
An Integrated Open Framework
for Heterogeneous MPSoC Design Space

Exploration

Federico Angiolini1, Jianjiang Ceng2, Rainer Leupers2, Federico Ferrari1, Cesare Ferri1, and Luca Benini1

1Dipartimento di Elettronica, Informatica e Sistemistica, University of Bologna, 40136 Bologna, Italy
2Institute for Integrated Signal Processing Systems, RWTH Aachen University, 52056 Aachen, Germany

ABSTRACT
In recent years, increasing manufacturing density has allowed
the development of Multi-Processor Systems-on-Chip (MPSoCs).
Application-Specific Instruction Set Processors (ASIPs) stand out
as one of the most efficient design paradigms and could be es-
pecially effective as SoC computing engines. However, multiple
hurdles which are hindering the productivity of SoC designers and
researchers must be solved first. Among them, the difficulty of
thoroughly exploring the design space by simultaneously sweep-
ing axes like processing elements, memory hierarchies and chip
interconnect fabrics. We tackle this challenge by proposing an in-
tegrated approach where state-of-the-art platform modeling infras-
tructures, at the IP core level and at the system level, meet to pro-
vide the designer with maximum openness and flexibility in terms
of design space exploration. 1

1. INTRODUCTION
To face increasing architectural design complexity in deep-

submicron technology nodes, the reuse-centric paradigm is a nat-
ural solution. However, this approach still poses significant de-
sign challenges. First of all, general-purpose IP blocks lend them-
selves very well to quick parallel deployment in a Multi-Processor
System-on-Chip (MPSoC), but often do not provide enough perfor-
mance when running complex user applications, such as multime-
dia streaming or floating point computation. In fact, depending on
the application, dedicated IP blocks could deliver much higher ef-
ficiency thanks to task-optimized circuitry. This observation leads
to ASIPs (Application Specific Instruction set Processors), i.e. to
IP cores stemming from the architecture of general-purpose pro-
cessors but with an instruction set comprising at least some custom
instructions optimized to accelerate the task at hand. If designed
with state-of-the-art CAD toolchains, ASIPs can provide most of
the advantages of dedicated IPs but reduce development time by
several times [18] and maintain flexibility.

ASIPs alone cannot unfortunately be a full answer to the SoC
design woes. In fact, understanding the performance issues in a
multicore system brings the challenge to a new level. One axis of
exploration involves memory hierarchies, where both the partition-
ing among local (e.g. caches) and higher-latency memories and
the partitioning among private and shared buffers have to be inves-
tigated. Another critical point is the interconnection fabric, which
must have the lowest possible silicon real estate requirements while
managing to comply with the bandwidth and latency requirements
of a multiprocessor system. The assessment of such compliance is a

1This work has been partially supported by the ARTIST2 EU Net-
work of Excellence on Embedded Systems. Authors from Bologna
University acknowledge financial support by Semiconductor Re-
search Corporation (SRC) under contract no. 1188 and by STMi-
croelectronics.

non-trivial task, because the fabric is loaded with both explicit (e.g.
inter-processor messages) and implicit (e.g. cache refills) traffic.

It is crucial to notice that the interaction of the above mentioned
subsystems (processing, memory, communication) is complex, and
therefore that they are not very prone to standalone analysis. For
example, the move from general-purpose IP cores to ASIPs with a
highly parallel task-specific execution engine is likely to generate
more stress for the memory and interconnection subsystems, which
may not be able to cope with it. In this case, computing resources
would be wasted. On the other hand, a low-latency design with
large caches and a fast interconnect could be overkill if the IP cores
were not properly sized. Even worse, caching policies may exhibit
different and unpredictable performance depending on how specific
ASIP instructions are implemented.

These simple examples highlight the need for a thorough explo-
ration of the design alternatives as a way to find global optimal de-
sign points. However, this approach generates a huge design space.
With traditional CAD development tools, which emphasize the op-
timization of just one component (e.g. the IP core or the cache
memory), many feedback loops are required, slowing down design
space exploration. Therefore, a simultaneous analysis approach,
namely a virtual platform, should be devised to reduce feedback
loops and to improve productivity.

SoCs are the central topic of a huge body of research. Many
tools have been developed to explore the SoC design space and
to tackle SoC development in the quickest possible way. Usually,
two major families of tools can be easily recognized: academic and
industrial. They differ in many respects, the main difference being
conceptual and related to the different purpose they serve. Research
tools are usually open in nature, and experimentation is encouraged
and welcome; but not easy. Documentation is minimal, user inter-
faces are hard to use, and the do-it-yourself approach to problem
solving is dominant. In stark contrast, industrial tools support a
variety of useful development and verification features, but the typ-
ical expected design flow calls for deploying pre-designed and pre-
verified blocks, configuring some parameters, maybe adding one or
two custom blocks, and testing. This kind of flow is efficient, but
does not encourage research and exploration: IP blocks are shipped
in encrypted form and their internal architecture cannot be explored
or extended.

In the present paper, we will propose a methodology to inte-
grate pre-existing standalone CAD tools in a complete virtual plat-
form, therefore paving the way for faster and more thorough anal-
ysis of the available architectural choices. We will explore some
of the alternative ways to implement such an integration, defin-
ing two wrapping policies aimed at giving different emphasis to
the cache design. Subsequently, we will apply our methodology
to state-of-the-art CAD tools, such as the commercial LISATek
suite [6] and the academic MPARM environment [9]. These tools
respectively focus on the seamless development of ASIPs, and on
the analysis of system-level issues such as multiprocessor perfor-
mance and communication assist facilities. Therefore, we feel they
are the perfect complement to each other: LISA custom designed
IPs can be quickly deployed in the platform environment and en-

 

3-9810801-0-6/DATE06 © 2006 EDAA 

 



able further system level exploration. Moreover, both tools adopt
a SystemC simulation backbone, which enables a clean integra-
tion. Our virtual platform aims at the sweet spot between the in-
dustrial and academic approaches. While its LISATek roots guar-
antee industrial-grade development and debugging facilities, all of
the platform code (LISA processing blocks and SystemC intercon-
nects and memories) can be modified at any time for research pur-
poses. Open-source software support is also provided for the re-
quired hardware abstraction layers. The result is an open platform
where the architecture of each hardware module can be changed,
and which is easily extensible by adding new models. As an ex-
ample of the MPSoC exploration enabled by our platform, we will
show cycle-accurate simulations of heterogeneous platforms where
cores interact on the interconnect competing for shared resources.

The present work is organized as follows. Section 2 summa-
rizes previous work in the field. Section 3 and Section 4 provide a
discussion of the LISATek and MPARM tools we used during our
study. Section 5 is about the integration process to get a unified pro-
totyping platform, and Section 6 shows examples of results which
can be achieved thanks to this effort. Eventually, Section 7 draws
conclusions about our work and proposes future extensions.

2. RELATED WORK
As previously mentioned, many industrial and academic MP-

SoC virtual platforms have been proposed. Among the industrial
ones, Synopsys CoCentric System Studio [22], CoWare Conver-
genSC [5], the ARM RealView MaxSim [3] and others [15, 28]
spring to mind as some of the most known. They all share a plug-
and-play approach of licensed IP blocks whose models are pro-
vided in encrypted form. As a result, if the internal architecture is to
be investigated and optimized (e.g. with the addition of custom in-
structions or data lanes), alternative open blocks must be written by
hand, taking much of the appeal of IP portfolios away. Academic
tools are much more heterogeneous in nature, as they are often built
with limited resources to test some specific MPSoC aspect, typi-
cally the IP cores alone. The SimpleScalar [19] framework stands
out for its feature set, but is essentially a single-processor model
with an unclear scalability path towards multiprocessor systems.
Many other projects exist [27, 24, 25, 26], but their scope seems
currently to be too limited for full MPSoC exploration.

A subspace of MPSoC design is covered by existing ASIP design
tools. Tools available today can be roughly categorized into three
categories, Architecture Description Language (ADL) driven, tem-
plate architecture based, and predefined component library based.
Within the first category, there are tools like EXPRESSION [10],
archC [17] or CHESS [23]. However, little information is publicly
available about their usage in a heterogeneous MPSoC simulation
environment. The work described in this paper uses the LISATek
tool suite, which is ADL driven, too. Unlike the ADL driven ap-
proach, a partially configurable processor is used as template by the
tools in the second category, where Tensilica [4] is a popular rep-
resentative. ASIPMeister [8] has a predefined library of processor
micro-architecture components. So, it falls into the third category.

3. THE LISATEK DESIGN PLATFORM
The LISATek processor design platform is built around the LISA

2.0 ADL [7]. Figure 1 shows the processor design flow supported
by LISATek. From a processor model written with the LISA 2.0
ADL, a set of processor development tools such as instruction-set
simulator, C-compiler, assembler, and linker are automatically gen-
erated to support architecture exploration. A graphical user front-
end is also available for software debugging and profiling purposes.
Moreover, RTL hardware models in the most popular hardware de-
scription languages, VHDL, SystemC and Verilog, can also be gen-
erated from the LISA model for hardware implementation. With
the LISA platform, the ASIP development time can be greatly re-
duced compared to the traditional manual approach. Design effi-
ciency is achieved through high degree of automation.

4. THE MPARM ENVIRONMENT
The MPARM [9, 16] environment is designed to investigate the

system-level architecture of MPSoC platforms. To be able to fully

LISA 2.0
Description

LISATek Generators

VHDL Description

Synthesis Tools

Target Specification

Evaluation
Profiling Data,

Execution Speed

Evaluation
Chip Size, Clock Speed

Power Consumption

Gate Level Model

C-Compiler

Assembler

Linker

Simulator

Architecture Exploration Hardware Implementation

Figure 1: LISATek Based ASIP Design Flow.

assess system performance, a cycle-accurate modeling infrastruc-
ture is put into place.

MPARM is a plug-and-play platform based upon the Sys-
temC [12] simulation engine, where multiple IP cores and inter-
connects can be freely mixed and composed. At its core, MPARM
is a collection of component models, comprising processors, in-
terconnects, memories and dedicated devices like DMA engines.
The user can deploy different system configuration parameters by
means of command line switches, which allows for easy scripting
of sets of simulation runs. A thorough set of statistics, traces and
waveforms can be collected to analyze performance bottlenecks
and to debug functional issues. To take into account other crucial
design variables, power models for many of the MPARM compo-
nents are supplied. Frequency and voltage scaling can be realized
at runtime thanks to dedicated programmable registers.

Before the work that we are presently showing, MPARM fea-
tured a choice of several IP cores to be used as system masters.
These models were mostly taken from the open source or academic
domain, and while spanning over a range of architectures, they typ-
ically modelled pre-existing industrial general purpose processors
with little to no possibility of modifying the supported instruction
set and architecture. This work will extend the MPARM infras-
tructure to seamlessly host LISATek devices, therefore giving the
designer the freedom to deploy custom IP blocks and to quickly
test the performance of architectural variants.

MPARM provides extensive facilities to study the performance
of alternative memory hierarchies. Three layers of memory de-
vices are defined: (1) on-tile, strongly coupled to the processor, e.g.
caches and ScratchPad Memories (SPMs); (2) on-chip, attached to
the system interconnect; (3) off-chip, driven by a DRAM mem-
ory controller. In addition, to analyze interprocessor communica-
tion behaviour, memories can be defined as private or shared, and a
cache snooping mechanism is provided.

In terms of interconnect, MPARM provides a wide choice, span-
ning across multiple topologies (shared buses, bridged configura-
tions, partial or full crossbars, Networks-on-Chip or NoCs) and
both industry-level fabrics (AMBA AHB and AXI [2], STBus [21])
and academic research architectures (×pipes [20]).

On top of the hardware platform, MPARM provides a port of the
uClinux [13] and RTEMS [11] operating systems, several bench-
marks from domains such as telecommunications and multimedia,
and libraries for synchronization and message passing.

5. INTEGRATING ASIP CORES IN A MUL-
TIPROCESSOR SYSTEM

As previously discussed, we believe in the importance of cre-
ating a unified virtual prototyping environment, where ASIPs can
be tested along with the other SoC subsystems to provide a full
assessment of alternative design choices. For this reason, we eval-
uated the feasibility of embedding LISATek core models within the
MPARM platform, devising proper interfacing and wrapping meth-
ods.



5.1 The LISATek Simulation Interface
As mentioned in Section 3, the LISATek processor design flow

is based on LISA 2.0 processor models. Since the creation of the
models exceeds the topic of this paper, it will not be discussed it
here. Given a LISA model, the LISATek tool is able to generate
instruction-set simulators for the processor under design. Typically,
the generated simulator is directly used by the debugger in form of
a dynamic library. However, a compiled static simulator library
is also generated, and specifications exist to integrate it into the
system environment. In our case, the system environment would
be the MPARM. All the core models generated by the LISATek
suite, regardless of the nature of the ASIP at hand, have the same
interface. The interaction is based upon four key pillars:

• The simulated core can be cycled by calling specific func-
tions. If the processor is modelled in an instruction-accurate
fashion, then the generated model can be stepped on an in-
struction basis. On the other hand, a model derived from a
cycle-accurate LISA description can be stepped on both in-
struction and cycle basis.

• Core-initiated communication (e.g. reads, writes) is per-
formed through a specific Application Programming Inter-
face (API), which is discussed below. It is the task of the
external program to provide an implementation of said API.

• System-initiated communication (e.g. interrupts), if any, can
be forwarded to the core when cycling it, and therefore on
a fine-grain cycle-by-cycle basis, by proper flipping of extra
pins. Of course the LISA core model must be made aware of
the meaning of these extra pins to take proper action.

• An external LISATek Debugger tool can be interfaced to the
core via the IPC (Inter-Process Communication) mechanism.
The external program must simply invoke the Debugger with
proper references; subsequently, the LISATek model and the
Debugger interact autonomously.

While all of these items were implemented during our work, the
most interesting for discussion here is the API for core-initiated
communication [29]. In a system environment, this LISATek API
is the communication interface between the core and the external
resources. It must be implemented by the external platform and
passed to the processor simulator during system initialization. In
addition to some control functions, the API is mainly composed of
eight data-related calls:

int read(AType addr, DType *data, int n, ...);
int write(AType addr, DType *data, int n, ...);
int request_read(AType addr, DType *data, int n, ...);
int request_write(AType addr, DType *data, int n, ...);
int try_read(AType addr, DType *data, int n, ...);
int could_write(AType addr, DType *data, int n, ...);
int dbg_read(AType addr, DType *data, int n, ...);
int dbg_write(AType addr, DType *data, int n, ...);

Three sets of calls, each of which constituting a sub-interface,
can be distinguished. The first two calls represent the blocking
sub-interface: they are based on the assumption that a non-cycle-
accurate LISA core may be attached to a cycle-accurate external
module. In this case, communication requests which can not be
serviced immediately should yield control to the simulator, freez-
ing the caller for as many cycles as needed to complete the trans-
action. As a result, no concurrent activity can be performed in the
LISATek core if a transaction is pending.

The calls from the third to the sixth implement the non-
blocking sub-interface; it is vital when designing cycle-accurate
cores. The request read() or request write() functions
are initially invoked; control is always returned. Subsequently,
try read() or could write() can be invoked at each clock
edge to try to carry the pending transaction on. The return status
can be a negative acknowledge (e.g. if wait states are needed), but
since control is always returned, the core is free to perform other
tasks in background, such as shifting its pipeline.

The last two calls of the API are the debug sub-interface. Their
purpose is to provide an instant reaction, bypassing any wait states.
While of course this is not a realistic assumption for a physical

Figure 2: Possible placements of the L1 memory: (a) tightly
coupled with the IP core, (b) as a system component.

system, the calls are extremely useful for debug purposes, such
as monitoring or manipulating the content of an external memory
while executing a benchmark. They are also useful to load the con-
tents of a memory during the reset cycle.

The implementation of these function calls depends completely
on the communication method used in the system; e.g. if the simu-
lator needs to work with a system modelled at the RTL level, then
the API must be implemented to translate the resource requests
into RTL signals. In our case, the implemented API will translate
the requests into SystemC signals which can be understood by the
MPARM platform. Since MPARM is a cycle- and signal-accurate
platform, implementing the first two sub-interfaces was straight-
forward. The third was supported by directly interfacing with the
data arrays which hold the contents of simulated memories. In case
caches were present, the implementation was tuned so to take them
into account (e.g., writing data to both the cache and the external
memory when using write-through policies, and just to the cache
when using write-back; or maybe only to the external memory in
case of a write miss).

5.2 L1 Memory Placement Strategies
The LISA language makes no assumptions about how to model

memory hierarchies. The language allows the specification of
cache subsystems, but also permits the implementation of a flat
memory array to which all accesses should be directly made. A
typical LISA ASIP model is likely to take the second route, for at
least two reasons: (i) implementing a complex cache controller is
time-consuming, (ii) it is not very meaningful to accurately model
a cache if there is no accurate model of the delays associated to an
external memory.

The LISATek API mentioned in Section 5.1 is transparent to the
presence of caches. In fact, the API can be the outer interface of a
cache layer, to handle refills and writebacks, as well as the inner in-
terface, used by the processor to query a cache controller. Figure 2
illustrates the alternatives.

When integrating the LISATek processor models within
MPARM, a choice had to be made regarding the most suitable
L1 memory placement strategy. The alternatives were to develop
the L1 memories together with each processor, therefore using the
LISATek communication API among caches and MPARM; or to
develop the L1 memories as an MPARM block, and using the API
interface to drive them. Both paradigms allow for cycle-accurate
modeling. Tightly coupling the L1 memory to the IP core has the
advantage of allowing for arbitrarily complex interactions among
the two components. Instead, an external module has the obvious
advantage of reuse, where a single cache controller can be seam-
lessly used by any IP core.

After careful consideration, we went for the second alterna-
tive. While the LISATek communication API seems to be flexi-
ble enough to support all of the relevant core/cache interactions,
thus making it less useful to develop caches inside of each core, we
found that the reuse capability, given an equal development time,
allows the shared cache module to support more features (different
associativity levels, write-back vs. write-through policies, snoop-
ing capabilities, power optimizations and models), thus becoming
more suitable for performance assessment.



Figure 3: The scheme of a processor tile.

While this subsection mostly mentioned cache memories, it is
worth stressing that we also made it possible to instantiate an SPM
next to (or in place of) them. Since a large body of research ex-
ists on how to exploit SPMs to improve embedded system effi-
ciency [1], this adds a further useful degree of freedom for archi-
tectural exploration.

5.3 Core-Associated Devices
When developing a shared MPARM block to handle the L1

memory, we also found it useful to cluster other functionality at the
same layer. The end result is a processor tile, comprising IP cores
and the most tightly coupled components (Figure 3). Namely, we
developed (i) a timer device, (ii) an emulated serial port, (iii) a sim-
ple interrupt controller. The first component is vital if attempting to
port an operating system. The second is very useful for debugging
purposes; placing it next to IP cores, instead of in a shared location
accessible to all system processors, has the advantage of allow-
ing for independent input/output, and prevents debug traffic from
spilling onto the system interconnect where it could pollute perfor-
mance statistics. Finally, the interrupt controller is both a require-
ment of the other two devices and a crucial component to develop
efficient synchronization mechanisms in multiprocessor systems.
The controller is externally attached to a set of system-level wires
which convey inter-core interrupts. On the IP core side, we imple-
mented a simple interrupt handshaking protocol where the value
of interrupt registers is copied on some LISATek core pins which
are polled every cycle by the core to take proper action. The inter-
rupt controller is memory mapped, to let the core reset the pending
interrupt flags and configure the masking status.

Figure 4: The overall system architecture.

Figure 5: A system simulation screenshot.

5.4 The Resulting System Architecture
The MPARM architecture is layered, to flexibly accommodate

for different master devices and interconnect models. As can be
seen in Figure 4, the IP core tiles talk to a master device, which
is in charge of handling any arbitration and/or routing phases re-
quired by the specific underlying fabric. The tile/master interface
can either be MPARM-custom or comply with the OCP 2.0 [14]
specifications.

The MPARM facilities allow the designer to flexibly instanti-
ate complex platforms. Homogeneous as well as mixed processing
tiles can be deployed, and selection among them is as simple as
flipping a command line switch. Specific MPARM modules exist
to handle addressing maps and to track simulation statistics, includ-
ing cache hit rates, interconnect congestion and latencies, memory
access patterns and (for the components for which a model is avail-
able) power consumption. In addition, the graphical LISATek De-
bugger can be launched to interactively inspect the status of each
LISATek core, to set breakpoints and watchdogs, and to manually
control the flow of execution.

6. EXPERIMENTAL RESULTS
In this section, we will demonstrate that we implemented a fully

working and usable solution, and we will show a sample of the kind
of analysis that can be performed on our combined platform.

In order to achieve the former objective, we implemented a LISA
ARMv7 core, which is instruction-equivalent to another ARMv7
core that was already available in MPARM. Since the cycle accu-
racy of the core itself was not important for our purposes, we kept
its model very simple (no pipeline) without any timing accuracy
effort. The expected result was complete functionality of the sys-
tem platform. This achievement is testified by the screenshot in
Figure 5: the LISATek Debugger, in the foreground, is attached to
a LISA core (currently paused on a breakpoint) that runs within
MPARM. The console of the latter can be seen in the background.
As a secondary result, by exercising the two ARMv7 implementa-
tions with the very same benchmark binary, we expected to find a
perfect equivalence in the amount of memory accesses. Across sev-
eral microbenchmarks and functional benchmarks from the multi-
media and data encryption domains, including applications which
leverage the RTEMS operating system, this result was indeed con-
firmed. On the other hand, we noticed a discrepancy of about 30%
in the amount of execution cycles - which is perfectly normal due
to the fact that the LISA ARMv7 model did not include a pipeline,
while the MPARM one did. With LISA cores, we recorded up to
200k global simulated CPU cycles/second on an Athlon XP 2200+
machine with 512 MB of RAM.

Next, we prove the importance of being able to model the ef-
fect of memory hierarchies and interconnect congestion on system
performance. The choice of an instruction-accurate ARM model
does not prevent cycle-accurate exploration of the impact of the
communication fabric. Figure 6 shows the execution time when a
variable amount of IP cores, each of them independently perform-
ing the same benchmark, is attached to the interconnect. Each core



Figure 6: Performance vs. interconnect congestion.

Figure 7: Performance vs. cache size.

executes an additional chunk of processing, therefore an increas-
ing requirement of communication bandwidth is depicted (i.e. no
parallelization). In absence of bus contention, execution times are
expected to remain constant, as all cores operate simultaneously.
A cache is interposed and configured with two alternative policies,
namely Write-Back (WB; writes go to cache only, and are copied
back in memory only when the cache line is evicted) and Write-
Through (WT; writes always go to both cache and memory). The
WB policy is clearly minimizing the amount of traffic which spills
on the interconnect, but at the cost of additional complexity in the
cache controller (dirty bits have to be tracked). The advantage of
WB, which may not be fully clear when designing the IP core alone,
is evident here. With WT caches, six or more processors are enough
to congest an AMBA AHB interconnect, causing a progressive per-
formance degradation. With WB caches, the amount of writes on
the bus is drastically lower, and up to sixteen cores can be attached
to the same fabric without significant bottleneck effects.

Subsequently, just by changing a command line parameter, we
repeated the same experiment with varying cache sizes (Figure 7).
As the chart shows, bigger caches help performance, but under
low interconnect congestion (few IP cores on the bus and/or WB
caches), their impact is much less than under high congestion.

Since not all interconnect architectures have the same perfor-
mance, we tested two shared buses using completely different pro-
tocols: AMBA AHB by ARM and STBus by STMicroelectronics.
STBus is much more complex and offers more features, such as
multiple simultaneous outstanding transactions. The results con-
firm this fact, as STBus is offering up to a 33% boost to overall
system performance under high congestion. Performance is much
closer when operating under light loads.

To further showcase possible design space scenarios, we created
a mixed platform with one LISA ARMv7 core and one or more
LISA FFT coprocessors. The latter devices were designed to op-
timally accomplish a specific task, namely a Fast Fourier Trans-
form. Since they internally perform parallel computation (Fig-
ure 9), they feature high bandwidth requirements and contribute
heavily to bus congestion. Figure 10 plots the latency, as seen
by the ARM core, to complete bus transactions when increasing
numbers of FFT cores are working in the background. A steep la-
tency increase can be noticed, prompting the designer to quantify
the amount of communication resources needed for the deployment
of FFT coprocessors.

Figure 8: System performance with different interconnect fab-
rics.

Figure 9: A 3-Slot VLIW FFT Processor.

To highlight how the availability of a full platform, including
memory hierarchies and interconnect models, enables the study of
non-trivial effects in MPSoC systems, we show in Figure 11 the
polling behaviour of a DES encryption benchmark, where two con-
trol tasks (initiator and terminator) supply and collect chunks of
raw data to a variable amount of parallel worker tasks that per-
form the actual encryption/decryption. We tested the system with
one to six worker tasks, each running on a different LISA core.
The worker tasks have to synchronize with the initiator and ter-
minator tasks by semaphore polling before being able to exchange
data chunks. The plot depicts the overall amount of system polling
as a function of varying frequencies of polling executed by the
initiator and terminator tasks. With few workers, the workload
is very unbalanced (the initiator and terminator tasks have com-
paratively little to do) and configuring them for frequent polling

Figure 10: Bus latency of a mixed ARM + FFT platform.



Figure 11: Polling behavior in the DES benchmark.

is only a waste of interconnect bandwidth. As more workers are
added, frequent polling becomes increasingly useful because more
data chunks have to be distributed and collected per time unit. If
the polling interval of the initiator and terminator becomes too
wide, roles reverse, and it is the worker tasks which have to per-
form heavy polling before exchanging data. Therefore, the global
polling amount increases again. The case with a single worker has
the rightmost knee point (the control tasks are very lightly loaded,
and can afford sparse semaphore checks) but the highest abso-
lute polling amounts (the chance of hitting optimal synchroniza-
tion points without much polling is very low). When the polling
interval becomes large, all lines exhibit a shaky trend, because ran-
domly missed synchronization points imply a long wait before the
next semaphore release event and long strings of polling activity.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a CAD tool methodology which in-

tegrates a state-of-the-art ASIP toolchain within a full-featured vir-
tual platform. The mix of these two environments enables SoC
designers to sweep all axes of the configuration space by getting
immediate feedback about the impact that one architectural fea-
ture has on the rest of the system. IP cores, memory hierarchies
and interconnects are simultaneously under scrutiny. Effects which
are difficult to predict, or at least to quantify, when operating from
the IP core designer perspective alone can now be easily and thor-
oughly investigated.

Moreover, the designer is given a full choice of debug and in-
spection facilities, thanks to the respective strengths of the LISATek
and MPARM worlds. Runtime debuggers with graphical interfaces,
execution traces, waveforms and full statistics are available. The
virtual platform offers some of the highlights typical of industrial-
strength products together with an unmatched openness of the sim-
ulation models and a rich feature set. The low-level software stack
(such as the required compilation toolchains) is part of the package.

Future work will leverage this technology to shed light on long-
standing open problems, such as assessment of the performance of
alternative hardware communication assists for MPSoCs and ac-
curate analysis of the tradeoffs implied by the ASIP/coprocessor
paradigm a the system level.

8. REFERENCES
[1] F. Angiolini, F. Menichelli, A. Ferrero, L. Benini, and

M. Olivieri. A post-compiler approach to scratchpad
mapping of code. In Proceedings of the 2004 ACM
International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems (CASES), pages 259–267,
2004.

[2] ARM Ltd. The Advanced Microcontroller Bus Architecture
(AMBA) homepage.
www.arm.com/products/solutions/AMBAHomePage.html.

[3] ARM Ltd. RealView MaxSim.
www.arm.com/products/DevTools/MaxSim.html.

[4] N. Cheung, J. Henkel, and S. Parameswaran. Rapid
configuration and instruction selection for an asip: A case
study. In DATE ’03: Proceedings of the conference on
Design, Automation and Test in Europe, page 10802,
Washington, DC, USA, 2003. IEEE Computer Society.

[5] CoWare Inc. ConvergenSC. www.coware.com/products/.
[6] CoWare Inc. LISATek. www.coware.com/products/.
[7] A. Hoffmann, H. Meyr, and R. Leupers. Architecture

Exploration for Embedded Processors with Lisa. Kluwer
Academic Publishers, Norwell, MA, USA, 2002.

[8] A. Kitajima, M. Itoh, J. Sato, A. Shiomi, Y. Takeuchi, and
M. Imai. Effectiveness of the ASIP design system PEAS-III
in design of pipelined processors. In ASP-DAC ’01:
Proceedings of the 2001 conference on Asia South Pacific
design automation, pages 649–654, New York, NY, USA,
2001. ACM Press.

[9] M. Loghi, F. Angiolini, D. Bertozzi, L. Benini, and
R. Zafalon. Analyzing on-chip communication in a MPSoC
environment. In Proceedings of the 2004 Design, Automation
and Test in Europe Conference (DATE’04). IEEE, 2004.

[10] P. Mishra, N. Dutt, and A. Nicolau. Functional abstraction
driven design space exploration of heterogeneous
programmable architectures. In ISSS ’01: Proceedings of the
14th international symposium on Systems synthesis, pages
256–261, New York, NY, USA, 2001. ACM Press.

[11] Real-Time Operating System for Multiprocessor Systems
(RTEMS). www.rtems.com.

[12] The SystemC initiative. www.systemc.org.
[13] The uClinux embedded linux/microcontroller project.

www.uclinux.org.
[14] Open Core Protocol Specification, Release 2.0.

www.ocpip.org, 2003.
[15] Prosilog. Magillem. www.prosilog.com.
[16] M. Ruggiero, F. Angiolini, F. Poletti, D. Bertozzi, L. Benini,

and R. Zafalon. Scalability analysis of evolving SoC
interconnect protocols. In Proceedings of the 2004
International Symposium on System-on-Chip, pages
169–172, 2004.

[17] M. B. Sandro Rigo, Guido Araujo and R. Azevedo. Archc: A
systemc-based architecture description language. In to
appear in the 16th Symposium on Computer Architecture and
High Performance Computing - Foz do Iguacu, Brazil,
October 2004.

[18] O. Schliebusch, A. Chattopadhyay, R. Leupers, G. Ascheid,
H. Meyr, M. Steinert, G. Braun, and A. Nohl. RTL processor
synthesis for architecture exploration and implementation. In
Proceedings of the 2004 Design, Automation and Test in
Europe Conference (DATE’04), pages 156–160. IEEE, 2004.

[19] SimpleScalar LLC. SimpleScalar. www.simplescalar.com.
[20] S. Stergiou, F. Angiolini, S. Carta, L. Raffo, D. Bertozzi, and

G. D. Micheli. ×pipes Lite: A synthesis oriented design
library for networks on chips. In Proceedings of the 2005
Design, Automation and Test in Europe Conference
(DATE’05), pages 1188–1193. IEEE, 2005.

[21] STMicroelectronics. The STBus interconnect. www.st.com.
[22] Synopsys Inc. System Studio. www.synopsys.org.
[23] Target Compiler Technologies N.V. The Chess/Checker

Retargetable DSP Environment. www.retarget.com.
[24] The Liberty Research Group. The Liberty Simulation

Environment. http://liberty.princeton.edu/.
[25] The MicroLib Community. MicroLib. http://microlib.org/.
[26] The SkyEye Community. SkyEye. www.skyeye.org.
[27] The SoCLib Partners. SoCLib. http://soclib.lip6.fr.
[28] Virtio. Virtual Platforms. www.virtio.com.
[29] A. Wieferink, T. Kogel, R. Leupers, G. Ascheid, H. Meyr,

G. Braun, and A. Nohl. A system level
processor/communication co-exploration methodology for
multi-processor system-on-chip platforms. In Proceedings of
the 2004 Design, Automation and Test in Europe Conference
(DATE’04), pages 1256–1263. IEEE, 2004.


