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Abstract  In this paper, we present a hardware-software
cosimulation environment for heterogeneous systems. To be an
efficient system verification environment for the rapid
prototyping of heterogeneous systems, the environment
provides interface transparency, simulation acceleration,
smooth transition to cosynthesis, and integrated user interface
and internal representation. As an experimental example, a
heterogeneous system is cosimulated and prototyped
successfully, which shows that our environment can be a useful
heterogeneous system specification/verification environment
for rapid prototyping.

I.  I NTRODUCTION

Cosimulation refers to the simulation of heterogeneous
systems whose hardware and software components are
interacting. Traditionally, the task has been performed only
after the prototype hardware became available and with the
help of in-circuit emulators and/or other techniques [1].
With hardware-software codesign, it is essential to verify
correct functionality even before hardware is built. In
contrast to the conventional(or homogeneous) simulation of
digital hardware, cosimulation should care for the
interaction among hardware and software components.

The available techniques for hardware-software
cosimulation trade off among a number of factors such as
performance, timing accuracy, model availability. In [1],
Rowson classified cosimulation techniques into several
classes according to the factors. The processor model
availability dominates the choice of techniques. Becker,
Singh, and Tell [2] performed cosimulation of a network
interface unit on a distributed network using Cadence
Verilog-XL simulator and Unix socket. They used C++ and
Verilog in describing the software and the hardware
components, respectively. Their cosimulation is a
combination of synchronized handshake and cycle accurate
processor model. Thomas, Adams, and Schmit’s
cosimulation scheme [3] is similar to [2], but their technique
is based on synchronized handshake with no processor
model. Cosimulation techniques of Poseidon [4] and

Ptolemy [5] need pin-level model of processors. Their
approaches are most accurate but take much more
simulation time.

In this paper, we present a hardware-software
cosimulation environment for heterogeneous systems. To be
an efficient system verification environment for the rapid
prototyping of a heterogeneous system which consists of
both hardware and software components, the environment
provides interface transparency, simulation acceleration,
smooth transition to system prototype synthesis from
simulation, and integrated user interface and internal
representation. The resultant benefits of those features are as
follows: the modularity of cosimulation components, no
need of processor models, target architecture independence,
and the conceptual simplicity and easiness in establishing
and expanding the environment.

The rest of this paper is organized as follows: Section II
presents the overview of our cosimulation environment.
Sections III, IV, V, and VI describe the details of the
environment - interface transparency, simulation
acceleration, smooth transition to system prototype
synthesis, and integrated user interface and internal
representation, respectively. After describing the application
of our cosimulation environment to real system prototyping
as an experimental example in Section VII, we conclude
with some remarks on future work in Section VIII.

II.  H ARDWARE -SOFTWARE COSIMULATION ENVIRONMENT

As shown in Fig. 1, the environment has three elements
for the execution of cosimulation: a software process
running C program, a simulation process executing partial
hardware model in VHDL, and a custom board emulating
remaining hardware model. Inter-process communication
(IPC) routines connect the two processes through socket IPC
on a single Sparc CPU. Ptolemy, which is a framework for
simulation and prototyping of heterogeneous systems, is
extended to provide a user interface and internal
representation for system specification and verification.



A. Simulation Levels
The environment supports cosimulation at any

abstraction levels. Initially, the specification of
heterogeneous system is given in VHDL and C for core
hardware and software components. Then simulation models
for interface are generated automatically and added to the
cores, thereby allowing cosimulation at very abstract level.
Fig. 2 represents the abstract level cosimulation. As shown
in the figure, the interface simulation models are mainly IPC
routine calls with appropriate parameters.

After a target architecture is determined and an interface
is synthesized, more detailed simulation models for the
interface are generated and inserted, thereby allowing
detailed level cosimulation.

B. Software Process
Software process is a process executing a C program

which is the software component. Since we use
“synchronized handshake” simulation technique [1], there is
no need for processor models. The communication between
hardware and software is done through a synchronizing
handshake implemented using Unix socket [6]. Using this
technique, the software can run at the workstation speed
even though overall speed will be dominated by the
hardware simulator performance.

C. Hardware Simulation Process
Hardware simulation process is a process running a

VHDL simulator, which executes a hardware model in
VHDL. Our simulator, IVSIM(SNU ISRC VHDL
SIMulator), is a VHDL simulator based on an event-driven
compiled code simulation algorithm with a concept called
modified ‘gateways’, to improve simulation performance
substantially [7]. The simulator is implemented in about
10,000 lines of C++ language (excluding VHDL parser and
procedural interface routines of IVDT, SNU ISRC VHDL
Development Toolkit [8], which are invoked while data
structures are built) and generates C routines for every
concurrent statements in VHDL. The generated C routines
are linked with C code for the simulation core and then
executed for a given test vector.

Another important feature of IVSIM is that it can
recognize and support ‘foreign’ attribute defined in VHDL-
93 [9]. The attribute enables a system to be described by not
only VHDL but also non-VHDL procedures such as IPC
routines in C-language. Using the attribute, if we declare
IPC routines as foreign procedures and invoke them at
appropriate places in architecture bodies of a VHDL
description, they can also be linked with C codes generated
for hardware description and simulation core as mentioned
above. The resultant executable code simulates the whole
hardware component communicating with the software
component.

D. Interface
The interface model for simulation is based on Unix IPC,
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regardless of the abstraction levels of cosimulation. The IPC
routines are implemented using Unix socket. They are:
socket initialization procedure (init_socket), socket closing
procedure (close_socket), socket read procedure
(read_socket), and socket write procedure (write_socket).

III.  I NTERFACE TRANSPARENCY

Our cosimulation environment provides users
transparency about communication interface between
software core and hardware core regardless of target
architectures and communication protocols. This is
especially important for detailed level cosimulation. Once
the user selects the target architecture and communication
protocol, he or she can concentrate on the functionality
simulation of the hardware and software components
without having to concern about the details of the interface
or communication. To provide the interface transparency in
a single processor cosimulation environment, we
implemented the following points:
(i) Process modularity - We regard hardware and software
components as separate processes(VHDL simulation process
and C program process, respectively) running on an
identical processor and communicating with each other only
through IPC channels during the simulation.
(ii) Automatic interface model generation - Appropriate
simulation models(in the form of IPC routines and VHDL
models) for the interface between the two components are
generated by invoking automatic interface model generator
with parameters according to the chosen communication
protocol and the target architecture as shown in Fig. 2 and 3.



(iii) Automatic interface model call/instantiation - To
simulate hardware-software interface communication
correctly, interface simulation models should be inserted at
appropriate places in the C program and VHDL model. For
complete transparency, IPC routine call insertion and
interface VHDL model instantiation in system components
is automated through the combination of automatic
generation technique and the extension of Ptolemy(described
in Section VI). For VHDL description of hardware part, a
top-level entity is newly defined to accommodate
synchronized handshake using IPC routines. In the top-level
entity, IPC routines are declared as foreign procedures and
then calls for them are placed within a concurrent process
statement which cares for actual synchronized handshake.
The core hardware component to be simulated and relevant
interface models are also instantiated as component
instances within the entity.

Fig. 3 shows the relevant interface elements for hardware
part and how they are created(or selected) and combined to
provide the overall simulation model of interface, which
enables detailed level cosimulation, according to target
architecture and communication protocol. If a user gives
only the hardware and software cores, the interface elements
are automatically created by generators or selected from
libraries.

Function or role of each interface element is as follows:
(i) IPC handler takes care of reading/writing data from/to
the software process using foreign IPC routines. It handles
IPC jobs by handshaking. It also interfaces and translates
between IPC routines and channel unit. It is created by a
generator.
(ii) Channel unit represents the abstract simulation model of
a physical channel device such as DMA controller. It is
selected from interface library.
(iii) Decoder/signal register is inserted between hardware
core and channel unit to overcome the difference in the
width of data transfer and the limitation in the number of
pin of hardware prototype device such as FPGA. It is created
by a generator.
(iv) Top-level entity acts as a top-level container which
gathers all other interface elements. Interface elements are
interconnected using component instantiation and signals
declared in the entity.

Among those elements, hardware core and
decoder/signal register will be mapped into real hardware
prototype using FPGA. When standard bus architecture is
used, a standard channel device such as SBus DMA
controller [10] is used as a physical device for channel unit.
If user-defined bus or channel is used, channel unit also
should be a part of hardware prototype.

IV. COSIMULATION ACCELERATION

Our cosimulation environment provides a facility to
accelerate cosimulation.  In cosimulation using synchronized
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Fig. 3. Interface generation or selection from library

handshake technique, hardware simulation time dominates
overall cosimulation time [1]. As hardware subcomponents
are added and/or refined incrementally, the whole
cosimulation time gets longer. This problem can be
alleviated by simulation acceleration through incremental
prototyping [11]. At any time during the cosimulation of a
heterogeneous system, any hardware subcomponent whose
function is already verified through simulation is
synthesized and prototyped with FPGAs, thus become a part
of hardware prototype afterward. Newly added(or refined)
hardware subcomponents(incremental part) are described in
VHDL and simulated. Because the part which is already
prototyped with FPGAs remains as hardware prototype
during the rest of cosimulation of the system and we need to
simulate only the incremental part, we can reduce the time
spent in VHDL simulation considerably and consequently
overall cosimulation time. This process which consists of
incremental part definition/simulation and incremental
prototype synthesis/addition will continue until the whole
function of the hardware component is fully verified. When
the cosimulation of whole system is finished, full-scale
prototype of the hardware component is already obtained.
Fig. 4 depicts the concept of incremental prototyping
process.

Fig. 5 shows the execution environment of the
accelerated cosimulation. It consists of a general purpose
CPU(Sparc processor in a Sparc Classic workstation) and a
custom board.  The CPU is in charge of running VHDL
simulation process for incremental hardware
subcomponents, C program process for software component,
and CAD tools for the synthesis of hardware prototypes. The
custom board consists of a FPGA(Xilinx 4010 [12]) and bus
interface. The FPGA is used to implement the hardware
prototype. The communication between the CPU and the
custom board is done through SBus [13]. To interface
between SBus and hardware prototype, we used a SBus
DMA Controller chip(LSI Logic L64853A [10]) and some
control logic. They are provided as a part of the SBus-based
prototype development board(Dawn VME DPS-1[14]) which
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we use for preliminary experiments. CPU is always the bus
master of SBus transactions presently. To send(receive) data
to(from) the hardware prototype, software process and
VHDL simulation process should write(read) data to(from)
the device driver program. The software and VHDL
simulation processes communicate each other through
socket IPC as mentioned above.

Current implementation of cosimulation acceleration
facility is based on the following assumptions:
(i) Processes in Sparc CPU, VHDL simulation and C

program processes, are the only master of the bus
transactions through SBus.

(ii) The hardware component is a synchronous circuit.
(iii) Clock signal is applied to the VHDL simulator as an

input vector and then fed to the hardware prototype by
the simulator via SBus.

(iv) Hardware prototype is fast enough that before the end of
the current VHDL simulation cycle which consists of
event handling and updating values, etc., computation by
the hardware prototype for that cycle is finished.

V.  TRANSITION TO COSYNTHESIS

After cosimulation, the system components must be
synthesized as the physical components on the selected
target architecture. For the cosynthesis, the invokes to the
interface simulation models are replaced with the

corresponding device driver calls or I/O function calls for
the software component. For the hardware component, top-
level entity with foreign interface procedure declaration is
stripped off and the corresponding interface hardware model
is inserted. Since this modification of each component
specification for the cosynthesis is very simple and limited to
a minimum degree, it is possible to provide a smooth and
fast transition from cosimulation to the cosyntheis of system
prototype in our environment. Fig. 6 depicts the transition
from cosimulation to cosynthesis.

VI.  I NTEGRATED USER INTERFACE AND INTERNAL

REPRESENTATION

To provide an integrated user interface and internal
representation, we extended Ptolemy. Ptolemy [15] is being
developed at University of California, Berkeley as a block-
diagram oriented environment for simulation and
prototyping of heterogeneous systems. Instead of trying to
capture all possible models of computations into one all-
encompassing model, the Ptolemy kernel implements an
object-oriented open architecture that enables any extensible
model to be defined and added seemlessly. Thus,
heterogeneous systems can be specified using different levels
of abstraction and semantics for the various subcomponents.
  For hardware-software codesign, we are developing
Hetero Domain where heterogeneous models may coexist in
the same representation. Fig. 7 shows an conceptual design
flow under the extended Ptolemy environment. Initially, the
user or system designer represents the abstract system
model(or “universe” in the Ptolemy terminology) which
consists of hierarchical blocks(“galaxies”) or atomic
blocks(“stars”) with only data I/O ports. The internal
representation of each atomic block  may be either C or
VHDL model, which does not imply implementation at this
level of abstraction. According to the user’s selection of
partitioning option, it is then partitioned into CGC Domain
(C Code Generation Domain) and VHDLF Domain
(Functional VHDL Code Generation Domain) automatically
or manually.  If we perform  manual partitioning,  the initial
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representation may imply the manually partitioned graph as
shown in the second template of Fig. 7. The next action that
the user has to do is just to “run”(or cosimulate) the system
after selecting some architecture options to be explained
below.

The Ptolemy partitions the universe into two separate
model-specific universes after inserting the appropriate
communication blocks(send and receive stars) at the
boundary of these universes. The communication blocks are
selected according to the user-specified architecture options
such as the level of abstraction or the communication
protocol. First, assume that we choose to cosimulate at the
abstract level. In our example, two universes to generate C
code(for software components) and VHDL code(for
hardware components) are created respectively and the
communication stars are selected to use the UNIX socket for
cosimulation. Note that the send and receive stars do not
imply that the communication protocol is a message-passing
type. Instead, they do imply where communication between
two different models arises. In Ptolemy, the kernel object to
generate the code is called “target”. While we use the default
target for C code generation, we have developed the
CosimTarget which generates a VHDL code for abstract
level cosimulation. CosimTarget replaces the
communication stars into a Socket Interface Star and adds
protocol-related signal so that the modified model can be
cosimulated. On the other hand, if we select the option for
the detailed level cosimulation, not only communication
stars but also appropriate communication models for
emulating communication channel are inserted from the
interface library.

In Fig. 7, only the first graph is visible to the user. Other
graphs are internally generated by the Ptolemy, thus hidden
from the user. We show an example of system specification
using Ptolemy user interface in Fig. 8.

VII.  E XPERIMENTAL EXAMPLE

As an experimental example, a lossless data compression
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system was cosimulated and prototyped using our approach.
Initially, the system contained only a C program
implementing Lempel-Ziv lossless data compression
algorithm(called LZ77 or LZ1 algorithm) [16]. Fig. 9
represents the skeleton of the program.

Then the system was manually partitioned into software
and hardware components resulting in a mixture of a
hardware component implementing parsing step and a
software component implementing the remaining steps -
initialization, coding, buffer updating, and file I/O. After
inserting IPC routine calls in the components, we performed
abstract level cosimulation. After the target
architecture(Sparc + SBus + custom FPGA board) and
communication protocol(SBus) were determined, hardware
interface elements(described in Sec. III) were generated or
selected from library and added to the hardware component
for detailed level cosimulation. Fig. 10 represents the
simulation models of IPC handler and channel unit(E-
channel of SBus DMA controller). Due to the limit of space,
description of the other simulation models such as
decoder/signal register, hardware core, and top-level entity
are omitted. After combining all simulation models, the
detailed level cosimulation was done successfully and the
result was the same as the result of the abstract level
cosimulation.

lz77_compression( )
{

/* fields of code word - maxlength, pointer, last symbol */
int  maxlen, ptr;
char  lsym;

initialize( );   /* initialization */
for (  ;  ;  )  {

shift_and_feed( );  /* file in & buffer update */
parse(&maxlen, &ptr);    /* parsing */
lsym = buf[bhalf + maxlen];
put_code(ptr, maxlen, lsym);  /* coding & file out */

}
}

Fig. 9. The skeleton of the C program of LZ77 algorithm



entity IPC_handler is
port (maxlen : in bit_vector(3 downto 0);

    pointer : in bit_vector(3 downto 0);
    data : out bit_vector(6 downto 0);
    ...... );

end IPC_handler;

architecture behave_IPC_handler of IPC_handler is
procedure init_socket; -- foreign procedure declaration
procedure read_socket;   -- foreign procedure declaration
procedure write_socket;  -- foreign procedure declaration
procedure close_socket;   -- foreign procedure declaration
signal  signal_id, input_data, output_data : integer;

begin
init_socket;
process

.....
read_socket(signal_id);
read_socket(input_data);
....
read_socket(signal_id);
....
write_socket(output_data);
....

end process;
end behave_IPC_handler;

(a)
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data

procedure E_Channel_Read  is
begin
          .......
          wait until CLK=‘1’;
          E_CS\ <= ‘0’;
          E_READ <= ‘1’;
          E_DAS\ <= ‘1’;
          wait until E_RDY\ = ‘0’;
          .......
end E_Channel_Read;

(b)

Fig. 10. Simulation models of (a) IPC handler and
   (b) channel unit(E-channel read cycle protocol of
   SBus DMA controller).

Then the hardware component of the system was
prototyped with an FPGA. The resultant hardware used 645
CLBs of Xilinx’s 4010 FPGA [12]. With the FPGA clock of
6.25 Mhz, we obtained speedup of 1.7 over the
implementation using only software component. In this
experiment, some of the system prototyping tasks were
performed manually because the environment had not yet
been completely established.

VIII.  C ONCLUSION

In this paper, we present a hardware-software
cosimulation environment for heterogeneous systems
prototyping. To be an efficient system verification
environment for the rapid prototyping of heterogeneous
systems which consist of hardware and software  componets,

the environment supports special features: interface
transparency, cosimulation acceleration, smooth transition to
system prototype synthesis, and integrated user interface and
internal representations. The resultant benefits of those
features are the modularity of cosimulation components, no
need of processor models, target architecture independence,
and the conceptual simplicity and easiness in establishing
and expanding the environment.

On-going and future works are as follows:
(i) Complete the implementation of the environment.
(ii) Extend interface model generator and library.
(iii) Generalize the environment to various target

architectures including general purpose microprocessors
or microcontrollers, DSPs, and ASICs. Currently, the
system works only for Sparc + SBus + ASIC architecture.

(iv) Apply our approach to various system prototyping
examples.
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