in luminal breast

cancer were associated with genes expressed in normal

breast epithelial cells and displayed negative correlation

between expression and methylation levels. Similar obser-

vations have been made in pediatric acute lymphoblastic

leukemia for CpG sites with constitutive and subtype-

specific methylation patterns, respectively [59]. Moreover,

differentially methylated regions associated with bladder
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cancer subtypes have been found to separate into patterns

with substantial differences with respect to expression–

methylation correlations [48]. As proposed by Sproul et al.,

the aberrant constitutive methylation in breast tumors may

be a marker of their epithelial cell lineage rather than of

tumor progression [60]. However, the CpG sites specifically

methylated in luminal breast cancer do influence gene ex-

pression levels and may contribute to tumor progression.

Methylation of these CpG sites was associated with

epitypes enriched for luminal B tumors. This finding

is consistent with our previously proposed model in

which luminal differentiation is partially blocked by

aberrant methylation in luminal B tumors [6].

Constitutive methylation in breast cancer and methy-

lation specific to luminal cancer occurred in regions in

different chromatin contexts in normal mammary epi-

thelial cells. Constitutive methylation occurred primarily

in regions in a Polycomb-repressed state, consistent with

this methylation not being the original cause of repres-

sion of gene expression. Luminal-specific methylation

was enriched in regions in active promoter states in nor-

mal cells, adding support to the picture in which aber-

rant methylation contributes to a block to keep some

luminal cancers more undifferentiated. Because breast

cancer–specific methylation to a large extent is associated

with chromatin states and thus with aberrant methylation

of very many genes, often already repressed in precancer-

ous tissue, it is not straightforward to identify potential

epigenetic driver genes. It may be that epigenetically

deregulated driver genes are rare and that most methyla-

tion in cancer is a passenger event of general epigenetic

deregulation in cancer. Perhaps the methylated genes are

prone to methylation merely because they are repressed in

a tissue-specific fashion [58]. Moreover, we observed that

genes unmethylated in breast cancer were associated with

subtelomeric regions and DNA repeats and showed

limited influence on gene expression levels. Hence,

identification of candidate tumor suppressor genes or

oncogenes based solely on methylation data will likely

result in numerous false-positive findings.

We focused our analyses on genome-wide screens for

CpG sites that display changes in methylation state be-

tween macrodissected tumor tissue and normal breast

tissue. There are limitations with use of this approach,

although its utility in identifying and characterizing

robust epitypes is clear. Directions for future improved

characterization of breast cancer epigenetic heterogeneity

include using different normal cell subpopulations

separately instead of normal breast tissue, and investi-

gating CpG sites that display varying or intermediate

methylation in normal cell populations. Another limita-

tion of the present study is that we restricted our analyses

to epitype-specific methylation patterns. These analyses

revealed very low numbers of CpG sites with specific

hyper- and hypomethylation across the basal-like epitype.

However, directed analyses showed that BRCA1 and

HORMAD1 are clear candidates for driver genes directly

regulated by aberrant methylation in some basal-like

breast cancers. Taken together, our results suggest that the

dominant patterns of breast cancer–specific hyper- and

hypomethylation are associated with their genomic con-

texts, but also that there may be epigenetically deregulated

driver genes for subsets of samples.

The gene expression–based molecular subtypes of

breast cancer have been included in international guide-

lines for breast cancer treatment [61]. The epitypes of

breast cancer described in this report reflect, to a large

extent, the gene expression–based subtypes, and perhaps

may not add independent prognostic value. Neverthe-

less, it could still be that DNA methylation measurement

provides a technically simpler and more robust clinical

subtyping tool. Systemic treatment decisions for luminal

breast cancer are partly dependent on differences in

proliferative rates used to separate these tumors into lu-

minal A and B. Our characterization of luminal epitypes

opens up new opportunities to evaluate connections

between chemotherapy response and molecular character-

istics of luminal tumors. For example, the identification of

a luminal group of patients with very few relapses who

could be spared chemotherapy may potentially be im-

proved by integrating methylation data with other

molecular information. Because aberrant methylation

in breast cancer affects large numbers of CpG sites,

there are likely very many individual CpG sites that correl-

ate with prognostic information. It has been found that

most genes methylated in breast cancer cell lines cannot

be derepressed by using the demethylating agent 5-aza-2′-

deocycytidine [60]. However, genes already repressed in

normal epithelial cells dominated the evaluated genes.

Hence, it may still be worthwhile to evaluate if demethy-

lating agents have an effect on the subset of genes in

luminal tumors with expression levels clearly associated

with promoter methylation. Potentially, demethylating

agents could result in further differentiation of luminal

tumors with extensive promoter methylation and could

benefit patient outcomes.

Conclusions

We performed a comprehensive analysis of DNA methyla-

tion patterns in human breast tumors. The methylation

epitypes we describe exemplify how integrating different

types of molecular genome-wide data can improve the

characterization of breast cancer heterogeneity. We iden-

tified differences in the methylation patterns across breast

cancer subtypes. Although we showed that candidate

driver genes such as BRCA1 and HORMAD1 display aber-

rant methylation in subsets of basal-like tumors, the re-

sults of our study imply that the dominant methylation
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patterns across basal-like breast cancer are passenger

events reflecting the tissue of origin and infiltrating cells.

However, methylation patterns specific to luminal breast

cancer drive gene expression and may contribute to tumor

progression in this subtype.
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