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27  Abstract

28  The vast complexity of host-associated microbial ecosystems requires generation of
29  host-specific gene catalogs to survey the functions and diversity of these communities.
30 We generated a comprehensive resource, the integrated mouse gut metagenome
31 catalog (iIMGMC), comprising 4.6 million unique genes and 660 high-quality
32 metagenome-assembled genomes (MAGSs) linked to reconstructed full-length 16S
33 rRNA gene sequences. iIMGMC enables unprecedented coverage and taxonomic
34  resolution, i.e. more than 89% of the identified taxa are not represented in any other
35 databases. The tool (github.com/tillrobin/iMGMC) allowed characterizing the diversity

36 and functions of prevalent and previously unknown microbial community members
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37  along the gastrointestinal tract. Moreover, we show that integration of MAGs and 16S
38 rRNA gene data allows a more accurate prediction of functional profiles of communities
39 than based on 16S rRNA amplicons alone. Integrated gene catalogs such as iIMGMC
40 are needed to enhance the resolution of numerous existing and future sequencing-
41  based studies.

42

43 Introduction:

44  The gut microbiota is a dynamic and highly diverse microbial ecosystem that impacts
45 the hosts physiology'. Culture-independent methods such as high-throughput
46  sequencing have revolutionized experimental approaches to characterize and
47 investigate these communities. Gene catalogs facilitate taxonomic and functional
48  annotation of sequencing data, thereby maximizing insights gained from short-reads*
49 5. Moreover, they can provide higher resolution than less specific resources such as
50 GenBank by including valuable metadata such as environment-specific variables.
51  Typically, generation of reference gene catalogs involves sample-specific assembly,
52  prediction of genes and dataset-wide clustering of gene entries to reduce redundancy.
53  However, this approach results in reduced taxonomic resolution of gene entries, first
54  due to clustering of highly related but distinct genes and second due to the lack of high-
55  resolution taxonomic information for gene entries, which can be best obtained from
56  marker genes, such as 16S rRNA genes for which large reference collections exist.
57 Here we present a novel approach and corresponding computational workflow to
58 construct integrated gene catalogs, resulting in a significant improvement of the
59 taxonomic resolution of gene entries and providing valuable additional information
60 such as linking genes to metagenome-assembled genomes (MAGs) and
61 reconstructed full-length 16S rRNA genes. We applied this approach to construct an
62 integrated mouse gut metagenome catalog (IMGMC) combining existing and newly
63 sequenced metagenomic data. We chose this ecosystem as the mouse serves as
64 foremost experimental model system to study microbiota-modulated human diseases,
65 but the use of currently existing human gut gene catalogs is precluded due to the
66  substantial differences in bacterial species and genes present in mice®.

67

68 Results:

69  Construction of the integrated mouse gut metagenome catalog (iMGMC)

70  Pioneering work by others resulted in the construction of several gene catalogs,
71 including a microbiome gene catalog from the mouse gut (hereon referred to as

72 MGCv1 ) comprising 2.6 million non-redundant genes*. We developed a bioinformatic
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73  workflow that combines a global assembly strategy with binning of contigs to putative
74  MAGs and with innovative linking of reconstructed 16S rRNA gene sequences to these
75  MAGs (Figure 1A). This “All-in-One” assembly approach together with the subsequent
76  binning enables maintaining complex information such as distribution of distinct contigs
77  and bins over a large number of samples. We applied this approach to a previously
78  published set of sequencing data included in MGCv1 (n = 190 mouse fecal samples)
79  and increased the biological diversity by incorporating novel metagenomic data for 108
80 additional intestinal samples from a large number of commercial mouse providers and
81  wild mice, including different gastrointestinal locations (see Table S1). This selection
82  was based on the previous notion that the source of experimental mice and anatomic
83  niches contribute to the variability between murine microbiome to a higher extent than
84  other factors such as diet, genotype, housing laboratories or gender”. As a first step in
85  the construction of IMG2C, 1.3 Tbp from 298 metagenomic sequencing libraries were
86  assembled using Megahit’ in an “All-in-One” approach, resulting in 1.2 million contigs
87  oflength greater than 1000bp, with a total assembly size of 4.5 Gbp. Next, genes were
88 identified with MetaGeneMark®, resulting in 4.6 million open reading frames (ORFs) of
89 length greater than 100 bp, compared to 2.6 million ORFs in the MGCv1 (+77%)
90 (Figure 1B). We tested the redundancy of these ORFs by clustering them with CD-Hit
91  (95% identity at 90% coverage)®, which resulted in a reduction of only 2% of ORFs (n
92 = 99,670) (data not shown). We considered this negligible compared to the 89%
93  reduction in MGCv1 *. Subsequently, contigs were binned using MetaBat'”
94  in 1,462 bins greater than 200 kbp (containing 87% of IMGMC entries). Subsequently,
95 we defined 660 bins encoding 40% of all IMGMC entries as MAGs, based on the

96 presence of established sets of bacterial marker genes and a quality threshold >80%

, resulting

97  (Figure 1C) ". Notably, MGCv1 did not provide MAGs, as sample-specific assemblies

98  were used, but rather less specific information referred to as “co-abundance groups”

99 (CAGs), containing at least 700 genes. Comparison of the numbers of CAGs and
100 genesin CAGs between iIMGMC and MGCv1 revealed large increases in our resource
101 (1,217 vs. 541 CAGs, 81% vs. 40% of genes, respectively) (Figure 1B).
102 In addition to reconstructing bins including MAGs, we also assembled 16S rRNA
103  genes, using the following approach that overcomes the limitation that 16S rRNA
104  genes are typically not efficiently recovered in standard assemblies, due to their highly
105  conserved regions': Using RAMBL"?, we reconstructed 1,323 full-length, unique 16S
106 rRNA gene sequences, a number similar to the number of genomes (n=1,068)
107  predicted based on the presence of 139 distinct marker genes in the iIMGMC assembly
108  using Anvi'o (Figure 1E)". We postulated that linking 16S rRNA genes to bins and

109 MAGs after assembly would allow efficient integration of these complementary pieces
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110  of information, thereby improving the taxonomic assignment of MAGs. However, no
111 high-throughput method currently exists for creating such links. Hence, we developed
112  anintegrated score combining mapping- and correlation-based associations to assign
113  a 16S rRNA gene sequence to each bin and MAG (Figure 1F and S1). Briefly, we first
114  identified all contigs containing reconstructed 16S rRNA gene sequences via BlastN
115 . Then, we searched for paired-end reads in which one read mapped to a
116  reconstructed 16S rRNA gene sequence and the other to a contig. Finally, we
117  remapped all libraries to the 1,462 bins and the 1,323 16S rRNA gene sequences to
118 determine their relative abundances across all samples and used this data to estimate
119  correlations between bins and 16S rRNA gene sequences using an abundance co-
120  variance strategy'®. This individual information was finally integrated using a novel
121 approach (see Methods for details) to assign the reconstructed 16S rRNA genes to
122  bins.

123

124  Evaluation of iMGMC generation

125  The different steps underlying the construction of IMGMC were evaluated for their
126  efficiency using those MAGs that had a highly related reference genome. These were
127  specifically identified by mapping synthetic reads generated with BBMap from all 9,748
128  bacterial genomes available in the NCBI Assembly database (Version January 2017)
129  against all bins and also the contigs that we were not able to bin (unbinned contigs) in
130 iIMGMC (see Methods for details). After read mapping, we evaluated the distribution of
131  these genomes in our assembly and identified 57 genomes, which were recovered at
132 least by 50% within binned and unbinned contigs. For these genomes, we recovered
133 onaverage 79 + 11% (mean % s.d.) in our assembly, from which 78 + 19% were found
134  in the respective best/largest bin, while only 13 + 17% were found in unbinned contigs
135  (Figure 1G and S2). Thus, we considered our “All-in-one” assembly as good as other
136  assembly strategies employed for large-scale MAG reconstruction'. The number of
137  MAGs (n=660) would even be higher when using a quality threshold from an already
138  published study (n=818, quality(CheckM): Completeness — 5x contamination >50%)"".
139  We also evaluated the utility of the “All-in-one” assembly approach for another large
140 dataset by processing metagenomic sequencing data from the pig microbiome. From
141 287 fecal samples (1,758 Gb) used to construct a previous reference gene catalog®,
142  we obtained 12.2 Mio ORFs and 1,050 MAGs, representing a 58%- and 45 %-
143  increase, respectively, compared with the original work (data not shown).

144  The MAG/16S rRNA gene pairs were evaluated using MAGs with linked 16S rRNA
145 gene sequences for which reference genomes exist. Specifically, we identified

146  genomes found in our assembly and the respective bins, followed by comparison of
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147  the known 16S rRNA gene sequences to the correspondingly predicted 16S rRNA
148  gene sequences (Figure S3) (see Methods for detail). From the 47 identified genomes
149  and respective bins, 28 agreed perfectly (100% sequence identity) between known
150 and linked 16S rRNA gene, with an additional 7 matching taxonomic assignment down
151 to the genus level. The remaining 12 genomes and bins disagreed at varying
152  taxonomic levels (Figure 1H and S3). Statistical assessment of these results supported
153  that our approach i) did not require 16S rRNA gene sequences within a MAG to
154  successfully perform a matching linking and ii) performed better than a random
155  assignment (P=0.074, Pearson's Chi-squared test with Yates' continuity correction).
156  Hence, the proposed novel scoring scheme is with high confidence able to link MAGs
157 and bins to corresponding reconstructed 16S rRNA genes, improving taxonomic
158  resolution, though not in an error-free manner.

159

160 Thus, we created a novel type of resource which i) includes a gene catalogs that
161  outperform previous versions and ii) includes novel information, i.e. MAGs, and 16S
162  rRNA gene sequences, which are linked with each other.

163

164 iIMGMC reveals high prevalence of novel taxa in the mouse gut microbiota

165 Both metagenomic and cultivation-based studies showed that the gut microbiome of
166  mice compared to human is composed of distinct bacterial species, of which many are
167  yet uncultured and lack genomic information*®. Analysis of our 660 reconstructed
168 MAGs corroborates this notion, revealing that only 72 of them have closely related
169  NCBI assemblies including other MAGs available (ANI > 95%) (Data in Table S1)'. A
170  similar observation (only 137 known of 1,050 MAGs in total) was made for MAGs
171 derived from the pig microbiome.

172  To construct a comprehensive phylogenetic tree of the mouse gut microbiota, we
173  assigned MAGs (n=660) and closely related, previously sequenced genomes (n=64)

174  into clusters (Figure 2). In line with previous reports®'®

, our data analysis corroborates
175  that the murine gut microbiome is overall dominated by the two main phyla Firmicutes
176  (77% of MAGs / 73% of 16S rRNA gene sequences) and Bacteroidetes (14% /
177  18%)(Figure 2 and S4). Notably, Bacteroidetes included the second largest MAG
178  cluster, namely the Bacteroidales S24-7 group (64% / 49%), recognized as being very
179  abundant in the mouse gut, but for which only three reference genomes are available
180  ®(new Microbiome paper). Strikingly, >13 % of MAGs were from phylogenetic groups
181 (up to level of family) that completely lacked reference genomes in public databases
182 (NCBI genomes RefSeq, not other MAGs), such as MAGs assigned to the

183  Clostridiales-vadinBB660 group (n= 70) and Mollicutes RF9 (n=14) (Figure 2).


https://doi.org/10.1101/528737

bioRxiv preprint doi: https://doi.org/10.1101/528737; this version posted January 23, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

184  Unsupervised clustering of MAG according to their functional potential (Figure S5)
185 demonstrated that distinct taxonomic clusters such as Clostridiales-vadinBB660 group
186  or the Bacteroidales S24-7 group represent functionally distinct microbes within the
187  mouse microbiome (Figure S7) (new Microbiome paper).

188 Many additional undescribed bacteria were also identified after comparing the
189 reconstructed 16S rRNA gene sequences to members of “16S ribosomal RNA
190 (Bacteria and Archaea)” at the NCBI-database, with only 164 of 1,323 (12%) having at
191 least a 97% identical match. A large fraction of these sequences were neither found in
192  the SILVA SSU Ref v. 128 database (99% ident: 72% new, 97% ident: 45% new) nor
193 in a recent 16S rRNA database established by target-specific environment
194  sequencing® (99% ident: 98% new, 97% ident: 93% new). Notably, while the MAGs
195 represent a large fraction of the phylogenetic tree of the bacteria present in the mouse
196  gut, several taxonomic groups were represented by 16S rRNA gene sequences, but
197  underrepresented by MAGs, such as the family of Prevotellaceae (49 16S rRNA gene
198 sequences/3 MAGSs), the class of Bacilli (81/10) as well as the phyla of Proteobacteria
199  (67/24) and Actinobacteria (78/22) (Figure S4). Thus, our analysis identified taxonomic
200 groups that are interesting novel targets for cultivation-dependent and -independent
201  studies to extend our understanding of microbiome-modulated phenotypes in mouse
202  models.

203

204 Improved functional prediction via MAG/16S rRNA gene links in iIMGMC

205 The establishment of databases of microbial reference genomes has spurred the
206  development of computational approaches to simulate the functional profiles of
207 metagenomes based on marker gene datasets such as 16S rRNA amplicon
208  profiles?"?2. However, the power of these approaches depends on the availability of
209 sequenced microbial genomes from the respective environments to perform
210  satisfactorily. Because of the existence of numerous bacterial species within murine
211 gut communities that lack reference genomes, we hypothesized that the default
212  PICRUSt-based predictions of mouse-associated metagenome functions are limited?'.
213  Thus, we constructed a mouse-optimized PICRUST version, employing the original
214  PICRUSLt algorithm in conjunction with the iIMGMC data. Specifically, we used the
215  MAGs with unique linked 16S rRNA sequences (n=484), as well as the 1,322 16S
216  rRNA sequences from the IMGMC to create an extended genome resource for
217  PICRUSt (PICRUSt-IMGMC) (Figure 3A, see methods for details). Comparison of
218  Kegg Ortholog (KO) functional profiles predicted by the default and extended PICRUSt
219  approach using 16S rRNA amplicon data from different gastrointestinal sites (n=50)

220 for the corresponding shotgun metagenomic libraries (WGS) demonstrated a higher
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221  correlation to the WGS-based KO profiles for PICRUSt-IMGMC than PICRUSt-default
222  predicted profiles (Pearson: 0.84 vs 0.68, +23%, Spearman: 0.84 vs 0.70, 21%)
223  (Figure 3B and C). The highest correlations were observed for samples from the colon
224  (Pearson: 0.86 vs. 0.67, Spearman: 0.87 vs. 0.72) (Figure S6). Similar improvements
225  were obtained with distinct datasets not used for the construction of the catalog (Figure
226  S7). The improved correlation of PICRUST-IMGMC largely derived from increased
227  sensitivity, i.e. “true positive rates”, rather than decreased “false positive rates”,
228 enabling the prediction of functionalities otherwise lost (Figure 3D and E). Even when
229  mapping WGS data to the KEGG database with DIAMOND? instead of to the iIMGMC
230 for generation of the KO reference profile, PICRUSt-IMGMC performed better than
231 PICRUSt-default in predicting functional profiles (Figure S6 and S7).—Finally, we
232  evaluated whether combining the information of IMGMC with the genomes available in
233 the KEGG database improved prediction. Strikingly, PICRUSt-iIMGMC/KEGG did not
234  perform better and the correlation with WGS data even decreased, suggesting that
235 inclusion of related but divergent genomes reduces prediction accuracy (Figure S6 and
236  S7). Hence, our resource enabled the development of ecosystem-specific PICRUSt
237 models, i.e. optimized for the murine intestinal microbiome, with substantial
238 improvement in the prediction of metagenomic functional profiles.

239

240  Multi-scale taxonomic assignment of gene entries based on metagenomic
241  reconstruction enhances taxonomic resolution in iMGMC

242  Gene catalogs have foremost been employed to generate functional profiles from short
243  read metagenome surveys of communities. To assess the performance of iIMGMC in
244  this respect, we performed read-mapping of sequencing data from three external
245  studies, which were not included in the construction of neither iMGMC nor MGCv1, to
246  both catalogs®2°. This revealed an increased number of reads (up to 36%) mapping
247  to the IMGMC, supporting the utility of this new catalog (Figure S8).

248 The taxonomic assignment of entries in classical gene catalogs, specifically after
249  sample-specific assembly and clustering of ORFs by similarity, i.e. 95% identity at 90%
250  coverage in the MGCv1*, is limited by the ability of algorithms to predict the taxonomic
251  placement based on relatively short ORFs, which has a limited robustness?’. Taking
252  advantage of the clustering free approach, we annotated each iIMGMC entry using the
253  taxonomic information obtained from the respective gene and contig as well as from
254  the bin % and the connected MAG/16S rRNA gene sequences, whenever available
255  (Figure 1D). As a result of using longer contigs rather than short ORFs sequences, the
256 relative taxonomic assignment rate improved between 28 and 1,021% at different

257  taxonomic levels (Figure 1D). Notably, many entries were still not assigned to high
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258 taxonomic ranks with high confidence, since these approaches are reference-based,
259  and are hampered by the presence of novel and unclassified taxa. Using the MAGs of
260 the iIMGMC resource, we could assign up to 40% of mapped reads of three external
261  datasets to MAGs (Figure S8), facilitating the identification of specific bacterial taxa,
262  allowing improved functional analysis by providing information of the genomic context
263  of genes, or of bacterial interaction networks identified by covarying abundances
264 across samples. For instance, the analysis of previously generated shotgun
265 metagenomic data from mice subjected to different experimental diets allowed the
266 retrospective identification of MAG networks rather than gene clusters that show
267 conserved changes in their relative abundance induced by these diets (Figure S9).
268 Hence, future users will be able to utilize in parallel taxonomic information for each
269 gene catalog entry, ranging from well-established methods with lower resolution to
270  innovative methods with enhanced resolution.

271

272  Provider-specific diversification of the mouse microbiota

273  Recent studies have demonstrated that the composition of murine microbiomes varies
274  between different providers, mostly via 16S rRNA amplicon sequence analysis %°.
275 However, to which degree laboratory mice share a conserved set of microbes is not
276  known. The presence of a core set of bacteria, based on the detection of 26 CAGs in
277  >95% of mice, was proposed previously . We analyzed the relative abundance of each
278 individual MAG in all samples by remapping all reads from each library to the MAGs,
279  followed by conversion of mapped read counts into relative abundances (see methods
280 for details). Strikingly, this analysis revealed that each mouse line featured a unique
281  combination of MAGs; even mice from different barriers of the same commercial
282  vendor differed (Figure 2). This resulted in substantial differences in the functional
283  potential of the microbiome within each mouse line (Figure S5D, Table S3). Hence, we
284  next quantitatively assessed the distribution of MAGs by determining their prevalence
285 and relative abundance within each provider. Around 10% of MAGs (70/660) were
286 shared by at least half of the providers (> 0.1% relative abundance in at least one
287 individual sample per provider) (Figure 4A). The most prevalent MAG, matching to
288 Lactobacillus murinus ASF361 (ANl =97%), was detected in almost all providers
289  (20/21). Notably, three additional members of the Altered Schaedler Flora (ASF)
290 community, which has been studied as mouse gut model community in the past, as
291  well as only four other previously sequenced bacteria were found in at least 50% of
292  providers, while the remaining 62 (=88%) represent uncultured bacteria. We next
293 analyzed the MAGs shared by at least two thirds of the providers (n=21 MAGs) from

294  which most belonged taxonomically to the Firmicutes (n=18), two belonged to the
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295  Bacteroidales S24-7 group (phylum Bacteroidetes, proposed family Muribaculaceae)
296 and one was identical to Mucispirillum schaedleri (phylum Deferribacteres) (Figure
297  4B). Strikingly, the relative abundance of these MAGs revealed large differences
298 between providers (up to 100-fold) suggesting that their respective abundance within
299  each community is strongly influenced by environmental factors. Taking advantage of
300 the link between MAG and 16S rRNA gene sequences, we assessed the global
301 prevalence and relative abundance of the corresponding 16S rRNA gene sequences
302 across all 16S rRNA amplicon datasets deposited in the SRA using the recently
303 established IMNGS database (Figure 4C)®*. This search revealed that the most
304  prevalent MAG in our study, Lactobacillus murinus, is present in 36% of all samples
305  derived from the mouse gut (n=9,496), while being largely absent from the human gut
306  and only detectable in 1.4% of rat gut microbiota samples (1.4% positive) (Table S4).
307 To assess whether the newly reconstructed 16S rRNA gene sequences represented
308 taxa commonly found in mice, we employed IMNGS and queried all 1,323 16S rRNA
309 gene sequences to assess their relative abundance in SRA samples derived from
310 diverse ecosystems (Figure 4D and E). A prevalence of 1% (threshold relative
311 abundance: 0.1%) within at least one of the ecosystems was determined for 739 rRNA
312  gene sequences from which 569 were enriched in the mouse gut, mouse skin, rat gut
313  or human gut. Of these 44% were most prevalent in the mouse gut, with an additional
314 6% being shared with the mouse skin. Other sequences were shared with the rat
315  microbiome (12%) and the human gut microbiome (7%) (Figure 4E). In summary, our
316  large-scale analysis revealed the presence of specific bacteria commonly found in
317  mouse lines but no other gut microbiomes, yet, also a high species-level variability
318  within the murine gut microbiome, which impacts the functional repertoire of the
319  microbiome and potentially thereby the outcome of in vivo experiments.

320

321  Discussion:

322  Short read-based sequencing studies of microbial ecosystems require suitable
323 reference databases for maximal resolution of taxonomic and functional assignments.
324  Gene catalogs and 16S rRNA gene databases commonly represent separate
325 references for shotgun metagenome and 16S rRNA amplicon sequencing analyses,
326 respectively. To overcome the separation between these types of databases, a novel
327 framework that can serve as i) a valuable resource for the most utilized experimental
328 model for microbiome research, the mouse gut microbiota, and ii) a blue print to
329 generate integrated gene catalogs for less characterized microbial ecosystems was
330 developed.

331  For the establishment of the integrated gene catalog, methods identified to yield
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332  optimal results by the CAMI challenge?’, e.g. for assembly of MAGs or binning when
333 dealing with large datasets, were utilized and complemented with a novel approach
334 linking MAGs and 16S rRNA sequences. The “All-in-One” assembly resulted for the
335  mouse gut microbiome in the reconstruction of a large number of high-quality MAGs,
336 including low abundant community members, representing bacteria that were neither
337  cultured or identified in other high-throughput sequencing studies'’. Strikingly, for both
338 the mouse and pig gut microbiome, more than 87% of MAGs fell into this category.
339  The Clostridiales-vadinBB660 or Mollicutes RF9 groups, which were so far only known
340 from 16S rRNA gene sequencing, are examples of functionally distinct and
341  underexplored bacteria frequently occurring in mouse gut microbiomes. Preliminary
342  analysis of assemblies of large datasets from the human gut microbiome suggest that
343 the developed approach also identifies hundreds of novel MAGs (approximately 30%
344  of assembled MAGs), demonstrating the power of this approach even for better
345  characterized ecosystems.

346  Another utility of the integrated gene catalog is the availability of linked MAG-16S rRNA
347  gene pairs, which enables the incorporation of data from large 16S rRNA gene
348  databases such as the IMNGS database encompassing 168,573 short-read datasets
349  (build 1711) thereby allowing large-scale screening for identified MAGs, such as the
350  evaluation of a core microbiome in the mouse gut. The MAG-16S rRNA gene pairs
351 also enabled the development of an ecosystem-optimized version of PICRUSt, which
352  produced gene profiles more closely resembling WGS data. We anticipate this to be
353 widely adapted to predict metagenome profiles based on 16S rRNA amplicon
354  sequencing data and suggest that ecosystem-optimized versions of PICRUSt will be
355  valuable resources.

356  Altogether, the clustering-free construction of gene catalogs together with the
357  reconstruction of a large number of almost complete MAGs through an improved
358 assembly strategy as well as linking to 16S rRNA gene sequences provide a highly-
359 integrated resource for sequencing-based work and will enable future studies to
360 explore the taxonomy, functionality and community structure of the mouse gut and
361  other ecosystems in more depth.

362
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372  Figure 1: Generation and evaluation of the integrated mouse gut metagenome
373 catalog (iMGMC)

374  (A) Flowchart displaying the steps and bioinformatics tools (names in brackets) utilized
375 for the generation of the IMGMC. This resource includes genes, metagenome
376  assembled genomes (MAGs), 16S rRNA gene sequences and MAG-16S rRNA gene
377  links.

378 (B) Comparison of relative and total numbers of gene entries and their association to
379  bins of different completeness between a previous mouse gut gene catalog (MGCv1)*
380 and iIMGMC. Bins were defined as: i) co-abundance genomes (CAG) if they were larger
381  than >=200kbp lengths and contained 2700 ORFs or: ii) MAGs if their quality (marker
382  gene completeness — contamination) as determined by CheckM was = 80%.

383  (C) Quality determination of individual binned contigs by CheckM by analyzing marker
384  gene completeness and contamination. Box plots display marker gene completeness
385 and contamination of 660 MAGs and 802 CAGs, respectively.

386 (D) Absolute numbers of gene entries colored according to the lowest possible
387  taxonomic annotation of the ORF, contig or bin. Different taxonomic profilers were
388  employed for classification: ORF: DIAMOND-BIlastP; contigs: CAT (Contig annotation
389  tool); bins: GTDBTk

390 (E) Number of genomes in dataset estimated using a marker gene set containing 139
391  genes. Each dot represents the copy number of the respective marker gene.

392 (F) Overview of the methodology to link MAGs to 16S rRNA gene sequences by
393 combining mapping-based and statistical approaches. Resulting linked pairs of MAGs
394  and reconstructed 16S rRNA gene sequences were used together with KEGG
395  annotations for construction of mouse gut specific PICRUSt predictions.

396 (G) Evaluation of binning by calculating the fraction of recovered RefSeq genomes
397  (threshold = 50 % of genome present in contigs, n=57) in bins.

398  (H) Evaluation of MAG / 16S rRNA gene linking by determining the taxonomic match
399 between predicted and reference 16S rRNA gene sequence for those recovered
400 RefSeq genomes with a MAG / 16S rRNA gene pair (n=47).

401  See Figures S1, S2 and S3 for more details.
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402 Figure 2: Phylogenetic tree of the 660 MAGs included in the iIMGMC

403 MAGs are shown as triangles and 64 closely related, previously sequenced bacteria
404  used for comparison as stars (genomes from NCBI refSeq with mapping rate >50%
405 coverage). The color of triangles indicates their taxonomic association to different
406 phyla and the size of triangles indicates the mean relative abundance in all IMGMC
407  samples. The tree includes manually curated taxonomic assignments for most MAGs
408 and the names of the taxonomic clusters are displayed in full or abbreviated in the tree.
409 The inner rings show the relative abundance of the 660 MAGs in the 21 investigated
410 mouse providers (threshold: 0.1%). The last three rings visualize the relative
411  abundance of 469 of 660 MAGs at different anatomical sites (threshold: 0.1%, SI: small
412  intestine). The outer bar plots show their respective maximal relative abundance.

413
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414  Figure 3:

415 Mouse gut microbiota optimized PICRUSt-iMGMC model

416  (A) The different PICRUSt workflows used in this study: (I) Default workflow for end-
417  user starting from close reference picked OTUs against the GreenGenes database
418  relying on functional metagenome prediction using precalculated genome predictions
419  files (Il) Novel PICRUSt workflow starting from denovo picked OTUs and using MAGs
420 with 16S rRNA gene links to create ecosystem-specific functional metagenome
421 predictions.

422  (B-E) For comparison of PICRUSt-KEGG-Ortholog (KO) profiles generated using
423  PICRUST-default and PICRUSt-iIMGMC from 16S rRNA gene amplicon sequencing to
424  real KO profiles determined by shotgun metagenome sequencing (WGS) samples
425  from different anatomical locations (n=50) were analyzed.

426 (B) Correlation between KO profiles of metagenomes determined by WGS and
427  PICRUST-default (red) or by WGS and PICRUSt-IMGMC (green) using Pearson and
428  Spearman correlation coefficients. ****: p<0.0001 (two-tailed t-test).

429  (C) Comparison of KO profiles generated using PICRUST-default (red), PICRUSt-
430 iIMGMC (green) and WGS (blue) from different anatomical locations. Non-metric
431  multidimensional scaling (NMDS) was performed to visualize similarities.

432 (D) False positive rates and true positive rates were obtained by comparing the
433 PICRUSt-default (red) and PICRUSt-IMGMC (green) KEGG Module predictions
434  against WGS results. The true positive rate reflects the fraction of KEGG Modules
435 commonly predicted by both WGS and PICRUSt default/PICRUSt-IMGMC and the
436 false positive rate reflects the fraction of KEGG Modules that are predicted by PICRUSt
437  default/PICRUSt-IMGMC, but were completely absent in WGS data.

438 (E) KEGG module predictions that differ between PICRUSt-default and PICRUSt-
439 iIMGMC predictions. KEGG Module prediction by PICRUSt-default and PICRUSt-
440 iIMGMC was compared against WGS for all samples and significant differences in
441 completeness were identified using a Wilcoxon test (FDR-corrected). The heatmap
442  displays select KEGG Modules with highly similar completeness between PICRUSt-
443 iMGMC and WGS, but divergent completeness between PICRUSt-default and WGS
444  (see methods for details).

445

446
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448 Figure 4:

449 Identification of MAGs shared between laboratory mice

450 (A) Prevalence of MAGs (n=660) in samples from 21 mouse providers. MAGs were
451 considered present in a provider if its relative abundance reached at least 0.1% in one
452  sample of the provider. Numberson the left indicate the fraction (%) and taxonomic
453  grouping (F: Firmicutes, B: Bacteroides, O: Other phyla) of MAGs with an indicated
454  prevalence (Prev). In the right panel MAGs were ranked by prevalence and dashed
455 lines indicate number of MAGs present in >66%, >50% and >20% of providers,
456  respectively..

457 (B) Comparison of maximal abundance between providers for each MAG (n=22)
458 present in at least 2/3 of providers. For each MAG, the bin number, the highest
459 taxonomic assignment based on the manually curated phylogenetic tree and the
460 provider with the highest abundance is listed. Stars indicate MAGs with matches in
461 NCBI RefSeq.

462 (C) Comparison of the relative abundance of 16S rRNA gene sequences linked to
463 MAGs in the IMNGS database. For each 16S rRNA gene, the closest named relative
464  16S rRNA gene sequence was determined and blasted to the NCBI-16S rRNA gene
465  database. Color of dots and names indicate their taxonomic association to different
466 phyla (F: Firmicutes, B: Bacteroidetes, O: other phyla)

467 (D and E) IMNGS was used to determine the prevalence for IMGMC 16S rRNA gene
468 sequences (n=1,323) in distinct hosts and ecosystems. Of these 1,113 reached at least
469 a prevalence threshold of 1% prevalence within one of the evaluated environment
470 (0.1% sample-depth cutoff of presence). Resulting sequences (n=1,113) were filtered
471  further to have at least >1% relative mean abundance in at least one environment.
472 (D) Heatmap displaying the mean relative abundance within an ecosystem (row
473 normalized) of those 16S rRNA gene sequences which have at least >1% relative
474  mean abundance in at least one environment (n=739).

475 (E) Venn diagram visualizing the distribution of 16S rRNA gene sequences
476  subsampled to be enriched (>50% relative abundance normalized over the
477  ecosystems in Figure 4D) in mouse gut, mouse skin, rat gut and human gut
478  microbiome (n = 569). Numbers indicate fraction of 16S rRNA gene sequences
479  enriched or shared between indicated ecosystems.

480
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