
An Integrated Hardware-Software Approach to
Flexible Transactional Memory∗

Arrvindh Shriraman Michael F. Spear
Hemayet Hossain Virendra J. Marathe
Sandhya Dwarkadas Michael L. Scott

Department of Computer Science, University of Rochester
{ashriram,spear,hossain,vmarathe,sandhya,scott}@cs.rochester.edu

TR 910 †

December 2006

Abstract

There has been considerable recent interest in the support of transactional memory (TM)
in both hardware and software. We present an intermediate approach, in which hardware is
used to accelerate a TM implementation controlled fundamentally by software. Our hardware
support reduces the overhead of common TM tasks, namely, conflict detection and data isola-
tion, for bounded transactions. Software control allows policy flexibility for conflict detection,
contention management, and data granularity, in addition to enabling transactions unbounded
in space and time. Our hardware consists of 1) an alert-on-update mechanism for fast event-
based communication, used for software-controlled conflict detection; and 2) support for pro-
grammable data isolation, allowing multiple concurrent transactional readers and writers at the
software’s behest, along with fast data commit and abort support (using only a few cycles of
completely local operation).

Our results show that for common-case bounded transactions, the proposed hardware mech-
anisms eliminate data copying and dramatically reduce the overhead of bookkeeping and val-
idation (resulting in a factor of 2 improvement in performance on average). Moreover, RTM
shows good scalability as the number of threads is increased and graceful degradation in per-
formance when transactions overflow available hardware support. Detecting conflicts eagerly
(on first access) or lazily (at commit time), enabled by the ability to handle multiple concurrent
transactional writers and readers, can result in differences in performance in either direction
depending on the application access pattern (up to two orders of magnitude at 16 threads for
one workload), demonstrating the need for policy flexibility.

∗This work was supported in part by NSF grants CCR-0204344, CNS-0411127, CNS-0615139, and CNS-0509270; an IBM
Faculty Partnership Award; financial and equipment support from Sun Microsystems Laboratories; and financial support from Intel
and Microsoft.

†Portions of this work were previously reported in URCS TR 887, December 2005, and in a paper at TRANSACT 2006 [32].
The current paper adds the RTM-Lite protocol, the simplified TMESI protocol (appendix B), additional detail and updates, and
performance results.

1

1 Introduction and Background

Explicitly parallel hardware, once confined to high-end servers and scientific computing, will soon domi-
nate the full computing spectrum. As a result of increasing chip density coupled with power limitations,
multicore chips—often chip multiprocessors (CMPs) of simultaneous multithreaded cores (SMTs)—are re-
placing uniprocessors throughout the desktop and laptop markets [12, 13, 21]. The range and scale of such
multicore architectures is likely to increase, making support to ease the process of parallelizing applications
imperative.

Transactional memory (TM) has emerged as a promising alternative to lock-based synchronization. TM
systems seek to increase scalability, reduce programming complexity, and overcome the semantic prob-
lems of deadlock, priority inversion, and non-composability associated with locks. Originally proposed
by Herlihy and Moss [10], TM borrows the notions of atomicity, consistency, and isolation from database
transactions. In a nutshell, the programmer or compiler labels sections of code as atomic and relies on the
underlying system to ensure that their execution is serializable and as highly concurrent as possible. Several
pure hardware [1, 3, 8, 18, 23, 26–28] and software [5, 9, 16, 29, 31] TMs have been proposed. Pure hard-
ware TM proposals have the advantage of speed, but are typically highly ambitious and embed significant
amounts of policy in silicon. Software TM proposals run on stock processors and provide substantial flex-
ibility in policy, but incur significant overhead for data versioning and validation in the face of conflicting
transactions.

Damron et al. [4] describe a design philosophy for a hybrid TM system in which hardware makes a
“best effort” attempt to complete transactions, falling back to software when necessary. The goal is to
leverage almost any reasonable hardware implementation. Kumar et al. [14] describe a specific hardware–
software hybrid that builds on the software system of Herlihy et al. [9]. Unfortunately, this system still
embeds significant policy in silicon. It assumes, for example, that conflicts are detected as early as possible
(pessimistic concurrency control), disallowing either read-write or write-write sharing. Scherer et al. [16,30]
report performance differences across applications of 2×–10× in each direction for this design decision, and
for contention management and metadata organization.

We propose that hardware serve simply to optimize the performance of transactions that are controlled
fundamentally by software. We present a system, RTM, that embodies this philosophy. Our hardware
support reduces the overhead of common TM tasks—conflict detection, validation, and data isolation—for
common-case bounded transactions. Software control (currently based on a modified version of the RSTM
software TM [17]) preserves policy flexibility and supports transactions unbounded in space and in time.

Our hardware consists of 1) an alert-on-update mechanism for fast software-controlled conflict detec-
tion; and 2) programmable data isolation, allowing potentially conflicting readers and writers to proceed
concurrently under software control. Alert-on-update is the simpler and more general of the mechanisms. It
can be used for any task that benefits from fine-grain access control. For TM, it eliminates the heavy cost
of read-set validation [33]. Programmable data isolation additionally eliminates the cost of data copying or
logging for bounded transactions.

By leaving policy to software, RTM allows us to experiment with a wide variety of policies, for conflict
detection, contention management, deadlock and livelock avoidance, data granularity (e.g., word v. object-
based), nesting, and virtualization. We focus in this paper on conflict detection: We permit, but do not
require, read-write and write-write sharing, with delayed detection of conflicts. We also employ a software
contention manager [30] to arbitrate conflicts and determine the order of commits.

Because conflicts are handled in software, speculatively written data can be made visible at commit time
with only a few cycles of entirely local execution. Moreover, these data (and a small amount of nonspecu-
lative metadata) are all that must remain in the cache for fast-path execution: data that were speculatively
read or nonspeculatively written can safely be evicted at any time. Like the Damron and Kumar hybrid

2

proposals, RTM falls back to a software-only implementation of transactions in the event of overflow, but
in contrast not only to the hybrid proposals, but also to TLR [27], LTM [1], VTM [28], and LogTM [23],
it can accommodate “fast path” execution of dramatically larger transactions with a given size of cache.
Nonspeculative loads and stores are permitted in the middle of transactions—in fact they constitute the hook
that allows us to implement policy in software.

The RTM hardware described in this paper is intended for implementation either at the L1 level of a
CMP with a shared L2 cache, or at the L2 level of an SMP with write-through L1 caches. We describe an
implementation based on the classic MESI broadcast protocol. Other implementations (for directory-based
protocols) are a subject of ongoing work. Likewise, while our current software inherits a variety of policies
(in particular, nonblocking semantics and object-level granularity) from RSTM, our hardware could be used
with a variety of other software TMs, including systems that track conflicts at word granularity or use locks
to make updates in place.

For a suite of microbenchmarks with varying access patterns, we find that RTM improves the perfor-
mance of common-case bounded transactions by as much as a factor of two. Moreover, RTM shows good
scalability as the number of threads increases. The proposed hardware mechanisms eliminate data copying
and dramatically reduce the overhead of bookkeeping and validation. RTM-Lite, a simpler system that relies
on alert-on-update but not programmable data isolation, is effective at eliminating validation overhead, but
loses to RTM for transactions that modify large objects. When transactions overflow the available hardware
support, performance degrades linearly from that of the all fast-path mode to that of the all overflow mode,
based on the fraction of overflowed transactions. Detecting conflicts eagerly (on first access) or lazily (at
commit time), enabled by the multiple-writer protocol, can result in differences in performance in either
direction depending on the application access pattern (up to two orders of magnitude for one workload),
demonstrating the need for policy flexibility.

Section 2 describes our hardware mechanisms in detail, including instruction set extensions, coherence
protocol, and the mechanism used to detect conflicts and abort remote transactions. Section 3 then describes
the RTM runtime that leverages this hardware support. Section 4 evaluates the performance of RTM in
comparison to coarse-grain locks, an all-software TM system, and an “RTM-Lite” system that uses alert-on-
update but not programmable data isolation. Section 4 also presents results to demonstrate the benefits of
policy flexibility. We conclude in Section 5 with a summary of contributions and a list of topics for future
research.

2 Hardware Support

Transactional memory has two principal requirements: the ability to detect when transactions in differ-
ent threads conflict, and the ability to hide a transaction’s updates from other threads until the transaction
commits. These requirements can be met in hardware or in software. We describe hardware mechanisms—
alert-on-update and programmable data isolation—that can accelerate software implementations without
constraining policy.

2.1 Alert-On-Update

To enable conflict detection, we propose a simple technique to selectively expose coherence events (potential
writes by other processors) to user programs: threads register an alert handler and then selectively mark lines
of interest as alert-on-update (AOU). When a cache controller detects a remote write or eviction of a line
that is marked in the local cache, it notifies the local processor, effecting a spontaneous subroutine call to
the current thread’s alert handler. Because the state of a line may change due to conflict or capacity misses
on other lines, a handler must in general double-check the cause of the alert.

3

Registers
%aou_handlerPC: address of the handler to be called on a user-space alert
%aou_oldPC: program counter immediately prior to the call to %aou_handlerPC
%aou_alertAddress: address of the line whose status change caused the alert
%aou_alertType: remote write, lost alert, or capacity/conflict eviction
interrupt vector table one extra entry to hold the address of the handler for kernel-mode alerts

Instructions
set_handler %r move %r into %aou_handlerPC
clear_handler clear %aou_handlerPC and flash-clear the alert bits for all cache lines
aload [%r1], %r2 load the word at address %r1 into register %r2, and set the alert bit(s) for the

corresponding cache line
arelease %r unset the alert bit for the cache line that corresponds to the address in register %r
arelease_all flash-clear alert bits on all cache lines

Cache
one extra bit per line, orthogonal to the usual state bits

Table 1: Alert-on-update hardware requirements.

Implementation Implementation of alert-on-update relies on the cache coherence protocol, but is
essentially independent of protocol details. Coherence requires, by definition, that a controller be notified
when the data cached in a local line is written elsewhere in the machine. The controller also knows of
conflict and capacity evictions. We simply alert the processor of these events when they occur on lines that
have previously been marked. The alert includes the address of the affected line and the nature of the event.

Table 1 summarizes hardware requirements. These include special registers to hold the address of the
user-mode handler and a description of the current alert; an extra entry in the interrupt vector table (for alerts
that happen while running in kernel mode); and instructions to set and unset the user-mode handler and to
mark and unmark cache lines (i.e., to set and clear their alert bits). The marking instruction, aload, also
returns a word of the line.

ALoads serve two related roles in RTM, which we describe in more detail in Section 3. First, every
transaction ALoads a word that describes its current status. If any other transaction aborts it (by modifying
this word), the first transaction is guaranteed to notice. Second, a transaction can ALoad a word of metadata
associated with a given object. If writers modify that word before committing changes to the object, readers
are guaranteed to notice. (Significantly, this mechanism does not require that conflict be detected as soon as
some word of the object is speculatively written, thereby permitting lazy conflict detection.)

2.2 Programmable Data Isolation

Caches inherently provide data buffering, but coherence protocols normally propagate modifications quickly
to all copies. As in most hardware transactional memory proposals [1, 8, 23, 28], we allow a thread to delay
this propagation while executing speculatively, and then to make an entire set of changes visible to other
threads atomically. We use a level of cache close to the processor to hold the new copy of data, and rely
on shared lower levels of the memory hierarchy to hold the old values of lines. Unlike most other hardware
TM designers, however, we allow lines to be read and written transactionally even when they are also being
written by some other, concurrent transaction.

Implementation We describe an implementation based on the traditional MESI coherence protocol,
which we label TMESI. Table 2 summarizes hardware requirements.

Potentially speculative reads and writes use TLoad and TStore instructions. These instructions are inter-
preted as speculative when the transactional bit (%t_in_flight) is set. As described in Section 3, this
allows the same code path to be used by both fast-path transactions and those that overflow the available

4

Registers
%t_in_flight: a bit to indicate that a transaction is currently executing
Instructions
begin_t set the %t_in_flight register to indicate the start of a transaction
tstore [%r1], %r2 write the value in register %r2 to the word at address %r1; isolate the line

(TMI state)
tload [%r1], %r2 read the word at address %r1, place the value in register %r2, and tag the

line as transactional
abort discard all isolated (TMI or TI) lines; clear all transactional tags and reset the

%t_in_flight register
cas-commit [%r1], %r2, %r3 compare %r2 to the word at address %r1; if they match, commit all isolated

writes (TMI lines) and store %r3 to the word; otherwise discard all isolated
writes; in either case, clear all transactional tags, discard all isolated reads
(TI lines), and reset the %t_in_flight register

Cache
two extra stable states, TMI and TI, for isolated reads and writes;
transactional tag for the MES states

Table 2: TMESI hardware requirements.

hardware support. TStore is used for writes that require isolation. TLoad is used for reads that can safely be
cached despite remote TStores.

Speculative reads and writes employ two new coherence states: TI and TMI. These states allow a
software policy, if it chooses, to perform lazy detection of read-write and write-write conflicts. Hardware
helps in the detection task by piggybacking a threatened (T) signal/message, analogous to the traditional
shared (S) signal/message, on responses to read-shared bus requests whenever the line exists in TMI state
somewhere in the system. The T signal warns a reader of the existence of a potentially conflicting writer.

TMI serves to buffer speculative local writes. Regardless of previous state, a line moves to TMI in re-
sponse to a PrTWr (the result of a TStore). A TMI line then reverts to M on commit and to I on abort.
Software must ensure that among any concurrent conflicting writers, at most one commits, and if a conflict-
ing reader and writer both commit, the reader does so first from the point of view of program semantics. The
first TStore to a modified cache line results in a writeback prior to transitioning to TMI to ensure that lower
levels of the memory hierarchy have the latest non-speculative value. A line in TMI state threatens read re-
quests and suppresses its data response, allowing lower levels of the hierarchy to supply the non-speculative
version of the data.

TI allows continued use of data that have been read by the current transaction, but that may have been
speculatively written by a concurrent transaction in another thread. An I line moves to TI when threatened
during a TLoad; an M, E, or S line moves to TI when written by another processor while tagged transactional
(indicating that a TLoad has been performed by the current transaction). A TI line must revert to I when the
current transaction commits or aborts, because a remote processor has made speculative changes which, if
committed, would render the local copy stale. No writeback or flush is required since the line is not dirty.
Even during a transaction, silent eviction and re-read is not a problem because software ensures that no
writer can commit unless it first aborts the reader.

The CAS-Commit instruction performs the usual function of compare-and-swap. In addition, if the CAS
succeeds, speculatively written (TMI) lines revert to M, thereby making the data visible to other readers
through normal coherence actions. If the CAS fails, TMI lines are invalidated, and software branches to an
abort handler. In either case, speculatively read (TI) lines revert to I and any transactional tags are flashed
clear on M, E, and S lines. The motivation behind CAS-Commit is simple: software TM systems invariably
use a CAS or its equivalent to commit the current transaction; we overload this instruction to make buffered
transactional state once again visible to the coherence protocol. The Abort instruction clears the transactional

5

T A MESI C/A M/I State
0 — 0 0 — —
0 — 1 1 0 1

}
I

0 — 0 1 — — S
0 — 1 0 — — E
0 — 1 1 1 —
0 — 1 1 0 0

}
M

1 — 0 0 — — TI
1 — 0 1 — — TS
1 — 1 0 — — TE
1 — 1 1 — 0 TM
1 — 1 1 — 1 TMI

T Line is (1) / is not (0) transactional
A Line is (1) / is not (0) alert-on-update
MESI 2 bits: I (00), S (01), E (10), or M (11)
C/A Most recent txn committed (1) or aborted (0)
M/I Line is/was in TMI (1)

Table 3: Tag array encoding for fast commits and aborts. The A (alert) bit is orthogonal to the above states.

state in the cache in the same manner as a failed CAS-Commit.
To the best of our knowledge, RTM and TCC [8] are the only hardware or hybrid TM systems that

support read-write and write-write sharing; other schemes all perform eager conflict detection at the point
where a conventional coherence protocol must invalidate a speculatively read line or demote a speculatively
written line. By allowing a reader transaction to commit before a conflicting writer, RTM permits significant
concurrency in the face of long-running writers. Write-write sharing is more problematic, since it can’t result
in more than one commit. Even so, it allows us to avoid aborting a transaction in favor of a competitor that
is ultimately unable to commit; it may also be desirable in conjunction with early release [16]. Note that
nothing about the TMESI protocol requires read-write or write-write sharing; if the software protocol detects
and resolves conflicts eagerly, the TI state will simply go unused.

To simplify the management of metadata, our implementation of RTM employs a Wide-CAS instruction
(not shown in Table 2) that implements compare-and-swap across multiple contiguous locations (within a
single cache line). As in Itanium’s cmp8xchg16 instruction [11], if the first two words at location A match
their “old” values, all words are swapped with the “new” values (loaded into contiguous registers). Success
is detected by comparing old and new values in the registers.

2.3 Cache tag encoding

All told, a TMESI cache line can be in any one of the four MESI states (I, S, E, M), the two speculative
states (TI, TMI), or transactionally tagged variants of M, E, and S. If the protocol were implemented as a
pure automaton, this would imply a total of 9 stable states, compared to 4 in the base protocol. Regular
MESI also has three transient states, which the automaton enters while waiting for a response to a remote
message. TMESI adds four additional such states, for a total of 16 rather than 7. Any of these states could
also be tagged as alert-on-update.

It would be possible to eliminate the transactionally tagged MES states entirely, at the cost of some
extra reloads in the event of read-write sharing. Suppose thread T1 has read line X transactionally at some
point in the past. The transactional tag indicates that X was TLoaded as part of the current transaction. A
remote write to X (appearing as a BusRdX protocol message) can move X to TI, because software will be
tracking potential conflicts, and will allow T1 to commit only if it does so before any conflicting transaction
commits. If TLoads are replaced with normal loads and/or the transactional tags eliminated, T1 will need to
drop X to I, but a subsequent load will bring it back to TI. Evaluating the tradeoff between complexity and
reloads is a subject of future work.

To allow fast commits and aborts, our cache tags can be encoded in six bits, as shown in Table 3. At
commit time, based on the outcome of the CAS in CAS-Commit, we broadcast a 1 (or 0) on the C/A bit line

6

and use the T bits to conditionally enable only the tags of transactional lines. Following this, we flash-clear
the A and T bits. For TM, TE, TS, and TI the flash clear alone would suffice, but TMI lines must revert to M
on commit and I on abort. We use the C/A bit to distinguish between these: when the line is next accessed,
M/I and C/A are used to interpret the state before being reset. If T is 0, the MESI bits are 11, C/A is 0, and
M/I is 1, the cache line state is invalid and the MESI bits are changed to reflect this. In all other cases, the
state reflected by the MESI bits is correct.

3 RTM Runtime

The RTM runtime is based on the open-source RSTM system [17], a C++ library that runs on legacy hard-
ware. RTM uses alert-on-update and programmable data isolation to avoid copying and to reduce bookkeep-
ing and validation overheads, thereby improving the speed of “fast path” transactions. When a transaction’s
execution time exceeds a single quantum, or when the working set of a transaction exceeds the ALoad or
TStore capacity of the cache, RTM restarts the transaction in a more conservative “overflow mode” that
supports unboundedness in both space and time.

3.1 The RTM API

RTM is 100% source-code compatible with RSTM. Details of the API can be found elsewhere [17]. Briefly,
transactions are lexically scoped, and delimited by BEGIN_TRANSACTION and END_TRANSACTION
macros. BEGIN_TRANSACTION sets the alert handler for a transaction and configures per-transaction
metadata. END_TRANSACTION issues a CAS-Commit.

Objects accessed transactionally must derive from a provided generic transaction class. Among other
things, the transactional object provides access to transaction-safe memory management routines. (We can
use any thread-safe memory allocator, and indeed we have experimented with many. The transactional
object wraps any given allocator in code that defers the reuse of deleted space until we are certain that no
doomed transaction retains a stale pointer to the object.)

In order to access fields of the object, the programmer must request read or write permission by per-
forming an open_RO or open_RW call, which returns a pointer to the object. These calls are explicit
in the source code, though with compiler support they could easily be generated automatically. They fail
if performed outside a transaction. The interface also provides a release method [9], which allows a
programmer with application-specific semantic knowledge to inform the runtime that conflicts on the object
are no longer cause to abort the transaction. Release is a potentially unsafe optimization, which must be
used with care.

One additional operation, used primarily inside the run-time system, is also available to programmers.
The runtime often requires that a set of related metadata updates be allowed to complete, i.e., that the trans-
action not be aborted immediately. This is accomplished by using a flag to indicate that the set of updates
are in progress. If an alert occurs while the flag is set, the handler defers its normal actions, sets another flag,
and returns. When the runtime finishes its updates, it clears the first flag, checks the second, and jumps back
to the handler if action was deferred. Applications can use this “deferred abort” mechanism to protect a set
of related updates to nontransactional data from within a transaction (e.g., for logging purposes). In effect,
deferred abort blocks serve as a cheap, non-isolated approximation of open nested transactions [24].

3.2 Metadata

Every RTM transaction is represented by a descriptor (Figure 1) containing a serial number and a word that
indicates whether the transaction is currently ACTIVE, COMMITTED, or ABORTED. The serial number is
incremented every time a new transaction begins. It enables the reuse of descriptors without the need for

7

Serial Number

Status

Serial Number

Status

Txn−1 Descriptor

Old Writer

Old Version

Data Object −
Clone

Txn−2 Descriptor

New Writer

Object Header

Reader 1 Reader 2

Owner

Old Object

New Object

Serial Number

Overflow Readers

Data Object −

Here a writer transaction is in the
process of acquiring the object,
overwriting the Owner pointer and
Serial Number fields, and updat-
ing the Old Object pointer to refer
to the previously valid copy of the
data. A fast-path transaction will
set the New Object field to null; an
overflow transaction will set it to
refer to a newly created clone. Sev-
eral overflow transactions can work
concurrently on their own object
clones prior to acquire time, just
as fast-path transactions can work
concurrently on copies buffered in
their caches.

Figure 1: RTM metadata structure.

cleanup in the wake of a successful commit. If the serial numbers of an object header and descriptor do not
match, then the descriptor’s status is assumed to be COMMITTED. ABORTED overflow transactions must
clean up all references to their descriptors before they start a new transaction.

Every transactional object is represented by a header containing five main fields: a pointer to an “owner”
transaction, the owner’s serial number, pointers to valid (old) and speculative(new) versions of the object,
and a head pointer to a list of overflow transactions currently reading the object.

The open_RO method returns a pointer to the most recently committed version of the object. Typically
the owner/serial number pair indicates a COMMITTED transaction, in which case the New pointer is valid
if it is not NULL, and otherwise the Old pointer is valid. If the owner/serial number pair indicates an
ABORTED transaction, then the old pointer is always valid. When the owner is ACTIVE, there is a conflict.
An object never has entries in the overflow readers list while there is an ACTIVE owner.

The open_RW method returns a pointer to a writable copy of the object. For fast-path transactions this
is the valid version that would be returned by open_RO; updates will be buffered in the cache. For overflow
transactions it is a clone or copy of the valid version.

At some point between its open_RW and commit time, a transaction must acquire every object it has
written. The acquire operation first gets permission from a software contention manager [9, 30] to abort all
transactions in the overflow reader list. It then writes the owner’s ID, the owner’s serial number, and the
addresses of both the last valid version and the new speculative version into the header using (in our current
implementation) a Wide-CAS instruction. Finally, it aborts any transactions in the overflow reader list of the
freshly acquired object.1

At the end of a transaction, a thread issues a CAS-Commit to change its state from ACTIVE to COMMITTED
(or ABORTED, in which case the transaction can be retried).

3.3 Policy Flexibility

RTM uses software to detect and resolve transaction conflicts. Two transactions conflict only if they access
the same object and at least one of them attempts to write it. In RTM this conflict is not visible until the writer
acquires the object. Under eager conflict detection, acquisition occurs at open time, and read-write and

1It is possible for a reader to enter the list after the acquirer finishes requesting permission to abort readers. In such circum-
stances, the late-arriving reader will be aborted without arbitration, which ensures correctness though not fairness.

8

write-write sharing are precluded. A writer aborts any extant readers, and once there is a writer, subsequent
readers and writers must abort the eager writer before they can access the object. In contrast, under lazy
conflict detection, acquisition is deferred until commit time, and read-write and write-write sharing are
permitted. Eager acquisition results in less overall bookkeeping since it doesn’t require a final acquire
phase, making it faster for workloads in which aborts are rare. It may also avoid useless work by aborting
a doomed transaction early. Lazy acquisition, by contrast, avoids the possibility of aborting a transaction
in favor of a competitor that is subsequently unable to commit. It also allows a writer and one or more
concurrent readers to all commit, so long as the readers do so first.

When conflicts are detected, RTM uses a software contention manager to decide which transaction
should continue, and which should wait or abort. Contention management policies are the subject of much
ongoing research [6, 30]; we currently support eight common policies, as well as others of our own design.

In a typical hardware TM system (e.g., LogTM [23]), contention management is embedded in the cache
coherence protocol. It is performed by the controller that owns the line, based on the limited information
available to that controller, while the requesting process blocks waiting for a response. In RTM, contention
management is performed by nonblocking software, executed by the thread that discovers the conflict, using
whatever information the runtime designer deems useful.

3.4 Fast-Path RTM Transactions

Eliminating Data Copying A fast-path transaction calls begin_t inside the BEGIN_TRANSACTION
macro. Subsequent TStores will be buffered in the cache, and will remain invisible to other threads until
the transaction commits. As noted in Section 3.2, open_RW returns a pointer to the current version of an
object when invoked by a fast-path transaction, thereby enabling in-place updates. Programmable data iso-
lation thus avoids the need to create a separate writable copy, as is common in software TM systems (RSTM
among them). When a fast-path transaction acquires an object, it writes a NULL into the New pointer, since
the old pointer is both the last and next valid version. As a result, when a fast-path transaction aborts, it
does not need to clean up the Owner pointers in objects it has acquired; because the owner has been working
directly on the Old version of the data, a newly arriving transaction that sees mis-matched serial numbers
will read the appropriate version.

Reducing Bookkeeping and Validation Costs In most software TM systems, a transaction may be
doomed to fail (because of conflicting operations in committed peers) well before it notices its fate. In the
interim it may read versions of objects that are mutually inconsistent. This possibility raises the problem of
validation: a transaction must ensure that inconsistent data never cause it, erroneously, to perform operations
that cannot be rolled back. In general, a transaction must verify that all its previously read objects are still
valid before it performs any dangerous operation. The resulting overhead can be a major component of the
cost of software TM [33]: making readers visible to writers requires metadata updates that induce large
numbers of cache misses; leaving them invisible leads to O(n2) total cost for a transaction that reads n
objects.

ALoad allows validation to be achieved essentially for free. Whenever an object is read (or opened
for writing with lazy acquire), the transaction uses ALoad to mark the object’s header in the local cache.
Since transactions cannot commit changes to an object without modifying the object header first, the remote
acquisition of a locally ALoaded line results in an immediate alert to the reader transaction. Since the
header must be read in any case, the ALoad induces no extra overhead. Freed of the need to explicitly
validate previously opened objects, software can also avoid the bookkeeping overhead of maintaining those
objects on a list. Best of all, perhaps, a transaction that acquires an object implicitly aborts all fast-path
readers of that object simply by writing the header: fast-path readers need not add themselves to the list
of readers in the header, and the O(t) cost of aborting the readers is replaced by the broadcast invalidation

9

already present in the cache coherence protocol.
One extra complication arises from programmable data isolation: since committing a fast-path writer up-

dates written objects in-place, we must ensure that a transaction in overflow mode also notices immediately
when it is aborted by a competitor. We therefore require that every transaction ALoad its own descriptor. If
a competitor CAS-es its status to ABORTED, the transaction will suffer an alert, avoiding the possibility that
it will read mutually inconsistent data from within a single object.

3.5 Overflow RTM Transactions

Like most hardware TM proposals, fast-path RTM transactions are bounded by space and time constraints.
They cannot ALoad or TStore more lines than the cache can hold, and they cannot execute across a con-
text switch, because we do not (currently) associate transaction IDs with tagged lines in the cache. To
accommodate transactions that exceed these time and space bounds, RTM provides an overflow mode with
only one hardware requirement: that the transaction’s ALoaded descriptor remain in the cache whenever the
transaction is running.

Disabling Speculative Loads and Stores In principle, a transaction that exceeds the capacity of the
cache could continue to use the available space for as many objects as fit. For the sake of simplicity we do
not currently pursue this possibility. Rather, a transaction that suffers a “no more space” alert aborts and
retries in overflow mode. In this mode it leaves the %t_in_flight bit clear, instructing the hardware to
interpret TLoad and TStore instructions as ordinary loads and stores. This convention allows the overflow
transaction to execute the exact same code as fast-path transactions; there is no need for a separate version.

Without speculative stores, however, the overflow transaction must clone objects it intends to write.
When objects are acquired, the WCAS instruction writes the address of the clone into the New field of the
metadata. When transactions encounter a header whose last Owner is committed and whose New field is
non-null, they return the New version as the current valid version.

Limiting ALoads Since overflow transactions can run concurrently with fast-path transactions, they
must abort whenever objects they are reading are overwritten. Though an overflow transaction cannot ALoad
every object header it reads, it still ALoads its own descriptor. It also writes itself into the Overflow Reader
list of every object it reads; this ensures it will be explicitly aborted by any writers on those objects.

Cloning and Consistency While only one ALoaded line is necessary to ensure immediate aborts and
to handle validation, using a second ALoad can improve performance when a fast-path transaction and an
overflow transaction are concurrent writers. If the overflow writer is cloning an object when the fast-path
writer commits, the clone operation may return an internally inconsistent object. If the overflow transaction
becomes a visible reader first, the problem is avoided. It is simpler, however, to ALoad the header and
then clone the object. If another transaction commits changes, the clone operation will suffer an alert. We
assume in our experiments that the hardware is able (with a small victim cache) to prefer non-ALoaded lines
for eviction, and to keep at least two in the cache.

Context Switches To support transactions that must be preempted, we require two actions from the
operating system. When it swaps a transaction out, the operating system flash clears all the A tags. In
addition, for transactions in fast-path mode, it executes the abort instruction to discard isolated lines.
When it swaps the transaction back in, it starts execution in a software-specified restart handler (separate
from the alert handler). The restart handler aborts and retries if the transaction was in fast-path mode or was
swapped out in mid-clone; otherwise it re-ALoads the transaction descriptor and checks that the transaction
status has not been changed to ABORTED. If this check succeeds, control returns as normal; otherwise the
transaction jumps to its abort code.

10

3.6 RTM-Lite

While both alert-on-update and programmable data isolation can improve the performance of TM, alert-
on-update is a much smaller change to existing cache designs—an ALoad-capable processor can, in fact,
be pin compatible with existing hardware. An analysis of overheads in software TM also suggested that
alert-on-update alone could yield significant performance gains. We therefore designed a system that relies
on this mechanism only.

Like a fast-path RTM transaction, an RTM-Lite transaction ALoads the headers of the objects it reads.
It does not add itself to Overflow Reader lists. Since TStore is not available, however, it must clone every
acquired object. At the same time, it never has to worry about in-place updates, so immediate aborts are not
required. This avoids some complexity in the run-time system: the alert handler simply sets the descriptor
to ABORTED and returns. A transaction checks its status on every API call, but this takes constant time: in
comparison to RSTM, validation requires neither a cache-miss-inducing change to a visible reader list nor
an O(n) check of n previously-opened objects.

As it turns out, RTM-Lite transactions resemble RSTM transactions more closely than they resemble
either fast-path or overflow transactions in RTM. In recognition of this fact, we created the RTM-Lite code
base by adding ALoads to RSTM and removing validation, rather than by removing in-place update from
RTM. As a result, RTM-Lite shares some additional, incidental similarities to RSTM: Instead of using a
Wide-CAS to update multiple header fields atomically, RTM-Lite moves several fields into the data object
and requires an extra level of indirection to read an object whose owner has aborted. Instead of using serial
numbers to recognize re-used descriptors, RTM-Lite requires both committed and aborted transactions to
clean up Owner pointers in acquired objects.

Every RTM-Lite transaction keeps an estimate of the number of lines it can safely ALoad. If it opens
more objects than this, it keeps a list of the extra objects and validates them incrementally, as RSTM does.
If it suffers a “no more space” alert, it reduces its space estimate, aborts, and restarts. On a context switch,
RTM-Lite transactions abort and restart as RSTM transactions.

4 Evaluation

In this section we present experimental results to evaluate our three main claims: that the RTM hardware can
be effectively used to speed a software TM system, that policy flexibility is important, and that our hybrid
design permits a heterogeneous mix of fast-path and overflow transactions without impeding throughput.

4.1 Evaluation Framework

We evaluate RTM through full system simulation of a 16-way chip multiprocessor (CMP) with private split
L1 caches and a shared L2. We use the GEMS/Simics infrastructure [19], a full system functional simulator
that faithfully models the SPARC architecture. The instructions specified in Section 2 are called through the
standard Simics “magic instruction” mechanism. We implemented the TMESI protocol and alert-on-update
mechanism using the SLICC [19] framework to encode all the stable and transient states in the system.

We employ GEMS’s network model for bus and switch contention, using the parameters in Table 4.
Simics allows us to run an unmodified Solaris 9 kernel on our target system with the “user-mode-change”
and “exception-handler” interface enabling us to trap user-kernel mode crossings. On crossings, we suspend
the current transaction context and allow the OS to handle TLB misses, register-window overflow, and other
kernel activities required by an active user context in the midst of a transaction. On transfer back from the
kernel we deliver any alert signals received during the kernel routine, triggering the alert handler as needed.
On context switches, we simulate the execution of the simple software handlers described in Section 3.5.

11

16-way CMP, Private L1, Shared L2
Processor Cores 16 1.2GHz in-order, single issue, ideal IPC=1
Private L1 Cache 64kB 4-way split, 64-byte blocks, 1 cycle latency, 32-entry victim buffer
Shared L2 Cache 8MB, 8-way unified, 64-byte blocks, 4 banks, 20 cycle latency

Memory 2GB, 100 cycle latency
Interconnection Network 4-ary totally ordered hierarchical tree, 1 cycle link latency, 64-byte links

Table 4: Target System Parameters

HashTable: Transactions use a hash table with 256 buckets and overflow chains to lookup, insert, or delete a
value in the range 0 . . . 255 with equal probability. At steady state, the table is 50% full.
RBTree: In the red-black tree (RBTree) benchmark, transactions attempt to insert, remove, or delete values in
the range 0 . . . 4095 with equal probability. At steady state there are about 2048 objects, with about half of the
values stored in leaves.
RBTree-Large: This version of the RBTree benchmark uses 256-byte tree nodes to increase copying overheads.
Transactions only modify a small percent of the fields of the node.
LFUCache: LFUCache uses a large (2048) array based index and a smaller (255 entry) priority queue to track
the most frequently accessed pages in a simulated web cache. When re-heapifying the queue, transactions always
swap a value-one node with a value-one child; this induces hysteresis and gives each page a chance to accumulate
cache hits. Pages to be accessed are randomly chosen using a Zipf distribution: p(i) ∝ Σ0<j≤ij

−2.
LinkedList-Release: In the LinkedList-Release benchmark, early release is used to minimize read-set size
while performing inserts, lookups, and deletes into a sorted, singly-linked list holding values in the range
0 . . . 255.
RandomGraph The RandomGraph benchmark requires transactions to insert or delete vertices from an undi-
rected graph represented with adjacency lists. Edges in the graph are chosen at random, with each new vertex
initially having up to 4 randomly selected neighbors.

Table 5: Workload Description

We consider the six benchmarks listed in Figure 5, designed to stress different aspects of software TM.
In all benchmarks, we execute a fixed number of transactions in single-thread mode to ensure that the
data structure is in a steady state. We then instruct each thread to execute a fixed number of transactions
concurrently, to evaluate throughput and scalability.

4.2 Runtime Systems Evaluated

We evaluate each benchmark with two RTM configurations. RTM-F always executes fast-path transactions
to extract maximum benefit from the hardware; RTM-O always executes overflow transactions to demon-
strate worst-case throughput. We also compare RTM to the freely-available RSTM [17] package and the
RTM-Lite runtime described in Section 3.6, which uses ALoad to optimize the RSTM library. As a base-
line we compare against a coarse-grain locking library (CGL), which enforces mutual exclusion by mapping
the BEGIN- and END-TRANSACTION macros to acquisition and release of a single coarse-grain test-and-
test-and-set lock.

To ensure a fair comparison, we use the same benchmark code, memory manager, and contention man-
agers in all systems. For contention management we use the Polka manager [30] unless otherwise specified.
The only exception to our code reuse is for simulating TLoad and TStore without compiler support. We
modified the allocator to segregate the heap and construct all shared object payloads in high address ranges.
Memory management proceeds as in all other systems, but our simulator treats all memory operations on
high addresses as tloads and tstores.

12

4.3 Throughput and Latency

Figure 2 presents the normalized throughput (transactions per second) for all benchmark and runtime combi-
nations. We only consider eager transactions, and results are normalized to single-thread CGL performance,
except for RandomGraph, which is normalized to single-thread RSTM performance. RTM-F, RTM-O,
RTM-Lite, and RSTM demonstrate similar scaling behavior across all benchmarks; RTM-F and RTM-Lite
appear to successfully leverage our hardware to achieve up to a∼ 5× speedup at one thread, and consistently
better performance at all thread levels, in comparison to RSTM.

To gain further insight into the improvements of RTM and RTM-Lite over RSTM, Figure 3 presents
a breakdown of single thread execution time. The segments of each bar reflect time spent in various por-
tions of user and API code. Real Work expresses time in user-provided code between the BEGIN- and
END-TRANSACTION macros (time in user code outside of these macros is Non-Tx). Validation records
any time spent by the runtime explicitly validating its read set, and Copy reflects time spent making clones
of objects. MM records time spent in memory management. Since the individual metadata manipulations
and bookkeeping operations occur at a very fine granularity, we include all time for these operations in
Bookkeeping. For these single-thread runs, no time is spent on aborted transactions or contention manage-
ment.

As the breakdowns show, RTM and RTM-Lite appear to successfully leverage ALoad to eliminate
RSTM’s validation overhead without a significant increase in bookkeeping. RTM is also able to eliminate
the copying costs. Due to the small object sizes for most of the benchmarks (other than RBTree-Large),
this gain is usually dwarfed by other overheads. Similar analysis at other thread levels continues to show
these benefits, although increased bus contention and cache misses, as well as limited concurrency in some
benchmarks, cause increased latency for all components of the timing breakdown.

HashTable: Since transactions are short (at most 2 objects read and 1 written) and conflicts are rare,
the HashTable exhibits embarrassing parallelism: even RSTM is able to scale to a higher throughput than
single-thread CGL. However, these properties prevent hardware from offering much additional benefit. The
cost of copying is small, and since the read set is also small, the validation savings over RSTM are modest,
resulting in about a 30% improvement.

RBTree: Tree rebalancing ensures that there are some conflicts in RBTree, while keeping the read
and write sets above 10 and 3 objects, respectively. Validation is a significant overhead, and consequently
ALoad enables RTM-F and RTM-Lite to double the performance of RSTM. All TMs demonstrate ∼ 10×
speedup from 1 to 16 threads, and ALoad-assisted TMs are able to perform nearly twice as fast as CGL’s
peak despite starting off ∼ 5× slower at one thread.

RBTree-Large: RBTree-Large shows similar scaling behavior to RBTree, but RTM-F is able to lever-
age TLoad and TStore to eliminate long copy operations. RTM-Lite improves performance by ∼25%
over RSTM by eliminating validation. RTM-F further improves performance by another ∼20% by reducing
the copying overhead.

LFUCache: Due to the Zipf distribution used to choose which page to hit, there is virtually no concur-
rency in LFUCache, and all TMs flat-line as threads are added. Using ALoad allows RTM-F and RTM-Lite
to outperform RSTM, but CGL’s peak performance is still ∼ 3× higher.

LinkedList-Release: The use of early release keeps conflicts low, resulting in a high level of concur-
rency (∼ 10× speedup at 16 threads for all TMs). However, the high cost of metadata manipulation and
bookkeeping (on average 64 objects are read and 62 released) keeps any TM from outperforming CGL’s
peak. At 16 threads, RTM and RTM-Lite achieve about 60% of CGL’s single-thread performance.

13

HashTable

0

0.5

1

1.5

2

2.5

1 2 4 8 16

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

LinkedList-Release

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

RBTree-Large

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 4 8 16

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

RBTree

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 4 8 16

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

LFUCache

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

RandomGraph
14.328.6 19.1

0

1

2

3

4

5

6

7

8

9

10

1 2 4 8 16

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

CGL RTM-F RTM-Lite RTM-O RSTM

Figure 2: Throughput (transactions per second), normalized to single-thread CGL. RandomGraph is nor-
malized to single-thread RSTM. 14

0

0.2

0.4

0.6

0.8

1

R
T

M
-F

R
T

M
-L

ite

R
S

T
M

R
T

M
-F

R
T

M
-L

ite

R
S

T
M

R
T

M
-F

R
T

M
-L

ite

R
S

T
M

R
T

M
-F

R
T

M
-L

ite

R
S

T
M

R
T

M
-F

R
T

M
-L

ite

R
S

T
M

R
T

M
-F

R
T

M
-L

ite

R
S

T
M

Hash RBTree LinkedList-
Release

LFUCache RandomGraph RBTree-
Large

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Abort

Copy

CM

MM

Bookkeeping

 Validation

Non-Tx

Real Work

Figure 3: Breakdown of single-thread transaction latency, normalized to single-thread RSTM.

RandomGraph: Transactions in RandomGraph are complex; they read hundreds of objects, write tens
of objects, and conflict with high probability. Validation is expensive and aborts are frequent. By leveraging
ALoad, RTM-F and RTM-Lite can outperform RSTM by a factor of 5 at one thread. Similarly, RTM-O’s
use of a visible reader list enables it to avoid validation and dramatically outperform RSTM, although the
two perform comparably when RSTM is configured to use visible reads. When there is any concurrency,
however, the choice of eager acquire causes all TMs to livelock with the Polka contention manager. 2

4.4 Advantages of Policy Flexibility

In order to evaluate the advantages of policy flexibility, we varied the conflict detection policy between
eager and lazy. Figure 4 presents the results for HashTable, RBTree, LFUCache, and RandomGraph using
16 threads.

The HashTable and RBTree benchmarks demonstrate that in benchmarks that exhibit parallelism, the
choice of conflict detection policy has a measurable effect. In HashTable, where conflicts are extremely
rare, lazy acquire adds extra bookkeeping instructions without improving conflict resolution, resulting in a
constant performance degradation that exceeds 15% for 16 threads. Similarly, RBTree suffers from the extra
bookkeeping at low thread counts; at high thread counts, however, the use of lazy acquire enables RBTree
to scale slightly better than eager acquire, ultimately achieving a 10% speedup.

As in RBTree, lazy transactions are slower than eager transactions in LFUCache at low thread levels due
to extra bookkeeping. Since LFUCache admits no concurrency, eager acquire hurts performance at higher
thread levels. As soon as an eager transaction calls open_RW on an object, it is vulnerable to conflicts
with other threads. Since the likelihood of another thread trying to use the same object is high, increased
concurrency decreases the likelihood of that transaction committing by a small factor. In contrast, lazy
acquire actually improves performance. We expect that lazy acquire would not degrade due to contention;
conflicts are only visible at the point where one transaction attempts to commit, and at that commit point
conflicts are usually only realized between writers on the same object. Since the conflicting transactions are
both about to commit, the likelihood of the conflict “winner” ultimately failing is low. The improvement in

2This livelocking behavior can be avoided by using a Greedy contention manager [6] modified to support invisible reads. Using
Greedy, all TMs flat-line in RandomGraph as threads are added.

15

HashTable

0

2

4

6

8

10

12

1 2 4 8 16

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Eager Lazy

LFUCache

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 4 8 16

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Eager Lazy

RBTree

0

2

4

6

8

10

12

1 2 4 8 16

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Eager Lazy

RandomGraph

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Eager Lazy

Figure 4: Eager vs. lazy conflict detection comparison, normalized to RTM Eager, 1 thread, as the number
of threads is increased.

throughput with lazy acquire despite LFUCache’s lack of concurrency is due to the ability to overlap one
processor’s transactional work with another processor’s non-transactional work.

On RandomGraph, we had earlier noted that at high thread levels all TM systems livelocked under eager
acquire. Figure 4 shows that lazy acquire avoids this pathological situation. RandomGraph transactions
usually open_RW at least one highly contended object early, and then continue to read and write multiple
objects. Since transactions run for tens of thousands of instructions, the likelihood of another transaction
detecting and winning a conflict on the contended object is high under eager acquire. Unfortunately, that
winner transaction is also likely to be aborted before reaching its commit point, for the same reason. With
lazy acquire, this situation is avoided since conflicts are only detected at the very end of transactions. As
in LFUCache, the winner of a conflict is unlikely to be aborted, unless it is by another transaction that is
also about to commit. The consequences of this property are more dramatic than in LFUCache because the
transactions are larger in space and time.

To summarize, even on a small set of benchmarks we find that neither lazy nor eager acquire is a silver
bullet. Lazy demonstrates some desirable characteristics, and eager generally performs best at very low
thread counts, but neither strategy consistently offers better performance at high thread levels.

16

4.5 Interaction of Hardware and Software Transactions

We expect overflow transactions to occur rarely, with most transactions running in a short amount of time
and fitting in the L1 cache. However, we must be sure that the occasional overflow transaction does not slow
down fast-path transactions. Figure 5 reports a set of experiments designed to measure this effect.

0

0.5

1

1.5

2

10
0%

F
75

%
F

-2
5%

O
50

%
F

-5
0%

O
25

%
F

-7
5%

O
10

0%
O

10
0%

F
75

%
F

-2
5%

O
50

%
F

-5
0%

O
25

%
F

-7
5%

O
10

0%
O

10
0%

F
75

%
F

-2
5%

O
50

%
F

-5
0%

O
25

%
F

-7
5%

O
10

0%
O

10
0%

F
75

%
F

-2
5%

O
50

%
F

-5
0%

O
25

%
F

-7
5%

O
10

0%
O

10
0%

F
75

%
F

-2
5%

O
50

%
F

-5
0%

O
25

%
F

-7
5%

O
10

0%
O

10
0%

F
75

%
F

-2
5%

O
50

%
F

-5
0%

O
25

%
F

-7
5%

O
10

0%
O

HashTable RBTree LinkedList-
Release

LFUCache RandomGraph RBTree-
Large

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Tx-O

Tx-F

Figure 5: Breakdown of time spent in fast-path and in overflow mode, normalized to the all-fast-path exe-
cution (16 threads).

We run 16 threads all using lazy acquire. Each time a thread commits, it decides whether its next
transaction should be run as overflow or fast-path using a uniform probability distribution. We vary the
probability between 0 and 1 in increments of .25. Total execution time is measured, as well as the percentage
of total execution time spent in fast-path transactions.

If we let Tf be the time required to execute a fast-path transaction, and we let To be the time required
to execute an overflow transaction, then for a given probability Po that a thread runs as overflow, the total
execution time should be Tf × (1−Po)+To×Po. In our experiments, we found that on average our results
were within 4% of this predicted execution time, with the highest outlier only 7% above expected and the
lowest outlier 6% below expected.

5 Conclusions and Future Work

We have described a transactional memory system, RTM, that uses a pair of hardware mechanisms to ac-
celerate transactions managed by a software protocol: alert-on-update provides fast event-based commu-
nication for conflict detection; programmable data isolation allows a processor to hide speculative written
lines from other processors and to continue to use speculatively read lines despite concurrent potentially
conflicting writes on other processors.

Because it is based on a software TM system, RTM allows identical code to run efficiently on both
legacy and updated hardware. Most hardware TM proposals, by contrast, assume a programming model
that is difficult to implement efficiently on legacy machines. In particular, most hardware TM systems roll
back everything on abort; most software TM systems distinguish between transactional data, which is rolled
back, and nontransactional data, which is not. For the near term, this “mixed” programming model appears
to provide an attractive migration path.

17

In contrast to most previous proposals for transactional hardware, RTM supports both read-write and
write-write sharing, allowing transactions to be highly optimistic when it is beneficial to be so. RTM’s
fast-path (fully hardware-supported) transactions require cache space only for speculative writes; lines that
have only been read can safely be evicted. Transactions that nonetheless overflow hardware resources fall
back gracefully to software, and interoperate smoothly with fast-path transactions. All transactions employ
a software contention manager, enabling the use of adaptive or application-specific policies.

We have evaluated RTM using a detailed implementation in the GEMS/Simics simulation infrastruc-
ture [19]. For a suite of microbenchmarks with varying access patterns, we find that RTM outperforms
RSTM by as much as a factor of two. The simpler RTM-Lite system, which relies on alert-on-update but
not programmable data isolation, is effective at eliminating validation overhead, but loses to RTM for trans-
actions that modify large objects. Echoing the findings of previous software TM studies, we find significant
performance differences between eager and lazy conflict detection, with neither outperforming the other in
all cases; this supports the need for policy flexibility.

In future work, we plan to explore a variety of topics, including performance sensitivity to processor
organization parameters; simplified protocols (without transactional loads); implementations for other co-
herence protocols (e.g. MOESI or directory-based); additional hardware assists; nested transactions; gradual
fall-back to software, with ongoing use of whatever fits in cache; other styles of RTM software (e.g., word-
based, blocking, and/or indirection-free); context identifiers for transactions implemented at a shared level
of cache; and more realistic applications.

References
[1] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and S. Lie. Unbounded Transactional Memory. In

Proc. of the 11th Intl. Symp. on High Performance Computer Architecture, pages 316-327, San Francisco, CA,
Feb. 2005.

[2] E. D. Berger and B. G. Zorn. DieHard: Probabilistic Memory Safety for Unsafe Languages. In Proc. of the
SIGPLAN 2006 Conf. on Programming Language Design and Implementation, Ottawa, ON, Canada, June 2006.

[3] W. Chuang, S. Narayanasamy, G. Venkatesh, J. Sampson, M. V. Biesbrouck, G. Pokam, B. Calder, and O.
Colavin. Unbounded Page-Based Transactional Memory. In Proc. of the 12th Intl. Conf. on Architectural Support
for Programming Languages and Operating Systems, pages 347-358, San Jose, CA, Oct. 2006.

[4] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nussbaum. Hybrid Transactional Memory. In
Proc. of the 12th Intl. Conf. on Architectural Support for Programming Languages and Operating Systems, San
Jose, CA, Oct. 2006.

[5] K. Fraser and T. Harris. Concurrent Programming Without Locks. Submitted for publication, 2004. Available
as research.microsoft.com/˜tharris/drafts/cpwl- submission.pdf.

[6] R. Guerraoui, M. Herlihy, and B. Pochon. Polymorphic Contention Management in SXM. In Proc. of the 19th
Intl. Symp. on Distributed Computing, Cracow, Poland, Sept. 2005.

[7] L. Hammond, B. D. Carlstrom, V. Wong, B. Hertzberg, M. Chen, C. Kozyrakis, and K. Olukotun. Programming
with Transactional Coherence and Consistency (TCC). In Proc. of the 11th Intl. Conf. on Architectural Support
for Programming Languages and Operating Systems, pages 1-13, Boston, MA, Oct. 2004.

[8] L. Hammond, V. Wong, M. Chen, B. Hertzberg, B. Carlstrom, M. Prabhu, H. Wijaya, C. Kozyrakis, and K.
Olukotun. Transactional Memory Coherence and Consistency. In Proc. of the 31st Intl. Symp. on Computer
Architecture, München, Germany, June 2004.

[9] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III. Software Transactional Memory for Dynamic-sized
Data Structures. In Proc. of the 22nd ACM Symp. on Principles of Distributed Computing, pages 92-101, Boston,
MA, July 2003.

[10] M. Herlihy and J. E. Moss. Transactional Memory: Architectural Support for Lock-Free Data Structures. In
Proc. of the 20th Intl. Symp. on Computer Architecture, pages 289-300, San Diego, CA, May 1993. Expanded
version available as CRL 92/07, DEC Cambridge Research Laboratory, Dec. 1992.

18

[11] Intel Corporation. Intel Itanium Architecture Software Developer’s Manual. Revision 2.2, Jan. 2006.
[12] R. Kalla, B. Sinharoy, and J. M. Tendler. IBM Power5 Chip: A Dual-core Multithreaded Processor. IEEE Micro,

24(2):40-47, Mar.-Apr. 2004.
[13] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-Way Multithreaded SPARC Processor. In IEEE

Micro, pages 21-29, Mar.-Apr. 2005.
[14] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen. Hybrid Transactional Memory. In Proc. of the 11th

ACM Symp. on Principles and Practice of Parallel Programming, New York, NY, Mar. 2006.
[15] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting Atomicity Violations via Access Interleaving Invariants.

In Proc. of the 12th Intl. Conf. on Architectural Support for Programming Languages and Operating Systems,
San Jose, CA, Oct. 2006.

[16] V. J. Marathe, W. N. Scherer III, and M. L. Scott. Adaptive Software Transactional Memory. In Proc. of the 19th
Intl. Symp. on Distributed Computing, Cracow, Poland, Sept. 2005.

[17] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisenstat, W. N. Scherer III, and M. L. Scott. Lowering
the Overhead of Software Transactional Memory. In ACM SIGPLAN Workshop on Languages, Compilers, and
Hardware Support for Transactional Computing, Ottawa, ON, Canada, June 2006. Held in conjunction with
PLDI 2006. Expanded version available as TR 893, Dept. of Computer Science, Univ. of Rochester, Mar. 2006.

[18] J. F. Martı́nez and J. Torrellas. Speculative Synchronization: Applying Thread-Level Speculation to Explicitly
Parallel Applications. In Proc. of the 10th Intl. Conf. on Architectural Support for Programming Languages and
Operating Systems, pages 18-29, San Jose, CA, Oct. 2002.

[19] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R. Alameldeen, K. E. Moore, M. D.
Hill, and D. A. Wood. Multifacet’s General Execution-driven Multiprocessor Simulator (GEMS) Toolset. In
ACM SIGARCH Computer Architecture News, Sept. 2005.

[20] P. E. McKenney, J. Appavoo, A. Kleen, O. Krieger, R. Russel, D. Sarma, and M. Soni. Read-Copy Update. In
Proc. of the Ottawa Linux Symp., July 2001.

[21] C. McNairy and R. Bhatia. Montecito: A Dual-core, Dual-thread Itanium Processor. IEEE Micro, 25(2):10-20,
Mar.-Apr. 2005.

[22] M. M. Michael. Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects. IEEE Trans. on Parallel
and Distributed Systems, 15(8), Aug. 2004.

[23] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood. LogTM: Log-based Transactional Memory.
In Proc. of the 12th Intl. Symp. on High Performance Computer Architecture, Austin, TX, Feb. 2006.

[24] J. E. B. Moss. Open Nested Transactions: Semantics and Support. In Proc. of the 4th IEEE Workshop on Memory
Performance Issues, Austin, Texas, Feb. 2006. Held in conjunction with HPCA 2006.

[25] J. Oplinger and M. S. Lam. Enhancing Software Reliability with Speculative Threads. In Proc. of the 10th Intl.
Conf. on Architectural Support for Programming Languages and Operating Systems, pages 184-196, San Jose,
CA, Oct. 2002.

[26] R. Rajwar and J. R. Goodman. Speculative Lock Elision: Enabling Highly Concurrent Multithreaded Execution.
In Proc. of the 34th Intl. Symp. on Microarchitecture, Austin, TX, Dec. 2001.

[27] R. Rajwar and J. R. Goodman. Transactional Lock-Free Execution of Lock-Based Programs. In Proc. of the
10th Intl. Conf. on Architectural Support for Programming Languages and Operating Systems, pages 5-17, San
Jose, CA, Oct. 2002.

[28] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing Transactional Memory. In Proc. of the 32nd Intl. Symp. on
Computer Architecture, Madison, WI, June 2005.

[29] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and B. Hertzberg. McRT-STM: A High Performance
Software Transactional Memory System for a Multi-Core Runtime. In Proc. of the 11th ACM Symp. on Principles
and Practice of Parallel Programming, New York, NY, Mar. 2006.

[30] W. N. Scherer III and M. L. Scott. Advanced Contention Management for Dynamic Software Transactional
Memory. In Proc. of the 24th ACM Symp. on Principles of Distributed Computing, Las Vegas, NV, July 2005.

[31] N. Shavit and D. Touitou. Software Transactional Memory. Distributed Computing, 10(2):99-116, Feb. 1997.
Originally presented at the 14th ACM Symp. on Principles of Distributed Computing, Aug. 1995.

19

[32] A. Shriraman, V. J. Marathe, S. Dwarkadas, M. L. Scott, D. Eisenstat, C. Heriot, W. N. Scherer III, and M. F.
Spear. Hardware Acceleration of Software Transactional Memory. In ACM SIGPLAN Workshop on Languages,
Compilers, and Hardware Support for Transactional Computing, Ottawa, ON, Canada, June 2006. Held in
conjunction with PLDI 2006. Expanded version available as TR 887, Dept. of Computer Science, Univ. of
Rochester, Dec. 2005, revised Mar. 2006.

[33] M. F. Spear, V. J. Marathe, W. N. Scherer III, and M. L. Scott. Conflict Detection and Validation Strategies for
Software Transactional Memory. In Proc. of the 20th Intl. Symp. on Distributed Computing, Stockholm, Sweden,
Sept. 2006.

[34] J. Steffan and T. Mowry. The Potential for Using Thread-Level Data Speculation to Facilitate Automatic Paral-
lelization. In Proc. of the 4th Intl. Symp. on High Performance Computer Architecture, pages 2-13, Las Vegas,
NV, Feb. 1998.

[35] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active Messages: A Mechanism for Integrated
Communication and Computation. In Proc. of the 19th Intl. Symp. on Computer Architecture, pages 256-266,
Gold Coast, Australia, May 1992.

[36] C. Zilles and L. Baugh. Extending Hardware Transactional Memory to Support Non-Busy Waiting and Non-
Transactional Actions. In ACM SIGPLAN Workshop on Languages, Compilers, and Hardware Support for
Transactional Computing, Ottawa, ON, Canada, June 2006. Held in conjunction with PLDI 2006.

20

A TMESI Protocol Transitions

Figure 6 contains the transition diagram for the stable states of the TMESI protocol, with transactional tags
for TM, TE, and TS states. Orthogonal A bits are not shown.

BusRd/S

BusRdX

/ Flush

PrTWr/Flush

PrTRd/−

PrTRd/−

PrTRd/−

PrTWr/−

PrTRd/−

PrTWr
/ UpgrX

PrWr

BusRdX/–

PrRd/−

PrWr

PrRd /

PrRd/−

PrRd /

/ BusRdX

PrRd,PrWr/−

PrWr/−

PrTRd/BusRd(T)

PrTRd/BusRd(S,T)

/ UpgrX

/ UpgrX

E

M

I

S

PrTWr/−

BusRdX/–

/ Flush
BusRdX

BusRd TMI

TS

PrTWr

TE

TM

TI

PrTWr
/ UpgrX

PrTRd/−

/ Flush

BusRdX/–

BusRd/Flush

PrTRd,PrTWr,
BusRd,BusRdX/T

BusRdX/–

PrTRd/BusRd(S,T)

MESI States

TMESI States

PrTRd/−

BusRd/S

CAS−Commit

ABORT

PrTRd,BisRd,BusRdX/−

/ Flush
PrTWr

PrTWr

/ BusRdX

BusRd/S

BusRd/S

BusRd(S,T)

BusRd(S,T)

Figure 6: TMESI Protocol.

Dashed boxes enclose the MESI and TMESI subsets of the state space. In the wake of a CAS-Commit,
TM, TE, TS, and TI revert to M, E, S, and I, respectively; TMI reverts to M if the CAS-Commit succeeds, or
to I if it fails. Notation on transitions is conventional: the part before the slash is the triggering message;
after is the ancillary action (‘–’ means none). “Flush” indicates that the cache writes the line out to the
bus. S and T indicate signals on the “shared” and “threatened” bus lines respectively. Plain, they indicate
assertion by the local processor; parenthesized, they indicate the signals that accompany the response to a
BusRd request. An overbar means “not signaled”. For simplicity, we assume that the base protocol prefers
memory–cache transfers over cache–cache transfers. In all cases, a cache responds to Upgr (upgrade to M)
requests the same way it responds to BusRdX messages.

21

B Simplified TMESI Protocol

Figure 7 contains the transition diagram for the stable states of the simplified TMESI protocol alluded to in
Section 2.3. By omitting the transactional tags for TM, TE, and TS states, we obtain a significantly simpler
protocol, at the cost of reloading lines that are read twice in the same transaction, and are threatened (for the
first time) in between. As in Figure 6, orthogonal A bits are not shown.

PrTWrPrWr

PrRd/–

PrWr

PrRd /

PrRd/−

/ BusRdX

PrRd,PrWr/−

PrWr/−

E

M

I

S

PrTWr/−/ Flush

BusRd TMI
/ Flush

PrRd,BusRdX/−

PrTWr

TMESI States

PrTWr/Flush

BusRdX/–

MESI States

TI

BusRdX

BusRdX/–

/ BusRdX

PrRd,PrWr,PrTWr,

BusRd/−

BusRd,BusRdX/T

BusRd(S,T)

PrRd/BusRd(T)

BusRd/S

/ UpgrX

PrTWr/UpgrX

BusRd(S,T)
PrRd /

/ UpgrX

CAS−Commit

ABORT

BusRd/S

Figure 7: Simplified TMESI Protocol.

C Example

Figure 8 illustrates the interactions among three simple concurrent transactions, with the interleaving of
accesses with lazy acquire at the top and cache tag arrays at various points in time at the bottom. OH(X)
indicates the header of any object x. Only the transactional instructions are shown. Numbers indicate the
order in which instructions occur. At the beginning of each transaction, RTM software executes a SetHandler
instruction, initializes a transaction descriptor (in software), and ALoads that descriptor. Though the open
calls are not shown explicitly, RTM software also executes an ALoad on each object header at the time of
the open and before the initial TLoad or TStore. We use AM, AE, and AS to indicate MESI states with the A
bit set.

22

1

1

TLoad A

TStore B

Acquire B
CAS-Commit

T1

3

3

TLoad A

TLoad B

CAS-Commit

T3

4

4

5

5

Data
T1 TEE A

AE OH(A)
Tag Data

T1
Tag

AS OH(A)
TII A

DataTag
T2 AS OH(A)

TMI A

Data
T1

Tag
AS OH(A)

AE OH(B)
TMI B

TII A

DataTag
T2 AS OH(A)

TMI A

Data
T1

Tag
AS OH(A)

AS OH(B)
TMI B

TII A

Data
T1

Tag
AS OH(A)

AE OH(B)
TMI B

TII A

DataTag
T2 AS OH(A)

TMI A

DataTag
T3 AS OH(A)

TII A
DataTag

T2 AS OH(A)
TMI A

Data
T3

Tag
AS OH(A)

AS OH(B)
TII B

TII A

CAS-Commit
Acquire A

TStore A

T2

2

2

E1 E2 E3

Figure 8: Execution of Transactions. Top: interleaving of accesses in three transactions, with lazy acquire.
Bottom: Cache tag arrays at various event points. (OH(x) is used to indicate the header of object x.)

Let us assume that initially objects A and B are invalid in all caches. At y1 transaction T1 performs a
TLoad of object A. RTM software will have ALoaded A’s header into T1’s cache in state AE (since it is
the only cached copy) at the time of the open. The referenced line of A is then loaded in TE. When the
store happens in T2 at y2, the line in TE in T1 sees a BusRdX message and drops to TI. The line remains
valid, however, and T1 can continue to use it until T2 acquires A (thereby aborting T1) or T1 itself commits.
Regardless of T1’s outcome, the TI line must drop to I to reflect the possibility that a transaction threatening
that line can subsequently commit.

At y3 T1 performs a TStore to object B. RTM loads B’s header in state AE at the time of the open, and
B itself is loaded in TMI, since the write is speculative. If T1 commits, the line will revert to M, making
the TStore’s change permanent. If T1 aborts, the line will revert to I, since the speculative value will at that
point be invalid.

At y4 transaction T3 performs a TLoad on object A. Since T2 holds the line in TMI, it asserts the T
signal in response to T3’s BusRd message. This causes T3 to load the line in TI, giving it access only until it
commits or aborts (at which point it loses the protection of software conflict detection). Prior to the TLoad,
RTM software will have ALoaded A’s header into T3’s cache during the open, causing T2 to assert the S
signal and to drop its own copy of the header to AS. If T2 acquires A while T3 is active, its BusRdX on A’s
header will cause an invalidation in T3’s cache and thus an immediate abort of T3.

Event y5 is similar to y4, and B is also loaded in TI.

23

We now consider the ordering of events ~E1, ~E2, and ~E3.

1. E1 happens before E2 and E3: When T1 acquires B’s header, it invalidates the line in T3’s cache.
This causes T3 to abort. T2, however, can commit. When it retries, T3 will see the new value of A
from T1’s commit.

2. E2 happens before E1 and E3: When T2 acquires A’s header, it aborts both T1 and T3.

3. E3 happens before E1 and E2: Since T3 is only a reader of objects, and has not been invalidated by
writer acquires, it commits. T2 can similarly commit, if E1 happens before E2, since T1 is a reader
of A. Thus, the ordering E3, E1, E2 will allow all three transactions to commit. TCC [8] would also
admit this scenario, but to the best of our knowledge no other hardware or hybrid TM scheme would
do so, because of eager conflict detection. RTM enforces consistency with a single BusRdX per object
header. In contrast, TCC must broadcast all speculatively modified lines at commit time.

D Nontransactional Use of Alert-on-Update

As noted in Section 1, alert-on-update could be used for any task that benefits from fine-grain access control.
We enumerate several examples here.

To maximize its flexibility, we propose two variants of the ALoad instruction: The first, as described in
Section 2.1, generates an alert when the line is evicted from the cache. The second also generates an alert if
the line is written or, optionally, read locally.

D.1 Fast User-space Mutexes

The low latency of alert signals shifts the tradeoff between spinning and yielding on lock acquisition failure,
especially in the case of user-level thread packages. Ideally, a thread T would yield immediately when it
fails to acquire lock L, and would wake immediately when L is released. To approximate this behavior, we
need only prefix the acquire attempt with an ALoad of the lock. Then, on lock failure, T can yield without
ARelease-ing the line. On a subsequent alert the handler would switch back to T . In this manner no cycles
are wasted spinning on an unavailable lock, and no bus traffic is generated by multiple unsuccessful acquire
attempts.

For optimal performance, the thread package may specify that the alert handler attempts to acquire L
on T ’s behalf when an alert is given. This ensures the lowest latency between the release of L and its
acquisition by T . Additionally, if L is acquired by T ′ before the alert handler can acquire it for T , the thread
switch to T can be avoided. Furthermore, using the variant of ALoad that also generates alerts for local
writes, this method is appropriate regardless of whether the lock holder and failing acquirer reside on the
same processor or separate processors. This technique is useful both with and without transactions, and thus
is more general (and carries less overhead due to transaction rollback) than a similar proposal by Zilles and
Baugh [36].

D.2 Asynchronous Message Handling

Communication mechanisms (e.g., Active Messages [35]) in which messages are received asynchronously
generally require either user-level polling or remote interrupts and operating system intervention, both of
which are expensive. By ALoading a “doorbell” location, a thread can provide its message-passing peers
with a simple, efficient way to notify it when a message buffer has been filled and is ready for receipt.

24

D.3 Fast Rollback in Nonblocking Algorithms

Many nonblocking algorithms have distinct phases: first a shared location is read, then a new value is
computed for the shared location, and finally the thread attempts to CAS the new value in place of the old
value. When the value of the shared location changes during the middle of the computation phase, the
computing thread is doomed to abort, but cannot detect its fate without continuous polling.

To avoid both polling and wasted work, a thread might ALoad the shared location, and register an
alert handler that restarts the operation immediately. Using this idiom, if the location changes the thread
will immediately discard its wasted effort and return to the phase in which it reads the shared location.
Depending on the complexity of the computation in the second phase, the alert handler may wish to throw
an exception, issue a longjmp(), or simply execute an unconditional branch.

This technique is applicable not only to nonblocking algorithms, but also to read-copy-update algo-
rithms [20] and many software TM systems. It is likely that rollback will entail more than a simple jump
instruction for these applications, since they are likely to allocate deep data structures during their compu-
tation phase.

D.4 Hazard Pointers

Compare-and-swap instructions are susceptible to the “ABA” problem, in which thread T1 reads L == A
and then CASes L to Z, but in the meantime two other CASes are issued by other threads, changing L from
A to B and back to A again. In algorithms that require that L remain constant from the first read by T1 to
the final CAS, more complicated measures such as hazard pointers have been proposed [22].

We observe, however, that the fast rollback technique of the previous subsection solves the ABA problem
implicitly. Any change to L will result in an alert to T1, and the absence of any alert between the initial read
of L and the moment when T1 CASes L from A to Z indicates that there was no ABA risk.

Depending on the implementation of CAS, this technique might result in unnecessary alerts. In particu-
lar, it is common for the CAS microcode to begin with a get-exclusive bus message. Thus if L is not A when
T1 tries to execute CAS(&L, A, Z), the CAS will still cause remote processors to take an alert on L. For
highly contended locations, we suspect that a software test-and-CAS operation, which loads L, compares L
to A, and conditionally issues a hardware CAS only if L == A would effectively mitigate this risk without
requiring an additional hardware instruction.

D.5 Debugging

Modern microprocessors currently provide limited support for debuggers through watchpoint registers. On
the x86, for example, there are 4 debug registers which may be used to monitor memory regions of 1, 2 or 4
contiguous bytes. With pervasive parallelism, four debug watchpoints registers may not be enough. Alert-
on-update (the variant that also generates alerts on local writes) allows the debugger to set watchpoints at
only coarser cache-line granularity but supports a larger number of watchpoints, up to the size of the cache.

More recently Lu et al. [15] describe “AVIO”, a statistical invariant defining technique used to detect
atomicity violations. They explore hardware support for the AVIO system, which tracks the preceding
access instruction type and remote downgrade requests. It is conceivable that alert-on-update could support
AVIO type techniques. Alert-on-update implicitly indicates that the most recent access was either a local
read/write or a remote read. AVIO also tracks in hardware the most recent downgrade request. With AOU
these would be tracked in software by the alert handler.

25

D.6 Code Security

Due to the fine (cache line) granularity of the alert-on-update mechanism, it is suitable for detecting and
reacting to memory corruption in settings where page-based detection mechanisms are either too expensive
or too space-inefficient.

Buffer Overflows In order to detect buffer overflows in legacy code, a program could ALoad portions
of its stack. A particularly appealing technique, inspired by DieHard [2], is to use randomization across
installations of an application: the compiler could choose a random number of cache lines of buffering be-
tween stack frames at compile time, and then ALoad those empty lines as part of the function prologue.
Since the size of the padding is known at compile time, parameter passing via the stack would not be com-
promised, but the randomization of the padding across builds of the program would increase the likelihood
that an attacker could not attack multiple installations of a program with the same input. To do so would very
likely result in an alert-based detection for at least one installation, thereby revealing the buffer vulnerability.

Read-Only Fields and Methods At compile time, one might order the fields of a class so that all
const member fields are adjacent. Then the object constructor could ALoad that line immediately after
initialization. In this manner, software could quickly detect when memory safety is violated. In a similar
manner, if a method is const, then it would be possible in the function prologue to ALoad the lines
corresponding to the entire class’s representation in memory, to detect when member functions discard
const pointers.

Notification on Dynamic Code Modification Another appealing use of ALoad is to permit fine-
grained protection of code pages. Although the majority of applications do not require the ability to dy-
namically modify their code, and are well served by using page-level protection, there is no mechanism
by which applications that modify their own code pages can ensure that malicious code does not make
unauthorized modifications.

With ALoad however, a program could set the alert bits of code pages, and then use a private signature
field to indicate to the alert handler when the application is making a safe modification to its code. If the alert
handler is invoked and the private signature matches a hash of the address causing the alert, the handler can
safely assume that the alert was caused by a trusted operation. If the alert handler detects a signature conflict,
it can assume that the code pages are being modified by an untrusted agent, and can raise an appropriate
exception.

E Nontransactional Use of Programmable Data Isolation

Like Alert-on-Update, Programmable Data Isolation can be used for purposes other than transactional mem-
ory, though the opportunities do not appear to be as extensive as those listed in the previous section. As noted
by designers of hardware TM systems (e.g., Hammond et al. [7], possilibites include (1) ordered, thread-
level speculation [34], and (2) speculative execution in sequential programs for reliability [25] or exception
rollback. The chief difference here between previous implementations and one based on programmable data
isolation would be the option, with the latter, of rolling back a selected subset of a program’s data, leaving
updates of other data visible.

26

