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Abstract

Background: DNA methylation plays crucial roles in most eukaryotic organisms. Bisulfite sequencing (BS-Seq) is a

sequencing approach that provides quantitative cytosine methylation levels in genome-wide scope and single-base

resolution. However, genomic variations such as insertions and deletions (indels) affect methylation calling, and the

alignment of reads near/across indels becomes inaccurate in the presence of polymorphisms. Hence, the

simultaneous detection of DNA methylation and indels is important for exploring the mechanisms of functional

regulation in organisms.

Results: These problems motivated us to develop the algorithm BatMeth2, which can align BS reads with high

accuracy while allowing for variable-length indels with respect to the reference genome. The results from simulated

and real bisulfite DNA methylation data demonstrated that our proposed method increases alignment accuracy.

Additionally, BatMeth2 can calculate the methylation levels of individual loci, genomic regions or functional regions

such as genes/transposable elements. Additional programs were also developed to provide methylation data

annotation, visualization, and differentially methylated cytosine/region (DMC/DMR) detection. The whole package

provides new tools and will benefit bisulfite data analysis.

Conclusion: BatMeth2 improves DNA methylation calling, particularly for regions close to indels. It is an autorun

package and easy to use. In addition, a DNA methylation visualization program and a differential analysis program

are provided in BatMeth2. We believe that BatMeth2 will facilitate the study of the mechanisms of DNA methylation

in development and disease. BatMeth2 is an open source software program and is available on GitHub (https://

github.com/GuoliangLi-HZAU/BatMeth2/).
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Background
DNA methylation is an important epigenetic modification

that plays critical roles in cellular differentiation [1], gen-

omic imprinting [2], X-chromosome inactivation [3], devel-

opment [4] and disease [5]. Bisulfite sequencing applies a

bisulfite treatment to genomic DNA to convert nonmethy-

lated cytosines to uracils, which can be sequenced as

thymines (T). Methylated cytosines cannot be converted to

uracils and are sequenced as cytosines (C). In this way,

methylated and nonmethylated Cs can be distinguished.

Whole-genome bisulfite sequencing (BS-Seq) is a method

to convert nonmethylated cytosines into thymines for

DNA methylation detection at single-base resolution, a

process that has substantially improved DNA methylation

studies. However, bisulfite conversion introduces

mismatches between the reads and the reference genome,

which leads to slow and inaccurate mapping. In the last

few years, a number of tools have been developed for

BS-read alignment, such as BatMeth [6], BSMAP [7],

Bismark [8], BS-Seeker2 [9], BWA-meth [10], BSmooth

[11] and Biscuit [12].

Structural variations (SVs) play a crucial role in genetic

diversity [13–15]. Many SVs are associated with cancers
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and genetic diseases such as psoriasis, sporadic prostate

cancer, high-grade serous ovarian cancer and small-cell

lung cancer [16–18]. Insertions and deletions (indels)

are the second most common type of human genetic

variants after single nucleotide polymorphisms (SNP)

[19]. Many human inherited diseases have been reported

to be related to indels [20, 21]. Recent results show that

the indel rate in the human genome is approximately 1

in 3000 bp [22]. If we cannot align indel-containing

reads accurately, the resulting misalignments can lead to

numerous errors in the downstream data analysis and

directly affect the calling of DNA methylation, which

leads to incorrect results. Because DNA methylation and

indels both play important roles in development and

diseases such as cancer, it is necessary to detect them

simultaneously.

However, the current methylation callers fail to accur-

ately align reads to indel regions. BSMAP can detect

only indels with lengths less than 3 nucleotides. Other

tools, such as BWA-meth (which uses BWA-mem [23]

as the fundamental mapping tool), use seeding

approaches. These methods assume that the seeds have

no indels. Hence, they cannot obtain the correct results

when sequencing reads contain multiple mismatches

and indels. As a result, we were motivated to study the

alignment performance of the published methods on

reads with and without indels. Based on the ‘Reverse-a-

lignment’ and ‘Deep-scan’ ideas in BatAlign [24], we de-

veloped the DNA methylation mapping tool BatMeth2,

which is sensitive to indels in bisulfite DNA methylation

reads. In addition, we also provided programs for DNA

methylation data annotation, visualization and differen-

tially methylated cytosine/region (DMC/DMR) detection

to facilitate DNA methylation data analysis. The package

BatMeth2 is designed to be an easy-to-use, autorun

package for DNA methylation analyses.

Implementation
Bisulfite sequencing read alignment with BatMeth2

The basic alignment tool underlying BatMeth2 is the

alignment program BatAlign [24], which works as follows.

First, converted reference genomes and converted input

sequences are prepared with all Cs in the reference

genomes, and input sequences are converted to Ts.

Because the plus and minus strands are not complemen-

tary after Cs are converted to Ts, two converted reference

genomes are prepared, where one is for the plus strand of

the original reference genome and the other is for the

minus strand of the original reference genome. The

indexes are built for these two converted reference

genomes. Many existing approaches first find putative hits

for the short seeds of the input reads by performing exact

alignment or 1-mismatch alignment of the seeds. When

the short seeds have two or more mutations, the putative

hits of the short seeds may not represent the correct loca-

tions of the input reads. To address the limitation of miss-

ing alignment hits with low edit-distance short seeds,

BatMeth2 finds hits of long seeds from the input reads

allowing a high edit-distance (long seeds of 75 bp, five

mismatches and one gap allowed). When the input

sequence is shorter than 150 bp, the candidate hits of the

75 bp seed are searched and then extended to their

original full read length. When the input read is longer

than 150 bp, multiple nonoverlapping 75 bp seeds are used

to search for candidate hits. These hits are extended, and

then, the best alignment is selected on the basis of a set of

predefined criteria, including the mismatch number and

the number of mapping hits. For the calculation of the

alignment score, the penalty for a gap is exactly the same

as the penalty for 1.5 mismatches. If the number of “de-

tected mismatches” in a read is smaller than the mismatch

threshold, the detection of indels will not be conducted

unless there is no appropriate alignment result for the

read. (When there is a mismatch alignment of a read with

a small number of mismatches, it is better than an align-

ment with indels. Hence, it is unnecessary to obtain a

gapped alignment.) When the allowed number of

mismatches is greater than the mismatch threshold,

BatMeth2 will detect indels and report the alignment hit.

This algorithm will not sacrifice accuracy, yet it is more

efficient. Additional file 1: Figure S1 outlines the details of

the BatMeth2 algorithm.

The final alignment between a read and the reference

genome is based on an affine-gap scoring scheme, where

the score for a match or a mismatch is the Phred scaled

value at this position. The gap opening penalty and the

gap extension penalty are 40 and 6, respectively.

In reduced representation bisulfite sequencing (RRBS),

the genomic DNA is first fragmented by enzymatic

digestion (e.g., MspI), followed by a size selection step to

enrich the fragments for CpG islands. Therefore, in Bat-

Meth2, we partition the genome by enzymatic digestion

site (e.g., C-CGG for MspI); then, we index only the

reduced representation genome regions, which are frag-

ment regions that are shorter than the predefined value,

which is 600 by default. We map the RRBS reads by

building special enzymatic digestion indexes with

improved efficiency.

Methods for aligning reads across the breakpoints of

small insertions and deletions (indels)

BatMeth2 starts scanning for the most likely hits for a read

in the reference genome by using ‘Reverse-alignment’. The

current alignment methods mostly use seed-and-extend

approaches. They first align short seeds allowing 0 or 1 mis-

match; then, the seeds are extended. When the alignment

of the read contains multiple mismatches and/or indels, the

current solutions may fail. To avoid this problem, our
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approach is to align a long seed (default 75 bp) allowing

more mismatches and gaps (by default, we allowed five

mismatches and one gap). In addition, for aligning

paired-end reads, the best hit for an individual read is not

necessarily the best alignment result for the paired-end

reads. In this case, we need to consider the alignment re-

sults of both reads at the same time. Therefore, after we ob-

tain the least-cost (highest Smith-Waterman score) hit for

each read, we continue to search for more alignment hits

and finally choose the appropriate alignment results ac-

cording to the paired-end sequence alignment. This

method is called ‘Deep-scan’ and is described in BatAlign

[24]. Among the hits of both reads, BatMeth2 finds the best

hit pair and reports it.

If a read spans a genomic rearrangement breakpoint,

many mismatches between the read and the genome

may occur, which will cause the alignment score to be

negative. In this case, we will remove some part of this

read (soft-clipping). When the soft-clipped length is

greater than 20, we will realign the clipped portion of

the read (allowing for 0 mismatches) and obtain auxil-

iary alignments. The chosen auxiliary alignment and the

primary alignment of the read together will represent a

complete alignment of the original read.

The main differences between BatMeth2 and BatMeth

are as follows: 1) BatMeth2 supports gapped alignment

with an affine-gap scoring scheme, while BatMeth finds

only ungapped alignments. 2) BatMeth2 supports

paired-end alignment, while BatMeth can align only

single-end reads. 3) BatMeth2 supports characterizing

the alignment hits with a mapping quality report. 4) Bat-

Meth2 supports local alignment, which does not require

reads to align end-to-end. Therefore, BatMeth2 can re-

move some part of this read (soft-clipping) based on the

alignment score.

Calculation of methylation levels

To calculate the methylation density, we first count the

total number of C/T nucleotides that overlap with each

cytosine site on the plus strand and the number of G/A

nucleotides on the minus strand. Those cytosines, which

are used for further statistical analysis, should meet the

criterion that their depth (C plus T) should be more

than some predefined threshold (by default, 5) to reduce

the influence of sequencing errors in the cytosine site. In

addition, we know that there may be a SNP variation

from cytosine (C) to thymine (T), which may affect the

calculation of methylation levels in the cytosine loci. To

determine whether a site contains a C-to-T bisulfite con-

version or a C-to-T SNP, we need to consider the reverse

complement strand simultaneously. If the cytosine site is

a methylation, it will change from C to T after bisulfite

treatment, while the reverse complement strand (rev)

should be G. Conversely, if the site is a C-to-T SNP, the

rev should be A. Therefore, we calculate the methylation

level (ML) by the following equation, which was used in

the BSMAP [7] program:

ML ¼ min
C

C þ Tð Þ �
RevG

RevG þ RevAð Þ

; 1:0

0

B

B

@

1

C

C

A

� 100%

where C (or T) is the coverage of C (or T) from the

reads on the plus strand and RevG (or RevA) is the

coverage of G (or A) from the reads on the minus

strand.

However, to ensure the accuracy of the DNA ML, the

above formula is applied when the coverage on the com-

plement strand of the cytosine site is high. When the

coverage on the reverse complementary strand (G + A)

is smaller than the preset coverage threshold (default:

10), we calculate the ML by the following equation:

ML ¼
C

C þ Tð Þ
� 100%

Identification of differentially methylated regions (DMRs)

BatMeth2 integrates several commonly used methods

for detecting differentially methylated regions (DMRs),

for example, the beta-binomial distribution model [25]

for data with replicates and Fisher’s exact test for data

without replicates. In addition, BatMeth2 can not only

scan the whole genome for DMRs but also operate on

predefined windows, such as gene bodies, transposable

elements (TEs), untranslated regions (UTRs), and CpG

islands.

For each sliding window or predefined window,

differential analysis can be performed if it meets the fol-

lowing criteria: (1) the region contains at least m valid

CpG (or non-CpG) sites (e.g., m = 5) in both samples;

(2) each valid CpG site is covered by at least n bisulfite

sequencing reads (e.g., n = 5). Users can choose a

suitable statistical method to perform hypothesis tests.

Each predefined window or sliding window acquires one

p value from the selected statistical testing method.

Finally, the p values are adjusted with the false discovery

rate (FDR) method for multiple hypothesis testing, pro-

posed by Benjamini and Hochberg [26]. If the adjusted p

value of a window is less than the predefined threshold,

and the difference of DNA ML between the two samples

is greater than the preset threshold, the window is

defined as a DMR.

Visualization of DNA methylation data

To visualize the methylation profile, the ML in each gen-

omic region is calculated. These genomic regions can be

gene bodies or promoters, etc.
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To calculate the methylation density level in a given

genomic region, only cytosines with coverage greater

than the preset threshold are used. The ML in a

genomic region is defined as the total number of

sequenced Cs over the total number of sequenced Cs

and Ts at all cytosine positions across the region, and

the equation is as follows:

M ¼

Pn
1C

Pn
1 C þ Tð Þ

� 100%

where n is the total number of cytosine sites whose

coverage is more than the predefined threshold in the

genomic region.

Mapping programs and environment for evaluation

We evaluated the performance of BatMeth2 by aligning

both simulated and real BS reads to the human genome

(hg19) and compared it with the current popular DNA

methylation mapping tools, such as Bismark (v0.14.5),

BSMAP (v2.74), BS-Seeker2 (v2.0.8), BWA-meth,

BSmooth (v0.8.1) and Biscuit (v0.3.8). All tests were con-

ducted in a workstation with an Intel(R) Xeon(R) E5–

2630 0 @ 2.30 GHz CPU and 128 GB RAM running

Linux (Red Hat 4.4.7–11). We allowed the same number

of mismatches for the read alignment and the same

number of CPU threads for all the compared programs

in our experiments. If not specified, the parameters were

kept as default. When running Bismark (with Bowtie2 as

the fundamental mapping method), we used the default

parameters and set the alignment seed length as 15 for

testing. The format of the BSmooth alignment results

was adjusted using the code of BWA-meth.

Result
An easy-to-use, autorun package for DNA methylation

analyses

To complete DNA methylation data analysis more con-

veniently, we packaged all the functions in an easy-to-use,

autorun package for DNA methylation analysis. Figure 1

shows the main features of BatMeth2: 1) BatMeth2 has

efficient and accurate alignment performance. 2) Bat-

Meth2 can calculate the DNA methylation level (ML) of

individual cytosine sites or any functional regions, such as

whole chromosomes, gene regions, transposable elements

(TEs), etc. 3) After the integration of different statistical

algorithms, BatMeth2 can perform differential DNA

methylation analysis for any region, any number of input

samples and user requirements. 4) By integrating BS-Seq

data visualization (DNA methylation distribution on chro-

mosomes and genes) and differential methylation annota-

tion, BatMeth2 can visualize the DNA methylation data

more clearly. During the execution of the BatMeth2 tool,

an html report is generated for the statistics of the sample.

Sample html report details are shown in http://htmlpre-

view.github.io/?https://github.com/GuoliangLi-HZAU/

BatMeth2/blob/master/BatMeth2-Report/batmeth2.html.

BatMeth2 has better mapping performance on simulated

BS-Seq data

We first evaluated all the aligners using simulated data-

sets (without indels) consisting of reads with 75 base

pairs (bp), 100 bp and 150 bp and with different bisulfite

conversion rates (ranging from 0 to 100% with step

10%). These datasets were simulated from the human

genome (UCSC hg19) using FASTX-mutate-tools [27],

wgsim (v0.3.0) and the simulator in SAMtools (v1.1)

[28], which allows 0.03% indels, a 1% base error rate in

the whole genome and a maximum of two mismatches

per read. We mapped the simulated reads to the refer-

ence genome, allowing at most two mismatches. Because

the original positions of the simulated reads were

known, we could evaluate the accuracy of all the

programs by comparing their mapping outputs with the

original positions.

To compare the performances of the different soft-

ware, a sequencing read with indels was considered

correctly mapped if the following conditions were true:

1) the read was uniquely mapped to the same strand as

it was simulated from and the mapping quality was

greater than 0; 2) the reported starting position of the

aligned read was within ten base pairs of the original

starting position of the simulated read; 3) the mapping

results had similar indels or mismatches to the simulated

read. If any of these conditions were violated, the read

was considered wrongly mapped. Because BatMeth2

allows one gap in the seed region, it can find seed

Fig. 1 The workflow of BatMeth2. The two big arrows mean input or

output files
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locations incorporating indels with high accuracy and

can avoid mismatched locations, which would cause

reads incorporating indels to be misaligned. The results

in Fig. 2 show that BatMeth2 achieved the largest num-

ber of correctly aligned reads and the lowest number of

incorrectly aligned reads in all test datasets at different

bisulfite conversion rates.

In brief, the results from wgsim-simulated indel-aberrant

datasets show that BatMeth2 has better performance

(1~2% better than the second top aligner) than the other

methods when aligning general simulated BS reads contain-

ing a mixture of mismatches and indels. We can see that

with the increased BS conversion rate, the alignment accur-

acy of all the software is reduced. In these different condi-

tions, BatMeth2 performs better.

BatMeth2 has better mapping performance on real BS-

Seq data

To test the performance of BatMeth2 on real BS-Seq

datasets, we downloaded paired-end BS-Seq datasets

and randomly extracted 1 million 2 × 90 bp paired-end

reads from SRA SRR847318, 1 million 2 × 101 bp

paired-end reads from SRA SRR1035722 and 1 million

2 × 125 bp paired-end reads from SRA SRR3503136 for

evaluation purposes. Because these datasets are from

healthy cell lines or tissues, they are expected to contain

a low number of structural variations. Hence, we aligned

these real data using single-end reads from the

paired-end datasets and evaluated the concordant and

discordant mapping rates from the paired alignments to

estimate the correct and incorrect alignment rates.

Because the insert size of the paired-end reads was

approximately 500 bp, a pair of partner reads could be

considered concordant if they were mapped within a

nominal distance of 500 bp; otherwise, a pair of partner

reads could be considered discordant. Similar to our

results with the simulated data, BatMeth2 reported more

concordant and fewer discordant alignments on the real

datasets over a large range of map quality scores, as

shown in Fig. 3.

In addition, Table 1 shows the relative runtimes of the

programs. BatMeth2 with the default settings ran faster

than most of the published aligners and was comparable

to BWA-meth and BatMeth. Bismark2 (with Bowtie2 as

the fundamental mapping method), BS Seeker2 and

BSmooth require longer running times.

DNA methylation calling

To evaluate the accuracy of DNA methylation calling

among different software, we downloaded 450 K bead

chip data from the IMR90 cell line from ENCODE

(Encyclopedia of DNA Elements). We also downloaded

whole-genome bisulfite sequencing (WGBS-Seq) data of

the IMR90 cell line from ENCODE (42.6 Gbases). For

each software, we aligned the WGBS-Seq reads and cal-

culated the level of DNA methylation. Then, we com-

pared the results with the MLs at the same sites in the

450 K Bead Chip data. When the difference between the

DNA ML from the WGBS-Seq data by the software and

that from the 450 K Bead Chip was less than 0.2, the

Fig. 2 Evaluation of all BS-Seq aligners using simulated datasets with different read lengths from FASTX and wgsim. Simulated data with different

bisulfite conversion rates is shown in different shapes. Results from different aligners are shown with different colors of the symbols. The results

near the top-left corner in each panel show that the software achieved more number of correctly mapped reads and the lower number of

incorrectly mapped reads. The results from our aligner BatMeth2 are the best in the different simulated bisulfite datasets
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calling result was defined as correct; otherwise, it was

considered incorrect.

The results are shown in Table 2. The overlap among the

correct results of all the software is shown in Additional file

1: Figure S2. We can see that BatMeth2 and Biscuit have

similar performances, which are better than those of the

other software. In conclusion, BatMeth2 improves the

accuracy of both BS-read alignment and DNA ML calling.

BatMeth2 aligns BS reads while allowing for variable-

length indels

Cancer contains a notably higher proportion of indels than

healthy cells do. Therefore, to verify whether BatMeth2 can

align BS reads with indels of different lengths, we down-

loaded WGBS data (75 Gbases) and 450 K Bead Chip data

from HepG2 (liver hepatocellular carcinoma, a cancer cell

line) from ENCODE. We checked the indel length distribu-

tion in the reads after the alignment of HepG2 WGBS-Seq

data. Additional file 1: Figure S3A shows that the lengths of

the detected indels were mainly distributed in the 1 bp~ 5

bp range, and the longest indel was 40 bp in length. Ac-

cording to our statistics, 2.3% of the alignment reads con-

tained indels. From these results, we know that BatMeth2

can align reads with indels of different lengths.

Next, we tested the effect of indel detection on DNA

methylation calling. For BatMeth2, we ran two options

on the HepG2 data: with and without indel detection

(i.e., set -I parameter in BatMeth2). We also ran Bismark

on the WGBS-Seq data from HepG2 as a reference for

DNA methylation calling with indel detection, because

Bismark does not have an indel calling function. We

compared the calling of DNA methylation in BatMeth2

and Bismark with the calling from the 450 K Bead Chip

data. The results are shown in Additional file 1: Figure

S3B, where “BatMeth2-noIndel” corresponds to Bat-

Meth2 with no indel detection. We can see that, in the

absence of indel detection, the result of BatMeth2 was

only slightly better than that of Bismark (with Bowtie1

as the fundamental mapping method). The result of Bat-

Meth2 with indel detection was significantly better. Fur-

thermore, we can see that BatMeth2 can detect more

DNA methylation sites than BatMeth2-noIndel and Bis-

mark (Bowtie 1). To understand why the performance of

BatMeth2 with indel detection is better, we defined the

methylation sites called by BatMeth2 as Result A, while

the methylation sites called by BatMeth2-noIndel and

Bismark were defined as Result B. Then, we let mclA be

the methylation sites appearing in Result A but not

Result B. We observed that mclA included 23,853 DNA

methylation sites and 15,048 (63%) of the 23,853 sites

covered by the alignments of indel reads called by Bat-

Meth2 with indel detection (see Additional file 1: Figure

S3C). In addition, we found that the indel rates in Result

A and Result B were only 5 and 0%, respectively. Hence,

we concluded that accurate indel detection can improve

DNA methylation calling.

Fig. 3 Concordance and discordance rates of alignments on real paired-end reads from different aligners. Cumulative counts of concordant and

discordant alignments from high to low mapping quality for real bisulfite sequencing reads. There is only one point for BSmap and the aligners

based bowtie separately, since these aligners have no map quality score. Bismark-bowtie2L15 means bowtie2 alignment with seed length 15

Table 1 Running time (in seconds) from different aligners for

real bisulfite reads with length 90 bp

BatMeth BatMeth2 Bismark-b1 Bismark-b2 Bismark-L15

456 681 633 1869 2102

BWA-Meth Biscuit BS Seeker BSmap BSmooth

498 1256 1173 774 3740
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Visualization of DNA methylation data

BatMeth2 provides tools to visualize the methylation

data. To illustrate the visualization features of BatMeth2,

we downloaded (1) 117 Gbases of single-end reads from

the human H9 cell line, (2) 105.2 Gbases of single-end

reads from the human IMR90 cell line and (3) 12.6

Gbases of paired-end reads from wild-type rice. First,

BatMeth2 can visualize cytosine methylation density at

the chromosome level. The dots in Fig. 4a represent a

sliding window of 100 kb with a step of 50 kb. To allow

viewing of the ML at individual CpG or non-CpG sites

in a genome browser, we also provide files in bed and

bigWig formats (Fig. 4b). By comparing with the density

of genes and TEs, we observed that the ML was corre-

lated with the TE density and was anticorrelated with

the gene density (Fig. 4c). This tendency has been previ-

ously observed in rice [29].

Second, BatMeth2 can visualize the MLs of genes.

More precisely, BatMeth2 can visualize the MLs 2 kb

upstream of the gene, at the transcription start site

(TSS), in the gene body, at the transcription end site

(TES) and 2 kb downstream of the gene body. Compar-

ing the upstream, body and downstream regions, Fig. 5a

shows that the DNA ML of the gene body is higher than

that in the promoter region. Comparing all five regions,

there is obviously a valley in the TSS region (Fig. 5b).

BatMeth2 can also calculate the ML profiles around in-

trons, exons, intergenic regions and TEs (Additional file

1: Figure S4). Additionally, BatMeth2 can provide a heat

map of multiple genes by gene region for convenient

Table 2 Results of methylation calling

450 K (48421) BatMeth2 Biscuit bwameth BSmap Bismark-b2 Bismark-L15 Bismark-b1

Detected 379,139 379,209 378,256 374,735 364,581 364,518 352,995

78.59% 78.60% 78.40% 77.68% 75.57% 75.56% 73.17%

Correct 320,650 320,549 319,634 316,620 307,121 307,058 297,399

66.47% 66.45% 66.26% 65.63% 63.66% 63.65% 61.65%

Wrong 58,489 58,660 58,622 58,115 57,460 57,460 55,596

12.12% 12.16% 12.15% 12.05% 12.91% 11.91% 11.52%

A

B

C

Fig. 4 Visualization of the methylation levels in chromosome scale. a The methyl-cytosine density in human chromosome 10. The dots represent

the methylation levels in sliding windows of 100Kb with a step of 50Kb. The red dots refer to the methylation levels in the plus strand, and the

blue dots refer to the methylation levels in the minus strand. b An example about the distributions of the DNA methylation levels and

differentially-methylated regions (DMRs) between H9 and IMR90 cell lines in human chromosome 10. c The density of genes, transposon

elements (TEs) and the level of DNA methylation in the whole rice genome. Panel A is the results generated from Batmeth2. Panel B is the

visualization results from UCSC browser, with the BED files from Batmeth2
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comparison of the overall gene MLs of different samples

(Fig. 5c).

Third, BatMeth2 can visualize the distribution of DNA

methylation. Additional file 1: Figure S5A shows the

DNA methylation distributions in the H9 and IMR90

cell lines. In the figure, the DNA ML is partitioned into

five categories: methylated (M: > 80%), intermediate be-

tween partially methylated and methylated (Mh: 60–

80%), partially methylated (H: 40–60%), intermediate

between nonmethylated and partially methylated (hU:

20–40%), and nonmethylated (U: < 20%). As shown in

Additional file 1: Figure S5A, the ML was higher in the

H9 cell line in the M category than in the IMR90 cell

line, especially in the CpG context. In the CH sequence

context, CpG methylation is the predominant form, but

a significant fraction of methylated cytosines are found

at CpA sites, while the ML is less than 40%, particularly

in the H9 cell line (Additional file 1: Figure S5B).

Fourth, BatMeth2 can analyze the correlation between

gene expression level and gene promoter DNA ML. We

illustrated this feature using the H9 and IMR90 cell

lines. The expression levels of the genes in H9 or IMR90

were divided into different categories. As shown in Add-

itional file 1: Figure S5C, the highly expressed genes

exhibited lower MLs in their promoter regions. Further-

more, we divided the MLs of the gene promoters into

five categories. The result in Additional file 1: Figure

S5D shows that genes with promoters having higher ML

values exhibited lower expression levels. The negative

correlation between the expression of mammalian genes

and promoter DNA methylation is known [1]. This

analysis further indicates the accuracy of BatMeth2.

Finding differentially methylated cytosines and regions

(DMCs/DMRs)

The identification of differentially methylated cytosines

(DMCs) and differentially methylated regions (DMRs) is

one of the major goals in methylation data analysis.

Although researchers are occasionally interested in

correlating single cytosine sites to a phenotype [30],

DMRs are very important features [31].

Early BS-Seq studies profiled cells without collecting

replicates. For such datasets, we used Fisher’s exact test

to discern differentially methylated cytosines (DMCs).

For BS-Seq datasets with replicates, the most natural

statistical model to call DMCs is beta-binomial distribu-

tion [31]. We know that a number of software programs

can perform differential DNA methylation data analysis,

such as methylKit [32] (a differential analysis program

that requires biological replicates) and Methy-Pipe [33]

(a differential analysis program without biological dupli-

cation). However, no comprehensive package including

both mapping and differential methylation analysis is

available. Thus, we developed a package that integrates

mapping with differential analysis. To facilitate the iden-

tification of DMRs from bisulfite data without replicates,

A C

B

Fig. 5 Visualization of DNA methylation under different contexts. a The DNA methylation levels in 2Kb regions upstream of genes, gene bodies,

2Kb downstream of gene bodies. b The aggregation profile of DNA methylation levels across genes. c The heat map of all genes in 2Kb regions

upstream of genes, gene bodies, 2Kb downstream of gene bodies

Zhou et al. BMC Bioinformatics           (2019) 20:47 Page 8 of 11



we integrated Fisher’s exact test to perform a hypothesis

test. When a sample has two or more replicates, we use

the beta-binomial distribution to perform differential

methylation analysis. We also provide bed or bigWig

files for the list of DMRs. The DMRs can be visualized

in a genome browser (Fig. 4b) with the generated bed or

bigWig files.

As an illustration, Fig. 6a shows the numbers of DMCs

and regions in the IMR90 cell line and in the H9 cell

line, as detected by BatMeth2 (p value< 0.05, meth.diff >

= 0.6). BatMeth2 can visualize whether CpGs and DMCs

are enriched in some regions, such as gene, CDS, in-

tron, intergenic, UTR, TE, LTR, LINE and SINE re-

gions. Figure 6b visualizes the proportions of DMCs

in different genomic regions. Apart from the inter-

genic regions, we did not observe DMC enrichment

in any regions.

A substantial proportion of differentially methylated

promoters (DMPs) contain indels

We know that indels and DNA methylation play an im-

portant role in tissue development [4] and diseases [5].

Here, we examine the relationship between differentially

methylated promoters (DMPs) and indels. We performed

this study using the BS-Seq reads in IMR90 and H9 cell

lines. We first aligned the BS-Seq reads using BatMeth2;

then, indels were called using BisSNP [34] and GATK [35]

tools. Subsequently, we defined the indels that occur in

only H9 or IMR90 as cell-line-specific indels.

Then, we detected 1384 DMPs between H9 and IMR90

by BatMeth2 (p value< 0.05, meth.diff > = 0.6). A total of

236 (17%) among all the DMPs above contain indels, as

shown in Fig. 6c. In short, a substantial proportion of the

DMPs contain indels. Therefore, accurate alignment of

BS-Seq reads near these indels is very important for

research and exploration of DNA methylation.

Conclusion and discussion
DNA methylation plays an important role in the devel-

opment of tissues and diseases. However, the complexity

of DNA methylation analysis has hindered further

research into the mechanism of DNA methylation in

some diseases. Here, we discussed some difficulties and

issues in bisulfite sequence alignment. First, incomplete

bisulfite conversion when reannealing during the bisul-

fite conversion will lead to incorrect alignments. More-

over, sequencing errors, C-to-T converted reads and

converted reference genomes further complicate the

alignment of bisulfite sequences. These are the specific

problems associated with aligning BS-Seq reads, in

contrast to aligning normal genomic reads.

In this study, we designed and implemented BatMeth2,

an integrated, accurate, efficient, and user-friendly whole-

genome bisulfite sequencing data analysis pipeline.

A

B C

Fig. 6 Differential methylation analysis. a Analysis results of differentially-methylated regions (DMRs), differentially-methylated genes (DMGs), and

differentially-methylated promoters (DMPs) between H9 and IMR90 cell lines. b Annotation of differentially-methylated Cytosines (DMC) against

different genomic properties and repeat elements. c DMPs contain H9 or IMR90 specific-indels (orange) occupy a substantial proportion in the all

DMPs (DNA Methylation differential Promoters)
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BatMeth2 improves the accuracy of DNA methylation call-

ing, particularly for regions close to the indels. We also

present a DNA methylation visualization program and dif-

ferential analysis program. We believe that the superior

performance of BatMeth2 should be able to facilitate an in-

creased understanding of the mechanisms of DNA methy-

lation in development and disease.

Availability and requirements
Project name: BatMeth2.

Project home page: https://github.com/Guolian-

gLi-HZAU/BatMeth2

Operating systems: Linux.

Programming Languages: C++, Python, R.

Other requirements: GCC, SAMtools.

License: General Public License GPL 3.0.

Any restrictions to use by non-academics: License

required.

Additional file

Additional file 1: Figure S1. Outline of the mapping algorithm details.

Figure S2. The overlap of the correct methylation callings from IMR90 cell

line based on 450K BeadChip data for all compared software. Figure S3.

BatMeth2 align BS reads allowing for variable-length indels. Figure S3. (A)

Indel length distribution detected by BatMeth2. (B) The overlap of 450K with

BatMeth2, BatMeth2 no indel detect mode and Bismark-bowtie 1(bis-

markBT1). (C) More correct methylation loci in result A (mclA) covered by

Indel distribution. We define the methylation sites called by BatMeth2 as Re-

sult A while the methylation sites called by BatMeth2-noIndel and Bismark

as Results B. Let mclA be the methylation sites appear in Result A but not

Result B. Figure S4. The DNA methylation level distribution across exon, in-

tron, intergenic and TEs, etc. Figure S5. Methylation level under different

conditions. (PDF 2044 kb)
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BS-Seq: Sodium bisulfite conversion of DNA followed by sequencing
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