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Biological systems are controlled by protein complexes that associate into dynamic protein interaction networks. We describe a

strategy that analyzes protein complexes through the integration of label-free, quantitative mass spectrometry and computational

analysis. By evaluating peptide intensity profiles throughout the sequential dilution of samples, the MasterMap system

identifies specific interaction partners, detects changes in the composition of protein complexes and reveals variations in the

phosphorylation states of components of protein complexes. We use the complexes containing the human forkhead transcription

factor FoxO3A to demonstrate the validity and performance of this technology. Our analysis identifies previously known and

unknown interactions of FoxO3A with 14-3-3 proteins, in addition to identifying FoxO3A phosphorylation sites and detecting

reduced 14-3-3 binding following inhibition of phosphoinositide-3 kinase. By improving specificity and sensitivity of interaction

networks, assessing post-translational modifications and providing dynamic interaction profiles, the MasterMap system addresses

several limitations of current approaches for protein complexes.

Most biological processes are controlled by dynamic molecular net-
works of enormous complexity. Several methods for the analysis of
protein complexes and protein interactions have been developed, and
some have been applied in large-scale studies1–8. Among these,
analysis of affinity-purified protein complexes by liquid chromato-
graphy mass spectroscopy (LC-MS) has been particularly attractive,
because, in principle, all the components even of large complexes can
be identified in a single experiment9. However, these methods have at
least three limitations. First, the false-positive error rates are generally
large and can be reliably estimated only at the level of a whole data set
in large-scale protein interaction experiments, where the reproduci-
bility is typically only B70% (ref. 3). Second, although their struc-
tures and compositions change dynamically as a function of cellular
conditions, protein complexes and networks are represented as static
entities. Third, usually no information about the state of post-
translational modifications is collected, even though they frequently
modulate the compositions and the subcellular locations of com-
plexes. Quantitative MS approaches based on isotope labeling10–14,
along with appropriate control experiments, can distinguish back-
ground contaminants in protein complex purifications from true
interactors15–17 and identify changes in the compositions of protein
complexes18. Specifically, in vivo labeling is expensive and cannot be
applied for the analysis of tissue samples from animals or patients.
Furthermore, the quantification of peptide ratios is limited to peptides
carrying the isotope tag and depends on their successful identification

by tandem mass spectroscopy (MS/MS). An alternative approach is to
use label-free quantification of peptide signals (features), which are
identified in different samples based on their MS1 ion currents19–21.
For instance, peptide profiles from centrifugation fractions were used
in combination with localization information to identify components
of the centrosome22.

We present an integrated computational and mass spectrometric
strategy for the analysis of protein complexes from co-immunopreci-
pitations (Co-IP), which combines the generation of highly accurate
LC-MS patterns using a linear ion-trap Fourier transform mass
spectrometer and algorithms to detect and map features across
different LC-MS runs. This information is then unified in a Master-
Map, from which MS1 features with quantitative or qualitative
differences are selected for subsequent targeted MS2 experiments.
We use the MasterMap concept to address three major technical issues
in the systematic analysis of protein interaction networks: increase of
specificity and sensitivity, quantification of protein interaction
dynamics and identification of sites of protein phosphorylation.

RESULTS

A strategy for the dissection of protein-protein interactions

We chose as a model human complexes containing FoxO3A, a
member of the forkhead domain transcription factor family that is
regulated by signals such as insulin, stress response and nutrient
availability23. Responsiveness to any of these signals is mediated by

©
20

07
 N

at
u

re
 P

u
b

lis
h

in
g

 G
ro

u
p

  
h

tt
p

:/
/w

w
w

.n
at

u
re

.c
o

m
/n

at
u

re
b
io
te
c
h
n
o
lo
g
y

Received 21 December 2006; accepted 18 January 2007; published online 25 February 2007; doi:10.1038/nbt1289

1Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland. 2Institute of Molecular Pathology, Faculty of Military Health Sciences, University of Defence,
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post-translational modifications of FoxO3A
and its association with other proteins.

To study FoxO3A protein interactions, we
performed standard Co-IP experiments from
cell extracts using hemagglutinin (HA) epi-
tope–tagged FoxO3A as the bait protein. MS1
signals from several LC-MS experiments were
integrated into a MasterMap (Supplemen-
tary Results online). To identify specific
interaction partners of FoxO3A, we com-
pared the bait sample to a Co-IP sample
prepared in parallel with extracts from a
control cell line (Fig. 1a). Relative peptide
amounts were quantified based on the linear
properties of the mass spectrometer over a
wide dynamic range (Supplementary Fig. 1
online). Intensity ratios fail to separate bait-
specific interaction partners from back-
ground samples because ratios cannot be
interpreted when a signal is detected in only
one sample (Supplementary Fig. 2 online).
To circumvent this problem the bait sample
was sequentially diluted into the control
sample. Consequently, FoxO3A and its spe-
cific interaction partners were progressively
enriched, whereas the concentrations of con-
taminant proteins present in both samples
remained constant in all four dilution steps.

Each dilution sample was analyzed by LC-MS and the SuperHirn
software developed in-house was used to extract protein profiles by
MS1 feature profiling and classify them into profile groups by k-means
clustering analysis. Figure 1a (panel iv) illustrates the expected
abundance profiles of interaction partners and contaminant proteins.
Whereas the abundance of FoxO3A (red line) and its interaction
partners (blue line) increases, the levels of contaminants (brown line)
remain constant. As discussed below, essentially the same process can
be used to detect changes in the composition of protein complexes
associated with different cellular states (Fig. 1b).

Interaction of FoxO3A with members of the 14-3-3 family

As expected, the profile group closest to the theoretical dilution profile
contained the peptides from the FoxO3A bait protein (Supplementary
Fig. 3 online). This cluster defines the target cluster and supposedly

contains peptides from proteins that purify specifically with the bait.
Peptides were assembled into proteins based on high confidence MS2
identifications (PeptideProphet peptide probability24 4 0.9) and
protein profiles were constructed. The protein profiles are clearly
distinguishable as either enriched or constant, thereby facilitating the
identification of potential binding partners of FoxO3A through the
strong correlation of their profiles with the target cluster profile
(Fig. 2a). Accordingly, a histogram of the profile scores reveals two
populations of contaminates and potential specific interactors, which
were modeled by Gaussian mixtures for statistical evaluation of
the correlation between the protein profiles and the target cluster
profile (Fig. 2b).
Table 1 lists the proteins that were identified by a high protein profile

correlation to the target cluster profile (profile probability 4 0.9)
and therefore represent likely FoxO3A interaction partners. FoxO3A
is distinctly identified by numerous peptide hits and six different
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Figure 2 Enrichment profiles of protein groups
separate specific interaction partners from

contaminant proteins. (a) Normalized protein

profiles in dilutions with peptides from a control

Co-IP (FoxO3A-FCS). The green line indicates the

profile of the target cluster derived from

unsupervised clustering, which contains the

FoxO3A bait protein. Profiles in red refer to

proteins of the 14-3-3 family with high

correlation to the target cluster profile. Black

lines show the profiles of the six next best

proteins with 41 peptide member(s). These

proteins are only slightly enriched and clearly

present in the control sample. Blue profiles represent typical contaminant proteins that were identified with many peptides. Error bars indicate s.d. of all

peptides assigned to a protein. (b) The cluster with the highest correlation to the theoretical dilution schema was selected as the target cluster. Protein

profiles were subsequently extracted from the three closest clusters and scored against the target cluster profile. Profile correlation scores were separated by

expectation maximization of a two-parameter Gaussian mixture model. Small scores indicate high similarity to the target cluster profile.
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Figure 1 Schematic overview of the experimental approach. (a) Peptides are prepared by co-

immunoprecipitation from a FoxO3A-expressing cell line and from a control cell line (i). The samples
are mixed in a four-step dilution series (ii), and then analyzed by LC-MS and subjected to quantification

by the software SuperHirn (iii). Extracted protein profiles allow the categorization of unspecific binding

proteins (brown line) and FoxO3A interaction partners (blue line) (iv). (b) To quantify dynamic changes

in the FoxO3A interaction pattern, a dilution series between Co-IP experiments performed using cells

grown in the presence of FCS or subjected to serum starvation and exposure to the PI3K inhibitor

Ly294002 (LY condition) was prepared (i,ii). Samples were subjected to LC-MS and analyzed by

SuperHirn (iii). Subsequently, peptide and profiles were analyzed to quantify changes in the abundance

profile of previously identified interaction partners of FoxO3A (iv).
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subforms (b/a, g, e, Z, t, z/d) of the 14-3-3 protein family are listed as
FoxO3A interaction partners on the basis of their high profile
probability. This observation confirms the generally accepted notion
that 14-3-3 proteins regulate FoxO3A activity25 and extends the list of
14-3-3 proteins that bind to FoxO3A. Only 14-3-3 z/d was previously
reported to bind FoxO3A26. These results were confirmed in a
replicate experiment with post-lysis cross-linking (see Supplementary
Results and Supplementary Fig. 4 online).

Quantification of growth state–dependent protein-interactions

The protein-interaction pattern described above was derived under
growth-promoting conditions in the presence of fetal calf serum (FCS
condition). To reveal growth state–specific changes in the interaction
pattern of FoxO3A, we repeated the experiment for cells subjected to
growth inhibition by serum starvation plus inhibition of PI3K with the
drug Ly294002 (ref. 27) (LY condition).
Immunofluorescence microscopy confirmed
that our cell line responded to PI3K inhibi-
tion by substantial translocation of FoxO3A
into the nucleus as described previously26

(Fig. 3a).
Compared to the growth-promoting con-

dition, fewer members of the 14-3-3 family
were identified as binding partners (Table 1).
Of the previously identified six 14-3-3 mem-
bers, only the proteins 14-3-3 g and z/d were
unambiguously detected as FoxO3A interac-
tion partners when PI3K was inhibited. The
reduced appearance of 14-3-3 interactions
with FoxO3A following PI3K inactivation is
consistent with previous results obtained
using Co-IP western blotting27.

Although it is tempting to infer changes
in protein-protein interactions from the
comparison of the list of peptides identified
by MS/MS, these data may not correctly
indicate the true quantitative nature of the
underlying interaction dynamics. Sampling of

precursor ions for fragmentation has low
reproducibility and depends on both the
amount and complexity of the sample, as
well as the ion intensity distributions (Supple-
mentary Fig. 5 online). We therefore quanti-
fied changes in the identified FoxO3A
interaction partners between the FCS and LY
growth conditions at the MS1 level. Again,
samples of FoxO3A-FCS and FoxO3A-LY were
mixed to obtain profiles that could be checked
for consistency. As binding partners could
possibly show an increasing or decreasing
profile, depending on their response to growth
factor signaling, we used a symmetrical mixing
scheme (Fig. 1b). As profiles of proteins pre-
sent in both samples (e.g., FoxO3A itself,
contaminants and interaction partners
insensitive to signaling changes) are flat, dif-
ferentially enriched proteins can be easily dis-
criminated owing to the effects of sample
dilution on the degree of enrichment (Fig. 1d).

Levels of all 14-3-3 proteins exhibit more
than a twofold reduction under growth-inhi-

biting conditions (Fig. 3b and Table 2). Interaction of FoxO3A with
14-3-3 proteins was not completely repressed in the LY condition,
confirming that FoxO3A does not completely translocate to the
nucleus in all Ly294002-treated cells26 or that nuclear FoxO3A does
not completely lose its binding to 14-3-3 (ref. 27). These data also
indicate that quantitative analysis of the MS1 patterns results in a
substantially more complete and accurate picture of the FoxO3A
complex dynamics than the MS2 data alone.

MS1 feature profiling for targeted peptide annotation

The MasterMap is based on the alignment of MS1 features detected in
multiple LC-MS runs. High confidence MS2 information acquired
during the LC-MS runs is used in the final data-processing steps where
peptides are assembled into proteins. Therefore, quantification of
peptide signals at the MS1 level enables the classification of features
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Table 1 Identified interaction partners of FoxO3A

Number of members M Profile evaluation

IPI identifier Protein description Ma Mb Mc Md Score Probability

FCS IPI00012856 FoxO3A 27 13 +1 +11 4.42 � 10–3 1.00000

IPI00216318 14-3-3 b/a 5 1 +1 +5 5.09 � 10–3 1.00000

IPI00000816 14-3-3 e 13 5 +2 +7 7.78 � 10–3 1.00000

IPI00018146 14-3-3 t 4 4 – +4 9.48 � 10–3 1.00000

IPI00216319 14-3-3 Z 6 4 – +2 1.07 � 10–2 1.00000

IPI00021263 14-3-3 z/d 8 1 +3 +4 1.25 � 10–2 0.99995

IPI00220642 14-3-3 g 5 3 – +2 2.16 � 10–2 0.99924

LY IPI00220642 14-3-3 g 1 1 – +1 6.98 � 10–2 1.00000

IPI00012856 FoxO3A 15 10 +2 +5 7.43 � 10–2 0.99907

IPI00021263 14-3-3 z/d 2 2 +1 +2 8.56 � 10–2 0.99690

Protein profiles were scored according to similarity to the target cluster profile. Assigned profile probability values
reflect the likelihood for a true similarity with the target cluster profile. A cut-off of P 4 0.9 was used as significance
threshold. Proteins without unique peptides were removed.
aNumber of MS1 features. bNumber of identified MS1 features. cIncrease in MS1 features by inclusion list and LTQ data.
dIncrease in identified peptides by PMM.
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Figure 3 The MasterMap reveals quantitative changes in the abundance of FoxO3A interaction partners

upon PI3K inhibition. (a) Nuclear translocation of HA-FoxO3A caused by serum deprivation and PI3K

inhibition. Cells stably expressing HA-FoxO3A were either serum starved overnight and then treated

with 20 mM LY294002 inhibitor (LY) or grown in the presence of 10% FCS (no treatment) and

analyzed by laser confocal immunofluorescence microscopy using an anti HA antibody (12CA5) and

DAPI. Scale bar, 10 mm. (b)14-3-3 protein association is reduced under growth-inhibiting conditions.

Peptide samples from Co-IPs carried out under growth-promoting and PI3K-inhibiting conditions were

mixed in four steps (Fig. 1). Protein profiles were normalized against FoxO3A and were translated into

enrichment factors based on similarity with a theoretical dilution model. Error bars indicate s.e.m.
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into enriched peptides or unspecific binders, even in the absence
of MS2 information. This unique property of the MasterMap was
used to increase peptide identification coverage and to detect
post-translationally modified peptide variants. MS1 features encoded
in the MasterMap are categorized by profile clustering into specific

or contaminant proteins and peptide annotation efforts are focused
on the list of MS1 features displaying a high correlation to the
target cluster profile (Fig. 4a). In addition to the conventional
integration of MS2 scans from the performed LC-MS runs, three
strategies were used to annotate the list of enriched MS1
features: targeted peptide sequencing using mass to charge (m/z)
inclusion lists, peptide mass mapping (PMM) and integration of
MS2 identifications from LC-MS/MS data sets acquired using other
mass spectrometers.

In the inclusion list approach, the peptide identities of the selected
MS1 features were assessed by targeted MS2 sequencing in additional
LC-MS runs. In parallel, we measured aliquots of the samples on a
Thermo linear ion trap (LTQ) mass spectrometer, which is optimized
for acquiring large numbers of MS2 scans at high sensitivity. Obtained
high confidence MS2 identifications (PeptideProphet peptide proba-
bility 4 0.9) were assigned to MS1 features stored in the MasterMap
using their theoretically calculated molecular peptide mass.

Overall, the extended MS1 feature annotation approach increased
the number of assigned MS1 features per protein, thus improving the
protein sequence coverage (Table 1 and Supplementary Table 1
online). Moreover, the detection of additional proteotypic peptides
increased the confidence with which specific protein isoforms, for
example, 14-3-3 family members, could be distinguished.
Figure 4b shows the effect of the additional identifications of

clustered MS1 features exemplified for the 14-3-3 family in a single
experiment. It also illustrates the challenge of inferring the presence of
proteins by conventional MS2 information only28,29. Peptides that
connect to two or more proteins are nonproteotypic peptides, which
do not unambiguously identify a single protein. Whereas 14-3-3 z/d,
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Table 2 Growth state–specific changes in the FoxO3A interaction

pattern

Enrichment factor

TNN DSP

IPI identifier Protein description LY/FCS LY/FCS

IPI00012856 FoxO3A 1.0 ± 0.23 1.00 ± 0.16

IPI00216318 14-3-3 b/a 0.19 ± 0.05 0.55 ± 0.12

IPI00021263 14-3-3 z/d 0.46 ± 0.19 0.53 ± 0.08

IPI00220642 14-3-3 g 0.39 ± 0.10 0.63 ± 0.13

IPI00216319 14-3-3 Z 0.41 ± 0.17 0.43 ± 0.09

IPI00000816 14-3-3 e 0.40 ± 0.15 0.55 ± 0.11

IPI00018146 14-3-3 t 0.26 ± 0.05 0.69 ± 0.10

IPI00554737 PP2A 65 kDa, subunit Aa – 2.04 ± 0.28

IPI00008380 PP2A catalytic subunit a – 1.73 ± 0.16

IPI00556528 PP2A 56 kDa, subunit Be 1.33 ± 0.07

A dilution mix was created from Co-IP samples collected under LY and FCS conditions and
protein profiles of previously identified FoxO3A interactors were extracted. Dilution factor–
corrected ratios were calculated between the two CoIP experiments LY and FCS normalized to
the abundance of the bait FoxO3A. The experiment was repeated for samples treated with DSP
cross linker (Supplementary Results). Error values indicate s.e.m. All reported ratios are
significantly different from 1 (z-test, one-sided, P o 1%).
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Figure 4 Extended annotation of MS1 features and peptide-to-protein associations. (a) MS1 features in the MasterMap are subject to quantification (here,

k-means profile clustering). Accordingly, a list of enriched features are associated to MS2 scans acquired during the LC-MS runs (i) or further annotated by

m/z inclusions lists, MS2 data from other MS instruments and peptide mass mapping (ii). MS1 feature annotations are stored in the MasterMap and used

for peptide or protein analysis. (b) The problem of confirming the presence of a protein by MS2 information is illustrated for a single cross-linking experiment

under LY-conditions. Peptides (small diamonds) and proteins (large blue and gray rectangles) are represented as nodes in a Cytoscape42 network structure,
where edges reflect the association of peptide to a protein. Peptides that are connected to a protein with a single spoke are proteotypic peptides associated

with a single protein isoform. Peptides that connect more than one protein node cannot differentiate between two or more proteins. Different levels of

peptide identifications are obtained either by MS2 scans, inclusions lists (green) or by PMM (red). Although the presence of 14-3-3 d (gray) cannot be

confirmed unambiguously, the other proteins (blue) are detected by proteotypic peptides. (c) Phosphopeptides of FoxO3A identified by tandem mass

spectrometry in random sequencing mode and targeted MS2 of candidate peptides with characteristic mass shifts. The site S75 and S280 have not been

described before. Blow-up shows the fragmentation pattern (MS2 spectrum) of a S253 phosphopeptide, which can be phosphorylated by PKB. The y-ion

series is shown on the reversed sequence. Stars indicate ions with neutral loss of –98 Da. FH, forkhead domain.
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b/a and t were directly identified by MS2 in the initial LC-MS runs,
14-3-3 g and Z were only detected in this specific experiment by
combining identifications from inclusion list experiments, LTQ data
and PMM analysis.

Overall, the extended MS1 annotation efforts by targeted sequen-
cing, the integration of MS2 information from LTQ runs and PMM
substantially improved the peptide and protein information content in
the MasterMap. The principle of selecting feature candidates is generic
and could be based on other criteria such as differential feature
intensities in comparative studies or features pairs with specific m/z
shifts corresponding to post-translational modifications or isotopically
labeled peptides.

Signaling-dependent changes of FoxO3A phosphorylation

Similarly to the quantification of protein interaction changes between
the LY and FCS conditions, we analyzed the FoxO3A phosphorylation
pattern by calculating enrichment ratios for every phosphorylated
peptide and its unmodified counterpart detected in the MasterMap.
Phosphorylation sites were confirmed by MASCOT searches30 of
tandem mass spectra and by the occurrence of mass shifts between
MS1 features characteristic for phosphorylation (DMr ¼ 79.966 or
159.932 Da) between MS1 features.

Overall, eight unique FoxO3A phosphorylation sites were detected
(Fig. 4c and Supplementary Table 2 online). Besides the known
protein kinase B (PKB) target site S253, seven additional phosphor-
ylation sites were identified, of which five had been previously
described in the context of stress-dependent FoxO3A regulation23.
Phosphorylation of S75 and S280 was not described previously. In
general, the peptide enrichment ratios are based on observations of
single peptides in, at most, two charge states, which does not permit
statistical analysis. Nonetheless, inspection of the dilution profile of
S253 showed that this peptide was present only in the FCS condition
in contrast to its unmodified counterpart (LY/FCS ratio ¼ 0.63). S253
has been reported to be phosphorylated by PKB26,31, which is
consistent with the calculated enrichment factor that we have mea-
sured under growth-stimulating conditions.

DISCUSSION

We developed a mass spectrometric and computational method
in which simple one-step Co-IPs are used to determine specific
interaction partners of protein complexes under varying cellular
states. This method is based on the alignment of LC-MS patterns
from control and bait Co-IP’s followed by clustering of artificially
created peptide dilution profiles. Differentiation between bait-
specific interaction partners and unspecific background proteins is
indispensable for the assembly of high-quality protein interaction
networks from Co-IP data. Filtering based on MS2 identifications
alone has been proposed as a quantitative measure (spectral count-
ing32) and MS2-based filtering has been applied in a large-scale protein
interaction study where statistical analysis can be applied to a large
number of MS measurements33. However, this approach is not reliable
when dealing with a small number of samples. The main reason for this
is MS2 undersampling of the MS1 features. Although isotopic labeling
of bait and control proteins, for example with ICAT10 or iTRAQ11,
resolves some of these issues34, the strategy still depends upon
successful MS/MS identification and quantification of peptides in a
sample. As a MasterMap contains all extracted MS1 features that are
above the sensitivity threshold of the mass spectrometer together with
their intensity profiles, our approach has the potential to assess protein
interactions more comprehensively. Dilution profiling circumvents the
known problem associated with the definition of MS1 ion current

ratios between two samples when a feature is only detected in one
sample. In these cases, it is not possible to decide whether a peptide is
really not present at detectable levels in a sample or whether the feature
extraction algorithm failed. Using the dilution approach, absence
of a peptide in one sample generates a very specific dilution profile,
whereas a failure in feature picking results in an inconsistent
profile that can easily be identified. The specific shape of the dilution
profile is valid for a wide range of peptide intensities (see
Supplementary Fig. 6 online).

Quantified MS1 features in a MasterMap can be annotated using
bioinformatics methods such as PMM or post-translational modifica-
tion prediction to confirm the presence of specific peptides. Interest-
ing candidate MS1 features can then be subjected to targeted MS2
analysis in another experiment. Some aspects of this approach are
similar to the accurate mass-and-time tag method, where MS1 signals
are compared to a database of identified peptides using their accurate
masses and normalized retention times35.

Our approach enabled us to clearly recapitulate the known inter-
action between Foxo3A and 14-3-3 protein z/d26 and to further
show that the 14-3-3 protein family members (b/a, g, Z, e, t) are
specifically associated with FoxO3A when PI3K signaling is active.
Upon PI3K inhibition, FoxO3A moves into the nucleus—a process
that correlates with lower levels of associated 14-3-3 z/d27.
This decrease in 14-3-3 z/d association following PI3K inhibition
was monitored quantitatively with our MS1 profiling approach.
In addition, this strategy also revealed that not only 14-3-3 z/d, but
also the other identified 14-3-3 family members, dissociates
from FoxO3A when FoxO3A moves to the nucleus after PI3K
inhibition. This suggests that at least six of the seven known members
of the human 14-3-3 family may contribute to nuclear shuttling
of FoxO3A.

The same experimental data sets were simultaneously analyzed
for both quantitative changes in the abundances of interacting
proteins as well as changes in the post-translational modifications of
the identified proteins. We identified several known and previously
unknown phosphorylation sites by scanning the MasterMap for
peptide pairs that showed mass shifts indicative of phosphorylation
(Fig. 4c and Supplementary Table 2 online). Quantitative analysis
further revealed a positive correlation between increased FoxO3A S253
phosphorylation and increased 14-3-3 binding to FoxO3A under
conditions when PKB is active. This is consistent with a mechanism
whereby 14-3-3 association is regulated by PKB-dependent phosphor-
ylation of S253.

Although this approach was applied to analyze specific protein
complexes, even greater potential for the MasterMap concept lies in
extending it to Co-IP experiments with multiple bait proteins. As this
approach requires only low-effort, one-step purifications without
labeling, it can be reliably performed with high-throughput. Master-
Maps from many experiments, for example with baits chosen from
a specific signaling pathway under varying signaling states, could
be aligned and merged, thereby revealing higher-order protein-
enrichment profiles. The presence and variations of the interaction
partners of each bait would be represented in a high-dimensional
MasterMap. Moreover, this map could serve as a repository that allows
comparison of interaction studies between laboratories performed by
different MS instruments. Besides the need for a common data
representation format to store and exchange MasterMaps between
different data preprocessing software, the retention time dimension
could be coded by selected standard peptides or additives to the
chromatography buffers, thereby allowing real-time monitoring of the
solvent gradients36.
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In conclusion, we demonstrate that our approach improves
specificity and sensitivity in the identification of protein-protein
interactions compared with conventional Co-IP MS2–based analysis.
Furthermore, the analysis of protein interactions can be extended to
quantitatively map changes in protein interaction networks. The
example involving FoxO3A demonstrates the usefulness of a simulta-
neous analysis of protein-interaction and post-translational modifica-
tions using the MasterMap approach to resolve regulatory
relationships within protein interaction networks.

METHODS
MasterMap by multiple LC-MS alignment. Data analysis was performed

by the program SuperHirn, which will be made publicly available on

http://tools.proteomecenter.org/SuperHirn.php (Mueller, L.N. et al. unpub-

lished data). The website contains also a detailed manual providing an

introduction to the program usage. SuperHirn is written in C++ and is

accessed via a command line interface. The program is structured into a

set of modules, which contain the different LC-MS processing functionalities

(LC-MS preprocessing, pairwise and multiple LC-MS alignment, feature

intensity normalization, among others) and are sequentially executed

during the analysis of a LC-MS experiment. The modular usage for this

LC-MS data analysis was divided into two major parts; multiple alignment

of acquired LC-MS runs into a MasterMap and clustering analysis of MS1

feature profiles.

LC-MS runs were preprocessed by a feature detection routine to extract

peptide features from linear ion trap fourier transform ion cyclotrone reso-

nance mass spectrometer (LTQ-FT-ICR) data, where MS1 signals of peptide

features were separated from chemical noise or experimental artifacts by their

isotopic distribution in the m/z dimension, and their LC elution profile in the

retention time dimension. Subsequently, peptide assignments of MS2 spectra

were combined with their corresponding MS1 features by the charge state (z),

m/z of the precursor ion and the retention time (TR) of the MS2 scan.

After preprocessing of the LC-MS runs, pairwise comparisons of LC-MS

runs were performed to compute an alignment structure according to which

the LC-MS runs were combined into a MasterMap by a multiple LC-MS

alignment. SuperHirn sequentially aligned two LC-MS runs and created a new

merged LC-MS run. In every merging process, the retention time of the LC-MS

pair was normalized by a LC-MS alignment routine and common features were

matched using the m/z, TR and z dimension at a user-defined tolerance level

(DTR ¼ 0.5 min, Dm/z ¼ 0.01Da). This process was repeated until all LC-MS

runs were combined into the MasterMap. Even though SuperHirn is a generic

tool to process a wide range of MS data from different MS instruments, the

availability of FT high-mass precision facilitated peak matching and improved

the quality of LC-MS merging. The mass tolerance for feature matching

(Dm/z ¼ 0.01Da) was chosen large enough to map almost all equal features

and small enough to avoid too many false positives. At the end of the multiple

alignment process, a MasterMap was created, which unified the whole input

data and represented a universal and compact data repository for further

quantitative analysis.

Before clustering analysis, abundance values of peptide features were

normalized to reduce systematic artifacts originating from various sources as,

for example, different LC injection concentrations, LC carryover and variability

in ionization efficiency21. MS1 feature intensity normalization was performed

segment-wise using a sliding window along the TR dimension. For every

retention time segment, peptide features within a TR segment and common

to all LC-MS runs were extracted and their mean abundance values VF,Av were

computed. The ratio of each LC-MS run–specific peptide abundance value to

its corresponding VF,Av was then determined and averaged over all common

peptides features to yield a TR segment–specific normalization coefficient for

every LC-MS run.

Peptide profiling and k-means clustering. At this stage, the complete set of

LC-MS data was archived in a preprocessed format in the MasterMap from

which MS1 feature profiles were directly extracted. Missing data points in the

profile were interpolated if a neighboring point was available on both sides of

the missing value. To construct significant profiles, we limited profiling analysis

to matched MS1 features, which had been detected at least in three LC-MS runs.

Although the selection of the dilution scheme is generic, we tested different

dilution outlines to obtain a dilution schema with four dilution steps that

optimized the separation of contaminant proteins and bait-specific proteins

(data not shown). Based on this pre-study, we decided to apply a rather

conservative dilution of 10% and 20% bait/control mixing ratio that enabled a

clear distinction between contaminants and specific interaction partners.

MS1 features were divided into naturally occurring profile groups according

to their profile similarity by k-means clustering37. Cluster analysis was initiated

with a predetermined number of k cluster centers (here k ¼ 10), which were

built from profiles of randomly selected features profiles. The iteration was

repeated until all cluster profiles converged (DC ¼ 10�15) or a maximal

number of iteration was reached (max ¼ 105).

A critical factor in the comparison of MS1 feature profiles is the definition of

profile similarity. For k-means clustering, feature profiles were normalized

according to equation (1) and profile similarity PSi,j was defined by the

averaged Manhattan distance between a pair of features (i,j) (equation (2)).

_yn ¼
yn

PNLC=MS

n¼1 yn
ð1Þ

PSi;j ¼
1

NLC=MS

XNLC=MS

n¼1

j _yi;n � _yj;nj ð2Þ

Profile normalization was required to uncouple similarity scores from intensity

variations and allowed the clustering algorithm to group MS1 features accord-

ing to their profile trends. Therefore, different peptide ionization properties or

the initial protein concentrations did not dominate the calculation of similarity

scores and rendered the clustering robust for true feature profiling quantifica-

tion. The constructed cluster structure reduced the information of extracted

peptide features profiles to a number of centroids, which reflected the major

peptide abundance changes over the different LC-MS runs. Subsequent data

analysis was then targeted on one or several feature subgroup(s) of interest

characterized by their corresponding cluster profile(s).

Targeted protein profiling and confidence assessment. According to the

experimental outline, targeted protein analysis was performed on MS1 feature

members of the selected profile groups, which showed the highest similarity to

the theoretical enrichment trend (target profile). Subsequently, SuperHirn

reorganized MS1 features into peptides and proteins. First, charge state

deconvolution was performed by grouping MS1 features according to their

neutral molecular mass into decharged peptides, where additionally MS1

features containing post-translational modifications (here phosphorylation)

were detected by defined molecular mass differences to their nonmodified

counterpart. Integrating available information from MS2 analysis, the subset of

constructed peptides containing MS1 features with high confidence MS2

identifications24 (PeptideProphet peptide probability 4 0.9) were reorganized

into proteins. Protein consensus profiles were then computed by averaging over

the features members of all peptides of a protein. Protein profile similarity

scores PSProteinX to the theoretical enrichment trend were determined as

previously described (equation (2)).

Profile similarity assessment by computed PSProteinX enabled evaluation of

which protein consensus profiles followed closely the theoretical enrichment

trend and represented candidates for interaction partners of the bait protein.

However, as described for other proteomics data38, the challenge remains to

evaluate high-scoring interaction candidates and to determine whether their

score reflects a true similarity to the target profile. The ProfileProphet module

of SuperHirn performed a mixture analysis of obtained similarity scores and

transformed protein profile scores into probability values of true similarity

p(+|PSProteinX) to the theoretical enrichment trend. The distribution of correct

and false scores was modeled by two Gaussian distributions and their mean m
and s.d. s were determined by an expectation maximization algorithm39. The

probability p(+|PSProteinX) of a true profile similarity given a score PSProteinX

was defined in equation (3) using Bayes’ law, where p(PSProteinX |+) and

p(PSProteinX |–) were computed from the modeled Gaussian distributions, and

p(+) and p(–), respectively, were calculated from the mixture probability

of true and false profile similarities. ProfileProphet probabilities enabled
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assessment of the significance of profile similarity scores and statistical

evaluation of target profile similarities of potential bait interactors.

pð+jPSProteinXÞ ¼
pðPSProteinX j+Þpð+Þ

pðPSProteinX j+Þpð+Þ+ pðPSProteinX j�Þpð�Þ ð3Þ

Peptide mass mapping. An in-house software using the InSilicoSpectro40

perl library was used to compare peptides with theoretical masses of in silico

protein digests (Dm/z ¼ 7 p.p.m., tryptic digestion allowing one missed

cleavage, methionine oxidation was considered only if both oxidized und

unmodified peptide masses were detected). Predicted retention times of

theoretical protein digest (using the Petritis algorithm in InSilicoSpectro40)

had to match the experimental retention time of the measured peptides

(removing about one-third of the peptides). For the cross-linked samples,

TR could not be predicted due to cross-linker modification of the peptides and

no retention time filtering was applied. Even with the high-accuracy mass

measurements used, mass matching is prone to false positives owing to the

large number of features detected and the number of matched features can

serve only as an indication, especially if this number is o4.

Cell lines and transfections. HEK 293 cells were grown in DMEM medium

(4.5 g/l glucose, 50 mg penicillin/ml, 50 mg/ml streptomycin, 10% FCS). To

establish control cells and cells stably expressing human hemagglutin tagged

FoxO3A, we transfected HEK 293 cells with either pcDNA3 or pcDNA3-HA-

FoxO3A, using the Fugene transfection reagent (Roche). We added G418 to the

medium (1 mg/ml) 48 h after transfection and stably transfected cell pools were

obtained after 5 weeks of G418 selection. Expression of HA-FoxO3A in G418-

resistant pools was confirmed by western blot analysis, using the monoclonal

anti-HA antibody HA-11 (Covance).

Immunofluorescence microscopy. Cell pools stably expressing HA-FoxO3A

seeded on glass cover slips were either grown in DMEM containing 10% FCS or

were serum-starved overnight and treated with 20 mM LY294002 inhibitor

(Invitrogen) for 1 h. Cells were washed once in PBS before fixation for 15 min

in 3.7% paraformaldehyde/PBS. Fixed cells were washed 3� with PBS and

treated for 5 min with 0.5% Triton/PBS. Following three washes with PBS, cells

were incubated with a 1:10 dilution of a monoclonal antibody 12CA5 tissue

culture supernatant for 1 h at 23 1C. Cells were washed 3� with PBS and

stained with a 1:200 dilution of an anti-mouse-Alexa488 secondary

antibody (Molecular Probes) and DAPI (4¢,6-diamidino-2-phenylindole).

Finally, cells were washed 3� with PBS, mounted in Vectashield (Vector

Laboratories) and images of confocal sections were obtained on a Leica SP2

AOBS confocal microscope.

Immunoprecipitation. HA-FoxO3A-expressing HEK293 cells and control

HEK293 cells were grown in 15-cm dishes in DMEM medium supplemented

with 10% FCS in the presence of antibiotics (50 mg penicillin/ml,

50 mg/ml streptomycin; Gibco). Each cell line was split into two groups.

One group was grown as before in 10% FCS (FoxO3A-FCS and control-

FCS). The other group (FoxO3A-LY and Control-LY) was serum-starved

overnight and treated for 1 h with LY294002 inhibitor (20 mM final con-

centration) before harvesting the cells. Ten dishes per group (B3 � 108 cells)

were harvested, rinsed once with PBS and lysed in 10 ml of ice-cold TNN-HS

(Tris NaCl Nonidet P-40 High Salt) buffer (0.5% NP-40, 50 mM Tris,

pH 7.5, 250 mM NaCl, 1 mM EDTA, 50 mM NaF, 1.5 mM Na3VO4, 1 mM

DTT, 0.1 mM PMSF, 1 protease inhibitor tablet mix (Roche) per 50 ml).

Cells were lysed 10 min. on ice with ten strokes using a tight-fitting

Dounce homogenizer.

Insoluble material was removed by centrifugation. The cleared extracts were

precleared with 50 ml ProteinA-Sepharose (Amersham) for 1 h. After removal

of ProteinA-Sepharose 50 ml of anti HA-(12CA5) monoclonal antibodies

covalently coupled to ProteinA-Sepharose was added to each of the extracts

and incubated for 4 h with gentle rocking at 4 1C. Immunoprecipitates were

washed 3� with ten bead volumes of the lysis buffer on spin columns (Biorad)

and twice with ten-bead volumes of the corresponding lysis buffer without

protease inhibitor and without detergent.

Proteins were eluted from the beads with three bead volumes of 0.2 M

glycine buffer (pH 2.3) and neutralized subsequently with 100 mM NH4HCO3.

Cystine bonds and DSP-linked peptides were reduced in 5 mM TCEP for

30 min. at 37 1C and alkylated in 10 mM iodocetamide for 30 min. at 23 1C ,

respectively. The samples were digested overnight with 1 mg trypsin (Promega)

each. Peptides were purified with ultramicro spin columns (Harvard Appara-

tus), according to the manufacturers protocol, and redissolved in 0.1% formic

acid for injection into the mass spectrometer.

LC-MS analysis. LC-MS analysis of Co-IP samples was performed on a

Thermo Fourier Transformed-LTQ mass spectrometer (Thermo Electron),

which was connected to an electrospray ionizer. TheAgilent chromatographic

separation system 1100 (Agilent Technologies) was used for peptide

separation. The LC system was connected to a 10.5-cm fused silica emitter

of 150 mm inner diameter (BGB Analytik) and was packed by in-house

Magic C18 AQ 5 mm resin (Michrom BioResources). The Agilent auto

sampler was used to load samples at a temperature of 6 1C. Subsequently,

the sample was separated during 70 min with a linear gradient of a

5–40% acetonitrile/water mixture, containing 0.1% formic acid, at a flow

rate of 1.2 ml/min. After every LC-MS analysis, the LC system was washed

with 50% trifluoroethanol to prevent cross-contamination between the differ-

ent analyzed samples and a LC-MS run of a 200 fmol GluFib standard protein

sample was acquired to monitor the chromatographic performance.

The data acquisition mode was set to obtain FT-MS1 scans at a resolution

of 100,000 full width at half maximum (at m/z 400), where each MS1

scan was followed by three MS2 scans in the linear ion trap (overall cycle time

of B1 s.). To increase the efficiency of MS2 attempts, the charged state

screening modus of the FT-MS was used to exclude unassigned or singly

charges ions. For every MS1 scan, data dependent aquisition was performed

on the three most intense ions if the ion count exceeded a threshold of

200 ion counts.

MS2 peptide assignments. Acquired MS2 scans were searched against the

human International Protein Index (IPI) protein database (v.3.15) using the

SORCERER-SEQUEST (TM) v3.0.3 search algorithm, which was run on

the SageN Sorcerer (Thermo Electron). In silico trypsin digestion was per-

formed after lysine and arginine (unless followed by proline) tolerating two

missed cleavages in fully tryptic peptides. Database search parameters were set

to allow phosphorylation (+79.9663 Da) of serine, threonine and tyrosine as a

variable modification and carboxyamidomethylation (+57.021464 Da) of

cysteine residues as fixed modification. For the searches of DSP cross-linked

samples an additional variable modification of lysine residues (+145.01975)

from the carboxyamidomethylated cleaved DSP cross-linker was considered.

Search results were evaluated on the Trans Proteomic Pipeline (TPP)41 using

Peptide Prophet (v3.0)24.

To specifically identify phospho-peptides, we searched MS2 spectra with the

MASCOT search engine30 against the human IPI database version 1.5, which

considers neutral phosphate loss fragments. Searches were performed on fully

tryptic peptides allowing for two missed cleavages. Carboxiamidomethylated

cysteines were set as a fixed modification and phosphorylation of serine,

threonine and tyrosine were set as variable modifications. The fragment mass

tolerance was set to 0.5 Da, precursor mass tolerance to 10 p.p.m. The

instrument type was set as FT-ICR.

Note: Supplementary information is available on the Nature Biotechnology website.
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