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Abstract

Cancer is a significant public health problem worldwide. Complete identification of genes

related to one type of cancer facilitates earlier diagnosis and effective treatments. In this

study, two widely used algorithms, the random walk with restart algorithm and the shortest

path algorithm, were adopted to construct two parameterized computational methods,

namely, an RWR-based method and an SP-based method; based on these methods, an

integrated method was constructed for identifying novel disease genes. To validate the util-

ity of the integrated method, data for oral cancer were used, on which the RWR-based and

SP-based methods were trained, thereby building two optimal methods. The integrated

method combining these optimal methods was further adopted to identify the novel genes of

oral cancer. As a result, 85 novel genes were inferred, among which eleven genes (e.g.,

MYD88, FGFR2, NF-κBIA) were identified by both the RWR-based and SP-based methods,

70 genes (e.g., BMP4, IFNG, KITLG) were discovered only by the RWR-based method and

four genes (L1R1, MCM6, NOG and CXCR3) were predicted only by the SP-based method.

Extensive analyses indicate that several novel genes have strong associations with can-

cers, indicating the effectiveness of the integrated method for identifying disease genes.

Introduction

Cancer is a significant public health problem worldwide. Oral cancer (OC) is a subgroup of

head and neck cancer; it develops on the lips, tongue, salivary glands, gingiva, oropharynx, and

on buccal surfaces [1]. Oral squamous cell carcinoma (OSCC) accounts for more than 90% of

all OC [2]. OC is estimated by the WHO (World Health Organization) to be the eleventh most

common cancer in the world, accounting for 300,000 new cases and 145,000 deaths in 2012

[3, 4]. The incidence of OC exhibits significant local variation and continues to be high in
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India, East Asia, Eastern Europe, and parts of South America [5]. Tobacco and alcohol are the

most important risk factors for OC [6]. Poor nutrition, genetic factors and viral infection may

be potential risk factors for OC [7, 8].

Carcinogenesis is a multi-step process, and a variety of alterations accumulate, driving and

gradually increasing tumorigenesis [9]. During the past decade, a large variety of genomic vari-

ations has been implicated in OC. EGFR (epidermal growth factor receptor) amplification and

over-expression were found in a large proportion of oral tumors [10–12]. ErbB2 amplification

and overexpression appear to occur frequently in OC specimens, and high levels of ErbB2 may

be related to a worse prognosis of patients [12]. A strong correlation has been detected

between c-erbB-2 overexpression and overall survival of patients with oral squamous cell carci-

noma [13, 14]. The cyclin family plays a critical role in cell cycle progression. Aberrant up-

expression of cyclin D accounts for 36–66% of OC. Amplification and an SNP of cyclin D may

be associated with a worse prognosis and susceptibility to OC, respectively [15, 16]. Several

lines of evidence suggest that the p53 tumor suppression network is altered in OC [17, 18]. In

addition, many other target genes have been reported, such as ras, VEGF (vascular endothelial

growth factor), and the MMP (matrix metalloproteinases) family [19–21]. To the best of our

knowledge, the mechanism that underlies OC is still unclear. A search for new genes related to

OCmay facilitate earlier diagnosis and effective treatment.

In general, many standard methods have been used for detection of virulence genes. In the

hospital and laboratory, cancer samples are sliced into pathological sections and stained to

determine the disease pathology type. Quantitative reverse transcription-PCR is typically used

to detect the mRNA level of genes in cancer. IHC (immunohistochemical) and western blot-

ting measure the expression of related proteins in tissues and cells, respectively. However, it is

difficult to analyze genes synthetically and comprehensively. In addition, some large-scale

experiments have been exploited to screen virulence genes, such as microarray, GWAS

(genome-wide association study) and NGS (next-generation sequencing). The most common

techniques are time-consuming and costly, and thus newmethods must be explored to identify

tumor genes. In recent years, with the development of computer techniques [22–28], some of

them can be applied to tackle this problem. Up to now, several computational methods have

been proposed to identify disease genes. Many of them are based on guilt-by-association [29],

i.e., the assumption that genes are similar to their neighbors in a gene network. Thus, the

neighbors of the disease genes are more likely to be disease genes. However, these types of

methods are local methods that use only part of the network. Thus, they do not always yield

good performance. Many other methods employ the RandomWalk with Restart (RWR) algo-

rithm to identify disease genes [30–32]. This algorithm simulates a walker starting from a seed

node or a set of seed nodes that represent disease genes and random walking on the network.

The probability of a node being a disease gene is updated until the probabilities of all nodes

become stable. The genes corresponding to nodes with high probabilities are selected as novel

candidate disease genes. Recently, computational methods have adopted the shortest path (SP)

algorithm to address the problem [33–39]. This algorithm assumes that genes lying in the

shortest paths connecting any two disease genes may also be disease genes. Clearly, methods

based on RWR or SP algorithms take full advantage of the network compared with those based

on guilt-by-association. Thus, they can yield clues for the discovery of novel disease genes.

In this study, we used the RWR and SP algorithms to construct two novel computational

methods, the RWR-based method and the SP-based method, respectively, for the identification

of novel disease genes. Additionally, an integrated method was constructed by combining

these two methods. To indicate the effectiveness of the integrated method, disease genes of OC

were employed. It has been reported in some studies that using only the RWR algorithm and

SP algorithm consistently produces several false discoveries [33, 40], which may be caused by
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the structure of the network or lack of consideration of the essential properties of genes. Thus,

further rules, produced by the permutation test, associations between candidates and the vali-

dation of genes according to their properties, were integrated into the RWR-based and SP-

based methods. These methods were executed using the corresponding large network that was

built using protein-protein interaction (PPI) information and that was trained on validated

OC genes to determine the optimal parameters. The obtained optimal methods were used to

infer novel genes related to OC, and the integrated method combined the predicted genes

using these two optimal methods to yield 85 novel genes. Among them, eleven genes were

obtained by both methods, 70 genes were obtained only by the RWR-based method and four

genes were obtained only by the SP-based method. According to the analyses, several genes

show stimulative or suppressive effects on cancers by experiments or have a certain relation-

ship with cancers reported in published papers, indicating the utility of the integrated method.

It is also clear that the integrated method can provide more comprehensive analysis of various

diseases because it is capable of producing more possible disease genes than the RWR-based

method or the SP-based method.

Materials andmethods

Genes related to oral cancer

The OC-related genes were collected from the following three sources: (1) 44 genes were

retrieved from UniProt (http://www.uniprot.org/, accessed in July, 2015) [41] after ‘human

oral cancer reviewed’ was input as a keyword; (2) seven genes were chosen from the catalogue

of oral cancer from the TSGene (https://bioinfo.uth.edu/TSGene/, accessed in July, 2015) data-

base; and (3) 156 genes were retrieved from the NCI (National Cancer Institute, https://gforge.

nci.nih.gov, accessed in July, 2015) database using ‘Homo sapiens’ as a keyword. After combin-

ing the OC-related genes mentioned above, 202 OC-related genes were finally obtained; these

genes are provided in S1 Table. Because our methods are based on the network constructed

from the PPI information retrieved from Search Tool for the Retrieval of Interacting Genes/

Proteins (STRING) [42], these 202 OC-related genes were mapped into their Ensembl IDs,

and those not occurring in the network were discarded. One hundred eighty-four Ensembl

IDs of OC-related genes were accessed and composed the set Soc.

Protein-protein interactions

PPIs play important roles in several intracellular and intercellular biochemical processes. The

known PPI information has been widely used to investigate several protein-related problems,

such as protein function prediction [43, 44] and disease gene identification [33, 34, 36, 39].

Based on the results reported in these previous studies, it can be concluded that two proteins

that can interact with each other always have a functional relationship. In this study, we

attempted to discover novel candidate OC-related genes using validated OC-related genes.

Thus, we can utilize PPIs to search for proteins that have a functional relationship with pro-

teins encoded by validated OC-related genes, thereby mining novel OC-related genes.

The PPI information was retrieved from STRING (http://string-db.org/, version 9.1) [42], a

well-known online public database that contains known and predicted protein interactions.

The interactions reported in STRING are derived from the following four types of sources: (I)

Genomic Context; (II) High-throughput Experiments; (III) (Conserved) Coexpression; (IV)

Previous Knowledge, which include direct (physical) and indirect (functional) associations

between proteins and thus offer more chances to mine hidden protein information. From the

database, a file called ‘protein.links.v9.1.txt.gz‘ was retrieved, which contained 2,425,314

human PPIs. Each PPI was represented by two Ensembl IDs and a score ranging between 150
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and 999, which indicates the strength of the interaction; i.e., proteins in interactions with

higher scores are regarded as more likely to interact with each other. Let us denote the score of

a PPI between proteins p1 and p2 by S(p1, p2).

RWR-based method

RWR is a ranking algorithm [30]. In a network, this algorithm simulates a walker starting

from a seed node or a set of seed nodes and random walking on the network. In each step, the

probability of the walker walking to each node is updated, and it stabilizes after several steps.

Nodes in the network are ranked by the final probabilities assigned to them. Based on the vali-

dated disease genes (used as seed nodes), the RWR algorithm can be used to discover novel

disease genes by investigating novel genes with high ranks. This algorithm has therefore been

used to mine novel disease genes in recent years [30–32]. However, the RWR algorithm consis-

tently provides false discoveries [40], supporting the need for additional screening rules. In

this study, we used the RWR algorithm as the basic algorithm and added some rules to build

the present RWR-based learning method for the identification of novel OC-related genes. Fur-

thermore, to obtain a better RWR-based method, some parameters were employed that are

determined by training the method.

Network construction for RWR algorithm. An accurate network is important for the

identification of novel OC-related genes. Here, we adopted the PPI information mentioned in

the Section “Protein-protein interactions” to build the network. The constructed network

defined the 20,770 proteins occurring in the 2,425,314 human PPIs as nodes, and two nodes

were adjacent if and only if the corresponding proteins could interact with each other. It can

be observed that each edge represented a PPI. To employ the interaction score in the network,

each edge was assigned a weight that was defined as the score of the corresponding PPI. For

convenience, let us denote the constructed network by NRWR.

Searching for new candidate genes using the RWR algorithm. As mentioned in the Sec-

tion “Genes related to oral cancer”, a set Soc, consisting of 184 Ensembl IDs of OC-related

genes was used in this study. The RWR algorithm simulated a random walker starting from

Soc. Before executing the RWR algorithm on NRWR, each node in NRWR was assigned a proba-

bility, with 1/184 set for the Ensembl IDs in Soc and 0 set for the remaining nodes. The initial

probability of each node constituted the probability vector P0. The RWR algorithm updated

the probability vector in each step. Let Pt denote the probability vector after performing the t-

th step, which can be updated by

Ptþ1
¼ ð1� rÞATPt þ rP

0
ð1Þ

where r is set to 0.8 and A is the column-wise normalized adjacency matrix of NRWR. The

update procedure was repeated until the change between Pt and Pt+1, measured by L1 norm,

was less than 1e-6. Ensembl IDs with high probabilities were considered to be encoded by OC-

related genes. Because we did not know which probability was a suitable threshold for selecting

candidate genes, we established a parameter, p
p
RWR , for the threshold, which can be determined

by training the RWR-based method.

SP-based method

The SP algorithm is a classic graph algorithm. In recent years, some investigators have applied

the SP algorithm for the identification of disease genes [33–39]. The new candidate genes were

extracted from the shortest paths connecting any two validated disease genes. Here, we built

an SP-based machine learning method to identify novel OC-related genes. Like the RWR-
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based method, further screening rules were established to discard non-essential candidate

genes and select important ones.

Network construction for SP algorithm. Similar to NRWR for the RWR-based method,

we also constructed the network NSP. As mentioned in the Section “Network construction for

RWR-based method”, each edge in NRWR represented a PPI. In addition, each PPI had an

interaction score as described in the Section “Protein-protein interactions”. This score was

used to define the weight of the edge. The range of the interaction score was between 150 and

999, and an edge with a low weight indicated strong correlations between its endpoints in the

SP-based model. Thus, for an edge e with endpoints n1 and n2, weight was defined in the fol-

lowing manner:

wðeÞ ¼ 1000� Sðp
1
; p

2
Þ ð2Þ

where p1 and p2 were two corresponding proteins of nodes n1 and n2. The constructed network

NSP consisted of 20,770 nodes and 2,425,314 edges.

Searching for new candidate genes using the SP algorithm. The SP algorithm, Dijkstra’s

algorithm [45], was applied to the network NSP to search for all of the shortest paths connect-

ing any two Ensembl IDs in Soc. From the obtained shortest paths, we extracted the inner

nodes that did not represent validated OC-related genes. Genes corresponding to the extracted

nodes were considered to be related to OC and denoted candidate genes. In addition, each

candidate gene was assigned a measurement, called betweenness, which was defined as the

number of shortest paths within which it was contained.

Screening rules

The RWR and SP algorithms can produce a number of candidate genes for OC when the prob-

ability threshold is provided for the RWR algorithm. However, several false discoveries are

inevitable, as mentioned in previous studies [33, 40]. To screen out these false discoveries, a

series of screening rules were added to this section and integrated into the RWR-based and

SP-based methods. Some parameters were employed to build the rules. Their optimal values in

RWR-based and SP-based methods are determined by training these two methods,

respectively.

The probability that a candidate gene produced by the RWR algorithm was influenced by

the structure of the network NRWR and the betweenness for a candidate gene produced by the

SP algorithm was also clearly influenced by the structure of the NSP network. Some candidate

genes receiving high probabilities (betweenness) were not specific to OC. Thus, a permutation

test was designed that first randomly constructed 1,000 sets of Ensembl IDs such that each set

had the same size of Soc, denoted by S1, S2,� � �, S1000. For each set, the RWR algorithm and SP

algorithm were executed on NRWR and NSP, respectively, by setting the Ensembl IDs in the set

as the input, yielding a probability for each candidate gene produced by the RWR algorithm

and a betweenness for each candidate gene produced by the SP algorithm. Finally, for each

candidate gene, there was one probability (betweenness) for Soc and 1,000 probabilities

(betweenness) for S1, S2,� � �,S1000. If the candidate gene was specific to OC, its probability

(betweenness) for Soc should clearly be larger than most probabilities (betweenness) for S1,

S2,� � �,S1000. Thus, we calculated the p-value for each candidate gene g, which was defined by

p� valueðgÞ ¼

X1000

i¼1

di

1000
ð3Þ

where δi = 1 if the probability (betweenness) for Si was larger than that of Soc; δi = 0 otherwise.
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Because 0.05 was always used as an important cut-off for the significance level of the test, it

was set to be the threshold of the p-value; i.e., candidate genes with p-values less than 0.05 were

selected.

The network-based method is useful for complicated problems. However, this type of

method seldom considers the essential properties of nodes in the network, leading to several

false discoveries. Rules utilizing the essential properties of candidate and validated genes are

needed to exclude false discoveries and select important ones.

As mentioned in the Section “Protein-protein interactions”, two proteins that can interact

with each other always have a functional relationship. Furthermore, considering the interac-

tion scores, proteins in an interaction with a high score are more likely to have a strong func-

tional relationship than those in an interaction with a low score. Thus, the interaction score

can be used to measure the associations between candidate genes and OC-related genes. For

each candidate gene g, we calculated the maximum interaction score (MIS), which was defined

by

MISðgÞ ¼ maxfSðg; g0Þ : g0 2 Socg ð4Þ

Clearly, a candidate gene with a highMIS is more likely to be a novel OC-related gene and

thus should be selected. However, the threshold ofMISwas not easy to determine. Thus, it was

set as a parameter, pMIS. In the RWR-based method, the optimal value of pMIS is determined by

training this method. In addition, the optimal value of pMIS in the SP-based method is also

accessed by training the SP-based method.

TheMISmeasures the associations between candidate genes and OC-related genes. The fol-

lowing measurement evaluates the associations between them in another way. It is known that

OC-related genes must be highly related to some gene ontology (GO) terms or biological path-

ways. Thus, we can use the annotated GO term and KEGG pathway information for candidate

genes and OC-related genes to evaluate their correlations. To achieve this goal, each candidate

gene or OC-related gene was encoded by its GO enrichment scores and KEGG enrichment

scores. For a candidate gene g and an OC-related gene g0, their associations can be measured by

Mðg; g0Þ ¼
ESðgÞ � ESðg0Þ

kESðgÞk � kESðg0Þk
ð5Þ

where ES(g) (ES(g0), respectively) is a vector consisting of the GO enrichment scores and KEGG

enrichment scores of g (g0, respectively). A high value for Eq 5 indicated a strong association.

Similar to the definition ofMIS, we calculated the maximum function score (MFS) of each can-

didate gene g by

MFSðgÞ ¼ maxfMðg; g0Þ : g0 2 Socg ð6Þ

Similarly, a candidate gene with a highMFSmight be a novel OC-related gene with a high

probability and should be selected. Additionally, it was difficult to determine the threshold of

MFS. The parameter pMFSwas also established for this threshold. Similar to parameter pMIS

mentioned above, the optimal value of pMFS in the RWR-based and SP-based methods is deter-

mined by training these two methods, respectively.

Integrated method

The RWR-based and SP-based methods, together with the screen rules mentioned in the Sec-

tion “Screening rules”, were constructed. The pseudo-codes of these two methods are listed in

Tables 1 and 2, respectively. The integrated method encompassed these two methods by com-

bining their results.
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Evaluation methods

The RWR-based and SP-based methods were applied to identify novel OC-related genes.

However, there are some parameters in these two methods that must be determined before

they are used to identify novel OC-related genes. Thus, these two methods were trained on the

validated OC-related gene set Soc, through which the optimal parameters can be determined.

We used the jackknife test [46, 47], which is one of the classic cross-validation methods [48,

49], to evaluate the performance of these two methods, i.e., each OC-related gene in Soc was

singled out sequentially, and the remaining genes in Soc were used to generate predictions

under various combinations of parameters. When training the methods, we supposed that all

genes in the network other than the validated OC-related genes were negative; i.e., they were

not OC-related genes. The performance of the method can be measured according to the fol-

lowing two features: (1) whether the selected OC-related gene can be recovered by executing

the method on the remaining OC-related genes; (2) the predicted genes other than the selected

OC-related gene should be as low as possible. Thus, we considered the following two measure-

ments: precision and recall, which are always used to evaluate the performance of the methods

on a binary classification problem in the fields of pattern recognition and information

retrieval. Recall is defined as the proportion of retrieved OC-related genes among all OC-

related genes, and precision represents the proportion of retrieved OC-related genes among all

retrieved genes. Furthermore, another measurement, the F1-measure, is often used to evaluate

overall performance, and it can be calculated by

F1�measure ¼
2 � recall � precision

recall þ precision
ð7Þ

Table 2. The pseudo-code of the SP-basedmethod.

SP-based method

Input: An OC-related gene set, Soc; a network, NSP

Output: A number of putative OC-related genes

1. Execute the SP algorithm on NSP using Soc as the input, extracting candidate genes lying on the obtained
shortest paths;

2. Execute the permutation test, producing the p-value for each candidate gene; select candidate genes
with p-values less than 0.05;

3. For each candidate gene, calculate itsMIS and select candidate genes with anMIS no less than pMIS;

4. For each candidate gene, calculate itsMFS and select candidate genes with anMFS larger than pMFS;

5. Output the remaining candidate genes as the putative OC-related genes.

https://doi.org/10.1371/journal.pone.0175185.t002

Table 1. The pseudo-code of the RWR-basedmethod.

RWR-based method

Input: An OC-related gene set, Soc; a network, NRWR

Output: A number of putative OC-related genes

1. Execute the RWR algorithm on NRWR using Soc as the input, producing a probability for each gene in
NRWR; select candidate genes with a probability higher than pp

RWR;

2. Execute the permutation test, producing the p-value for each gene; select candidate genes with a p-value
less than 0.05;

3. For each candidate gene, calculate itsMIS and select candidate genes with anMIS no less than pMIS;

4. For each candidate gene, calculate itsMFS and select candidate genes with anMFS larger than pMFS;

5. Output the remaining candidate genes as the putative OC-related genes.

https://doi.org/10.1371/journal.pone.0175185.t001
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Eq 7 shows that recall and precision have the same role. However, in this study, we consid-

ered recall to be more important than precision because the method with low recall and high

precision could not reliably produce the predicted results. Thus, we simply revised Eq 7 and

defined a new measurement, namely, F1-measure-R, which can be computed by

F1�measure � R ¼ recall � F1�measure ¼
2 � recall2 � precision

recall þ precision
ð8Þ

Because the retrieved genes differ when the selected OC-related gene was not the same,

the recall, precision and F1-measure-R must be considered each time for the predicted

results. Thus, under a combination of parameters, the RWR-based and SP-based methods

can produce a series of recall, precision and F1-measure-R values. We calculated the aver-

age values to indicate the performance of the method under this combination of parame-

ters. For convenience, the recall, precision and F1-measure-R presented in the rest of this

paper represent the average values.

Results

Optimized parameters for the RWR-based and SP-based methods

As mentioned in the Section “RWR-based method”, “SP-based method” and “Screening rule”,

some parameters should be optimized for the RWR-based method and the SP-base method.

To extract an optimal combination of parameters for each method, the RWR-based method

and the SP-base method were trained on Soc, and their performance was evaluated by the Jack-

knife test.

For the RWR-based method, three parameters, the threshold of probability p
p
RWR , the thresh-

old of MIS pMIS, and the threshold of MFS pMFS, should be optimized. For p
p
RWR , we tried vari-

ous values ranging from 1E-05 to 1E-04; for pMIS, we tried three values, 400, 700, 900, which

are reported in STRING for thresholds of medium confidence, high confidence and highest

confidence, respectively; for pMFS, we tried various values ranging from 0 to 0.9. The measure-

ments mentioned in the Section “Evaluation methods” for the RWR-based method with differ-

ent combinations of parameters are listed in S2 Table. For ease of observation, the values of

F1-measure-R obtained using the RWR-based method with different parameters are illustrated

in Fig 1; we can see the same level of performance when the parameters p
p
RWR and pMFS are

equivalent. The maximum F1-measure-R was 1.677E-03 when the parameters were set to be

p
p
RWR ¼ 0:00006, pMFS = 0.8 and pMIS = 400 or 700. Because this combination of parameters

yielded the best performance, they were used to build the optimal RWR-based method, which

is adopted to identify novel OC-related genes.

The SP-based method was also trained to extract the optimal parameters for pMIS and

pMFS. We tested three values for pMIS, as mentioned in the above paragraph, and various val-

ues ranging from 0 to 0.9 for pMFS. For the results obtained using the SP-based method with

different combinations of parameters, the measurements mentioned in the Section “Evalua-

tion methods” were counted and are provided in S3 Table. Additionally, three curves are

plotted in Fig 2 to show the values of F1-measure-R obtained using the SP-based method

with different values of pMFS and a fixed value of pMIS. When the values of pMFS were small,

the values of F1-measure-R were proportional to the value of pMIS. However, the values of

F1-measure-R were almost the same when pMFS were large. The maximum F1-measure-R

was 2.693E-04 when the parameters were set to be pMFS = 0.8 and pMIS = 400 or 700 or 900.

Similarly, we used these values to build the optimal SP-based method for the identification of

novel OC-related genes.
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Inferred results of the RWR-based method

As mentioned in the Section “Optimized parameters for the RWR-based and SP-based meth-

ods”, the optimal RWR-based method was built using p
p
RWR ¼ 0:00006, pMFS = 0.8 and pMIS =

400 or 700. This method was further used to identify novel OC-related genes based on all vali-

dated OC-related genes mentioned in the Section “Genes related to oral cancer”. Because the

optimal RWR-based method contains two options for the parameter pMIS, this method was

executed twice. First, pMISwas set to 400, while in the second iteration, it was set to 700. The

genes identified using this method with a different parameter, pMIS, are listed in S4 Table. A

careful review of the results showed that the identified genes produced using these two optimal

RWR-based methods were equivalent. They all identified 81 novel genes. Because all of these

genes were viewed as high probability by the RWRmethod and had strong associations with

validated OC-related genes, we believe that they are highly related to OC, and they are termed

putative OC-related genes.

Fig 1. The performance of the RWR-basedmethod under different combinations of parameters. (a) The performance of the RWR-based
method setting pMIS = 400. (b) The performance of the RWR-based method setting pMIS = 700. (c) The performance of the RWR-based method
setting pMIS = 900.

https://doi.org/10.1371/journal.pone.0175185.g001
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Inferred results of the SP-based method

The optimal SP-based method was built in the Section “Optimized parameters for the RWR-

based and SP-based methods”, in which pMFSwas set to 0.8 and pMISwas set to 400, 700 or 900.

This method was also adopted to identify novel OC-related genes. By setting pMIS to 400, 700

or 900, we can build three optimal SP-based methods. They were executed sequentially to

identify novel OC-related genes. Similarly, they all yielded fifteen identical genes, which are

listed in Table 3. It is believed that these genes are closely related to OC, and they are termed

putative OC-related genes.

Inferred results of the integrated method

As mentioned in the Sections “Inferred results of the RWR-based method” and “Inferred

results of the SP-based method”, the RWR-based method yielded 81 putative genes, and the

SP-based method yielded fifteen putative genes. The union of these two putative gene sets pro-

vided the results of the integrated method, in which 85 putative genes were obtained. Their

distribution is illustrated in Fig 3; we can see that eleven putative genes were identified by both

the RWR-based and the SP-based methods. Among the remaining putative genes, 70 were

identified using the RWR-based method, and four putative genes were identified using the SP-

based method. Because the principles of the RWR-based and SP-based methods are very differ-

ent, the identified novel OC-related genes were not the same. By considering the identified

genes produced by either of them, we can obtain more putative genes and have an opportunity

Fig 2. The performance of the SP-basedmethod under different combinations of parameters. There are three lines in this figure, which represent
the performance of the SP-basedmethod with different thresholds of maximum interaction score. In detail, the full line represents the performance of the
SP-basedmethod with the threshold of maximum interaction score 900, the dot line represents the performance of the SP-basedmethod with the
threshold of maximum interaction score 700, the dash line represents the performance of the SP-basedmethod with the threshold of maximum
interaction score 400.

https://doi.org/10.1371/journal.pone.0175185.g002
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to extensively study disease genes in OC. To indicate the obtained 85 putative genes are highly

related to OC, we extracted a sub-network containing these putative genes and OC-related

genes from NRWR and NSP as shown in Fig 4.

Discussion

Using the RWR-based method, 81 genes were obtained. Using the SP-based method, fifteen

genes were accessed. All of these genes were deemed to be significantly associated with OC.

Furthermore, eleven genes were identified by both methods, which may be more important

than the others. In this section, some important putative genes (listed in Tables 4–6) were

extensively analyzed to confirm their associations with OC.

Putative genes identified using both RWR-based and SP-based
methods

The following eleven proteins were identified using both RWR-based and SP-based methods:

CYP3A43, FGF4, NFKBIA, THBS1, IL1B, CXCL13, CYP2A6, SELE, STAT1, MYD88 and

FGFR2, as listed in Table 4.

MYD88 (myeloid differentiation primary response 88) encodes a cytosolic adapter protein

that functions as a key signal transducer in the interleukin-1 and Toll-like receptor (TLRs) sig-

naling pathways. TLRs and their ligands play a crucial role in inflammation and host defense

Table 3. Genes identified by the optimal SP-basedmethod.

Ensembl ID Gene
symbol

Betweenness P-
value

MIS MFS Function

ENSP00000354394 STAT1 b 1443 <0.001 999 0.852 functions as a key factor in cell viability in response to different cell stimuli and
pathogens [125]

ENSP00000263341 IL1B b 543 <0.001 994 0.873 a member of the interleukin 1 cytokine family

ENSP00000379625 MYD88 a 528 0.006 999 0.880 an essential signal transducer in the IL1 and Toll-like receptor signaling
pathways [126, 127]

ENSP00000233946 IL1R1 b 528 0.001 920 0.843 interleukin 1 receptor type 1 [128]

ENSP00000216797 NFKBIA b 201 0.018 999 0.825 a member of the NF-kappa-B inhibitor family, which is involved in inflammatory
responses [61]

ENSP00000222382 CYP3A43 b 183 <0.001 958 0.988 a member of the cytochrome P450 superfamily of enzymes [129]

ENSP00000328181 NOG b 183 0.005 999 0.862 binds and inactivates members of the TGF-beta superfamily signaling proteins
[130]

ENSP00000410294 FGFR2 a 183 0.01 999 0.846 a tyrosine protein kinase that functions as a receptor for fibroblast growth
factors and plays key roles in cell proliferation, differentiation, migration and

apoptosis [131]

ENSP00000362795 CXCR3 a 179 0.021 999 0.808 a G protein-coupled receptor with selectivity for chemokines [132, 133]

ENSP00000260356 THBS1 a 10 0.033 984 0.807 an adhesive glycoprotein that mediates cell-cell and cell-matrix interactions
[134, 135]

ENSP00000264156 MCM6 b 8 0.014 999 0.822 be involved in the formation of replication forks [136]

ENSP00000301141 CYP2A6 b 3 0.016 950 0.948 a member of the cytochrome P450 superfamily of enzymes [129]

ENSP00000331736 SELE b 1 0.006 978 0.852 responsible for the accumulation of blood leukocytes at sites of inflammation
[67]

ENSP00000168712 FGF4 b 1 0.016 999 0.847 fibroblast growth factor 4 which are involved in various biological processes
such as cell growth and morphogenesis

ENSP00000286758 CXCL13 b 1 0.005 992 0.838 C-X-C motif chemokine ligand 13

a: Genes that have shown stimulative or suppressive effects on cancer as validated by experiments.
b: Genes that have been reported to have a certain relationship with cancer but that have not been validated by experiments.

https://doi.org/10.1371/journal.pone.0175185.t003
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Fig 3. The distribution of the 85 putative OC-related genes obtained in this study. The blue part
represents the set consisting of 70 putative genes obtained using only the RWR-based method. The red part
represents the set consisting of 11 putative genes obtained using both the RWR-based and SP-based
methods. The green part represents the set consisting of 4 putative genes obtained using only the SP-based
method.

https://doi.org/10.1371/journal.pone.0175185.g003

Fig 4. The sub-network containing the putative genes and OC-related genes that was extracted from the
network for RWR-based and SP-basedmethods. The blue nodes represent putative genes and red nodes
represent OC-related genes.

https://doi.org/10.1371/journal.pone.0175185.g004
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[50]. In a broad variety of tumor tissues and cell lines, aberrant expression of TLRs plays a role

in tumor immune escape or resistance to apoptosis [51, 52]. The expression of TLR4 and

MyD88 is also aberrant and affects the down-stream signaling pathway [53]. In this study,

MyD88 was predicted using both RWR-based and SP-based methods, and thus it may be a

potential target for OC.

FGFR2 (fibroblast growth factor receptor 2) belongs to the FGFR tyrosine kinase family,

which is one of the most frequently altered kinase families in some types of cancer [54]. Point

mutations have been observed in 12% of endometrial carcinomas [55]. These studies suggest

that FGFR2 may act together with the regulation of the PI3K/AKT/mTOR pathway to drive

endometrial cancer growth in a subset of patients [56, 57]. FGFR2 mutations also occur in oral

squamous cell carcinoma, and a patient with OSCC was found to respond to pazopanib, a mul-

tiple tyrosine kinase inhibitor [58]. These findings support the potential diagnostic and thera-

peutic value of FGFR2 as an effective strategy for the treatment of patients with OC with

defined molecular characteristics. In addition, our results showed that FGF4 had a significant

probability in both methods. Some large-scale experiments have suggested that aberrant

Table 4. Eleven putative genes identified using both RWR-based and SP-basedmethods.

Ensembl ID Gene
symbol

RWR-based method SP-based method Function

Probability P-
value

MIS MFS Betweenness P-
value

MIS MFS

ENSP00000379625 MYD88 a 6.67E-05 0.032 999 0.880 528 0.006 999 0.880 an essential signal transducer in the IL1
and Toll-like receptor signaling pathways

[126, 127]

ENSP00000410294 FGFR2 a 9.04E-05 0.021 999 0.846 183 0.01 999 0.846 a tyrosine protein kinase that functions as a
receptor for fibroblast growth factors and

plays key roles in cell proliferation,
differentiation, migration and apoptosis

[131]

ENSP00000216797 NFKBIA b 7.56E-05 0.026 999 0.825 201 0.018 999 0.825 a member of the NF-kappa-B inhibitor
family, which is involved in inflammatory

responses [61]

ENSP00000331736 SELE b 9.73E-05 <0.001 978 0.852 1 0.006 978 0.852 responsible for the accumulation of blood
leukocytes at sites of inflammation [67]

ENSP00000260356 THBS1 a 6.94E-05 <0.001 984 0.807 10 0.033 984 0.807 an adhesive glycoprotein that mediates
cell-cell and cell-matrix interactions [134,

135]

ENSP00000354394 STAT1 b 4.36E-04 <0.001 999 0.852 1443 <0.001 999 0.852 functions as a key factor in cell viability in
response to different cell stimuli and

pathogens [125]

ENSP00000301141 CYP2A6 b 8.85E-05 <0.001 950 0.948 3 0.016 950 0.948 a member of the cytochrome P450
superfamily of enzymes[129]

ENSP00000222382 CYP3A43
b

3.35E-04 <0.001 958 0.988 183 <0.001 958 0.988 a member of the cytochrome P450
superfamily of enzymes [129]

ENSP00000286758 CXCL13 b 6.63E-05 0.006 992 0.837 1 0.005 992 0.838 C-X-C motif chemokine ligand 13

ENSP00000168712 FGF4 b 8.21E-05 0.001 999 0.847 1 0.016 999 0.847 fibroblast growth factor 4 which are
involved in various biological processes
such as cell growth and morphogenesis

ENSP00000263341 IL1B b 1.92E-04 <0.001 994 0.873 543 <0.001 994 0.873 a member of the interleukin 1 cytokine
family

a: Genes that have shown stimulative or suppressive effects on cancer as validated by experiments.
b: Genes that have been reported to have a certain relationship with cancer but that have not been validated by experiments.

https://doi.org/10.1371/journal.pone.0175185.t004
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amplification of FGF4 occurs in several types of cancer, including lymph node metastasis and

urinary bladder cancer [59, 60].

NF-κBIA (nuclear factor-kappa B inhibitor alpha) inhibits NF-κB, which is involved in

inflammatory responses and is a hallmark linking inflammation to tumor development and

progression [61, 62]. The polymorphic variations in NFKBIA were associated with the risk of

various cancers, including gastric cancer, prostate cancer and melanoma [63–65]. NFKBIA

polymorphisms have significant associations with OSCC [66]. In our study, NFKBIA had a

close relationship with OC using both methods.

SELE (selectin E), which was found in cytokine-stimulated endothelial cells, functions in

the accumulation of blood leukocytes at sites of inflammation [67]. The level of SELE-

Table 5. Important genes among the seventy putative genes identified using the RWR-basedmethod.

Ensembl ID Gene symbol Probability P-value MIS MFS Function

ENSP00000245451 BMP4 a 9.57E-05 0.026 981 0.905 bind TGF-beta receptor leading to recruitment and activation of transcription
factor [137]

ENSP00000225831 CCL2 b 1.21E-04 0.012 984 0.869 C-C motif chemokine ligand 2

ENSP00000351671 CCL20 b 6.69E-05 0.003 965 0.804 C-C motif chemokine ligand 20

ENSP00000293272 CCL5 a 7.70E-05 0.002 994 0.891 C-C motif chemokine ligand 5

ENSP00000292303 CCR5 a 1.01E-04 0.003 996 0.839 C-C motif chemokine receptor 5

ENSP00000246657 CCR7 a 9.82E-05 <0.001 998 0.823 C-C motif chemokine receptor 7

ENSP00000229135 IFNG a 1.70E-04 0.03 994 0.839 binds to the interferon gamma receptor to response to infection [138]

ENSP00000228280 KITLG a 1.05E-04 0.026 948 0.816 the ligand of the tyrosine-kinase receptor

ENSP00000162749 TNFRSF1A b 9.69E-05 0.013 999 0.825 a member of the TNF receptor superfamily which plays a role in various
biological processes

ENSP00000289153 PIK3CB a 1.23E-04 <0.001 997 0.926 an isoform of the catalytic subunit of PI3K

ENSP00000366563 PIK3CD b 1.15E-04 <0.001 997 0.919 PI3Ks phosphorylate inositol lipids and it is involved in the immune response
[139]

ENSP00000352121 PIK3CG a 1.21E-04 <0.001 996 0.921 phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma

ENSP00000324648 CYP2B6 b 9.73E-05 <0.001 962 0.943 a member of the cytochrome P450 superfamily

ENSP00000360372 CYP2C19 b 9.32E-05 <0.001 962 0.966 cytochrome P450 family 2 subfamily C member 19

ENSP00000360247 CYP2J2 a 7.48E-05 0.004 912 0.969 cytochrome P450 family 2 subfamily J member 2

ENSP00000337915 CYP3A4 b 3.32E-04 <0.001 963 0.941 cytochrome P450 family 3 subfamily A member 4

ENSP00000360968 CYP4X1 b 7.43E-05 0.018 939 0.959 cytochrome P450 family 4 subfamily X member 1

ENSP00000304283 RAC3 a 1.08E-04 0.006 990 0.981 a GTPase regulates cell growth, cytoskeletal reorganization, and the activation
of kinases [140–142]

a: Genes that have shown stimulative or suppressive effects on cancer as validated by experiments.
b: Genes that have been reported to have a certain relationship with cancer but that have not been validated by experiments.

https://doi.org/10.1371/journal.pone.0175185.t005

Table 6. Four putative genes identified using the SP-basedmethod.

Ensembl ID Gene symbol Betweenness P-value MIS MFS Function

ENSP00000264156 MCM6 b 8 0.014 999 0.822 be involved in the formation of replication forks [136]

ENSP00000328181 NOG b 183 0.005 999 0.862 binds and inactivates members of the TGF-beta superfamily signaling
proteins [130]

ENSP00000362795 CXCR3 a 179 0.021 999 0.808 a G protein-coupled receptor with selectivity for chemokines [132, 133]

ENSP00000233946 IL1R1 b 528 0.001 920 0.843 interleukin 1 receptor type 1 [128]

a: Genes that have shown stimulative or suppressive effects on cancer as validated by experiments.
b: Genes that have been reported to have a certain relationship with cancer but that have not been validated by experiments.

https://doi.org/10.1371/journal.pone.0175185.t006
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mediated adhesion of colon cancer and head and neck squamous cell cancer cells to the endo-

thelium has been implied to be involved in metastasis [68, 69]. Our analysis revealed that SELE

might be a putative marker for tumorigenesis in OC. A study in Taiwan supports the idea that

SELE-related inflammation plays a crucial role in the pathogenesis process of OSCC [70].

Future investigations of the function of SELE may clarify the mechanism of tumorigenesis and

metastasis.

THBS1 (thrombospondin 1) is a subunit of a disulfide-linked homotrimeric protein, which

mediates cell-cell and cell-matrix interactions [71]. The significant relationship between

THBS1 and OC was detected using both RWR-based and SP-based methods. Several studies

have indicated that THBS1 has crucial functions in oral tumorigenesis [72, 73]. THBS1 might

be a potential diagnostic and therapeutic target for OC.

STAT1 (signal transducer and activator of transcription 1), which belongs to the STAT pro-

tein family, mediates the expression of a variety of genes and cell viability in response to stimuli

and pathogens [74]. Aberrant activation of STAT1 has frequently been found in various can-

cers, such as head and neck cancer [75]. A similar STAT1 activation status was detected in

patients with OSCC [76]. In this study, STAT1 displayed a significant association with OC

using both the RWR-based and SP-based methods, and this molecular marker could help in

guiding diagnostic and therapeutic decisions in patients with OC.

Among these eleven putative genes, including genes such as MYD88, FGFR2 and THBS1,

stimulative or suppressive effects on cancers have been shown by the experiments. We specu-

late that these three genes have certain functions in OC. In addition, it has been reported that

other genes, including NFKBIA, SELE, STAT1, IL1B, CYP2A6, CYP3A43, FGF4 and CXCL13

[77–80], have a certain relationship with various forms cancer. However, the mechanism has

not been thoroughly studied. In our analysis, they have a significant relationship with OC, and

the mechanism should be explored.

Putative genes identified only by the RWR-based method

Seventy proteins were identified only by the RWR-based method. The important genes are

BMP4, CCL2, CCL20, CCL5, CCR7, IFNG, KITLG, TNFRSF1A, PIK3CB, PIK3CD, PIK3CG,

CYP2B6, CYP2C19, CYP2J2, CYP3A4, CYP4X1 and RAC3; these genes are listed in Table 5.

Some of them participate in tumorigenesis by regulating cell growth or apoptosis, such as

BMP4 and RAC3. Some genes are important factors in the immune system of cancer patients,

such as CCL2, CCL20, CCL5, CCR7, IFNG and P450 family. Detailed function analyses of can-

didate genes are shown in S1 File.

We identified several novel putative genes using only the RWR-based method, which have

strong associations with the tumorigenesis of OC. The functions of some genes have been

explored in experiments, such as BMP4, IFNG, KITLG, CCL5, CCR5, CCR7, CYP2J2,

PIK3CB, PIK3CG and RAC3; others revealed mutations or aberrant expression in cancers, but

the mechanism is not clear. Future research is required to replicate and validate the effects of

these genes.

Putative genes identified only by the SP-based method

Four proteins were predicted to be closely associated with OC using the SP-based method but

not the RWR-based method. These genes were IL1R1, MCM6, NOG and CXCR3; they are

listed in Table 6. It has been reported that CXCR3 can promote metastasis in some types of

cancer [81–86]. Other genes showed aberrant expression or mutations in cancers, which mer-

its attention. Detailed function analyses of candidate genes are shown in S1 File.
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Based on the analyses of the novel genes obtained by the integrated method, we found that

several genes have shown stimulative or suppressive effects on cancers by experiments or aber-

rant expression or mutations in cancers reported in published papers, implying the effective-

ness of the integrated method. In addition, the integrated method can provide more potential

disease genes for investigating OC because it combines the results yielded by the RWR-based

and SP-based methods; i.e., simultaneous usage of the RWR-based and SP-based method can

help us mine more information about disease genes in oral cancer. We believe that it is helpful

to investigate various diseases using both the RWR-based and the SP-based methods.

GO-term and pathway function enrichment analysis of putative genes
using DAVID

By the integrated method, 85 putative genes were obtained. To uncover the biological meaning

behind these genes, the functional annotation tool, the Database for Annotation, Visualization

and Integrated Discovery (DAVID) [87], was adopted to analyze them. The obtained results

are provided in S5 Table.

For the GO enrichment results yielded by DAVID (see S5 Table), we can see that seven-two

biological process (BP) GO terms, fifteen molecular function (MF) GO terms and nine cellular

component (CC) GO terms are with statistically significance (FDR<0.05). The biological pro-

cess mostly focused on cell proliferation, apoptosis, transcription and signal transduction.

Malignant proliferation and anti-apoptosis are the major characteristics of many cancers. In

this study, it has been found many proliferation related genes such as EGF, IGF1 and

CDKN1B. EGF (epidermal growth factor) and its receptor EGFR affect cellular processes like

proliferation, motility and adhesion. EGF has a higher expression and is correlated with the

progression of cancer such as breast cancer [88]. The circulating IGF1 (insulin-like growth fac-

tor-1) level is associated with the risk to develop breast cancer [89, 90]. CDKN1B functions as

a key cell cycle gatekeeper to prevent or slow down cell division [91, 92]. Aberrant downregu-

lating CDKN1B may promote the proliferation of multiple myeloma cells [93]. Un-controlled

expanded number of cancers is determined not only by cell proliferation but also by the cell

evading apoptosis. In our study, many genes are enriched in apoptosis process such as TP53,

CASP3 and cmyc. The mutations of TP53 are the most common alteration in cancer and are

related to cell apoptosis, cell cycle and malignancy [94–97]. TP53 could arrest cell cycle and

induced cell apoptosis in response to DNA damage [98]. It has been reported that over-expres-

sion of c-Myc drives the level of BAX and other apoptosis-related genes and is involved in cell

apoptosis [99–103]. CASPs is a kind of cysteine-dependent aspartate-specific proteases, and is

associated with the initiation and execution of apoptosis. As an activate effector, CASP3

receives the apoptotic signals to perform the cell death process [104]. In our result, a series of

genes were enriched in the GO term related apoptosis, which proved process of apoptosis is a

key process in oral cancer. In addition, several other biological process GO terms were shown

such as transcription and signal transduction. In proliferation, apoptosis and other processes,

functional genes were selectively transcribed and expressed. For example, c-Myc is a transcrip-

tion factor which could mediate a series of down-stream genes express to drive cellular prolif-

eration and apoptosis [105]. It can be seen from S5 Table that putative genes were enriched in

several CC GO terms and MF GO terms such as growth factor activity (MF), cytokine activity

(MF), enzyme or protein binding (MF), extracellular region (CC), extracellular space (CC)

and plasma membrane (CC). These results suggest that the functional activity and localization

of the protein are directly or indirectly related to oral cancer.

The DAVID also produced the KEGG pathway enrichment on putative genes (see S5

Table), several pathways were highlighted such as TNF signaling pathway, PI3K-Akt pathway,
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Pap1 pathway, MAPK pathway, TLR pathway, NF-kB pathway, JaK-STAT, Ras pathway and

cytokine-cytokine receptor interaction. TNF pathway could be activated by various signals to

affect the immunity, cell growth, apoptosis and other biological behaviors of tumor cells [106–

110]. Protein-protein interaction and pathways is a cross-talk network. TNF can also activates

the NF-kB pathway. The NF-kB pathway is activated in various cancers [111, 112]. Activation

of NF-kB can be inhibited by the blockade of PI3K/Akt and ERK pathway to suppress tumor

metastasis [113]. It was reported that PI3K/AKT-NF-kB is an axis which promotes bone

metastasis in prostate cancer [114]. The Jak/STAT pathway is critical in normal tissues and

tumors and the Jak kinase family includes JAK1, JAK2, JAK3 and TYK2 [115]. Jak mediated

STAT phosphorylation leads to their nuclear translocation. STAT molecules bind specific pro-

moter of genes and result in the transcription in nucleus, which regulate the cell proliferation,

differentiation and apoptosis [115, 116]. It was reported that over-activation of the JAK/STAT

pathway is related to subsets of patients with certain solid tumors and chronic myeloid leuke-

mia [117, 118]. MAPK pathway is induced by activation of TLR (toll like receptors) and NOD

(nucleotide-binding oligomerization domain receptors), which initiates of inflammation and

are involved in cancer proliferation and control [119]. Ras pathway is a highly conserved path-

way in cell function, including cell proliferation, differentiation and signaling transduction.

This pathway is commonly deregulated in cancers, making the components in the pathway as

targets for therapeutic interventions [120]. In these pathways, several putative genes were

enriched, which indicates these pathway and gene need more attention in tumorigenesis of

oral cancer.

Conclusions

In this study, we investigated genes related to oral cancer. Two popular algorithms, the ran-

dom walk with a restart algorithm and the shortest path algorithm, which are often used to

identify novel disease genes, were integrated with some further rules to build two computa-

tional methods. An integrated method was further built by combining these two methods. To

access an optimal prediction method for the identification of genes related to oral cancer using

the integrated method, these two methods were trained on validated genes. The optimal pre-

diction method was further adopted to identify novel genes related to oral cancer. The results

indicated the following facts: (1) The integrated method is effective for identification of disease

genes of oral cancer; (2) Candidate genes produced by the integrated method provide an

opportunity to achieve a more extensive investigation of oral cancer. We hope that the inte-

grated method can be useful for identifying novel disease genes. In view of the utility of the

RWR-based and SP-based methods for identification of disease genes, it is hopeful that these

methods can be applied to investigate other problems, such as DNA-binding protein predic-

tion [121], protein fold recognition [122, 123], detection of tubule boundary [124], etc.
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