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Abstract

Background

The Leishmania developmental life cycle within its sand fly vector occurs exclusively in the

lumen of the insect’s digestive tract in the presence of symbiotic bacteria. The composition

of the gut microbiota and the factors that influence its composition are currently poorly

understood. A set of factors, including the host and its environment, may influence this com-

position. It has been demonstrated that the insect gut microbiota influences the develop-

ment of several human pathogens, such as Plasmodium falciparum. For sand flies and

Leishmania, understanding the interactions between the parasite and the microbial environ-

ment of the vector midgut can provide new tools to control Leishmania transmission.

Methodology/Principal findings

The midguts of female Phlebotomus perniciosus from laboratory colonies or from the field

were collected during the months of July, September and October 2011 and dissected. The

midguts were analyzed by culture-dependent and culture-independent methods. A total of

441 and 115 cultivable isolates were assigned to 30 and 11 phylotypes from field-collected

and colonized P. perniciosus, respectively. Analysis of monthly variations in microbiota com-

position shows a species diversity decline in October, which is to the end of the Leishmania

infantum transmission period. In parallel, a compilation and a meta-analysis of all available

data concerning the microbiota of two Psychodidae genera, namely Phlebotomus and
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Lutzomyia, was performed and compared to P. perniciosus, data obtained herein. This inte-

grated analysis did not reveal any substantial divergences between Old and New world

sand flies with regards to the midgut bacterial phyla and genera diversity. But clearly, most

bacterial species (>76%) are sparsely distributed between Phlebotominae species.

Conclusion/Significance

Our results pinpoint the need for a more exhaustive understanding of the bacterial richness

and abundance at the species level in Phlebotominae sand flies in order to capture the role

of midgut bacteria during Leishmania development and transmission. The occurrence of

Bacillus subtilis in P. perniciosus and at least two other sand fly species studied so far sug-

gests that this bacterial species is a potential candidate for paratransgenic or biolological

approaches for the control of sand fly populations in order to prevent Leishmania

transmission.

Author summary

The use of conventional microbiological methods gave us the opportunity to investigate

the richness of symbiotic bacteria that inhabit the gut of P. perniciosus during its main

period of activity. Our results were subsequently analyzed in the framework of what has

been done on sand flies microbiota in order to validate our results and to address the

question of the definition of the core bacterial microbiota of sand flies. A meta-analysis on

the respective gut microbiota of Old and NewWorld sand flies shows that the majority of

bacterial species is observed only in one host whereas less than 8% are shared by more

than two hosts. Our results pinpoint the need for a more exhaustive understanding of the

microbiota composition and dynamic in phlebotominae, with the aim to implement new

biological approaches for the control of sand fly populations in order to prevent Leish-

mania transmission.

Introduction

Sand flies are vectors of various pathogens, including arboviruses and bacteria, but are best

known as the principal vectors of Leishmania, the etiological agent of leishmaniasis, a

neglected tropical disease with clinical symptoms varying in form from cutaneous to visceral

[1,2]. According to the most recent reports, leishmaniasis affects nearly 12 million people

located in tropical, subtropical, and Mediterranean regions [3,4] with an estimated 350 million

people at risk [5]. Among all vector-borne diseases, visceral leishmaniasis (VL) is the second

leading cause of death after malaria, with an annual incidence of 500,000 cases and 60,000

deaths each year [3,4]. To date, no effective vaccine is available against leishmaniasis, and treat-

ments mainly rely on chemotherapy using pentavalent drugs. Currently, the effectiveness of

the treatment varies because of adverse side effects on patients and the emergence of parasite

drug resistance [6,7].

Phlebotomus and Lutzomyia are the main sand fly genera involved in the transmission of

Leishmania sp. in both the Old and the NewWorld [2, 8–10]. Sand flies become infected when

they blood feed on an infected host. Ingested amastigote parasites undergo a complex develop-

mental cycle within the sand fly and are limited to the midgut of the insect [11]. Thus, the
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midgut of the vector is the first point of contact between ingested parasites and the apical sur-

face of the intestinal epithelial cells of the vector. Bacteria have been isolated from the midgut

of P. papatasi, a vector of Leishmania major, the etiologic agent of zoonotic cutaneous leish-

maniasis (ZCL) [12], and studies have suggested a role for these bacteria in the immune

response and homeostasis [12–15]. Female sand flies feed on blood for egg laying. In addition

to blood, they take sugar meals derived from a number of different sources, including leaves,

fruit, and aphid honeydew. Such food sources offer many opportunities to ingest microorgan-

isms [16–18]. The microbiota found in sand fly guts could mirror their diets.

In low- and middle-income countries, such as Tunisia, large vector eradication programs

are challenging owing to limited resources. New approaches to control vector transmission of

Leishmania infantum are of major interest. These programs are needed to control the trans-

mission of L. infantum in Tunisia. Paratransgenesis has been suggested as a feasible strategy

for controlling the transmission of pathogens by arthropod vectors. This approach consists of

the use of genetically altered symbiotic bacteria that secrete effector molecules that kill the

infectious agents. Since these bacteria should co-localize with the pathogen and be transmitted

vertically to the next generation, they are introduced into vectors to block pathogen transmis-

sion [19–20]. This "Trojan-Horse" approach was initially developed to interfere with the trans-

mission of Trypanosoma cruzi by its triatomine vector [19]. Among possible bacterial species

that could be considered as candidates for the development of a paratransgenic approach,

Bacillus pumilus and Bacillus flexuswere identified as the most frequent cultivable bacteria

identified in the midgut of P. papatasi field-collected from Tunisia, Turkey, and India [21]. In

addition, Bacillus subtilis isolated from Phlebotomus argentipes is currently being considered as

a possible candidate for paratransgenesis aimed at preventing Leishmania donovani transmis-

sion [22,23].

In North Africa, Phlebotomus perniciosus is the main vector of L. infantum, the etiologic

agent of zoonotic visceral leishmaniasis (ZVL) [24]. We sought to develop a paratransgenic

platform to control the transmission of L. infantum by P. perniciosus. Here, we assessed the

richness of bacterial species of laboratory-reared and field-collected sand flies. We investigated

the monthly variations of the bacterial diversity carried by sand flies in an endemic area of

ZVL in Tunisia, during the period of Leishmania infantum transmission. We analyzed these

new data within the context of previously published studies on the microbiota of sand flies.

Materials andmethods

Sand fly collection, identification and gut dissection

Sand flies collection: Laboratory-reared P. perniciosus (Tunisian strain) was obtained from a

colony maintained at the Vector Ecology Laboratory of Pasteur Institute of Tunis [25]. Phlebo-

tomus perniciosus individuals were also collected in a sheep shelter in the village of Utique

located in Northern Tunisia (37˚08’N, 7˚74’E), with the owner consent, by using CDC traps.

Sand fly trapping was performed from dusk to dawn one night per month, from July to Octo-

ber 2011. This period corresponds to the period of main activity of P. perniciosus in Tunisia

[26]. Field-collected sand flies were brought alive to the laboratory. However, as it is difficult

to determine the age of field-collected sand flies, we arbitrarily attribute the day of their sam-

pling as the day one. All field-collected sand flies were dissected within three days after collec-

tion. Laboratory-reared sand flies were dissected three-to-seven days after their emergence.

Prior to dissection, each sand fly was rinsed in 70% ethanol for 3 minutes, followed by three

successive rinsings in sterile PBS. Sand flies were then dissected on ice under stereo-

microscope, in order to remove the midgut for bacterial identification and the genitalia for

morphological identification to species level [26,27]. Only P. perniciosus females were used.

Microbiota of P. perniciosus
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Gut dissection: Each sand fly gut was individually placed in 1.5 ml microcentrifuge tubes

containing 200 μl of sterile PBS (pH 7.3), homogenized with a disposable pestle, and diluted

from 10−1 to 10−10 in 200 μl PBS. Each homogenate was plated onto individual 1.5% agar plates

with TSA (Trypticase Soy Agar), PCA (Plate Count Agar), YMA (Yeast Mannitol Agar) or

Luedemann medium and incubated at 30˚C for 2 to 4 days in aerobic conditions. Individual

colonies were selected and used for further identification.

DNA extraction

Chromosomal DNA extraction was performed as previously described [28]. After overnight

incubation at 30˚C in TSA, PCA, Luedemann or YMAmedium, colonies were suspended in

500 μl of TE buffer (10 mM Tris-HCl, 0.1 mM EDTA, pH 8) to which 20 μl of lysozyme

(35 mg/ml) was added and incubated at 37˚C for 30 min. Then, 40 μl of sodium dodecyl sulfate

(SDS 10%) and 5 μl of freshly prepared proteinase K (10 mg/ml) were added, and the solution

was incubated at 30˚C for 30 min. The solution was homogenized after the addition of 100 μl

of 5 M NaCl and 80 μl of CTAB/NaCl (10%/0.7 M) and incubated at 65˚C for 10 min. DNA

was purified by the addition of phenol-chloroform-isoamyl alcohol (25:24:1, pH 8.0), followed

by chloroform-isoamyl alcohol (24:1) and then precipitated by the addition of 0.6 volumes of

isopropanol. DNA pellets were washed with 200 μl of 70% ethanol and dried at 37˚C before

being resuspended in TE buffer (10 mM Tris-HCl, 0.1 mM EDTA, pH 8) and stored at -20˚C.

Total DNA extraction for the Denaturing Gradient Gel Electrophoresis (DGGE) analysis was

conducted on whole midguts dissected from sand flies using the same total DNA extraction

protocol described above [28].

Bacterial colony screening and identification

Fig 1 summarizes the procedure used for the isolation and identification of bacterial species. A

total of 180 field-collected and 35 colonized P. perniciosus females were processed. From field-

collected sand flies, 135 guts were used for culture-dependent identification and 45 guts were

analyzed by DGGE, a culture-independent method. The 35 samples from colonized P. perni-

ciosus were processed only for culture-dependent identification.

Screening of colonies with ITS-PCR

The length and sequences polymorphisms of the Intergenic Transcribed Spacers (ITS), located

between the 16S and 23S rRNA, is quite often due to the presence of tRNA genes. PCR amplifi-

cation of the 16S-23S intergenic transcribed spacer regions between the rRNA genes (ITS) was

performed for screening the bacterial phylotype diversity [29–31]. The universal primers, ITSF

(5’-GTCGTAACAAGGTAGCCGTA-3’) and ITSR (5’-CAAGGCATCCACCGT-3’), are com-

plementary to nucleotide (nt) positions 1423–1443 of the 16S rDNA and nt positions 38–23 of

the 23S rDNA of Escherichia coli, respectively [30]. Each reaction tube contains 1X PCR buffer

(Invitrogen), 2 mMMgCl2, 0.2 mM deoxynucleoside triphosphate mix, 0.1 μM of each primer,

0.5 U of Taq polymerase (Invitrogen) and 400 ng of DNA extracted from single colonies. The

total volume was adjusted to 25 μl. Amplification parameters were as follows: initial denatur-

ation at 94˚C for 5 min, followed by 35 cycles at 94˚C for 30 s, 50˚C for 30 s, 72˚C for 45 s,

with a final extension step of 10 min at 72˚C, using an ABS2720 thermocycler.

Amplification of the 16S rDNA

Amplification of the 16S rDNA gene was carried out with universal primers SD-Bact-0008-a-

S-20 and S-D-Bact-1495-a-S-20 [32]. Each reaction tube contained 1x PCR buffer (Invitrogen),

Microbiota of P. perniciosus
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0.5 μM of each primer, 2.5 mMMgCl2, 200 ng of purified DNA, 0.2 mM dNTPs and 0.3 units

of Taq polymerase (Invitrogen) and the total volume was adjusted to 25 μl. Samples were

amplified according to the following cycle: an initial denaturation step at 94˚C for 10 min, fol-

lowed by 35 cycles at 94˚C for 1 min, 55˚C for 1 min, 72˚C for 1 min and a final extension step

of 10 min at 72˚C, using an ABS2720 thermocycler. PCR amplicons were then purified using

the QIAquick PCR Purification Kit (Qiagen) and sequenced.

Denaturing-Gradient Gel Electrophoresis (DGGE) analysis

Amplification of the V3-V5 region of the 16S rDNA: PCR amplification targeting the 16S

rDNA genes was performed using the universal primers specific to the bacterial domain: 907r

(5’-CCGTCAATTCCTTTGATGTTT-3’) and 357f (5’-TACGGGAGGCAGCAG-3’) [33]. A

40-bp GC-clamp was added to primer 357f to avoid complete denaturation of the DNA and

allow the separation of DNA strands during migration in denaturing conditions [34–36]. Each

reaction tube contained 1x PCR buffer (Invitrogen), 2.5 mMMgCl2, 0.12 mM dNTPs, 0.3 mM

of each primer, 1 U of Taq DNA polymerase (Invitrogen) and 50 ng of DNA in a final volume

of 50 μl. Amplification parameters were as follows: an initial denaturation step at 94˚C for

4 min, 10 cycles at 94˚C for 30 s, 61˚C for 1 min and 72˚C for 1 min, followed by 20 cycles at

94˚C for 30 s, 56˚C for 1 min and 72˚C for 1 min. At the end of these cycles, a final extension

step was performed at 72˚C for 10 min.

DGGE analysis: PCR products were run on a 7% polyacrylamide gel in a 40%–60% denatur-

ing gradient of urea and formamide for 16S rDNA analysis. DGGE was performed using a

Fig 1. Schematic representation of the bacterial colonies isolation and identification procedure.

https://doi.org/10.1371/journal.pntd.0005484.g001
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BioRad DCode Universal Mutation Detection System at 100 V at 59˚C for 17 hr, in 1.0 × TAE

buffer (20 mmol/L Tris, 10 mmol/L acetate, 1 mmol/L EDTA pH 7.4). After electrophoresis,

gels were stained for 30 min with ethidium bromide.

Identification of the DGGE Bands: Excised bands of DGGE gels were washed twice with

1 mL sterilized distilled water in a 1.5-mL tube. A portion of the gel piece (< 1 mm3) was used

as the direct template for PCR to recover DNA fragments. Amplification conditions for the

V3-V5 region were as follows: an initial denaturation step at 94˚C for 4 min followed by 35

cycles at 94˚C for 30 s, 56˚C for 1 min and 72˚C for 1 min and a final extension step at 72˚C

for 10 min. Primers were identical to those described above except that the forward primer

had no GC-clamp attached. The amplified products were purified with the QIAquick PCR

Purification Kit (Qiagen) and then sequenced.

Sequencing of 16S rDNA

The 16S rDNA sequencing was carried out using the BigDye Terminator v3.1 Cycle sequenc-

ing Kit and the ABI 3130 sequence analyzer. The partial 16S rRNA gene sequences were com-

pared with sequences available in the ribosomal database, release 11.4. Isolates were assigned

at the species level on the basis of the 16S rRNA gene sequence similarity of the available

sequences in the ribosomal database, measured by using the Seqmatch tool of RDP [37]

(https://rdp.cme.msu.edu/). In addition, the partial 16S rDNA sequences were submitted to

the BLASTn server of NCBI, using the 16S ribosomal RNA database (Bacteria and Archea)

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). The nucleotide similarity thresholds of the 16S rDNA

sequences with the nearest neighbor were:� 95% and 97.5% [38] applied at the genus and spe-

cies levels, respectively.

Diversity analysis

All the analyses were conducted with the R-vegan package, v. 2.0–10 [39]. α-diversity was cal-
culated using Shannon’s and Simpson’s diversity indices. Correspondance analysis (CA analy-

sis) on the monthly data was carried out with the FactomineR package (https://cran.r-project.

org/web/packages/FactoMineR/) using the R language (http://www.R-project.org).

Meta-analysis of Phlebotominae microbiota

All the published data concerning bacterial species identification associated with Phlebotomus

and Lutzomyia species (the only two genera for which we have data) were compiled and ana-

lyzed. Studies describing the identification of the midgut bacteria at the family, class or phylum

level were not considered. To assess bacterial richness associated with the adult sand fly, data

were collected without taking into account the method of bacterial isolation (culture-

dependent vs culture-independent) and identification (DNA sequencing of 16S rDNA, bacte-

riology). The overall dataset used in our analyses included ten Phlebotominae (L. cruzi [40],

L. longipalpis [41,42], L. evansi [43], P. argentipes [22], P. duboscqi [44], P. halepensis [45],

P. papatasi [21, 45–48], P. sergenti [45], P. perfiliewi [45], P. chinensis [49] and P. perniciosus)

and their associated microbiota for the present study. Bacterial richness is visualized through

network analysis using Cytoscape (http://www.cytoscape.org/) [50]. To achieve this goal, data

were extracted from our own database (focused on Phlebotominae) as CSV files, containing

vertices or nodes (representing hosts and bacteria) and edges (representing links). These files

were loaded into Cytoscape v 3.4.0, a tool specializing in graphical representation. This graph

was modified to keep only one edge between host and bacteria. Bacterial nodes were colored

to show their degrees of interaction with hosts.
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Results

Overall bacteria composition as revealed by culture-dependent and
culture-independent analysis

First, we determined the number of Colony Forming Units (CFU) of each individual midgut

using PCA medium; they ranged from 5 to 121 per individual sand fly midgut. A total of 441

and 115 independent colonies were obtained from field-collected and colonized sand flies,

respectively (Fig 1). Examples of the different types of bacterial colonies are shown in Fig 2A.

ITS-PCR analysis was used to dereplicate strain diversity among the 556 colonies. Each ITS

profile is composed of one to five reproducible bands that display apparent molecular weights

ranging from 50 to approximately 1,500 bp; these bands represent a phylotype (Fig 2B).

Among the 441 colonies isolated from field-collected P. perniciosus, 25 distinct ITS-PCR pro-

files were identified (Fig 2B see �). Of a total of 115 independent colonies from colonized P.

perniciosus, only 6 independent phylotypes were identified (Fig 2B). When possible, the 16S

rDNA locus of a sample representative of each ITS-PCR profile was further amplified to

attempt identification at the genus and species levels. All the bacterial colonies isolated from

sand fly midguts belong to three phyla: Firmicutes, Actinobacteria, and Proteobacteria. For the

field-collected P. perniciosus, the calculated midgut bacterial composition was: Firmicutes

(53.5%), Actinobacteria (15.2%) and Proteobacteria (31.3%). For laboratory-reared sand flies,

the midgut bacterial composition was Firmicutes (66.7%) and Proteobacteria (33.3%). We did

not isolate bacteria belonging to the Actinobacteria phylum from the midgut of laboratory-

reared sand flies. Nevertheless, only 35 females were processed and bacterial colonies were iso-

lated solely using the PCA medium, which might have influenced the output of our analysis.

Fig 2. (A) Aspect of some gut isolated bacterial colonies grown on Luedemann medium. (B) Example of PCR-ITS analysis
performed on 49 out of 556 bacterial colonies isolated from the guts of colony-reared and field-collected sandflies. * indicates the 25
individual ITS-PCR profiles whose colonies were further analyzed by 16S rDNA sequencing.

https://doi.org/10.1371/journal.pntd.0005484.g002
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The results of isolating bacterial species from the midguts of field-collected and lab-reared

P. perniciosus, performed in a culture dependent manner, are shown in Table 1. Of the six bac-

terial species identified in laboratory-reared sand flies (Table 1), three are also found in the

midgut of field-collected sand flies (Stenotrophomonas maltophilia, Bacillus sp., Lysinibacillus

sp.) (Table 1). We isolated Veillonella sp. and Burkholderia fungorum only from the laboratory-

reared sand flies (Table 1). Overall, the bacterial richness recorded in field-collected sand flies,

at the species level, seems to be more important than in laboratory-reared flies, even if the total

number of lab-reared flies studied is small.

To further characterize the bacterial richness in field-collected sand flies, a culture-

independent method (DGGE) was performed on the 45 dissected midguts (Fig 1). Despite var-

iation in the number and intensity of the bands detected, the observed DGGE profile is com-

posed of at least 12 distinguishable bands. Among these bands, six were successfully

sequenced. In addition to bacteria already identified using culture-dependent methods, like

Enterococcus sp. (Accession N˚ KY303721 and KY303722), we also identifiedWolbachia sp.

and Ehrlichia sp. (Fig 3). BLASTing the sequence from the DG5 band (459 bp Accession N˚

KY303723) indicated an overall similarity of 99% with the Pel strain ofWolbachia, isolated

from Culex quinquefasciatus (NR-074127.1). The same query on the RDP database disclosed

98% similarity withWolbachia inokumae DQ402518, which was already found in field col-

lected P. perniciosus fromMarseille, France [51]. A search in the RDP database with the

sequence obtained from the DG1 band (718 bp, Accession N˚ KY322518) produced hits with

various species of Ehrlichia, including 96% similarity with Ehrlichia canis-M73226. A similarity

Table 1. Bacterial species assignation.

P. perniciosus origin Medium Species assignation Similarity % Accession N˚ Length (bp) Phylum

Wild Luedemann Ochrobactrum intermedium 99 KY303725 879 α-proteobacteria
Wild Luedemann Sporosarcina koreensis 98 KY303698 830 Firmicutes

Wild Luedemann Ochrobactrum sp. 98 KY303699 879 α-proteobacteria
Wild Luedemann Rhizobium pusense 97 KY303727 902 α-proteobacteria
Wild Luedemann/PCA Enterococcus faecalis 99 KY303701 908 Firmicutes

Wild Luedemann Roseomonas ludipueritiae 99 KY303702 843 α-proteobacteria
Wild Luedemann Kocuria polaris 98 KY303703 786 Actinobacteria

Wild Luedemann Nocardia ignorata 99 KY303705 683 Actinobacteria

Wild/Colony Luedemann/PCA Lysinibacillus sp. 98 KY303706 751 Firmicutes

Wild PCA Bacillus oleronius 99 KY303707 838 Firmicutes

Wild/Colony PCA Bacillus sp. 99 KY303708 836 Firmicutes

Wild PCA Bacillus subtilis 98 KY303709 836 Firmicutes

Wild PCA Bordetella avium 98 KY303726 527 β-proteobacteria
Wild PCA Brevundimonas terrae 98 KY303710 835 α-proteobacteria
Wild PCA Staphyloccocus epidermidis 98 KY303711 958 Firmicutes

Wild PCA Bacillus galactosidilyticus 98 KY303712 918 Firmicutes

Wild/Colony PCA Stenotrophomonas maltophilia 98 KY303713 910 γ-proteobacteria
Wild PCA Serratia sp. 99 KY303714 800 Firmicutes

Colony PCA Bacillus casmanesis 97 KY303715 981 Firmicutes

Colony PCA Burkholderia fungotum 98 KY303716 912 β-proteobacteria
Colony PCA Veillonella sp. 97 KY303717 599 Firmicutes

Wild YMA Microbacterium sp. 98 KY303718 1002 Actinobacteria

Wild YMA Saccharomonospora sp. 98 KY303719 912 Actinobacteria

Wild YMA Micrococcus sp. 99 KY303720 948 Actinobacteria

https://doi.org/10.1371/journal.pntd.0005484.t001
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of 96% with Ehrlichia ewingii (NR-044747) was found when BLAST analysis was performed on

the 718-bp DNA fragment (Fig 3). To our knowledge, this is the first report of the presence of

Ehrlichia sp. DNA in sand fly midguts.

Sand fly-associated bacteria, as revealed via meta-analysis of the
literature data

Ameta-analysis was conducted to assess the bacterial species diversity of Phlebotomus and Lut-

zomyiamicrobiota. This analysis included previously published studies concerning adults of

seven phlebotomine sand fly species (P. argentipes, P. chinensis, P. duboscqi, P. halepensis, P.

sergenti, P. papatasi, P. perfiliewi) our study reported on P. perniciosus and previously pub-

lished data reported on three Lutzomyia species (L. cruzi, L. evansi, L. longipalpis) [22,40–49].

Owing to the small number of studies conducted on the microbiota of Phlebotominae and the

lack of information about sex in several cases, we chose to not take into account the genera of

the specimen in order to highlight trends. This analysis shows that most bacteria identified

from OldWorld sand fly species belong to the Firmicutes phylum, 39,8% (Fig 4A left panel)

(41–42% for our study on P. perniciosus) and the Proteobacteria phylum, 46,8% (Fig 4A right

panel) (37% for our study on P. perniciosus). Bacteria of the Bacteroides genus are not recorded

Fig 3. DGGE profile of amplified gene fragments of bacterial 16S rDNA frommidguts of P. perniciosus on polyacrylamide gel
(7%) and band identification for subsequent sequence analysis.

https://doi.org/10.1371/journal.pntd.0005484.g003
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Fig 4. (A) Composition of the bacterial phyla found in Lutzomyia genus and Phlebotomus genus sand flies. Pie charts show
the proportion of each of the five phyla detected namely Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and
Chloroflexi. (B) Relative proportion of Proteobacterial classes observed in Lutzomyia and Phlebotomus genera sand flies,
respectively on the left and relative proportion of Firmicutes bacterial classes found in Lutzomyia and Phlebotomus genera
respectively on the right. (C) Relative proportion of the major families of bacteria in the gammaproteobacterial class:

Microbiota of P. perniciosus
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in the present study and represent only 0.5% calculated from the pooled published data (i.e.,

Meta-set). Bacteria of the Actinobacteria phylum account for 11.9% of the Meta-set (20%, in

our study on P. perniciosus). In Lutzomyia sp., more than 57% of bacteria currently character-

ized, belong to the Proteobacteria phylum (Gram-negative bacteria), Firmicutes representing

23.9% and Actinobacteria 5.6%. Bacteria of the Bacteroidetes phylum account for approxi-

mately 6% of the species in Lutzomyia but only 0.5% in OldWorld sand fly species (Fig 4A).

Nevertheless, we did not notice significant differences in Bacterial phylum composition

between OldWorld and NewWorld sand flies (chi-squared = 5.8226, df = 2, p-value = 0.0544)

(Fig 4A).

Within the Proteobacteria phylum, compared with the alpha-, beta- and deltaproteobacteria

identified, gammaproteobacteria are by far the most frequently found bacterial class in Lutzo-

myia and Phlebotomus species (Fig 4B right panel). Within the Firmicutes phylum, a higher

number of classes is observed in Lutzomyia, with bacteria belonging to Negativicutes, Bacilli,

and Clostridia. The Bacilli class is almost the sole representative of Firmicutes class in the Old

World sand fly species (Fig 4B left panel).

In the Gammaproteobacteria class, bacterial species of the Enterobacteriaceae family are the

most represented (more than 60% so far isolated) in both the Old and NewWorld sand fly spe-

cies, followed by bacteria belonging to the Pseudomonadaceae andMoraxellaceae families (less

than 20%) and Xanthomonadaceae, with less than 10% (Fig 4C right and left panel). Bacteria of

the Coxiellaceae family have only been isolated from OldWorld sand fly species.

Our meta-analysis shows that bacteria of the Serratia genus has been identified in almost all

Old World and NewWorld sand fly species so far studied, but Serratia marcescens was charac-

terized only in P. duboscqi. Bacteria of the Enterobacter genus are found in five of the eleven

sand fly species studied. Enterobacter cloacae and Enterobacter aerogenes were recorded in

three sand fly species, while Enterobacter gergoviae and Enterobacter ludwigii were found in

two sand fly species. The most frequently isolated bacteria in sand flies are Stenotrophomonas

maltophilia (Pseudomonadaceae), followed by Escherichia coli (Enterobacteriaceae), Klebsiella

ozaenae (Enterobacteriaceae), and Staphylococcus epidermidis (Staphylococcaceae). Bacillus

subtilis (Bacillaceae) and Acinetobacter baumannii (Moraxellaceae) were identified in three of

the eleven sand fly species currently studied (Fig 5).

Despite that neither statistical nor bioinformatics analysis were performed to test the exis-

tence of biological patterns between sand fly species and their corresponding microbiota, the

network representation displayed in Fig 6 suggests some relationships between the eleven

studied NewWorld and OldWorld sand fly species and the bacteria inhabiting their guts. As

an example, the Bacillus genus is found in almost all Old World sand fly species. Bacillus subti-

liswas isolated from P. halepensis, P. papatasi and P. perniciosus. Bacillus megaterium was iso-

lated from P. papatasi and P. argentipes. Bacillus oleronius, Bacillus brevis, Bacillus

endophyticus, Bacillus pumilus, Bacillus circulans, Bacillus mojavensis, Bacillus firmus, Bacillus

licheniformis, Bacillus vallismortis, Bacillus cereus, Bacillus amyloliquefasciens, Bacillus altitudi-

nus and Bacillus flexuswere isolated only from P. papatasi. Bacillus closei and Bacillus mycoïdes

were isolated only from P. argentipes. Bacillus oleronius, Bacillus galactosidilyticus, and Bacillus

casamensis were isolated only from P. perniciosus (Fig 6). Bacillus thuringiensis is the only spe-

cies of the Bacillus genus that was isolated from L. evansi and P. chinensis, two sand fly species

belonging to the NewWorld and OldWorld, respectively (Fig 6).

“Enterobacteriales” order (Enterobacteriaceae), the Pseudomonadales order (Moraxellaceae and Pseudomonadaceae), the
Xanthomonadales order (Xanthomonadaceae) and the Legionellales order (Coxiellaceae) in Lutzomyia (right panel) and
Phlebotomus (left panel).

https://doi.org/10.1371/journal.pntd.0005484.g004
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Nevertheless, in the Meta-Set no significant differences in the microbiota composition at

the genus level was observed as demonstrated in the Fig 7 that depicts the Shannon (left) and

Simpson (right) indices of diversity for Old World (i.e Phlebotomus) and NewWorld sand flies

(Lutzomyia).

Monthly dynamics of the gut bacterial consortium during the main period
of P. perniciosus activity

Fig 8A depicts the monthly proportions of each previously characterized bacterial species. To

perform this analysis, bacterial species identification was linked to each individual phylotype

recorded by PCR-ITS analysis. Then, the number of colonies harboring the same ITS-PCR

profile was determined and their monthly proportion calculated.

In July, among the nine bacterial species identified in midguts of wild P. perniciosus, only

bacteria belonging to two phyla, Proteobacteria and Firmicutes, were found. In September, the

bacteria belonged to the Actinobacteria, Proteobacteria and Firmicutes phyla. In October, only

bacteria belonging to Firmicutes were isolated (Fig 8A). Shannon and Simpson indices of

diversity confirmed a lower diversity in October (Fig 8B). Correspondence analysis performed

on data frommonthly dynamics highlights the contrasting situation between October and Sep-

tember/July, depicted on the first axis. October is characterized by B. oleronus and unidentified

Fig 5. Bacterial genera (part I) and species (part II) shared by two or more of the eleven Phlebotominae sand flies species.Color chart indicate
the occurrence of the bacterial genera or species.

https://doi.org/10.1371/journal.pntd.0005484.g005
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Bacillus and Lysinibacillus species. The differences between July and September/October is

depicted by the second axis of the correspondance analysis (Fig 8C). This analysis further rein-

forces our observation of a monthly evolution of the microbiota within the sand fly gut.

Discussion

Currently, there are considerable efforts to study arthropod gut microbiota, especially those of

medically important vectors. The microbiota is considered in the context of possible extended

phenotypes conferred on the insect hosts that allow niche diversification and rapid evolution

[52]. As early as 1929, Adler and Theodor [53] suggested that the presence of microorganisms

in the guts of sand flies might impact the development of the parasite Leishmania. In the mid-

80s, the team of Shlein and collaborators [12] observed a large number of “germ (bacteria)

contaminations” in guts of wild-caught female P. papatasi. However, the composition of the

Fig 6. Network analysis showing the shared bacteria species found in Phlebotomus sand flies including P. argentipes, P. duboscqii, P.
halepensis, P. papatasi, P. perlifiliewi, P. perniciosus, P. sergenti, and P. chinensis) identified by squares surrounded by green and bacteria
found in Lutzomyia sand flies including L. evansi, L. cruzi and L. longipalpis identified with squares surrounded by blue. Shared bacteria are
identified by the same colours used in Fig 5.

https://doi.org/10.1371/journal.pntd.0005484.g006
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sand fly’s gut microbiota was studied much later by Dillon et al. [54]. Ochrobactrum sp. was

the first bacterium to be isolated from the midguts of P. duboscqi, a proven vector of L.major

in Sub-Saharan Africa [44], and from other sand fly species [40], including laboratory-reared

Lutzomyia longipalpis [55] and NewWorld L. intermedia [56]. This bacterium, probably

ingested by larva, passes to nymphs and up to the adults through transstadial transmission

[44]. Recently, several publications were dedicated to the study of the microbial composition

associated with the digestive tract of sand flies. Only a few studies concerning biotic and abi-

otic factors influencing the composition of the bacterial community of the midgut of sand flies

were performed.

This study brings additional evidence on the microbiota composition in the midgut of P.

perniciosus. Our results suggest that lab-reared P. perniciosus display a lower bacterial richness

in their midgut than in field-collected sand flies. This difference is likely due in part to the type

of food diet ingested by larvae and adults during rearing. In the laboratory, P. perniciosus larvae

are fed sterile chaw (50% rabbit food plus 50% rabbit feces). After emergence, glucose is the

main source of carbohydrates for adults [25]. Under natural conditions, larvae, as well as adult

P. perniciosus, have a wide variety of diet including various sources of blood meals [18,57].

Fig 7. Shannon’s diversity (left side) and Simpson’s diversity values (right side) for Lutzomyia (Lutz) and Phlebotomus

(Phle). Error bars are 95% confidence interval.

https://doi.org/10.1371/journal.pntd.0005484.g007
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Fig 8. (A) Dynamic of the midgut bacterial richness and abundance during July, September, and October
2011. An ITS-PCR profile was assigned to a bacterial species and identified by the sequencing of the 16S
rDNA locus. The percentage of each bacterial species was obtained by counting the number of colonies
having the same ITS-PCR profile and expressed as a percentage of the total colonies isolated during the
considered month. (B) Shannon’s diversity value (left side) and Simpson’s diversity value (right side) for the

Microbiota of P. perniciosus
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Therefore, the nature of the feeding regimen leads to a striking contrast between field-collected

and laboratory-reared sand flies, which might explain the lower bacterial richness observed in

colonized sand flies.

Among the bacterial genera found associated with P. perniciosusmidgut, we identified iso-

lates belonging to the Burkholderia genus and Stenotrophomonas maltophilia, an aerobic non-

fermentative and a Gram-negative bacterium. We also identified bacterial species commonly

found in the digestive tract of humans or other mammals, but which have not yet been

described in the midguts of sand flies, like Veillonella sp. In addition Sporosarcina koreensis,

Rhizobium pusense and Nocardia (a rare endophyte bacterium) have never been found in asso-

ciation with the sand fly gut. The richness of sand fly-associated bacteria, illustrated by the

meta-analysis, point to some interesting outcomes. In Lutzomyia sp., more than 57% of identi-

fied bacteria belong to the Proteobacteria phylum (Gram-negative bacteria), whereas for Old

World sand fly species, including P. perniciosus, Proteobacteria (47%) and Firmicutes (40%)

are preponderant. Such a difference in the gut microbiota composition might be due to a num-

ber of factors, including the long divergence of evolution between the two subgenera [2]; some

new studies are required to assess this observation. Another surprising finding is the high rich-

ness of Bacillus species found in Old World sand flies, in which the majority of these bacteria

are host specific (Fig 6). Stenotrophomonas maltophilia, that has emerged as an important

opportunistic pathogen [58] was found to inhabit the gut of most of the sand fly species so far

studied. This bacterial species is a common microorganism found in aqueous habitats, plant

rhizosphere, animal food and water sources. Thus, delineating the origin of the colonization of

midguts by S.maltophilia and evaluating its role, if any, in the sand fly biology and physiology

are of major importance.

Our results have, for the first time, disclosed monthly variation in the diversity of the sand

fly’s gut microbiota, during the period of transmission of L. infantum. In fact, it appears that

the richness of the gut microbiota is related to sand fly seasonal activity. This diversity could

reflect the environmental conditions, such as temperature and humidity, but it may also be

linked to variations in plant cover, such as flower blooming. At the beginning of the sand fly

season (July), Ochrobactrum sp. and Serratia sp., both affiliated with the Proteobacterium phy-

lum, were the principal bacterial genera isolated. The peak of activity of P. perniciosus occurs

in September and October, a period that also corresponds to the L. infantum transmission sea-

son [59]. The analysis of the gut bacterial flora of sand flies collected in September reveals a

higher diversity (Fig 8). In particular, we recorded the presence ofMicrobacterium, Micrococ-

cus, Kocuria, Stenotrophomonas, and Bacillus sp. (Actinobacteria, Proteobacteria and Firmi-

cutes). In July, O. intermedium and Serratia sp. are the dominant bacteria genera in the midgut

of P. perniciosus and these bacteria became undetectable towards the main peak of sand fly

activity identified in Tunisia, i.e., during the months of September and October [59]. The prev-

alence of L. infantum infection in the P. perniciosus population increases over the summer

months and reaches a peak of 9% during September-October [60,61]. Ochrobactrum interme-

dium has been found previously to negatively affect Leishmania mexicana infection in L. longi-

palpis [55]. Certain strains of S.marcescens are capable of producing a pigment called

prodigiosin, which ranges in color from dark red to pale pink depending on the age of the

months of July, September and October respectively. Error bars are 95% confidence interval. (C)
Correspondance analysis (CA) based on bacterial species frequencies (in black) according the different
months (July, September and October in blue). Bacteria are identified by an abbreviation: Ba, Bacillus; Br,
Brevundimonas; En, Enterococcus, Ko, Kocuria; Ly, Lysinibacillus; Mib,Microbacterium; Mic,Micrococcus;
Oc,Ochrobactrum; No, Nocardia; Rh,Rhizobium; Ro,Roseomonas; Sa, Sacharomonospora; Se, Serratia;
Sp, Sporosarcina; Ste, Stenotrophomonas; St, Staphylococcus.

https://doi.org/10.1371/journal.pntd.0005484.g008
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colonies. Derivatives of prodigiosin have recently been found to have anti-T. cruzi and anti-

Leishmania (Leishmania mexicana) activity by promoting mitochondrial dysfunction leading

to parasite programmed cell death [62,63]. To what extent such interplay between the bacterial

colonies that exert toxic effects might interfere with the dynamic of L. infantum transmission

awaits further investigation.

Sand flies are vectors of medical and veterinary importance. Understanding the establish-

ment of the sand fly microbiota is critical towards clarifying underlying details of sand fly

Leishmania-microbiota interactions [64]. Bacteria such as O. intermedium, which has been

previously characterized in the guts of larvae, pupae, and adults of P. duboscqi [44], is an

opportunistic pathogen to humans [65]. Serratia sp., an entomopathogenic bacteria found in

this study, has been previously isolated from L. longipalpis [40] and L. intermedia [56]. Borde-

tella avium, isolated only once from a specimen caught during July, has never been previously

isolated from sand fly midgut microflora. Bordetella avium is a highly pathogenic bacterium,

causing the avian bordetellosis [66]. Klebsiella ozaenae, known also as a human pathogenic

bacterium, has been found in four out of the ten studied sand fly species (not isolated in this

study). K. ozaenae was isolated from the midgut of gravid and freshly fed females of P. papatasi

and P. halepensis [45] and from some Lutzomyia species (Fig 5). Klebsiella species are ubiqui-

tous in nature [67,68] and are recorded in all habitats where sand flies proliferate. Moreover,

the presence of K. ozaenae in the midgut of gravid females [45] will highlight their capacity to

survive in the gut of this insect. Nevertheless, as for all bacterial species known to be etiological

agents of human diseases, the sole observation of their presence in sand fly gut is not sufficient

to incriminate sand flies as a potential vector but gives information on the bacterial dissemina-

tion via blood-feeding insects. The data collected are not sufficient to incriminate sand flies as

a biological vector of K. ozaenae but are enough to raise suspicion regarding their role in the

dissemination of K. ozaenae. Furthermore, whether certain clinical outcomes from leishmania-

sis may be linked to bacteria potentially deposited during the Leishmania-infected sand fly bite

still remains to be fully investigated [68]. These studies will not only shed light on the effect of

the gut bacterial community on the sand fly fitness but also on the establishment and the trans-

mission of Leishmania parasites in endemic areas.

This meta-analysis aimed to identify the best bacterial candidate for a paratransgenic

approach. Our study is based on data aggregated from various publications that use culture-

dependent and culture-independent methodologies and various set of technical approaches

used to study the sand fly microbiota. For these reasons, conclusions raised with this study

should be taken with caution and analyzed in the light of the limitations and pitfalls inherently

associated with the compilation of heterogeneous data. Among limitations, some are linked to

the physiological state of the sample. The gut microbiome is highly dynamic [69] and therefore

influences the outcome of the analysis. When using a culture-dependent approach, we have to

keep in mind that only 20% of environmental bacteria can be grown on a growth medium

[70]. Therefore, the composition of the microbiota is not a direct reflection of the bacterial

community structure (abundance and richness) inside the insect, but an altered version of the

ecosystem from where they came. Nucleic acid-based analysis, involving historically used

methods (such as construction and Sanger sequencing of metagenomic clone libraries, auto-

mated ribosomal internal transcribed spacer analysis (ARISA), terminal restriction fragment

length polymorphism (T-RFLP), denaturing gradient gel electrophoresis (DGGE)) and next

generation sequencing technology require a critical step that must combine an efficient cell

disruption without DNA degradation and uniform nucleic acid extraction. Unfortunately, no

consensus protocol for microbial DNA extraction of insect-associated microbiota is currently

available [70]. Although 16S rRNA gene sequencing is highly useful with regards to bacterial

classification, it has a low phylogenetic power at the species level for some genera [71,72].
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Depending on the 16S rRNA variable region targeted and the database used to perform the

taxonomic profiling, misassignation of bacterial OTU at the species level could be frequent

[73]. Nevertheless, taking into account all the above mentioned limits and pitfalls, we think

that an exhaustive approach aimed at collecting a maximum of data on the microbiota of sand

flies will give key information on the most commonly identified bacteria in sand fly species

and those that are more specific.

Our groups are interested in the development of a paratransgenic platform to control the

transmission of leishmaniasis. To that end, a strain of the non-pathogenic Bacillus species

(Bacillus subtilis), isolated from P. papatasi, is proposed as a possible candidate for paratrans-

genic approach. In this study, we isolated B. subtilis from P. perniciosusmidgut, in addition to

other Bacillus species (Bacillus oleronius, Bacillus casamensis, Bacillus galactosidilyticus and

Bacillus sp.). Bacteria belonging to the Bacillus genus seem to display a host-specific distribu-

tion, with only B. subtilis being isolated in more than one sand fly species (P. halepensis, P.

papatasi, and P. perniciosus). In addition, we observed that no bacteria belonging to the Bacil-

lus genus have been characterized to date in adult NewWorld sand fly species. Therefore, even

if this bacterium possesses the main advantages of being non-pathogenic, easy to cultivate and

to perform genetic manipulation, its use for paratransgenic control of Leishmania can be chal-

lenged by its capacity to establish long-term colonies in the gut of various sand fly species. In

particular, if a paratransgenic approach is developed using B. subtilis as a host, it will be essen-

tial to probe its capacity to efficiently colonize the gut of Lutzomyia species and of other Old

World sand fly species in which this bacterium has yet not been found in the gut. Thus, it will

be of major epidemiological importance to develop a regional strategy for each endemic area

with different bacterial isolates.

Conclusion

The knowledge of interactions between sand flies, Leishmania and nonpathogenic microor-

ganisms that inhabit the gut will help to delineate an appropriate bacterial host recipient that

can be used for paratransgenesis designed to prevent Leishmania transmission. The identifica-

tion at the species level of the midgut’s cultured flora of P. perniciosus, linked to its seasonal

variation, is likely to provide new perspectives towards a better understanding of the role of

the gut bacterial community on sand fly-pathogen interactions. This knowledge is crucial in

order to implement control strategies for sand fly zoonotic visceral leishmaniasis.
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