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JEAN-FRANÇOIS CORDEAU and FEDERICO PASIN

HEC Montréal
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Abstract

In this paper we introduce a new formulation of the logistics network design problem

encountered in deterministic, single-country, single-period contexts. Our formulation

is flexible and integrates location and capacity choices for plants and warehouses with

supplier and transportation mode selection, product range assignment and product

flows. We next describe two approaches for solving the problem - a simplex-based

branch-and-bound and a Benders decomposition approach. We then propose valid in-

equalities to strengthen the LP relaxation of the model and improve both algorithms.

The computational experiments we conducted on realistic randomly generated data

sets show that Benders decomposition is somewhat more advantageous on the more

difficult problems. They also highlight the considerable performance improvement

that the valid inequalities produce in both solution methods. Furthermore, when these

constraints are incorporated in the Benders decomposition algorithm, this offers out-

standing reoptimization capabilities.

Keywords: logistics, network design, Benders decomposition.



1 Introduction

In recent years, the constant emphasis on productivity gains and customer satisfaction has led
to rapidly evolving business environments characterized by time compressed supply chains,
alliances, and mergers and acquisitions. In turn, these have highlighted the importance of
properly designing or redesigning the production and distribution networks of manufacturing
firms. A growing emphasis on e-collaboration, technologically advanced manufacturing, and
just-in-time pick-ups and deliveries is also amplifying the role of supply chain management as
a strategic tool for competitiveness. As a result, a number of firms have relied on optimization
techniques for decision support when planning their logistics activities (see, e.g., [4], [11],
[17] and [18]).

This paper addresses the problem of designing the supply chain or logistics network of a
manufacturing firm operating in a single-country environment. A logistics network is a set
of suppliers, manufacturing plants and warehouses organized to manage the procurement of
raw materials, their transformation into finished products, and the distribution of finished
products to customers. Usually, the planning of a logistics network involves making decisions
regarding:

• the number, location, capacity and technology of manufacturing plants and warehouses;

• the selection of suppliers;

• the assignment of product ranges to manufacturing plants and warehouses;

• the selection of distribution channels and transportation modes;

• the flows of raw materials, semi-finished and finished products through the network.

These decisions can be classified into three categories according to their importance and
the length of the planning horizon considered. First, choices regarding the location, capacity
and technology of plants and warehouses are generally seen as strategic with a planning
horizon of several years. Second, supplier selection, product range assignment as well as
distribution channel and transportation mode selection belong to the tactical level and can
be revised every few months. Finally, raw material, semi-finished and finished product flows
in the network are operational decisions that are easily modified in the short term.

The logistics network design problem (LNDP) consists of making the above-mentioned
decisions so as to satisfy customer demands while minimizing the sum of fixed and variable
costs associated with procurement, production, warehousing and transportation. Because
of its complexity, it is often decomposed into several components treated separately. For
instance, one may separate strategic, tactical and operational decisions or divide the network
in several parts according to product categories or geographical considerations. However,
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given the importance of the interactions between these decisions, important benefits can
be obtained by treating the network as a whole and considering its various components
simultaneously.

Although there exists an abundant literature on capacitated facility location problems
(see, e.g., [1], [7] and [13]), very few models address the LNDP in its entirety. Following the
pioneering work of Geoffrion and Graves [8] on multi-commodity distribution network
design, numerous models have been developed to locate facilities by taking into account sev-
eral production, transportation and warehousing issues. An interesting example is the work
of Pirkul and Jayaraman [16] on integrated production, transportation and distribution
planning. However, as can be seen from the recent reviews by Geoffrion and Powers [9],
Thomas and Griffin [19] and Vidal and Goetschalckx [20], most location models do
not incorporate at least some aspects of the problem such as supplier or transportation mode
selection.

One of the first efforts to integrate procurement, production and distribution decisions
belongs to Cohen and Lee [5] who developed a detailed model for logistics network design
in a global (i.e., international) context. The model considers a single planning period with
deterministic demand and is solved by a hierarchical approach in which integer variables
associated with the design of the network are first assigned values so as to obtain a simple
linear program. A multi-period model for the LNDP in a global context was later proposed
by Arntzen et al. [2]. Besides dealing with typical international issues such as local content
and offset trade constraints, the model can handle an arbitrary number of production and
distribution stages. A sophisticated solution methodology based on elastic constraints, row
factorization, cascaded problem solution and constraint-branching enumeration was used to
solve the model which has been applied at Digital Equipment Corporation. Very recently,
Dogan and Goetschalckx [6] described a comprehensive multi-period model for the
LNDP in a single-country environment. The model integrates strategic issues such as facility
location and sizing with tactical decisions concerning production, inventory and customer
allocation. It is solved by a Benders decomposition approach in which the subproblem
separates into a set of network flow problems.

The contribution of this paper is to introduce a general and flexible formulation of the
LNDP for the deterministic, single-country, single-period context, and describe two ap-
proaches for solving the problem: a simplex-based branch-and-bound approach and a Ben-
ders decomposition approach. Furthermore, we propose valid inequalities to strengthen the
LP relaxation of the model and improve both algorithms. The formulation extends previous
work by integrating location and capacity choices for plants and warehouses with supplier
and transportation mode selection, product range assignment and product flows. Its struc-
ture makes it easy to impose several types of configuration constraints such as single-sourcing
requirements. It can also be adapted to handle several problem extensions such as multiple
planning periods or stochastic demand. While the formulation can be solved efficiently by
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using a commercial integer programming solver, it is also well suited for a primal decompo-
sition approach such as Benders decomposition. The latter approach is particularly useful
because of the reoptimization capabilities it provides when performing “what-if” analyses.

The rest of the paper is organized as follows. The next section presents a mathematical
formulation of the LNDP and then Section 3 describes the solution methodology. Compu-
tational experiments are reported in Section 4, followed by our conclusions and extensions
discussed in the final section.

2 Mathematical Formulation

Let F be the set of finished products. An element f ∈ F identifies either a specific article
manufactured or assembled by the company, or a family of similar articles that can be
aggregated and treated as a single product for planning purposes. Let R denote the set of
raw materials and purchased components or supplies used in the manufacturing or assembly
of finished products. For every r ∈ R and every f ∈ F , let brf be the quantity of raw
material r required in the production of one unit of product f . The set of all suppliers
considered by the company is denoted by S, and Sr ⊆ S represents the subset of suppliers
that are eligible to provide raw material r ∈ R. Let also P and W denote the sets of actual
and potential locations for plants and warehouses, respectively. For every product f ∈ F ,
let Pf and Wf denote the subsets of plants and warehouses at which product f can be made
and stored, respectively. Finally, let C be the set of customer locations. Again, an element
c ∈ C may identify either a specific customer or a group of customers (i.e., a customer zone)
that may be aggregated for planning purposes. For every c ∈ C and every f ∈ F , let af

c be
the demand of customer c for product f .

For notational convenience, denote by K = R∪F the set of all commodities represented
in the model, and by O = S ∪P ∪W and D = P ∪W ∪C the sets of origins and destinations
for these commodities. Then, for every k ∈ K, define Ok ⊆ O and Dk ⊆ D as the sets of
potential origins and destinations for commodity k. More specifically, one has Or = Sr for
any raw material r ∈ R, and Of = Pf ∪ Wf for any product f ∈ F . Similarly, possible
destinations for a raw material r are plants at which products that require this raw material
can be made, i.e., Dr = ∪f∈FrPf , where F r = {f ∈ F|brf > 0}. Finally, the set of possible
destinations for a product f is defined as Df = Wf ∪ Cf where Cf = {c ∈ C|af

c > 0}.

For every k ∈ K and every o ∈ Ok, let V k
o be a binary variable, with cost ck

o, taking the
value 1 if and only if commodity k is assigned to origin o. For instance, variable V r

s would
take the value 1 if supplier s is selected to provide raw material r, and variable V f

p would
take the value 1 if product f is made at plant p. For every origin o ∈ O, also define a binary
variable Uo equal to 1 if and only if this origin is assigned at least one commodity, and let
co be the fixed cost of selecting this origin. In the case of a supplier s ∈ S, the variable Us

3



would take the value 1 if the supplier is selected to provide at least one raw material. In
the case of a potential plant or warehouse location, the associated variable would take the
value 1 if the corresponding location is chosen to site a facility. For every k ∈ K, o ∈ Ok and
d ∈ Dk, let Y k

od be a binary variable, with cost ck
od, equal to 1 if and only if origin o provides

commodity k to destination d. For every k ∈ K and o ∈ Ok, let qk
o be an upper limit on

the amount of commodity k to be provided by origin o to any destination and let qk
od be the

maximum to be provided to destination d. Finally, for every o ∈ O, let uo be the capacity, in
equivalent units, of origin o, and for every k ∈ K, let uk

o be the amount of capacity required
by one unit of commodity k at origin o. In the case of a plant p, up would represent the
total manufacturing capacity in the planning period while uf

p would be the transformation
factor to convert real units of product f into equivalent units.

For every origin-destination pair (o, d) ∈ O × D, let Mod be the set of transportation
modes between o and d. Then, for every m ∈ Mod, define a binary variable Zm

od equal to
1 if and only if transportation mode m is used between origin o and destination d. Let cm

od

be the fixed cost of using mode m, and let gm
od be its capacity. For every k ∈ K, o ∈ Ok

and d ∈ Dk, let Mk
od ⊆ Mod be the set of feasible transportation modes between o and d

for commodity k, and let gkm be the capacity usage of one unit of commodity k in mode m.
Then, for every m ∈ Mk

od, define a non-negative variable Xkm
od , with cost ckm

od , representing
the number of units of commodity k transported from origin o to destination d using mode
m. For instance, Xfm

pw is the amount of product f transported from plant p to warehouse w
using mode m ∈ Mf

pw. Because a single planning period is considered, the total amount of
product p manufactured at plant p in this period is given by

∑

w∈W

∑

m∈Mpw
Xfm

pw .

Let B denote the set of integers {0, 1}. The model can then be stated as follows:

Minimize

∑

o∈O

[

coUo +
∑

d∈D

∑

m∈Mod

cm
odZ

m
od

]

+
∑

k∈K

∑

o∈Ok



ck
oV

k
o +

∑

d∈Dk



ck
odY

k
od +

∑

m∈Mk
od

ckm
od Xkm

od







 (1)

subject to

∑

s∈Sr

∑

m∈Mr
sp

Xrm
sp −

∑

f∈Fr

∑

w∈Wf

∑

m∈M
f
pw

brfXfm
pw = 0 r ∈ R; p ∈ P (2)

∑

p∈Pf

∑

m∈M
f
pw

Xfm
pw −

∑

c∈Cf

∑

m∈M
f
wc

Xfm
wc = 0 f ∈ F ; w ∈ Wf (3)

∑

w∈Wf

∑

m∈M
f
wc

Xfm
wc = af

c f ∈ F ; c ∈ Cf (4)
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∑

k∈K

∑

d∈Dk

∑

m∈Mk
od

uk
oX

km
od − uoUo ≤ 0 o ∈ O (5)

∑

d∈Dk

∑

m∈Mk
od

Xkm
od − qk

oV
k
o ≤ 0 k ∈ K; o ∈ Ok (6)

∑

m∈Mk
od

Xkm
od − qk

odY
k
od ≤ 0 k ∈ K; o ∈ Ok; d ∈ Dk (7)

∑

k∈K

gkmXkm
od − gm

odZ
m
od ≤ 0 o ∈ O; d ∈ D; m ∈ Mod (8)

Xkm
od ≥ 0 k ∈ K; o ∈ Ok; d ∈ Dk; m ∈ Mk

od (9)

Uo ∈ B o ∈ O (10)

V k
o ∈ B k ∈ K; o ∈ Ok (11)

Y k
od ∈ B k ∈ K; o ∈ Ok; d ∈ Dk (12)

Zm
od ∈ B o ∈ O; d ∈ D; m ∈ Mod. (13)

The objective function (1) minimizes the sum of all fixed and variable costs. Variable costs
ckm
od may include not only transportation expenses but also relevant acquisition, production

and storage costs. Constraints (2) ensure that the total amount of raw material r shipped
to plant p is equal to the total amount required by all products made at this plant, while
constraints (3) ensure that all finished products that enter a given warehouse also leave
that warehouse. Demand constraints are imposed by equations (4). Constraints (5) impose
global capacity limits on suppliers, plants and warehouses, whereas limits per commodity
are enforced through (6). The latter constraints can be used to restrict the total amount
of a given raw material that is purchased from a particular supplier or the number of units
of a finished product that are made in a particular plant. Constraints (7) ensure that units
of commodity k are not transported from o to d unless origin o is selected to provide the
commodity to destination d. Finally, capacity constraints on individual transportation modes
are imposed by (8).

Model (1)-(13) can be extended in several ways to handle various additional realistic
situations. First, it is worth mentioning that by reversing the inequality sign, constraints
similar to (5)-(8) can be used to impose lower limits on acquisition, production, storage
and transportation activities. Such constraints can be used, for example, when a minimum
amount of raw material must be purchased from a supplier to obtain a quantity discount.
They can also be used to model situations where a minimum amount of finished product
must be manufactured for a plant to be economically viable.

Second, if several capacity or technology choices are considered for a potential plant or
warehouse location, these options can be modeled by defining several copies of the same
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location with different capacities, uo and qk
o , and different fixed and variable costs. A similar

approach can be used to model quantity discounts offered by suppliers. It also applies
to transportation modes which can be replicated to represent the same physical link with
different capacities and costs.

Of course, if a given supplier, plant or warehouse must be selected, then the corresponding
Uo variable can explicitly be set to 1 in the model. This is useful in the case of existing
facilities which should remain active or when some location decisions are made with respect
to criteria that are not taken into account by the model. The same reasoning also applies to
transportation mode variables Zm

od and assignment variables V k
o and Y k

od.

Additional network configuration constraints can also be introduced in the model. For
example, if the total number of plants to be operated must lie between n and n, these limits
can be enforced with the simple constraint:

n ≤
∑

p∈P

Up ≤ n. (14)

Similarly, if nr and nr are lower and upper limits on the total number of suppliers that should
supply raw material r ∈ R, then these limits can be imposed by the constraints:

nr ≤
∑

o∈Or

V r
o ≤ nr r ∈ R. (15)

Finally, single-sourcing for commodity k at destination d can be imposed with the constraint:

∑

o∈Ok

Y k
od ≤ 1. (16)

Single-sourcing constraints can be used, for example, to ensure that for each product f ∈ F
and each customer c ∈ Cf , the demand of the customer for the particular product is entirely
satisfied from a unique warehouse.

Model (1)-(13) assumes a single manufacturing stage and a single distribution stage.
These assumptions are easily relaxed by extending the network structure and modifying
constraints (2) and (3) accordingly. In the case of seasonal demand, several planning periods
can also be considered by defining Xkmt

od variables, where t denotes the period number, and
introducing additional end-of-period inventory variables. Finally, the formulation can be
adapted to handle stochastic demand in the form of an enumerable set of scenarios. These
extensions will not be addressed in this paper but will be the object of subsequent research.
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Table 1: Summary of notation

af
c Demand of customer c for product f

brf Amount of raw material r in product f
co Fixed cost of selecting origin o
ck
o Fixed cost of assigning commodity k to origin o

ck
od Fixed cost of providing commodity k to destination d from origin o

cm
od Fixed cost of using transportation mode m between o and d

ckm
od Unit cost for providing commodity k to d from o with mode m

gm
od Capacity of mode m between o and d

gkm Amount of capacity required by one unit of commodity k in mode m
qk
o Upper limit on the amount of commodity k shipped from origin o

qk
od Upper limit on the amount of commodity k shipped from o to d

uo Capacity of origin o in equivalent units
uk

o Amount of capacity required by one unit of commodity k at origin o

C Set of customers
Cf Set of customers that require product f
D Set of destinations
Dk Set of potential destinations for commodity k
F Set of finished products
F r Set of finished products that require raw material r
K Set of commodities
Mod Set of transportation modes between o and d
Mk

od Set of modes between o and d for commodity k
O Set of origins
Ok Set of potential origins for commodity k
P Set of potential plant locations
Pf Set of potential plant locations for making product f
R Set of raw materials
S Set of potential suppliers
Sr Set of potential suppliers providing raw material r
W Set of potential warehouse locations
Wf Set of potential warehouse locations for storing product f

Xkm
od Amount of commodity k provided by o to d with mode m

Uo = 1 if origin o is selected
V k

o = 1 if commodity k is assigned to origin o
Y k

od = 1 if origin o provides commodity k to destination d
Zm

od = 1 if mode m is selected between o and d
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3 Solution Methodology

Model (1)-(13) can be solved by a branch-and-bound approach in which lower bounds are
computed by the simplex algorithm. However, its structure is also well suited for a primal
decomposition approach such as Benders decomposition [3]. We first present this approach
in Section 3.1, and then introduce valid inequalities that strengthen the LP relaxation and
improve the performance of both solution approaches in Section 3.2.

3.1 Benders decomposition

For given values of the U , V , Y and Z variables that satisfy integrality constraints (10)-(13),
model (1)-(13) reduces to the following primal subproblem involving only the Xkm

od variables:

Minimize
∑

k∈K

∑

o∈Ok

∑

d∈Dk

∑

m∈Mk
od

ckm
od Xkm

od (17)

∑

s∈Sr

∑

m∈Mr
sp

Xrm
sp −

∑

f∈Fr

∑

w∈Wf

∑

m∈M
f
pw

brfXfm
pw = 0 r ∈ R; p ∈ P (18)

∑

p∈Pf

∑

m∈M
f
pw

Xfm
pw −

∑

c∈C

∑

m∈M
f
wc

Xfm
wc = 0 f ∈ F ; w ∈ Wf (19)

∑

w∈Wf

∑

m∈M
f
wc

Xfm
wc = af

c f ∈ F ; c ∈ Cf (20)

∑

k∈K

∑

d∈Dk

∑

m∈Mk
od

uk
oX

km
od ≤ uoŪo o ∈ O (21)

∑

d∈Dk

∑

m∈Mk
od

Xkm
od ≤ qk

o V̄
k
o k ∈ K; o ∈ Ok (22)

∑

m∈Mk
od

Xkm
od ≤ qk

odȲ
k
od k ∈ K; o ∈ Ok; d ∈ Dk (23)

∑

k∈K

gkmXkm
od ≤ gm

odZ̄
m
od o ∈ O; d ∈ D; m ∈ Mod (24)

Xkm
od ≥ 0 k ∈ K; o ∈ Ok; d ∈ Dk; m ∈ Mk

od. (25)

Let α = (αr
p|r ∈ R; p ∈ P), β = (βf

w|f ∈ F ; w ∈ W), γ = (γf
c |f ∈ F ; c ∈ C),

δ = (δo ≤ 0|o ∈ O), ζ = (ζk
o ≤ 0|k ∈ K; o ∈ Ok), η = (ηk

od ≤ 0|k ∈ K; o ∈ Ok; d ∈ Dk)
and θ = (θm

od ≤ 0|o ∈ O; d ∈ D; m ∈ Mod) be the dual variables associated with constraints
(18)-(24), respectively.
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The dual of the primal subproblem, called the dual subproblem, can be written as:

Maximize
∑

f∈F

∑

c∈Cf

af
c γ

f
c +

∑

o∈O

[

uoŪoδo +
∑

d∈D

∑

m∈Mod

gm
odZ̄

m
odθ

m
od

]

+

∑

k∈K

∑

o∈Ok

[

qk
o V̄

k
o ζk

o +
∑

d∈Dk

qk
odȲ

k
odη

k
od

]

(26)

subject to

(α, β, γ, δ, ζ, η, θ) ∈ ∆, (27)

where ∆ denotes the polyhedron defined by the constraints of the problem.

The polyhedron ∆ does not depend on the values of the binary variables U , V , Y
and Z which appear only in the objective function of the dual subproblem. Because all Xkm

od

variables are non-negative in the primal subproblem, the dual subproblem has one constraint
of the form ≤ ckm

od for each variable Xm
od. If all cost coefficients ckm

od are non-negative, the dual
subproblem is always feasible because the null vector 0 is a feasible solution. Hence, either
the primal subproblem is infeasible or it is feasible and bounded. Let P∆ and Q∆ be the sets
of real-valued vectors representing the extreme points and extreme rays of ∆, respectively.

For given values of the U , V , Y and Z variables, the dual subproblem is bounded and
the primal subproblem is feasible if

∑

f∈F

∑

c∈Cf

af
c γ

f
c +

∑

o∈O

[

uoŪoδo +
∑

d∈D

∑

m∈Mod

gm
odZ̄

m
odθ

m
od

]

+

∑

k∈K

∑

o∈Ok

[

qk
o V̄

k
o ζk

o +
∑

d∈Dk

qk
odȲ

k
odη

k
od

]

≤ 0 (28)

for all extreme rays (α, β, γ, δ, ζ, η, θ) ∈ Q∆. In this case, the optimal value of both
problems is given by the expression

max
(α,β,γ,δ,ζ,η,θ)∈P∆

∑

f∈F

∑

c∈Cf

af
c γ

f
c +

∑

o∈O

[

uoŪoδo +
∑

d∈D

∑

m∈Mod

gm
odZ̄

m
odθ

m
od

]

+

∑

k∈K

∑

o∈Ok

[

qk
o V̄

k
o ζk

o +
∑

d∈Dk

qk
odȲ

k
odη

k
od

]

(29)

which is the maximum, over all extreme points of ∆, of the dual subproblem objective
function (26).
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Let MP represent the set of configuration and integrality constraints on U , V , Y and
Z variables. This set can contain any constraints, such as those of the form (14)-(16), that
involve only the binary variables. Introducing the free variable λ, one thus obtains the
following Benders master problem:

Minimize
∑

o∈O

[

coUo +
∑

d∈D

∑

m∈Mod

cm
odZ

m
od

]

+
∑

k∈K

∑

o∈Ok

[

ck
oV

k
o +

∑

d∈Dk

ck
odY

k
od

]

+ λ (30)

subject to

∑

f∈F

∑

c∈Cf

af
c γ

f
c +

∑

o∈O

[

uoδoUo +
∑

d∈D

∑

m∈Mod

gm
odθ

m
odZ

m
od

]

+

∑

k∈K

∑

o∈Ok

[

qk
o ζ

k
o V k

o +
∑

d∈Dk

qk
odη

k
odY

k
od

]

≤ 0 (α, β, γ, δ, ζ, η, θ) ∈ Q∆ (31)

λ ≥
∑

f∈F

∑

c∈Cf

af
c γ

f
c +

∑

o∈O

[

uoδoUo +
∑

d∈D

∑

m∈Mod

gm
odθ

m
odZ

m
od

]

+

∑

k∈K

∑

o∈Ok

[

qk
oζ

k
o V k

o +
∑

d∈Dk

qk
odη

k
odY

k
od

]

(α, β, γ, δ, ζ, η, θ) ∈ P∆ (32)

(U, V, Y, Z) ∈ MP . (33)

Formulation (30)-(33) contains a very large number of constraints. However, an efficient
solution method is obtained by dynamically generating only subsets of feasibility cuts (31)
and optimality cuts (32). Starting from empty subsets of extreme points and extreme rays,
each iteration of the algorithm first solves a relaxed Benders master problem which consists
of model (30)-(33), where the sets P∆ and Q∆ are replaced by the subsets P τ

∆
⊆ P∆ and

Qτ
∆

⊆ Q∆ of extreme points and extreme rays available at iteration τ . Solving the relaxed
Benders master problem provides a lower bound LB on the optimal solution value as well
as a solution (Ū , V̄ , Ȳ , Z̄) which is used to set up the dual subproblem (26)-(27). If the
dual subproblem is bounded, an optimal solution corresponding to an extreme point of ∆

can be identified and leads to an optimality cut of the form (32). In this case, an upper
bound UB on the optimal solution value can be computed, and a feasible solution to the
original problem can be identified by solving the primal subproblem (17)-(25). If the dual
subproblem is unbounded, an extreme ray that violates one of the constraints (31) can be
identified. After adding the newly identified extreme point or extreme ray to the appropriate
set, the algorithm moves to iteration τ +1. The process continues until LB = UB, at which
point an optimal solution has been identified. More details on this approach can be found
in the original paper of Benders [3] and in application papers such as those of Geoffrion

and Graves [8] and Dogan and Goetschalckx [6].
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3.1.1 Generating Pareto-optimal cuts

When the primal subproblem (17)-(25) is degenerate, the dual subproblem (26)-(27) may
have several optimal solutions, possibly yielding different optimality cuts of the form (32).
Let φ = (α, β, γ, δ, ζ, η, θ) denote an extreme point of the set P∆. Let also rhs(φ) denote
the right-hand-side of (32) for the extreme point φ. The cut obtained from the extreme point
φ1 dominates that obtained from the extreme point φ2 if, for every (U, V, Y, Z) ∈ MP ,
rhs(φ1) ≥ rhs(φ2), with strict inequality for at least one point in MP . A cut is said to be
Pareto-optimal if no other cut dominates it (see, e.g., [14]).

Let MPLP denote the polyhedron obtained by replacing the set B by the interval [0, 1]
in (10)-(13), and let ri(MPLP ) denote the relative interior of MPLP .

For a given vector (Ū , V̄ , Ȳ , Z̄) ∈ MPLP for which the dual subproblem is bounded, let
v(Ū , V̄ , Ȳ , Z̄) denote the optimal value of the subproblem. To identify an optimal solution to
the dual subproblem that yields a Pareto-optimal cut, one must solve the following auxiliary
subproblem, where (Ũ , Ṽ , Ỹ , Z̃) ∈ ri(MPLP ) :

Maximize
∑

f∈F

∑

c∈Cf

af
c γ

f
c +

∑

o∈O

[

uoŨoδo +
∑

d∈D

∑

m∈Mod

gm
odZ̃

m
odθ

m
od

]

+

∑

k∈K

∑

o∈Ok

[

qk
o Ṽ

k
o ζk

o +
∑

d∈Dk

qk
odỸ

k
odη

k
od

]

(34)

subject to

∑

f∈F

∑

c∈Cf

af
c γ

f
c +

∑

o∈O

[

uoŪoδo +
∑

d∈D

∑

m∈Mod

gm
odZ̄

m
odθ

m
od

]

+

∑

k∈K

∑

o∈Ok

[

qk
o V̄

k
o ζk

o +
∑

d∈Dk

qk
odȲ

k
odη

k
od

]

= v(V̄ , Ȳ , Z̄, Ū) (35)

(α, β, γ, δ, ζ, η, θ) ∈ ∆. (36)

The additional constraint (35) ensures that one will choose an extreme point from the set
of optimal solutions to the original dual subproblem. Let q be the dual variable associated
with constraint (35). Instead of solving model (34)-(36), one can solve its dual which is
easily obtained by introducing the extra variable q in model (17)-(25) and modifying its
right-hand-side. Solving the auxiliary problem in this form is very convenient in terms of
ease of implementation and computational efficiency since the same basic representation can
be used to solve both the primal subproblem (17)-(25) and the auxiliary subproblem that is
used to generate Pareto-optimal cuts.

11



3.1.2 Generating a set of initial cuts from problem relaxations and computing

integer solutions

Instead of solving the integer relaxed master problem at every iteration of the Benders de-
composition algorithm, one may first solve the LP relaxation of the problem by relaxing the
integrality constraints on the master problem variables (see, e.g., [15]). Once the LP relax-
ation is solved, integrality constraints are reintroduced and additional cuts are generated
until an optimal integer solution is found. The cuts generated when solving the LP relax-
ation are valid for the integer programming problem because the relaxation of integrality
constraints on master problem variables has no effect on the subproblem.

The same idea can be used when configuration constraints are imposed on the binary
variables. For example, if single-sourcing constraints (16) are imposed, these constraints can
first be relaxed so as to generate optimality and feasibility cuts by solving a smaller, relaxed
Benders master problem. Once an optimal solution has been reached for this relaxation, the
single-sourcing constraints are reintroduced and more cuts are generated until an optimal
solution is found.

Finally, to accelerate the solution of the integer master problem, branching priorities can
be used so as to first make branching decisions on Uo variables followed by V k

o , Y k
od and Zm

od

variables, in that order.

3.2 Valid Inequalities

When solving model (1)-(13) either with a simplex-based branch-and-bound algorithm or
with the Benders decomposition approach outlined in Section 3.1, various types of valid
inequalities can be added to the formulation. For both approaches, these constraints can
strengthen the LP relaxation of the problem. In the case of the Benders decomposition
approach, they can also improve convergence by helping the relaxed master problem to find
solutions that are close to optimal. Indeed, because the iterative algorithm is initialized from
empty subsets of extreme rays and extreme points, the relaxed master problem initially con-
tains only the integrality constraints. As a result, several iterations must be performed before
enough information is transferred to the master problem. Introducing valid inequalities in
the master problem can thus dramatically reduce the number of cuts that will have to be
generated from extreme points and extreme rays of the dual subproblem polyhedron.

To strengthen the LP relaxation of model (1)-(13), the following constraints can be added
to the formulation:

V k
o ≤ Uo (k ∈ K; o ∈ Ok). (37)

Constraints (37) ensure that a commodity k is not assigned to a source o ∈ Ok unless the
source is also selected. Assuming that uo is finite and uk

o is positive for every k, constraints
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(37) are redundant in the presence of (5). However, they may considerably strengthen the
LP relaxation when uo is large compared to the amount of capacity that is actually used in
the solution. Observe that in presence of constraints (37), integrality constraints on the Uo

variables can in fact be relaxed.

Recalling that af
c denotes the demand of customer c for product f , one may also add the

constraints

∑

s∈Sr

qr
sV

r
s ≥

∑

f∈F

∑

c∈Cf

af
c b

rf (r ∈ R) (38)

∑

p∈Pf

qf
pV f

p ≥
∑

c∈Cf

af
c (f ∈ F) (39)

∑

w∈Wf

qf
wV f

w ≥
∑

c∈Cf

af
c (f ∈ F) (40)

to ensure that enough capacity per raw material or per finished product is provided by the
selected suppliers, plants and warehouses to satisfy the demand for all products. In addition,
if the same system of equivalent units is used throughout the logistics network, the following
constraints can be added to ensure that enough global capacity is provided by the selected
suppliers, plants and warehouses:

∑

s∈S

usUs ≥
∑

r∈R

ur
∑

f∈F

brf
∑

c∈C

af
c (41)

∑

p∈P

upUp ≥
∑

f∈F

uf
∑

c∈C

af
c (42)

∑

w∈W

uwUw ≥
∑

f∈F

uf
∑

c∈C

af
c . (43)

The latter two sets of constraints do not strengthen the LP relaxation of the problem.
However, they considerably improve convergence when using Benders decomposition. In
addition, their introduction results in less nodes being explored when using the simplex-
based branch-and-bound approach.

When single-sourcing is imposed, the following constraints can be used to help ensure
that the total demand of all customers assigned to a given warehouse does not exceed its
capacity:

∑

c∈C

Y f
wca

f
c ≤ qf

wV f
w (w ∈ W; f ∈ F) (44)

∑

c∈C

∑

f∈F

uf
waf

c Y
f
wc ≤ uwUw (w ∈ W). (45)
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Finally, when fixed costs and capacities gm
od are imposed on transportation modes, the

constraints
∑

w∈Wf

Y f
wc ≥ 1 (f ∈ F ; c ∈ Cf) (46)

∑

p∈Pf

Y f
pw ≥ V f

w (f ∈ F ; w ∈ Wf ) (47)

∑

s∈Sr

Y r
sp ≥ V f

p (f ∈ F ; p ∈ Pf ; r ∈ Rf) (48)

∑

m∈Mk
od

Zm
od ≥ Y k

od (k ∈ K; o ∈ Ok; d ∈ Dk) (49)

Y k
od ≤ V k

o (k ∈ K; o ∈ Ok; d ∈ Dk) (50)

can be added to the formulation to ensure that whenever a commodity k must be transported
between an origin o and a destination d, at least one transportation mode in Mk

od is selected.
Constraints (46)-(48) ensure that one source is selected for each customer demand, for each
product assigned to a warehouse and for each raw material required to make a product that
is assigned to a plant. Constraints (49) force the selection of at least one transportation
mode for each source that is chosen. Finally, constraints (50) ensure that an origin o is
not selected as a source for commodity k unless the commodity is actually assigned to that
origin. These constraints strengthen the LP relaxation and have proven to be quite effective
in computational testing.

4 Computational Experiments

To evaluate the tractability of model (1)-(13) and compare the performance of the two
solution approaches proposed in Section 3, we performed computational experiments on a
set of randomly generated test instances. The procedure used to generate these instances is
first described in Section 4.1, followed by a summary of computational results in Section 4.2
and a discussion of reoptimization capabilities in Section 4.3.

4.1 Description of Data

We randomly generated a set of 24 instances according to assumptions that strike a balance
between realism and ease of generation and reproducibility. Instances vary according to
three main dimensions: size, complexity and cost structure. The size of an instance is given
by the number of suppliers (|S|), the number of potential plant locations (|P|), the number
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of potential warehouse locations (|W|), the number of customers (|C|), the number of raw
materials (|R|), and the number of finished products (|F|). For an instance with |C| = n,
we have set |S| = |P| = |W| = n/10 and |R| = |F| = n/5. Three basic sizes were used in
our experiments: n = 100, 200 and 300.

The complexity of an instance is itself determined by two factors: capacity structure
and flow magnitude. The capacity structure is determined by the number of suppliers that
can provide each raw material (|Sr|), the number of potential plants that can make each
product (|Pf |) and the number of warehouses that can distribute each product (|Wf |). For
low capacity instances (denoted by the suffix ’c’), these values are chosen randomly in the
set {1, . . . , 5} according to a uniform distribution, while for high capacity instances (denoted
by the suffix ’C’), they are chosen in the set {1, . . . , 10}. The corresponding number of
items (suppliers, plants or warehouses) are then selected randomly (without replacement)
according to a uniform distribution over the set of compatible items. For example, if |Sr| = 4
for raw material r, then four suppliers will be selected at random from S to obtain Sr.

For both low and high capacity instances, the actual overall and commodity specific
capacities are determined as follows. For each commodity k ∈ K, a unit capacity usage uk is
first generated by choosing a random integer from the set {1, . . . , 10} according to a uniform
distribution. For every origin o ∈ Ok, we assume uk

o = uk. Let u be the total manufacturing
capacity that is required to satisfy the demand for all products and let ū = u/|P|. The
capacity up of each plant p ∈ P is selected at random from the set [α · ū, β · ū] according to a
uniform distribution. For all instances, we have set α = 1 and β = |P|. The same approach
is used to generate uo values for the suppliers and warehouses. A similar method is also used
to generate the uk

o values that represent individual capacities for raw materials and finished
products. In this case however, the average value ūk is computed with respect to the number
of locations that can provide this commodity (i.e., |O|k). For low capacity instances, these
rules tend to ensure that approximately 50% of all potential locations are selected and that
each raw material and finished product is assigned to approximately 50% of the origins that
can provide it. These percentages are closer to 25% for high capacity instances.

The flow magnitude is determined by the number of raw materials that go into each
finished product (|Rf |) and the number of customers that have a positive demand for each
product (|Cf |). For low flow magnitude instances (denoted by the suffix ’f’), the values of
|Rf | and |Cf | are chosen from the sets {1, 5} and {1, 25}, respectively, while for high flow
magnitude instances (denoted by the suffix ’F’), these values are chosen from the sets {1, 10}
and {1, 50}, respectively. In both cases, the actual values af

c are chosen randomly from the
set {1, . . . , 10}, for every finished product f ∈ F and every customer c ∈ Cf . In all instances,
the amount brf of raw material r ∈ Rf that goes into each unit of finished product f is also
chosen randomly from the set {1, . . . , 10}.

The cost structure is determined as follows. For each plant p ∈ P, a fixed cost cp is first
chosen randomly in the interval [105, 106] according to a uniform distribution. Next, for each
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product f ∈ F , an average fixed cost c̄f is chosen randomly in the interval [104, 105]. Then,
for every plant p ∈ Pf , a fixed cost cf

p is chosen from the set [α · c̄f , β · c̄f ], where α = 0.75 and
β = 1.25. This ensures that the fixed cost of making product f varies from plant to plant
within reasonable limits. For each warehouse w ∈ W, fixed costs cw and cf

w are generated
by using the same procedure and choosing values in [104, 105] and [103, 104], respectively. In
the case of suppliers, the corresponding intervals are [103, 104] and [102, 103].

For every variable Xkm
od , the variable cost ckm

od is composed of two distinct terms: the
unit transportation cost of commodity k from o to d with mode m and the unit purchase,
production or warehousing cost of commodity k at the origin o. For every commodity k,
every origin o ∈ Ok and every destination d ∈ Dk, an average unit transportation cost
t̄kod is first generated by multiplying the Euclidean distance between o and d by a random
number chosen according to a uniform distribution in the interval [1, 10]. For every location,
Euclidean coordinates are themselves chosen randomly in the unit square [0, 1]× [0, 1]. Then,
for every mode m ∈ Mkm

od , a cost tkm
od is chosen from the interval [α· t̄kod, β · t̄

k
od], where α = 0.75

and β = 1.25. Next, for every raw material r ∈ R and every finished product f ∈ F , an
average unit purchase, production or warehousing cost āk is chosen randomly in the interval
[1, 10]. Then, for every origin o ∈ Ok, a unit cost ak

o is chosen in the interval [α · āk, β · āk]
where α = 0.75 and β = 1.25. Finally, the cost ckm

od is obtained by setting ckm
od = tkm

od +ak
o . For

each size and complexity variant, we consider two levels of variable costs. For low variable
cost instances (denoted by the suffix ’v’), variable costs are determined as explained above
while for high variable cost instances (denoted by the suffix ’V’), these values are multiplied
by 10. These rules ensure that variable costs represent 5-10% of total cost in the former case
and 25-50% in the latter.

Finally, in all instances, a single transportation mode with no fixed cost is used between
suppliers and plants as well as between plants and warehouses. However, for every warehouse-
customer pair, the number of available transportation modes is selected randomly from the
set {1, . . . , 3}. These assumptions represent a situation where the company uses a single
transportation mode (e.g., full truckload transportation) for all movements between plants
and warehouses, but has a choice of transportation modes (with different fixed and variable
costs) for the different customer zones it is serving. For each mode, a fixed cost cm

od is then
chosen randomly from the interval [103, 104]. For each finished product f ∈ F , the value
gfm is set equal to 1. Then, the capacity gm

wc of mode m is equal to the total demand (in
real units) of customer c. As a result, the capacity constraints are not binding but their
right-hand-sides serve as “big M” constants to impose the fixed cost cm

od whenever a mode
is used.

The three different sizes, two capacity structures and two demand structures yield a total
of 12 basic instances for which two cost structures are considered. Table 4.1 summarizes the
main characteristics and size of model (1)-(13) for each of these basic instances. The largest
instance, 300CF, has a total of 19,232 binary variables, 23,725 continuous variables and
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22,323 constraints. Because fixed costs are imposed only on transportation modes between
warehouses and customers, Zm

od variables are defined only for (o, d) ∈ W × C. Furthermore,
Y k

od variables do not carry a fixed cost but are defined for the purpose of imposing single-
sourcing constraints and introducing valid inequalities (46)-(50). It is worth mentioning
that when fixed costs are not considered for transportation modes and single-sourcing is not
imposed, the resulting model is considerably smaller because all Zm

od and Y k
od variables can be

dropped from the formulation. For each instance, the number of constraints reported in the
table does not include the sets of valid inequalities whose cardinality will be given separately
in the next section.

Table 2: Characteristics and size of basic problem instances
Number of variables Number of

No. |C| |R|, |F| |S|, |P|, |W| Uo V k
o Y k

od Zm
od Xkm

od constraints

100cf 100 20 10 30 162 935 1,309 2,346 2,905

100cF 100 20 10 30 171 1,296 1,334 3,212 3,525

100Cf 100 20 10 30 341 1,761 1,775 5,110 4,490

100CF 100 20 10 30 269 2,096 1,662 5,523 4,856

200cf 200 40 20 60 369 1,803 2,962 4,995 6,218

200cF 200 40 20 60 350 3,085 4,016 7,612 9,072

200Cf 200 40 20 60 567 2,851 4,164 8,556 8,859

200CF 200 40 20 60 606 4,778 5,403 13,580 12,657

300cf 300 60 30 90 539 2,558 4,465 7,072 9,194

300cF 300 60 30 90 520 4,386 6,823 11,567 14,404

300Cf 300 60 30 90 1009 4,825 7,636 16,243 15,560

300CF 300 60 30 90 942 7,920 10,280 23,725 22,323

The size of these instances is similar to or larger than the size of real-life instances
solved in various applications in the literature. For example, Pooley [17] reports results
for a network with 10 plant and 13 warehouse locations, 48 customer zones and 6 product
types. Arntzen et al. [2] describe an application at Digital Equipment Corporation with 33
plant and 30 warehouse locations, leading to a model with approximately 6,000 constraints
and 20,000 variables. Pirkul and Jayaraman [16] present results on randomly generated
instances with up to 10 plant and 20 warehouse locations, 100 customer zones and 3 products.
They also present results on real-life instances with 5 plant and 30 warehouse locations, 75
customer zones and 10 products. Finally, Camm et al. [4] report on a study at Procter &
Gamble involving hundreds of suppliers, over 50 product lines, 60 plants, 10 distribution
centers and hundreds of customer zones.
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4.2 Summary of Results

For each of the 24 instances, we consider three scenarios: in the first, we do not impose
either single-sourcing or fixed costs on transportation modes. In the second, we only require
single-sourcing for each customer demand. Finally, the third supposes single-sourcing as
well as fixed costs on all transportation modes between warehouses and customers. The first
scenario is thus a relaxation of the second which, in turn, is a relaxation of the third.

All tests were performed on a Pentium III (933 MHz) processor with 256 Mb of RAM.
For the simplex-based branch-and-bound approach, we used CPLEX 6.6.1 with steepest-
edge pricing, strong branching and a depth-first search until an integer solution is found,
followed by a best-bound search. These settings provided the best results throughout our
experiments. For the Benders decomposition solution, CPLEX was used for solving the LP
relaxations and the MIP problems. The same parameter settings as above were used for the
simplex pricing and the branch-and-bound search.

When solving the problem with CPLEX, the branch-and-bound search was stopped when
an integer solution within 1% of optimality was identified. Although it would be possible
to solve the problem to optimality, computation times tend to grow considerably compared
to those required to obtain near-optimal solutions. Given that the data (cost, demand and
capacity estimations) used in real-life applications often contain a margin of error larger than
1%, we feel that solving the problem to optimality is rarely justified in practice.

For Benders decomposition, a two-phase approach was used as previously explained in
Section 3.1.2. In the first phase, integrality was relaxed for the master problem variables
and cuts were generated until (UB − LB)/LB < 0.001 (see Section 3.1). This is equivalent
to solving the LP relaxation with a 0.1% optimality tolerance. In the second phase, inte-
grality was imposed on the master problem variables, and the algorithm iteratively solved
the integer master problem and generated additional cuts until an integer solution within
1% of optimality was identified. Generally, each second phase iteration takes much longer
than a first phase iteration because the relaxed Benders master problem must be solved with
integrality constraints in the former case. From the computational tests, we have observed
that solving the LP relaxation with a larger optimality tolerance resulted in more cuts being
generated in the second phase whereas decreasing the tolerance below 0.1% did not further
reduce the number of iterations performed in that phase.

Finally, the Pareto-optimal cuts we generated for all instances and scenarios provided
significant performance improvements over the standard implementation. However, each
iteration took longer because the auxiliary subproblem had to be solved whenever the primal
subproblem was feasible. Nevertheless, the total number of iterations performed was greatly
reduced. On most instances, we observed tenfold speed improvements. Figure 1 shows the
amelioration of the lower and upper bounds as a function of CPU time when Pareto-optimal
cuts were used compared to when they were not, for a typical instance of the problem.
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Figure 1: Values of lower (LB) and upper (UB) bounds as a function of CPU time

4.2.1 First scenario

Because this scenario relaxes single-sourcing constraints and fixed costs on transportation
modes, variables Y k

od and Zm
od as well as constraints (7) and (8) are not required and can be

omitted from the model.

As a first step in our experiments, we wanted to evaluate the impact of the valid in-
equalities (37) and (38)-(43) on solution time. For the CPLEX branch-and-bound approach,
this is shown in Table 3. For the smallest eight instances, the columns under the heading
Basic model report the CPU time (in minutes) needed to identify an integer solution within
1% of optimality, the number of branch-and-bound nodes explored and the (approximate)
integrality gap for the model (1)-(13). The next two groups of columns report similar statis-
tics when the constraints (37) are included either by themselves or together with (38)-(43).
Column # indicates the total number of valid inequalities added to the model. The gaps
reported may slightly overestimate the true integrality gaps because the search is stopped
as soon as an integer solution within 1% of optimality is identified.

The results show that in most cases constraints (37) strengthened the LP relaxation
and considerably reduced the difficulty of the problem. Constraints (38)-(43) also positively
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affected performance, dramatically reducing the number of branch-and-bound nodes that
needed to be explored, even though they did not further strengthen the LP relaxation. The
Benders decomposition could not solve even the smallest instances within 24 hours of CPU
time without introducing both types of valid inequalities. Consequently, these two sets were
used in all further testing.

Table 3: Impact of valid inequalities

Basic model With (37) With (37) and (38)-(43)
No. CPU Nodes Gap CPU Nodes Gap # CPU Nodes Gap #

100cfv 4.40 2,794 66.61 1.18 732 47.51 162 0.03 13 47.36 225

100cfV 3.66 1,365 50.52 1.43 816 35.73 162 0.04 21 35.64 225

100cFv 34.44 16,653 69.08 84.57 38,801 50.11 171 0.04 12 50.03 234

100cFV 11.29 3,374 50.16 35.93 16,536 36.36 171 0.06 21 36.19 234

100Cfv 435.56 127,591 48.56 149.47 37,693 33.56 341 0.14 21 33.45 404

100CfV 177.71 51,864 36.50 21.95 5,239 25.21 341 0.15 21 25.32 404

100CFv >720 >2E5 >720 >2E5 269 0.57 111 40.26 332

100CFV 174.03 48,574 32.06 18.50 5,213 22.46 269 0.46 91 22.74 332

Table 4 reports the results obtained by the Benders decomposition and CPLEX methods
for all instances. For the former approach, columns LP and MIP indicate the number of
cuts generated for the LP relaxation and the additional number of cuts generated for the
mixed-integer problem. Columns Feas. and Opt. show the total number of feasibility and
optimality cuts that were generated in the two phases. Column LP provides the CPU time
(in minutes) required to solve the LP relaxation within 0.1% of optimality while column
MIP gives the total CPU time required to find an integer solution within 1% of optimality.
Since the value of the LP relaxation is the same in both approaches, we only report the
(approximate) integrality gaps for the CPLEX. Of course, the cost of the solutions identified
by the two solution methods (and the resulting integrality gaps) may differ by at most 1%
because of the heuristic stopping criterion.

The results show that the performance of the two approaches is somewhat comparable.
The average total CPU time is 0.86 minutes for CPLEX and 1.64 minutes for Benders
decomposition. Interestingly, the latter approach is affected by the magnitude of the variable
costs as a percentage of the total costs. When subproblem costs are larger, more information
must be transferred to the master problem in the form of Benders cuts. This phenomenon
is reflected by larger computation times and a larger number of optimality cuts for the ’V’
problems when compared to their ’v’ counterparts.

It is apparent from these results that the Benders decomposition method benefits from
generating an initial set of cuts by solving the LP relaxation. Although the integrality gaps
are rather large, only a few iterations need to be performed in the second phase of the
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Table 4: Computational statistics for the first scenario

Benders Decomposition CPLEX
Benders Cuts CPU Time CPU Time

No. LP MIP Feas. Opt. LP MIP LP MIP Nodes Gap

100cfv 34 2 32 4 0.02 0.03 0.01 0.03 13 47.36

100cfV 52 4 34 22 0.04 0.05 0.01 0.05 21 35.64

100cFv 32 1 28 5 0.03 0.04 0.01 0.04 12 50.03

100cFV 44 1 28 17 0.05 0.06 0.01 0.06 21 36.19

100Cfv 85 3 77 11 0.26 0.33 0.03 0.14 21 33.45

100CfV 110 3 84 29 0.36 0.43 0.03 0.15 21 25.32

100CFv 116 2 96 22 0.41 0.45 0.03 0.57 111 40.26

100CFV 159 10 117 52 0.60 0.76 0.03 0.46 91 22.74

200cfv 110 4 109 5 0.28 0.32 0.05 0.19 21 42.23

200cfV 120 8 108 20 0.37 0.47 0.04 0.30 48 34.46

200cFv 48 1 42 7 0.22 0.24 0.07 0.31 36 33.14

200cFV 78 1 60 19 0.36 0.39 0.07 0.38 41 21.11

200Cfv 87 1 83 5 0.39 0.42 0.11 0.59 60 42.81

200CfV 136 1 100 37 0.86 0.89 0.11 0.33 21 32.02

200CFv 185 1 168 18 1.97 2.06 0.17 1.00 58 38.93

200CFV 248 2 194 56 2.89 3.04 0.17 0.99 63 20.69

300cfv 64 2 62 4 0.25 0.29 0.10 0.49 50 37.90

300cfV 88 2 63 27 0.51 0.57 0.09 0.30 21 30.82

300cFv 83 2 76 9 0.66 0.73 0.16 0.79 53 33.75

300cFV 116 2 85 33 1.20 1.34 0.15 0.83 61 19.36

300Cfv 282 1 267 16 3.83 4.20 0.41 3.47 101 43.86

300CfV 308 1 227 82 6.08 6.35 0.41 2.38 101 33.03

300CFv 114 1 88 27 3.35 3.80 0.57 3.33 87 36.74

300CFV 286 4 96 194 11.16 12.04 0.52 3.41 121 17.92

algorithm when the Benders master problem must be solved as an integer program. This is
explained by the fact that the cuts generated in the first phase provide a good approximation
of the feasible region of the integer master problem.

4.2.2 Second scenario

In this scenario, Y k
ok variables are added to the formulation together with constraints (7) and

(16) to impose the single-sourcing of every customer demand.

Again, we first evaluated the impact of introducing additional valid inequalities. Table 5
compares the results obtained by the simplex-based branch-and-bound approach with and
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without constraints (44)-(45). Recall that in both cases, constraints (37)-(43) were added
to the formulation. Here too, the introduction of a small number of valid inequalities had a
major impact on performance. On the larger instances, both the CPU time and the number
of nodes explored were reduced on average by a factor of 10. These constraints similarly
influenced the Benders decomposition.

Table 5: Impact of additional valid inequalities for single-sourcing

Basic model With (44)-(45)
No. CPU Nodes Gap CPU Nodes Gap #

100cfv 1.08 342 47.36 0.44 99 47.36 70

100cfV 0.97 311 35.64 0.15 31 36.08 70

100cFv 1.86 440 50.03 0.44 74 50.03 63

100cFV 2.05 481 36.19 0.48 84 36.19 63

100Cfv 5.46 918 33.46 0.71 67 33.46 122

100CfV 10.69 1862 24.98 0.87 95 24.95 122

100CFv 22.92 3489 40.28 2.50 265 40.45 89

100CFV 15.80 2474 22.45 2.35 241 22.51 89

For Benders decomposition, single-sourcing constraints (16) affect only the master prob-
lem. As explained in Section 3.1.2, instead of introducing these constraints at the beginning
of the solution process, one can first solve a relaxation of the problem obtained by introduc-
ing variables Y k

od in the model but dropping constraints (16). All cuts generated when solving
this relaxation are valid for the restricted problem because the presence of constraints (16)
does not affect the polyhedron of the dual subproblem. In our tests, very few iterations (i.e.,
often less than 5) were needed to find a solution to the restricted problem after having solved
this relaxation. As before, integrality constraints on the master problem are added last and
a few additional iterations must be performed to obtain a near-optimal integer solution.

Table 6 presents the results obtained by both approaches for this scenario. For the
Benders decomposition, we separately report the number of cuts generated for solving the
initial relaxation (LP relaxation without single-sourcing constraints), followed by the number
of additional cuts needed to solve the LP relaxation of the restricted problem, and the number
of further cuts required to identify an integer solution within 1% of optimality. Except for
three cases (200CFv, 200CFV and 300CFV), the total CPU time to find an integer solution
within 1% of optimality was always smaller for the Benders decomposition. In addition, its
average CPU time was 4.08 minutes compared to 11.66 minutes for the CPLEX. Of course,
this difference is in part explained by the exceptionnally large CPU time for instance 300Cfv.
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Table 6: Computational statistics for the second scenario

Benders Decomposition CPLEX
Benders Cuts CPU Time CPU Time

No. Rel. LP MIP Feas. Opt. LP MIP LP MIP Nodes Gap

100cfv 33 1 1 30 5 0.04 0.05 0.03 0.44 99 47.36

100cfV 52 1 1 31 23 0.08 0.11 0.03 0.15 31 36.08

100cFv 28 8 1 31 6 0.13 0.15 0.05 0.44 74 50.03

100cFV 36 1 1 20 18 0.10 0.11 0.05 0.48 84 36.19

100Cfv 105 2 2 96 13 0.61 0.71 0.12 0.71 67 33.46

100CfV 127 1 3 101 30 0.66 0.81 0.11 0.87 95 24.95

100CFv 110 1 1 89 23 0.66 0.80 0.15 2.50 265 40.45

100CFV 173 4 4 128 53 1.32 2.21 0.14 2.35 241 22.51

200cfv 104 2 1 101 6 0.42 0.49 0.16 2.01 217 42.26

200cfV 144 2 1 125 22 0.79 0.91 0.14 5.87 661 34.49

200cFv 52 2 1 46 9 0.59 0.72 0.31 3.45 265 33.14

200cFV 66 1 1 48 20 0.61 0.80 0.29 1.77 101 20.73

200Cfv 117 3 1 114 7 1.02 1.10 0.40 2.98 186 42.81

200CfV 142 2 1 106 39 1.57 1.65 0.42 3.20 193 31.98

200CFv 221 1 1 204 19 3.82 4.20 0.82 3.03 101 38.93

200CFV 260 3 2 206 59 5.64 6.05 0.82 2.94 101 20.68

300cfv 61 1 2 59 5 0.42 0.54 0.30 3.54 266 37.91

300cfV 93 1 2 68 28 0.80 0.94 0.29 15.23 1281 30.80

300cFv 99 1 2 92 10 1.38 1.76 0.68 5.80 252 33.56

300cFV 109 1 2 78 34 2.03 2.72 0.67 9.03 414 19.82

300Cfv 239 2 1 225 17 4.84 5.66 1.37 151.02 6275 43.83

300CfV 292 1 1 203 91 8.44 8.97 1.24 28.97 1153 32.94

300CFv 122 4 1 96 31 8.60 10.16 2.61 15.33 306 36.96

300CFV 296 10 10 105 211 25.72 46.29 2.44 17.74 388 17.78

4.2.3 Third scenario

In this last scenario, fixed costs and capacities are imposed on all transportation modes
between warehouses and customers in addition to the previous single-sourcing requirement.
As a result, mode selection variables Zkm

od must be introduced in the formulation together
with capacity constraints (8).

As expected from the first two scenarios, valid inequalities proved to be extremely use-
ful in improving the performance of both solution approaches. Since transportation modes
must be chosen only between warehouses and customers, constraints (47)-(48) can be dis-
regarded in these experiments. Furthermore, single-sourcing implies that constraints (46)
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are automatically satisfied in the presence of (16). Finally, constraints (49) are redundant
when the valid constraints (44)-(45) are considered, but they do, however, strengthen the
LP relaxation. As a result, our analysis of valid inequalities (46)-(50) concentrated on the
latter two sets.

In this scenario, solving the problem without any of the additional constraints required
several hours of computation, even for the smallest of the 24 instances. The addition of valid
inequalities was thus absolutely necessary to obtain good quality solutions for the larger
instances. Table 7 presents the results obtained with the additional constraints (49), and
with both (49) and (50). Constraints (49) had a considerable effect, bringing CPU times
down from several hours to a few minutes. The additional constraints (50) had a limited
(and sometimes even negative) impact on small problems but did prove to be useful on the
larger ones. They also strengthened the LP relaxation as shown by the reduced integrality
gaps obtained. Finally, observe that there is exactly one constraint of each type for each
variable Y k

od. The main drawback of these constraints is thus their large number. For the
Benders decomposition, we experimented with a dynamic generation of these constraints
when they became violated. This did not lead to any improvement as more than 50% of
all constraints were generated in the first few iterations when the optimal solution to the
master problem tended to vary significantly from one iteration to the next.

We have also considered a successively restrictive Benders decomposition approach, where
one starts by solving the relaxation obtained by dropping single-sourcing constraints and
setting the fixed cost cm

od of all transportation modes equal to 0. One then proceeds by solving
each of the more restrictive problems obtained by sequentially reintroducing these constraint
types and finally the integrality constraints on the master problem variables. Unfortunately,
this did not prove advantageous. Because valid inequalities (49)-(50) restrict the problem
and tighten the LP relaxation, we observed that far fewer iterations were performed when
the single-sourcing and transportation mode fixed cost constraints were included right from

Table 7: Impact of additional valid inequalities for mode selection

With (49) With (49)-(50)
No. CPU Nodes Gap # CPU Nodes Gap #

100cfv 0.63 32 43.10 935 0.62 39 38.87 1870

100cfV 0.79 45 33.62 935 0.68 47 30.25 1870

100cFv 1.07 40 45.48 1296 1.15 41 41.68 2592

100cFV 1.42 73 34.37 1296 1.06 48 31.21 2592

100Cfv 7.39 84 32.27 1761 6.46 74 23.97 3522

100CfV 15.41 248 24.93 1761 16.16 267 19.29 3522

100CFv 15.13 289 35.98 2096 31.24 620 31.76 4192

100CFV 16.66 337 21.92 2096 13.63 211 19.35 4192
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the start. Even though each iteration took longer, the total CPU times was slightly reduced.

Table 8 shows comparative statistics for the two approaches. Again, Benders decomposi-
tion was on average faster than the simplex-based branch-and-bound method (22.69 minutes
compared to 28.89 minutes). In all but one case (300CfV), the CPU time to find an in-
teger solution within 1% of optimality was also smaller for the former approach than for
the latter. As explained above, the reduced number of iterations compared to the previous
two scenarios is a direct result of the presence of valid inequalities (49)-(50). Because these
constraints strengthen the LP relaxation, integrality gaps are also smaller in this scenario
relative to the other two. For this scenario, CPU times are sometimes very large. However,
given the complexity of the problem and the size of the instances we considered, we believe
that an investment of a few hours of computation time for a strategic planning problem is
worthwhile and reasonable. This is particularly true since our approach lends itself to fast
reoptimization following small changes in the data.

4.3 Reoptimization Capabilities

Since the LNDP is a strategic planning problem, for a solution methodology to be viable, it
is utterly important that it be capable of efficient reoptimization in order to perform “what-
if” analyses. Indeed, most planners generally examine several scenarios, such as comparing
different demand and cost scenarios or different types of production and distribution network
structures.

After first solving the problem with current demand levels, one might for example fix the
values of the Uo variables and reoptimize the problem assuming a 10% increase in demand.
Solving the problem again with the increased demand but leaving the Uo variables free
would then provide an estimate of how far the best solution for the current demand is from
optimality, if demand were to increase by 10%. The two reoptimizations can be efficiently
solved by Benders decomposition since the two changes involved (fixing binary variables Uo

and modifying constants af
c ) do not affect the dual subproblem polyhedron. Indeed, fixing

binary variables to 1 affects only the master problem while increasing demand affects only
the objective function of the dual subproblem. As a result, all extreme points and extreme
rays identified when first solving the problem are still valid and can be used to generate an
initial set of optimality and feasibility cuts for the solution process. For a simplex-based
branch-and-bound approach, however, the search for integer solutions must restart from the
first node of the tree because the changes made affect the bounds that are computed at each
node. Obviously, the basis of the LP optimal solution for the original problem can often be
used as a starting point. However, our computational experiments showed that very little
time is actually spent solving the LP relaxation.

Reoptimization capabilities are in fact extremely useful in a wide array of situations.
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Table 8: Computational statistics for the third scenario

Benders Decomposition CPLEX
Benders Cuts CPU Time CPU Time

No. LP MIP Feas. Opt. LP MIP LP MIP Nodes Gap

100cfv 23 1 20 4 0.10 0.15 0.20 0.62 39 38.87

100cfV 44 1 24 21 0.21 0.48 0.22 0.68 47 30.25

100cFv 17 1 13 5 0.15 0.25 0.45 1.15 41 41.68

100cFV 19 1 6 14 0.23 0.39 0.34 1.06 48 31.21

100Cfv 84 2 77 9 1.52 2.96 1.33 6.46 74 23.97

100CfV 87 1 57 31 1.60 3.42 1.44 16.16 267 19.29

100CFv 81 1 61 21 1.65 4.05 2.71 31.24 620 31.76

100CFV 100 2 63 39 2.43 8.13 2.56 13.63 211 19.35

200cfv 81 1 77 5 1.41 1.82 1.04 2.23 61 35.97

200cfV 73 1 52 22 1.34 2.00 0.99 2.47 82 29.80

200cFv 40 1 34 7 1.80 2.49 2.45 4.86 72 27.54

200cFV 54 1 34 21 2.23 4.03 2.52 5.82 101 18.13

200Cfv 76 1 73 4 2.84 5.11 4.83 11.40 101 33.91

200CfV 111 2 84 29 4.62 8.32 4.73 13.10 171 26.23

200CFv 186 1 172 15 18.14 27.61 9.32 48.64 321 26.64

200CFV 290 1 193 98 33.47 47.53 9.78 57.56 484 15.93

300cfv 46 2 44 4 1.55 1.92 1.80 3.49 61 29.96

300cfV 69 2 50 21 2.36 2.82 1.83 4.32 101 24.79

300cFv 87 2 81 8 5.18 6.94 4.72 7.87 71 25.36

300cFV 92 2 76 18 6.35 9.04 4.96 9.33 101 15.82

300Cfv 227 1 218 10 29.84 60.68 23.81 74.82 277 33.00

300CfV 273 1 202 72 49.80 114.93 19.86 89.40 460 25.82

300CFv 120 1 97 24 48.41 109.32 57.07 147.24 273 24.73

300CFV 136 1 101 36 56.62 120.21 56.80 140.01 358 13.86

Other common examples are the addition of configuration constraints such as a minimum
number of plants to operate or a particular location that must be chosen to site a facility.
Reoptimization is also interesting in contexts where the user wants to impose some decisions
and let the solver optimize the rest of the network. With Benders decomposition, different
partial configurations can be tested rapidly by reoptimization. The only changes that may
require complete optimization from scratch are those that affect the cost of the flow variables
Xkm

od or the coefficients of these variables in the capacity constraints. These two types of
changes affect the constraints of the dual subproblem and, as a result, the set of extreme
points and extreme rays of the associated polyhedron. Other changes such as the modification
of fixed costs associated with binary variables and the modification of capacity levels (uo,
uk

o, gm
od, ...) can be handled through reoptimization.
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The results presented for the second scenario have already illustrated the reoptimization
capabilities provided by Benders decomposition. Additional testing we performed with slight
variations of the problem have further indicated that the problem can often be reoptimized
in just a fraction of the total CPU time required to solve it from scratch.

5 Conclusions and Extensions

This paper has introduced a new integrated formulation for the logistics network design
problem and compared two solution methodologies for it - a classical simplex-based branch-
and-bound and a Benders decomposition approach. Our computational experiments showed
that the methods are competitive and that Benders decomposition is slightly more advanta-
geous on the more difficult problems. We also proposed several groups of valid inequalities
and highlighted the considerable performance improvement they produce in both solution
methods. Furthermore, when these constraints are incorporated in the Benders decomposi-
tion algorithm, this offers outstanding reoptimization capabilities.

We believe our results are general in nature and will remain valid independent of the
scenario chosen. The experiments we have performed show that the methodology can be
used to solve realistic instances of large size. Furthermore, the reasonable computation times
and the good reoptimization capabilities of Benders decomposition lead us to believe that
the proposed approach is applicable in contexts where solutions must be obtained quickly.
Our methodology thus represents a likely alternative to meta-heuristics such as tabu search
and simulated annealing that have also proven to be quite effective in terms of computation
time but usually do not provide a precise measure of deviation from optimality (see, e.g.,
Lapierre et al. [12] and Jayaraman and Ross [10]).

The formulation presented here is flexible and can easily be adapted to handle multiple
production and distribution stages as well as multiple technology and capacity alternatives
at any given location. Future research could concentrate on extending the model and so-
lution method to handle the cases of dynamic (time-varying) and stochastic demand. The
first extension can be handled by discretizing the planning period and introducing additional
inventory variables in the formulation. If these linking variables are retained in the Benders
master problem, the subproblem decomposes by subperiod. The second extension can be
handled as a stochastic program with recourse in which a small set of scenarios (e.g., pes-
simistic, realistic and optimistic) is considered. Benders decomposition should again be an
appropriate method for the solution of such problems.
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