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Abstract: In the context of hazard monitoring, using sensor web technology to monitor and 
detect hazardous conditions in near-real-time can result in large amounts of spatial data that 
can be used to drive analysis at an instrumented site.  These data can be used for decision 
making and problem solving, however as with any analysis problem the success of 
analyzing hazard potential is governed by many factors such as: the quality of the sensor 
data used as input; the meaning that can be derived from those data; the reliability of the 
model used to describe the problem; the strength of the analysis methods; and the ability to 
effectively communicate the end results of the analysis.  For decision makers to make use of 
sensor web data these issues must be dealt with to some degree.  The work described in this 
paper addresses all of these areas by showing how raw sensor data can be automatically 
transformed into a representation which matches a predefined model of the problem context.  
This model can be understood by analysis software that leverages rule-based logic and 
inference techniques to reason with, and draw conclusions about, spatial data.  These tools 
are integrated with a well known Geographic Information System (GIS) and existing 
geospatial and sensor web infrastructure standards, providing expert users with the tools 
needed to thoroughly explore a problem site and investigate hazards in any domain. 

Keywords: sensor ontologies, hazard monitoring, sensor web infrastructure, automated 
reasoning, spatial decision support systems 
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1. Introduction 

Hazard managers, administrators, and planners involved in hazard evaluation as well as those in 
decision making positions need improved methods beyond simple data analysis to monitor hazards that 
have the potential to harm populations and critical infrastructure.  The use of computer-based software 
tools such as spatial decision support systems (SDSS) to help users explore current conditions can aid 
them in making complex decisions.  An SDSS embodies geomatics principles for situating decision-
making in space, often using a geographic information system (GIS) component to provide spatial 
analysis functionality.   

Current sensor web infrastructure technology, as well as the analysis tools that use the collected 
data, takes a data-centric approach.  Raw data is used to feed relatively static analysis methods while 
interpretation of the result is left to the user.  By shifting towards a more information-centric approach 
to collect and use sensor measurements, we can enable more advanced analysis techniques.  These 
techniques can make use of stored knowledge about not only sensor measurements and what they 
represent, but also how they were made and the landscape context which surrounds them.  Our goal is 
to perform information-centric analysis within a GIS-based decision support environment using expert 
knowledge and to show how this can improve the interpretation of results by both the software and a 
human expert user.  However, since most GIS tools do not support knowledge-based reasoning, any 
monitoring system built upon a GIS tends to be rather data-centric.  This means that we must first 
enable the information-based perspective within the SDSS.  

This paper presents our approach to enabling this information-centric perspective through the 
development of an SDSS and associated infrastructure which can be used to monitor any domain of 
interest; as an example, our current work focuses on monitoring slopes for geotechnical hazards [1].  
Part of this infrastructure includes the use of ontologies, or formal encodings of domain concepts and 
their interrelationships, to represent important concepts in the monitoring and sensor web domains.  
Several examples of applying ontologies to sensor network research and sensor data have emerged in 
recent years, including OntoSensor [2], Microsoft’s SenseWeb project [3], and work by Avancha et al. 
[4] and Goodwin et al. [5]. 

We apply our ontologies as part of REASON (Real-time Evaluation Applying Sensor ONtologies), 
a spatial decision support framework which can be used to build a domain-specific SDSS through the 
use of ontologies, or formal encodings of domain concepts and their interrelationships.  REASON is 
built on a framework which integrates an expert system with a GIS.  An expert system is a software 
tool that supports problem representation and reasoning with expert knowledge.  It is particularly well 
suited to handling situations where the problem is poorly structured and so is not amenable to 
traditional programming or automation methods.  This meshes well with the domain of hazard 
monitoring as we are often working in unstructured problem spaces with varying degrees of data 
availability.  The C Language Integrated Production System (CLIPS), and the ArcGIS geomatics tool 
were coupled to produce ArcAgents (described in [6]). In this system the CLIPS engine provides the 
reasoning support, while ArcGIS handles the spatial analysis responsibilities. ArcAgents provides the 
bridge between the two, allowing the CLIPS engine to make inferences on the results of ArcGIS 
spatial analysis functions as well as on the spatial relationships between features stored in the GIS 
layers. The use of an expert system language such as CLIPS provides resources needed for the types of 
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analysis which cannot be accomplished by simple data-centric analysis methods. Concepts in the 
domain of interest (such as shear zones, critical slope movement, and relationships between material 
blocks) and more general spatial and temporal concepts (such as adjacency and connectedness) can be 
described within the expert system using ‘rules’.  These concepts can then be related to the 
observations, represented as ‘facts’ made in the monitored environment. The expert system can then 
apply deductive reasoning to the facts, concepts, and rule-based relationships to uncover implicit 
observations that are identified as important to the hazard problem. We apply ArcGIS as our GIS 
engine as it is the industry standard for GIS technology, and is most likely to be familiar or available to 
many expert users. CLIPS, ArcGIS, and ArcAgents form the main backbone of REASON.  Section 2 
explores the use of SDSS for hazard monitoring and shows how an SDSS is built using REASON.  

In order to use an expert system’s capability to assist with complex evaluation in geotechnical 
hazard monitoring, the system must have access to current data relevant to the problem.  Real-time 
observations from sensors are becoming available using a variety of related sensor network, telemetry, 
and observation service technologies that rely on emerging geospatial data standards.  In Section 3 we 
describe the creation of sensor data that can be used to feed an ontology-based SDSS.  Our system is 
driven by sensor data stored in a Sensor Observation Service (SOS) [7] database. The data is pulled 
from the database and, through the use of a transformation engine, is converted on-the-fly into CLIPS 
code that can be used for knowledge-based analysis.  This paper also explores the concept of sensor 
webs and how they can be used for geotechnical hazard monitoring by showing an example 
monitoring application in Section 4. 

2. REASON: A Spatial Decision Support Framework Incorporating Sensor Data 

2.1. Spatial Decision Support Systems 

A decision support system (DSS) is an interactive, computer-based system designed to support a 
user or group of users in achieving more effective decision making while solving a semi-structured 
decision problem. A spatial decision support system (SDSS) supports problem domains which have a 
strongly spatial aspect [8]. Since the problem of hazard detection is often unstructured and open-
ended, an SDSS is a natural choice for this type of problem investigation.  Spatial decision support 
systems provide an environment for expert users to apply their expertise to solve domain-specific 
problems. By aiding users in decision making and providing them with access to large amounts of 
significant spatial data, SDSS are powerful problem-solving tools. 

In the hazards domain, SDSS can be very effective for handling the management and monitoring of 
spatial data. Typical data-centric approaches to hazard monitoring have resulted in systems which can 
perform some basic analysis routines based on quantifiable parameters such as thresholds and ranges 
[e.g. 9-12].  These approaches certainly have a useful place in this domain, however by shifting the 
approach to one which is more information-centric we can accomplish the same goals as more data-
centric systems, while at the same time draw deductive conclusions from the data we are receiving and 
their relationships, which may be of interest to an expert user. These conclusions could take the form 
of areas of emerging concern or precursor conditions to potential hazards based on accumulated 
knowledge of a domain, or comparisons with other sites with similar characteristics and the outcomes 
of prior situations at these sites, making automated monitoring a more ‘intelligent’ process. 
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2.2 REASON 

The REASON (Real-time Evaluation Applying Sensor ONtologies) spatial decision support 
framework, which is described in detail in [6], is a tool which can be used to develop a spatial decision 
support system to monitor a user-defined domain.  It is a platform for the evaluation of sensor data, 
assuming that the data are represented in an appropriate format (a concept discussed more thoroughly 
in Section 3).  It was developed using the ArcAgents tool which bridges CLIPS, a programming 
language geared toward the development of expert systems, and ESRI’s ArcGIS. REASON makes use 
of ontologies to partition and organize the knowledge it has about a given problem domain. Ontologies 
are often used where knowledge definition is a key component of the problem-solving process. One of 
the most general definitions of an ontology is a “specification of a conceptualization” [13]. By 
specifying the concepts relevant to a universe of interest, and the relationships between those concepts, 
a more formalized definition of a domain can be created.  When the ontology is created in a machine-
readable language, then software can be created that works with this stored knowledge to drive 
analysis methods.  The ontological structure we use is a variant on one proposed by O'Brien and 
Gahegan [14], in which there are four separate but related ontologies which are used to contain all of 
the knowledge required by the system (Figure 1). These ontologies contain facts which describe the 
relevant concepts and objects in the problem domain, and rules which govern their behaviour. The 
“Spatial-Temporal Ontology” is the high-level ontology used to define foundational concepts such as 
geometry, topology, and temporal relationships. Two mid-level ontologies build on the concepts from 
the Spatial-Temporal ontology: the “Domain Ontology” and the “Sensor Ontology”. The domain 
ontology is used to describe the concepts related to the domain being observed, for example shear 
zones and downslope motion. The sensor ontology describes the sensors which are used to perform the 
observation. Finally, the low-level “Application Ontology” contains the concepts and logic related to 
the execution and capabilities of our given monitoring application. This includes the decision trees 
which govern the analysis of incoming and archived sensor data. The application ontology builds on 
the knowledge from the two mid-level (Sensor and Domain) ontologies, and thus from the spatial-
temporal ontology as well. 

 

 

Figure 1. Ontology Hierarchy. 
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One of the key design features of REASON is that the mechanism to bring data into the system has 
been abstracted so various types of data and sources can be used within the system in a common way. 
Different monitoring scenarios will have different data requirements, and quite often these monitoring 
and database requirements will determine how the data are stored. Low power networks will require 
short messages with minimal transmitted information, whereas higher power, wired networks may be 
able to transmit messages with more complex structures. When an SDSS is built upon the REASON 
framework, it defines the data source(s) it will use and provides an implementation of the abstract 
DATA-SOURCE class which defines how the SDSS should connect to and disconnect from the data 
source, as well as how data are updated and how update cycles are handled. In this way, any data 
source can be used within a REASON SDSS. Data can be stored in ESRI shapefiles, databases, 
spreadsheets, text files, XML files, or any other format as long as an appropriate data source class is 
created.  The example system described in Section 4, as well as the supporting infrastructure from 
Section 3, make use of a Sensor Web Enablement (SWE) Sensor Observation Service (SOS) database 
for retrieving sensor measurements and descriptions.  The system has also been tested successfully 
using Excel spreadsheets as a data source. 

A Sensor Observation Service can store, manage, and organize sensor data as well as sensor 
descriptions.  These data are used as responses to queries, allowing parties that are interested in the 
data, such as a software tool or expert user, to query the server for data that are relevant to their needs.  
By creating an implementation of the DATA-SOURCE class that can communicate with an SOS 
server we can effectively tie REASON to an SOS, providing the user with the most relevant and 
detailed information about their monitored site.  The Sensor Observation Service is part of the Open 
Geospatial Consortium’s Sensor Web Enablement activity which will be further explored in Section 
3.2. 

Figure 2 shows the detailed methodology of the REASON workflow loop in the case of interaction 
with an SOS server.  The abstracted data source mechanism is used to connect to an SOS and retrieve 
values in order to drive analysis.  When the system in initialized the ontologies are loaded into the 
CLIPS knowledge base.  These ontologies contain the majority of the code that are used to operate the 
system.  Initialization is completed when the sensor descriptions are retrieved from the SOS and 
converted into CLIPS code and stored in the knowledge base.  The “Bind Data Sources” step consists 
of binding an instance of the data source class to the CLIPS code representing the sensors.  This tells 
REASON where it can retrieve information about the given sensor, including new measurements.  The 
“Update” portion of the workflow retrieves the newest observations for the sensors through SOS 
queries.  The resulting XML documents are converted on-the-fly into CLIPS code which is used to 
update the GIS layers and CLIPS code associated with the sensors.  Evaluation is then carried out on 
the new values as defined in the application ontology (see Section 4 for a sample decision tree that is 
used to analyze sensor data). When evaluation is completed, new values are acquired from the data 
source and the process repeats itself until the system is told to release the resources associated with the 
data source and terminate. 

Since the REASON DATA-SOURCE mechanism is abstracted, observations can be drawn from 
Excel or database tables to generate facts which correspond to an ontology built using templates (such 
as those found in the CLIPS language), or alternatively encodings from geospatial standards (discussed 
in Section 3.2 below) can be used to generate instances of an object-oriented ontology (an ontology 
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with hierarchical characteristics similar to an object-oriented programming language), with minimal 
changes to the actual decision-making logic. The knowledge of the domain is separated from the other 
knowledge in the system, so creating a monitoring system that works in a different domain (flood 
monitoring, for example) only involves changing the domain ontology to one which describes our new 
domain of interest, and creating a new rule set within the application ontology which governs what we 
are interested in monitoring. All of the other knowledge related to sensors and spatial-temporal 
relationships may be reused. 

 

 

Figure 2. REASON Evaluation Loop. 

3. ENGINE: Creating Ontology Compliant Geodata 

3.1 Sensor Webs 

With the continual advancement of sensor technology and wireless technology [15, 16], sensor 
webs have become a very useful mechanism for automated data collection. Sensor webs are tools used 
for automated collection and storage of sensor observations. More specifically, they are structures 
which move measurement data through a structured network from the sensors which collect the data to 
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the applications which use them. They facilitate the collection, distribution, and dissemination of large 
amounts of spatially significant data, turning the Earth's surface, subsurface, oceans, and atmosphere 
into sensible entities [17]. As would be expected, this process can result in the collection of large 
amounts of data which can be used to feed analysis within a specified problem domain. Since the aim 
for any information-driven decision support system is to provide an expert user with relevant 
information that helps them to make informed decisions, sensor webs prove extremely valuable in 
providing data that may be transformed into current, timely information that is relevant to the problem. 

3.2 Data Representation 

Sensor webs can rapidly collect large amounts of data, which has created a need for methods to 
discover, provide, exchange, and archive this data. These methods are used to encode sensor 
observations as well as the context under which they were made. The Open Geospatial Consortium’s 
(OGC) Sensor Web Enablement (SWE) [18] working group has responded to this need by developing 
standardized ways of encoding this information. Two of the key encodings that the OGC provides are 
the Sensor Model Language (SensorML) and Observations and Measurements (O&M). SensorML is 
used to model and encode the geometric, dynamic, and observational characteristics of sensors and 
sensor systems and their parameters [19]. O&M is used to model and encode observations and 
measurements made of phenomena, including those made by sensors [20]. 

These encodings provide a common mechanism to represent sensor descriptions and observations 
as well as to discover sensors for use within various applications. This is worthwhile when trying to 
answer simple questions, but to answer more complex questions we need more information about 
measurements, such as how they were made, the way they are structured, the conditions under which 
they were made, and the type of sensor which made them. We could achieve this connection using 
symbolic links provided in the various documents, but the use of ontologies integrates all of our 
concepts into a single realm of knowledge. Using an ontology that defines all of the important 
concepts and relationships in our monitoring domain means software applications can be built which 
understand their domain of interest. This subsequently gives the application an increased ability to 
derive knowledge from sensor data as the ontology can provide context for the measurements rather 
than just raw numerical values. 

Figure 3 shows an example of how data that conforms to an ontology can be used to model the 
concepts and relationships of the domain in a way that enables this style of analysis.  Figure 3a shows 
the data-centric approach to the representation of a sensor observation.  The measurement (0.014) has 
implicit relationships to its attributes, and by separately examining the structure and contents of the 
attributes as described in an external resource one can interpret what they represent.  Figure 3b shows 
the measurement data structured so they conform to an ontology.  In this case the relationships 
between the measurement and its attributes are explicitly defined, allowing a computer system to 
navigate the information and connect that knowledge to other knowledge it may have, such as the 
attributes of other sensors (represented as circles in Figure 3b) that are connected to the sensor that 
made the measurement. 
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Figure 3. Two perspectives on Sensor Data Representation: a) Data-Centric Perspective; 
b) Information-Centric Perspective. 

3.3 Using the Data 

Sensor networks collect large amounts of data, and when real-time data are combined with archived 
data, the amount of data can be overwhelming to explore manually. When a decision maker wishes to 
explore a problem or test a hypothesis, the need to deal with large amounts of data, some of which may 
be irrelevant, becomes a serious issue. Adding meaning to the data becomes a key factor in allowing 
the expert user to filter observations down to only those that are relevant to their problem. Of course, 
decisions regarding relevance may depend on other related observations. If the decision support 
system can make use of the meaning of the data and an understanding of the problem domain, it can 
help by automatically filtering out the least relevant observations.  For these reasons we want to create 
data that enables decision support systems (such as those described in Section 2), using emerging 
sensor data representation standards. 

Moving from raw sensor data to an ontological representation, which can enable an inferencing 
system like REASON to assess meaning and therefore relevance, can be a complex process.  It can 
involve several transformation steps, and every transformation has the potential for a loss of semantic 
information [21]. The domain expert typically will not be as well versed in lossless data manipulation 
and transformation as a knowledge engineer would be, and besides, the goal is to have them spend 
their time analyzing problems, not manipulating data. For these reasons, it is important to automate the 
process of converting between representations. Technologies such as eXtensible Stylesheet Language 
Transformations (XSLT) allow manipulation of XML documents without a need for explicit parsing. 
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We have created a set of XSLT templates which convert SensorML and O&M documents, along with 
other associated encodings, into a Web Ontology Language (OWL) format. The resulting documents 
become instances of associated ontologies which are based on the SensorML and O&M structures.  

Probst et al. [22] laid out a framework for mapping the Observations and Measurements encoding to 
an ontological structure. In their discussion paper, the concepts in O&M were logically organized and 
related to each other to form an ontology in OWL. The ontology specified the concepts and 
relationships needed to represent observations; however, it did not include the structures required to 
create specific instances which could hold real data. Since the representation of actual measurement 
data as instances of the ontology was vital to our problem, we made these additions (in the form of 
OWL data type properties) to create a more complete modelling of the sensor observation domain.  

We then used a similar procedure to create a sensor ontology based on SensorML. This ontology 
defines the concepts and relationships expressed in the SensorML specification, organizing them into 
an ontological framework. This provides the contextual information required to give meaning to the 
observations made by sensors, similar to the notion presented in Figure 3. These two ontologies were 
then merged and aligned into a single ontology. Individual sensor observations as described by O&M 
documents, and descriptions of specific sensors as described by SensorML documents, are then 
transformed into instances of this ontology. The ontology and its associated instances can then be 
supplied to the reasoning engine, giving the SDSS and the expert user the information they need to 
make informed decisions in a structure that is well suited to reasoning. 

This transformation is achieved using a series of XSLT templates which are used to map the various 
structures found in the SensorML and O&M documents to concepts in the OWL ontology. When a 
structure is encountered in the input document, the corresponding OWL concept is created in the 
output document, along with any relationships and attributes that are required. This process continues 
for all structures in the input document. Our REASON system is built to work on knowledge stored in 
the CLIPS language so that it can integrate with other tools (such as ArcGIS) and analysis code written 
in other languages such as C++ or Java. Therefore, we must undertake an additional step of converting 
the OWL representation of our ontology into a CLIPS representation. Fortunately, the Protégé 
ontology editor [23] provides just such a facility. The editor can be used to load an OWL ontology and 
export that ontology as CLIPS code, and since the source code is available, this functionality was 
automated using some Java code. An overarching controller program called ENGINE (ENcoding 
Geospatial INformation and Expertise) controls the conversion of SensorML and O&M documents 
through to CLIPS code with a single command (Figure 4). This automation makes it simple for an 
SDSS (or an adventurous expert user) to request that their data be transformed into CLIPS without 
having to worry about the inner workings of the transformation engines.  
 

 

Figure 4. ENGINE Transformation Chain. 
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The ontological representations define not only the concepts represented in the O&M observation 
documents, but the explicit relationships between those concepts as well. When these documents are 
validated against the ontology they are checked for consistency, ensuring that any concepts that have 
been defined are done so in accordance with the ontology, and that any relationships are valid for all 
objects involved. Further, some of the standards and encodings we are working from have some 
overlapping concepts, so the XSLT templates also homogenize these different encodings. For example, 
the coordinates of the station which made the measurement in the O&M document are represented in 
the Geography Markup Language (GML) as a space-delimited list of values. The Sensor Web 
Enablement coordinate data type has a similar structure, and would also be valid in the measurement 
description. Whichever representation is used for the location of the measurement, the conversion tool 
will transform that representation into a more familiar (x,y) representation which matches most 
parameter list formats. 

One of the advantages of such a structured representation is that it makes filtering large amounts of 
data down to what is relevant to the problem domain a simpler task. For example, rules can be created 
in the reasoning engine which can filter incoming data based on a number of parameters, such as the 
type of observation, the phenomena being measured, or the magnitude or significance of the 
observation. These same rules could also be used to filter archived data. Since information related to 
both the measurement processes and the phenomena being measured is tied to the observations 
themselves through the ontology, we can use this information to discover more relevant data from 
existing sensor catalogs. If our domain ontology is adequately detailed we will have some indication of 
what types of measurements would be useful to our monitoring problem, and we can use this 
information along with our current knowledge base to search for other supplementary information. 

4. Using Sensor Data for Hazard Monitoring 

As mentioned earlier, REASON is a framework for building spatial decision support systems in any 
monitoring domain which can be adequately described. To illustrate the ability to create an effective 
hazard monitoring system based on REASON, and applying the data transformations described in 
Section 3, we present an example application created to monitor a potentially unstable slope. The 
monitoring of slopes and other unstable areas for geotechnical hazards presents some unique 
challenges which demonstrate the value of a hazard monitoring system built using ontologies. Quite 
often the slopes we wish to monitor are in remote areas, and manual collection of this data can be 
challenging, costly, and time consuming. It can also be a hazardous process if we suspect that the slope 
is unstable. By automating data collection through the use of sensor networks, we can install the 
instruments which monitor the slope-related phenomena of most interest, and have the collected data 
routed to a central database where decision makers (human or machine) can access it. This eliminates 
costly excursions to perform manual collection from in-situ or probe-type sensors. 

An illustrative SDSS was developed which monitors daily motion of sensors within a hypothetical 
slope model [5]. This model contains one hundred cycles of sample inclinometer measurements for 
several measurement positions within a slope. Figure 5 shows the slope model as it is viewed in cross-
section within ArcMap. The model contains four different material layers in the active area of the 
slope, and three shear zones. The model contains twelve inclinometers installed in vertical boreholes 
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with six measurement locations on each instrument. For the purposes of visualization and analysis, 
each measurement location is modeled separately, resulting in seventy-two measurement locations. 
Using the spatial analysis capabilities of ArcGIS, we can use the positions of each measurement 
location to determine with which borehole and which inclinometer each location is associated. 

 

 

Figure 5. Simulated Slope Model with Embedded Sensors. 

The model also contains water level measurements from piezometers in standpipes for the same 
timeframe.  These measurements are taken at six locations spaced relatively evenly along the slope.  
These locations allow an estimated water table to be calculated for the slope at any time based on 
simple linear interpolation between the standpipes.   

Using the processing routine discussed in Section 2.2 (Figure 2), new values for each sensor are 
loaded from the Sensor Observation Service at each time step, and evaluation of these new values is 
performed using a decision tree which makes use of both the water table and slope motion 
measurements and the encoded expert knowledge to classify various sections (termed ‘rock masses’ 
here) of the slope according to subjective alert levels.  The analysis proceeds according to the 
following simple steps (represented as a decision tree in Figure 6): 

The position of each inclinometer data collection location is used to determine parameters that 
describe the motion of the slope.  First, the boreholes are identified based on the horizontal coordinates 
of the sensor.  The sensors with similar horizontal coordinates are grouped together into boreholes.  
Then each sensor is examined for activity according to a set of rules that define what is considered 
relevant motion (in this case, increasing in displacement with an increment greater than one percent of 
the current cumulative displacement).  This ensures that even though a sensor moves it is not 
necessarily considered active, since all inclinometers are expected to exhibit some downslope motion.  
Active sensors are then categorized according to the rock mass to which they belong.  Finally, active 
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zones (rock masses) of the slope are determined based on whether or not the zone contains a certain 
percentage of active sensors. 

If active rock masses are found then REASON uses the SOS to gather piezometer measurements in 
order to supplement its analysis.  It uses a combination of the inclinometer measurements as well as 
the water table measurements in order to further classify the activity level in each rock mass.  The 
decision tree classifies all rock masses at every time step as having an alert level from one to six, with 
six being the most severe.  The conditions for these alert levels are as follows: 

 
Alert Level 6: The rock mass is active, the water table currently intersects the rock mass, and the 
water table is rising. 
 
Alert Level 5: The rock mass is active, the water table currently intersects the rock mass, and the 
water table is falling. 
 
Alert Level 4: The rock mass is active, the water table currently intersects the rock mass below the 
active rock mass, and the water table is rising. 
 
Alert Level 3: The rock mass is active, the water table currently intersects the rock mass below the 
active rock mass, and the water table is falling. 
 
Alert Level 2: The rock mass is active, and the water table does not intersect the active rock mass 
or the rock mass below. 
 
Alert Level 1: The rock mass is not active. 
 
The decision tree specifies the steps that are taken to identify alert levels based on the above 

criteria.  These rules capture basic slope mechanics [24], and were chosen based on the ability to 
simply demonstrate the capabilities of the system.  The system also checks the quality of incoming 
data by ensuring that the values used for analysis are reasonable.  The standpipe measurements were 
simulated to include measurement errors such as missing values, and these are detected during the 
execution of the decision tree.  When a missing value is detected, interpolation of the water table 
position is performed using the next closest standpipe reading, provided that it is reasonable. 

Since the concepts of the various zones and the sensors are understood by the system, it knows that 
seeing a certain level of motion within a zone may be something that the hazard manager wishes to 
investigate, and that coordinated motion within a single material block is of particular interest, and 
thus it notifies the user through both log messages and a visual cue by changing the symbology of the 
appropriate GIS layer to correspond to the alert levels.  The goal of this (or any) SDSS is not to replace 
the expert user's decision-making ability [25], but to supplement their decision-making capability by 
focusing their attention on the most relevant, problem-oriented information where possible and 
burdening them with as little irrelevant information as possible.  
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Figure 6. Slope Monitoring Decision Tree. 

Figure 7 shows the REASON slope monitoring system in action.  The small red and white dots 
represent inclinometer measurement locations: the red dots indicate “Active” sensors and the white 
dots indicate “Inactive” sensors for a given time step.  The blue dots represent water table readings at 
six standpipe locations.  The coloured portions of the slope indicate alert levels for the various regions 
of the slope as classified by the decision tree in Figure 6.  The integration of hydrologic and 
geotechnical measurements with domain knowledge about how slopes behave under evolving slope 
conditions is made possible through the use of ontologies.  Adding the spatial analysis capabilities of 
the GIS allows us to relate the position of the water table with the active features within the slope, and 
since we have previously determined that this relationship is significant then we can build our decision 
tree in such a way that it can use both data sets even though they were never built specifically to be 
integrated, and may in fact be operated as separate sensor networks by independent organizations. 
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Figure 7. Simulated slope model showing water levels and their relationship to the motion 
of the slope. 

There are several ways in which the capabilities of this system could be enhanced. By extending the 
ontologies which make up the system's knowledge, the overall knowledge level of the system can be 
improved. Using the methods described in sections 3.2 and 3.3, we are moving towards the use of a 
generic sensor ontology which can be used to define any sensor in any domain through the use of 
encodings in common geospatial standards, which can then be converted to the format necessary for 
REASON. There is also work being done to enhance the domain ontology by using case-based 
knowledge collected from real life slope failures as well as more complete geotechnical models of 
slopes and slope failures.  By describing the slope’s expected behaviour based on geotechnical 
engineering concepts, we can compare ‘typical’ slope motion with the motion that is actually occurring 
on the slope. Comparing what the monitoring environment is observing with previously defined case 
examples would allow the engine to draw conclusions with a higher degree of certainty. Once 
expressed in the proper form, these models can be used to enhance the domain knowledge and thus the 
analysis capabilities of the monitoring application since there is more domain experience to draw from. 
Over time a system such as this can learn from itself and further build on its domain knowledge by 
drawing on its own experiences. If a conclusion is drawn based on a certain set of criteria, an expert 
user could verify whether or not the conclusion is correct. These conclusions would then be added to 
the collection of domain knowledge and would be available in the future when a similar set of 
conditions arises. 

The REASON system can be used as a tool for planning the structure of a sensor network 
installation before it is ever installed. If we have an accurate model of our slope which can be 
associated with the GIS, then we can create mock sensors based on the characteristics of the real-life 
sensors we expect to install and add them to our model. We can also create a database (or some other 
data source) with mock sensor measurements that will simulate any kind of slope motion we may 
encounter. By experimenting with the positions, characteristics, and types of sensors we install we can 
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plan the best way to instrument our slope of interest to both minimize cost and maximize the amount 
of information we expect to draw from it. Since our model of the slope draws on the same domain 
knowledge that a real-life slope would, we can expect similar results from data derived from both 
mock sensors and real sensors, provided that our data are accurate and our slope and sensor models 
closely resemble the real world. This would provide those involved in disaster management and 
response with the ability to run simulations of various scenarios which may occur, helping them 
improve response efforts and emergency plans. 

5. Conclusions 

The combination of sensor technology, wireless technology, GIS software, and rule-based logic 
techniques for organizing and analyzing hazard-related data provides a powerful approach for 
monitoring hazards in a near-real-time environment. Having such a broad range of sensors available in 
the marketplace which can handle automated data collection makes it possible to measure phenomena 
related to most any domain of interest. This allows an expert user to apply automated data collection 
methods to their problem of interest. Increased focus on sensor webs and their supporting technology 
has lead to the creation of standards and encodings for the representation and interchange of their data.  
By leveraging expert system and knowledge representation techniques we can increase the information 
content derived from these representations and use that information to drive our analysis methods.  We 
have shown how a framework for building an SDSS can be used to create a monitoring environment 
capable of performing inference-based analysis on a hypothetical slope model. By increasing the 
information content associated with our data by transforming the data stream into ontology-compatible 
facts, we make it possible for software systems to draw more extensive and reliable conclusions. The 
capabilities of this system can be made more advanced by expanding the rule set associated with this 
domain and defining the domain of interest in richer detail.  The REASON system is not domain-
specific, meaning that it could be used for hazard monitoring (or any other kind of monitoring) in any 
domain of interest which can be adequately described to the reasoning environment.  As an example, 
we built a simulated Tour de France style race monitoring application, using GPS watch beacons, and 
concepts of leaders, the peloton, and stragglers, as well as rider conditions of off-course, lost, crashed, 
and cheating using the same engine and base ontologies.  By automating the transition from raw data 
to usable information through the ENGINE mechanism, the information content that is available to the 
reasoning engine is increased without further input from the domain expert.  The descriptions of 
sensors and measurements add to the domain knowledge which is used to drive analysis methods.  
This is achieved through the use of ontologies which describe the domain of interest in a way that is 
understood by the reasoning engine.  The ENGINE tool is used to confirm that all information 
gathered from the sensor network is converted into a form that meshes with the ontology, ensuring that 
information added to the system can be used effectively.  We anticipate that the capabilities of the 
slope monitoring system will be increased through a more detailed and thorough domain ontology that 
consists of knowledge aggregated from studying the results of previous slope failures and other slope 
monitoring applications. Ultimately, the strength of a system built using REASON is limited by the 
amount of knowledge that it has to reason with. With an ever-increasing supply of this information 
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from sensor webs, advanced computer modelling, and rule-based logic and inference techniques, the 
decision maker’s ability to solve problems in a spatial domain can be greatly enhanced. 
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