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Abstract: In this paper, an integrated MEMS gyroscope arraghod composed of two
levels of optimal filtering was designed to imprdhe accuracy of gyroscopes. In the first-
level filtering, several identical gyroscopes weombined through Kalman filtering into a
single effective device, whose performance coutgass that of any individual sensor. The
key of the performance improving lies in the optineatimation of the random noise
sources such as rate random walk and angular rangalk for compensating the
measurement values. Especially, the cross cowaldietween the noises from different
gyroscopes of the same type was used to estahkshystem noise covariance matrix and
the measurement noise covariance matrix for Kalfi@ning to improve the performance
further. Secondly, an integrated Kalman filter wihx states was designed to further
improve the accuracy with the aid of external semissuch as magnetometers and
accelerometers in attitude determination. Experimshowed that three gyroscopes with a
bias drift of 35 degree per hour could be combiméad a virtual gyroscope with a drift of
1.07 degree per hour through the first-level fjlimnd the bias drift was reduced to 0.53
degree per hour after the second-level filteringprbved that the proposed integrated
MEMS gyroscope array is capable of improving theuaacy of the MEMS gyroscopes,
which provides the possibility of using these loast MEMS sensors in high-accuracy
application areas.

Keywords:. MEMS gyroscopes, optimal filtering, accuracy impr@y random noise,
gyroscope array.
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1. Introduction

Angular rate sensors have wide applications iratitemotive, aerospace and consumer electronics
sectors. Gyroscopes fabricated by microelectronmechb system (MEMS) technology offer
revolutionary improvements in cost, size, and raggss relative to fiber-optic and spinning mass
technologies. At least twenty angular rate senebthis kind with different structures and prinapl
have been presented by various groups in the pasity years. However, the current state-of-the-art
MEMS gyroscopes have low-grade performance andnocarcompete with the established sensors in
high-accuracy application areas such as guidandeavigation, where the bias drift of the gyroscope
is the most popular term used to define performaAtehe end of 2007 the best published accuracy
for a MEMS gyroscope was about one degree drift hpmur [1], which was demonstrated with
temperature control by the Draper laboratory bef®88 [2]. Up to 2007, no MEMS gyroscope with
an accuracy higher than one degree drift per hadrldeen reported, which means that to improve the
MEMS gyroscope accuracy in traditional ways of gesig good mechanical sensing scheme or signal
conditioning circuitry is not an efficient approaahd new methods should be proposed to improve the
accuracy of these devices.

The advantages of using multiple sensors overglessensor to improve the accuracy of acquired
information about an object have been recognizetl enployed by many engineering disciplines
ranging from applications such as a medical degisiaking aid system to a combined navigation
system [3]. Weis and Allan presented a high-acgucsmck with a month error of one second through
combining three inexpensive wrist watches with rharors of 40 seconds in 1992 [4]. This new time
technology was named 'smart clock’. The smart cleskances the accuracy or stability of a clock or
by characterizing it against an external standaichsas U.S. time standard at NIST. Actually this
technology used heterogeneous sensor data fusiorptove the accuracy. Recently, some researchers
have begun to take the similar idea to improveabteuracy of MEMS gyroscope. Bayard combined
four inexpensive MEMS gyroscopes to form a virtsahsor with higher accuracy output, and called
this technology 'virtual gyroscope’ [5]. In the wial gyroscope the random noise of the gyroscope wa
estimated by using the Kalman filtering for thetlfier compensation, thus its accuracy was improved.
The correlation between the gyroscopes was usesstiblish the covariance matrix of the system
random noise for filtering computation and bettecuaacy improvements. In contrast with the smart
clock, the virtual gyroscope used homogeneous seafsa fusion instead of the heterogeneous one to
improve the sensor accuracy. Lam proposed a veeyesting concept to enhance the accuracy of
MEMS sensors via dynamic random noise charactesizaind calibration [3, 6, 7]. The compensation
offers both filtering and cancellation capabilityeffectively null out the MEMS sensors noise searc
The method used both the heterogeneous sensofudaia and homogeneous sensor data fusion to
improve the sensor accuracy. The first compensaig®es external aiding sensors data such as GPS
sensors, thus the high noise drift errors suchias Bcale factor, and misalignment errors inhgrent
existing in MEMS sensors will be eliminated. The@®l compensation uses signal isolation and
stochastic model propagation to dynamically moniteainges and identify random noise parameters of
MEMS inertial sensors such as angular random vaaigular white noise and rate random walk, etc.
for internal self-calibration. From these examplescould conclude that these multi sensor dat@fusi
technologies will be very suitable for MEMS senstosimprove the accuracy due to the fact that
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forming multiple sensor arrays in a single siliadnp is one of the biggest advantages of the MEMS
technology.

Through analyzing the current various multi-serfsgion methods, we find that these approaches
could be improved further in several ways for bedtecuracy improvements. In the virtual gyroscope,
Bayard established the covariance matrices of ppoeises and measurement noises separately for
the Kalman filtering. The parameters of the noiseatiance matrices were stationary. However, the
work conditions of the sensor especially the gyopgcare subject to changes due to many other $actor
such as in the case of high maneuverability. Inhsc&se, adopting the values of stationary noise
sources could result in large estimation errorslandiltering performance. In order to well satighe
requirement of high rate maneuvering operating itmms$, Lam proposed a high order gyroscope
model which contained scale factor and misalignnesrdrs in addition to the usual noises such as
angular random walk (ARW) and rate random walk (RRWhd a fifteen-state Kalman calibration
filter was designed to enhance the performancestination [7]. Furthermore, a method to monitor
changes real-time and dynamically identify sensmstom noise parameters such as angular random
walk and rate random walk was presented. Thus alibration filter process noise can be updated
dynamically to provide accurate calibration. Howetke correlation between the homogenous sensors
was not employed to establish the covariance neatraf process noises and measurement noises,
which is very important to improve the sensor aacyr

Therefore, in this paper we will combine both hoerogous and heterogeneous sensor data fusion
to improve the MEMS gyroscope accuracy. The progpasethod consists of two levels of robust and
optimal estimators. In the first level, severalapgopes will be combined into a single effectiveick
through minimum variance estimation approach. B shcond level, the output of first level will be
integrated with external aiding sensors such asnetagieters and accelerometers to improve the
gyroscope accuracy to a better degree.

2. Working principle of theintegrated gyroscope array
2.1 Correlations between the MEMS gyroscopes in the sensor array

In the proposed integrated MEMS gyroscope arrajhatgtthe correlation between the elements in
the array is the theoretical basis of improving thecuracy. Bayard had given the accuracy
improvement relationship with the correlation facbetween the sensors as shown in Figure 1 [5].
According to the result [5], if the correlation doot exist the drift of a virtual gyroscope comgubef
N independent and identical devices will 1e/N of the individual device. But if the sensors are
correlated the potential improvement in drift isr faeyond thel/</N factor attainable using
uncorrelated devices.

However, the separate MEMS gyroscopes are independl@ach other. Therefore there should be
no correlation between the separate sensors. Buteifcould fabricate these MEMS gyroscopes
simultaneously on a single silicon chip within ayearrow area of about several square millimeters
through various micromachining process as showhigare 2 [8, 9,10], and the same read-out and
controlling interface circuits are supplied witleie mechanical sensing elements, then we could make
assumption that there is correlation between tBessors because the sensors are totally the same in
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the view of design and the working conditions aeeyvsimilar although we do not know the exact
value of the correlation yet. Currently the valsenainly determined empirically [5].

Figure 1. Normalized drift of a four component virtual gycope versus different
correlation factor.
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Figure 2. Schematic of single-chip gyroscope array.

2.2 Structure of integrated MEMS gyroscope array

The proposed MEMS integrated gyroscope array metvasicomposed of two levels, as shown in
Figure 3. The first level is the gyroscope self pemsation within the array, the principle of accyra
improving is similar to the virtual gyroscope ext#pe design of filter. In this level several gycopes
of the same kind with same specifications are farnméo a gyroscope array. Each element in the
sensor array works independently to measure thet iapgular rate. The measurement values were
used to extract the random error terms through s@méom noise modeling method such as power
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spectral distribution (PSD) and Allan variance. ihthe error terms are combined with the
measurement values to estimate the true rate thringgminimum variance estimation method. So the
output angular rate via the redundant measuremadt agptimal estimation could surpass the
performance of any element in the array.

In most applications, the gyroscopes will not bedualone but combined with other sensors such as
accelerometers or magnetometers in an attituderndietgtion system. Therefore in the integrated
gyroscope array, the output of first level was utaden by the second level filtering with aidingtbé
external sensors. With the external signals, theam errors of MEMS gyroscope are set as the state
vectors of integrated filter. Then the output o fhist-level Kalman filter could be compensatedigy
optimal estimation of random errors through theegmated filter, therefore the accuracy will be
improved to a larger degree.

The Kalman filtering approach has the advantageeofg a systematic method to ensure minimum
variance rate estimation. Furthermore, it is slgtdbr dealing with dynamic data and has high real-
time performance in comparison with other minimuariance estimation approach. So the Kalman
filtering was used here to implement the integraggdscope array technology.

Figure 3. Structure of the proposed integrated gyroscosy anethod.
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3. Design of integrated MEM S gyr oscope array
3.1 Random noise modeling for MEMS gyroscope

The systematic errors of gyroscope due to biaseale sfactors and misalignments could be
compensated for via an on-board Kalman filteringrapch [6]. While the random noise sources such
as angular white noise (AWN), angular random w#R\) and rate random walk (RRW) are not
easily estimated by the same way due to their randoaracteristics. Therefore in the paper the error
terms for gyroscope only include the main randonorerwithout those systematic errors. A lot of
experiments have shown that the dominant randoorsefor the MEMS gyroscopes are ARW and
RRW [6, 7], so the gyroscope in this paper is med@s shown in equation (1).

sy =w+b+n,b=n (1)
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Where ay is output rateew is the true rateh is the gyroscope drift rate biawd/sec) driven by the
RRW processwk, andna is the white noise corrupting the gyroscope ragasarement but becoming

the angular random walk at the gyroscope angld.leve
Using the above gyroscope model the units for éach were unified through the scaling as shown

in Fig. 4, where thds was the sampling period.

Figure 4. Random error model with unit scaling for the ME\Boscope.
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Figure5. Allan variance plot of three gyroscopes’ biastdrif
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Table 1. Error terms obtained through the Allan variancalysis.

Error term Allan variance Unit Slope
ARW d.(r)=N?/7r  |degh/hr | -112
Bias 2 _

instability| 9= (7) = (0.664B Y | deghr | 0
RRW I (1)=K?r/3  |deghr®®| +1/2

Computation of the Allan variance is a powerful hoet for estimating the gyroscope random noise
sources [6, 7, 10, 11]. If the Allan variance idiied aso(r) =+/0°(r) , then the random error terms
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such as ARW, bias drift and RRW could be obtairredhfthe log-log plot oo (r) versusr (Fig. 5).

The specific values were shown in Table 1. The yald, B andK are the coefficients of the ARW,
bias drift and RRW respectively. The numerical eatdiN can be obtained directly by reading the line
with slope of -1/2 at=1, while theK can be read off from the line with slope of +1{2=8. TheB can

be read off from the lowest point of the linetatl0.8, which represents the possible best accuracy
which the MEMS gyroscope can reach.

3.2 First-level optimal filter

After the random noise modeling, the filter deswgmch provides the optimal estimation is the key
to success of the proposed accuracy improving rdetAe Kalman filtering was widely used in the
combined navigation system and was used by thequewvesearchers, herein the algorithm will be
also used as the foundation for the filter design.

In this paper we took three gyroscopes to formstiresor array. In order to improve the accuracy we

treated the true angular raie as the state of filtering, which was not equatéoo and was modeled as
the random walk driven by the white noise whose variance iQw~. Taking the Kalman filtering

method [12], the state equations and measuremeamitieqs of first-level Kalman filter were
established as following.

X =[b1,bz,b3,a)]T
X (t) = FX (t) + Gw(t) (2)
Z(t) = HX (t) + Bv(t)

In equation (2),X(t) is the state vector, which consists of four congmas: the first three

components are the gyroscope drift rate bias oéethgyroscopes respectively, and the fourth
component is the true angular rate. Botft) andv(t) are white noise that represents process noise

and measurement noise respectively [13, 14]. Adogrdo the random noise model of MEMS
gyroscope, they were built agt) =[no, noz, nb3,nw]T and v(t) =[ne, Naz, na3]T, wherena, Naz and nas
are angular random walk of the three gyroscopes.Kdman filter coefficient matrixr,G,H andB
are given as following.

0 00O 1 000
1 001 1 00

0 00O 0100
F= , G= ,H=|0 1 0 1/,B=|]0 1 O

0 00O 0 010
0 011 0 01

0 00O 0 001

After discretion, the equation (2) could be writeen
ch/k—l = I3+1

I_k—1:t|3+1
W, =[N, (k) n,(k) nk) n,J’
V, =[N, () n,k) K]

wheret is the period of the discretioW is the sequence of system driving white noise,\4nd the
measurement white noise sequence. And these tvgesioneet the requirements shown in equation

(4).

3)
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E[W,] =0, CoW, W] = EWW] =Q.9,
E[V,] =0,Co\V,.V] = HV,V/] =R, (4)
CovW,.,V,] = WV, =0

_|Q o
Qk—{o QJ,RK—[QJ

where theQy, Ry are the covariance matrix of the system noisenagasurement noise respectivey.
andQ, are the matrix of the RRW vectoy and ARW vecton, respectively. And, is the Kronecker

among which:

Delta function.

Figure 6. Principle block diagram of first-level Kalman &kt
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By this the first-level filter for the integrategrgscope array was established (Figure 6), by which

the drift could be reduced within the sensors. Esflg potential improvement in drift is much more
impressive when the noise between the sensorsrslated, i.e. where th® andR matrices have off-
diagonal elements.

3.3 Second-level integrated optimal filter

In the various application areas of MEMS gyroscoplesre are more external sensors such as the

magnetometers and accelerometers for combinatidh gyroscope signal. The information from
external sensors is usually to determine the dtitf the aircraft, but also can be used to imptbee
accuracy of gyroscope by heterogeneous sensorsfuiata. Herein in the second-level filter, the

gravitational field and earth magnetic field infation obtained from the accelerometers and

magnetometers were used to be integrated with ouwitpfirst-level filter to enhance the accuracy of
gyroscope. In order to well describe the establatnof the second-level integrated Kalman filtér, i
needs to make some definitions as shown in Table 2.
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Table 2. Definitions of symbols for the integrated filtezgign.

Symbols Description
b Body frame of aircraft
n Navigation frame
Q Attitude quaternion
Q. Attitude error quaternion
Gy Direction Cosine Matrix (DCM)
m Measurement value of Earth magnetic
a Measurement value of gravity field
b Estimation of rate random walk

3.3.1 State equations derivation

Based on Eulers rotation theorem, the error quigerQ, was defined a€Q, =[1 @] in
condition of small rotation from the estimated @uaion to true quaternion, where
qe:[qel Oe, qe3], andg, 0., Qs IS the second, third and the fourth componenthef ¢rror
attitude quaternion respectively. So the true watét quaterniorQ could be expressed in terms of
quaternion multiplication as follows [15, 16].

Q=Q0Q, (5)
After differentiation and simplification, equati¢) was written as:
1 1.
=0 Ww—w 6
Q. 2Qe > [Q, (6)

In equation (6) thev represents the true angular rate andadhis the estimation ofv. Making the
definition of Ab =b—b as the estimation error of rate random walk, wietlye state equations as:

G =[x -Lap-2t
qe_ [a)X] me 2Ab 2na (7)

3.3.2 Measurement equations derivation

The integrated Kalman filter used the informatidnearth magnetic and gravity field as external
calibration from which the random errors of MEMSagcope were deduced. According to the attitude
guaternion, the error of Direction Cosine Matrixsweritten as:

1 L R
G (Q)=| 2q, 1 —y |=last Z[Ge x] (8)
_ZQez 2%1 1
where |, was the three-by-three identity matrix a{ﬂEX] was a skew-dissymmetric matrix
composed of the components@f.

0 s U
[qe x] =| Qe 0 -0y
Oz Oa 0
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Direction Cosine Matrix frono frame ton frame could be written as follows:

G =Gy [T, =G [T)(Q.) ©)

In equation (9)p" andb represent the computed body frame and true badydr respectively. The
matrix C. represents a small angular rotation betwigeandb . Making use of equations (8) and (9),
we obtained:

Cr=(1-2[a.x])cy (10)

We defined® andm" as the measurement values of Earth magnetic iirelal frame and imn
frame respectively [17, 18]. According to the caoate transformation matrix, they met the following
equation:

mP =Cp ' = (1 -2[d, x])C. " (11)

Then the measurement residual of magnetometefraame was defined as follows:

ot = mP - = -2[q, x| i = z[r%b x] i) (12)

e

If the similar deduction was carried out for theasierement residual of accelerometer, then the
following linear measurement equation was obtained:

ga® = 2| & x| @, (13)
So the measurement vector was established as:
~b r%]b X
Z= 5mb :2[A ] @, (14)
53 |:a’_b x:|

3.3.3 Integrated optimal filter design

The error quaternion and estimation error of ratedom walk were defined as the state vectors.
According to the state and measurement equatidablishied above, the Kalman filter was established
as following by using equations (7) and (14):

X =[d, Ab]'
X (1) = F (1) DX (t) + G(t) (1) (15)
Z(t) = H(t) DX (t) +v(t)

The Kalman filter coefficient matri¥,G and H were given below.

~ 1 1 Zb
F = _[wx]sxa _§|3><3 G= _Elsxs Oz H= Z[I’j‘l x] Oss (16)
0, 0, O las 2[ax] o,

In the measurement noise vecidt) =[vl VZ]T, v, andv, were white noises that represent the

measurement noises of magnetometer and acceleromgpectively [13, 14].
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4. Experimental
4.1 Experiment setup

We took three separate MEMS gyroscopes with idahspecifications to form a gyroscope array
because the gyroscope array as shown in the Figbas so far been hard to accomplish. Theoretically
there should be no correlation between these thesesors, but to verify the proposed accuracy
improving method, we assume there is a correlatamtor between them. Herein three MEMS
gyroscopes with a bias drift of 35 degree per heare combined to test the proposed integrated
gyroscope array method. The bandwidth of gyroscaps 40 Hz and the sampling rate of the
gyroscope was at 200 Hz. Then every two hundregkapoints were averaged to form a new sample
sequence at one point per second. The new sequeascased for the Allan analysis to get the ARW
noise matrixQ,, RRW noiseQ,, system noise covariance mati@ and the measurement noise
covariance matriRy sequentially. And the measurement values andlibeeamatrix could be fed into
the first-level optimal filter

In the second-level integrated Kalman filter, thepoits of magnetometer and accelerometer were
used to feed into the Kalman filter to correct thidts of gyroscope which were the outputs of first
level Kalman filter. The ARW noise matri@, and RRW noise matri®, were also established based
on analysis of Allan variance. And the measurenvahies of magnetometer have been compensated
for the corresponding error such as magnetic devig9].

4.2 Experiment results

Three gyroscopes with same specifications were fsetthe first-level optimal filtering. When the
correlation factor is set about 0.5, the bias drifthree MEMS gyroscopes with lower accuracy of 35
degree per hour was improved to 1.07 degree per wpuhe first-level self compensation in the
gyroscope array (Figure 7).

Figure 7. Improvements of the bias drift through first-lefiliering of gyroscope array.
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The direct comparison with virtual gyroscope methwould be useful to verify the proposed
method in addition to the experiment. However sdicbct comparison is not possible because of the
difficulty to attain the same group of drift datadompare both methods. Therefore the verificaition
the paper was only implemented through such exgetim

Furthermore, the drift was improved to a betterdegf about 0.53 degree per hour (Figure 8) after
the second-level filtering. In the second-level il Kalman filter, the measurement noises of
magnetometer and accelerometer are assumed asnotsés.

Figure 8. Improvement of the bias drift through second-lemt#grated filtering.
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The correlation factor plays an important rolehis tintegrated MEMS gyroscope array method. As
shown in Figure 9, the drift reduction varies wathrrelation factor. Under the conditions presenited
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this paper, the minimum drift was achieved when d¢beelation factor is about 0.73. However, we
also noted that the drift did not reduce after fitering but increased when the correlation fadsor
about minus 0.73, the reason of which may liedhenrhismatch of the correlation factor with thesfilt
Therefore actual implementation of this integralBMS gyroscope array needs the adjustment of
first-level filter according to the real correlatifactor.

5. Conclusions

In this paper an integrated MEMS gyroscope arrayhote to improve the accuracy of MEMS
sensors was presented. Contrasted with conventroattiods for improving the accuracy of MEMS
gyroscopes, which focused on the improvements tanfate circuitry or mechanical sensing scheme,
the method proposed here enhanced the accuracytiemew of algorithm design approach. Through
experiment results, it was proven that the propesethod is very effective at improving the accuracy
of MEMS sensors. The first-level optimal filter very effective for improving the accuracy through
homogeneous sensors data fusion within the iddrs@esors array. The accuracy improvement largely
depends on the correlation between the sensors.tblotain the real correlation factor in the senso
array is a main problem in the implementation @ thethod. The second-level integral optimal filter
can improve the accuracy of the gyroscope furtleough heterogeneous sensors data fusion
techniques.

In the future fabrication of the MEMS gyroscopeagron a single chip and the achievement of on-
line correlation factor and filtering would providereal smart high accuracy angular rate sensor. On
the other hand, the measurement random noisegerheksensors can be set as a part of the estimato
states to get higher accuracy.
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