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We combined two existing datasets of vegetation aboveground biomass (AGB) (Saatchi et al., 27 

2011; Baccini et al., 2012) into a pan�tropical AGB map at 1�km resolution using an 28 

independent reference dataset of field observations and locally�calibrated high�resolution 29 

biomass maps, harmonized and upscaled to 14,477 1�km AGB estimates. Our data fusion 30 

approach uses bias removal and weighted linear averaging that incorporates and spatializes 31 

the biomass patterns indicated by the reference data. The method was applied independently 32 

in areas (strata) with homogeneous error patterns of the input (Saatchi and Baccini) maps, 33 

which were estimated from the reference data and additional covariates. Based on the fused 34 

map, we estimated AGB stock for the tropics (23.4 N – 23.4 S) of 375 Pg dry mass, 9% � 18% 35 

lower than the Saatchi and Baccini estimates. The fused map also showed differing spatial 36 

patterns of AGB over large areas, with higher AGB density in the dense forest areas in the 37 

Congo basin, Eastern Amazon and South�East Asia, and lower values in Central America and 38 

in most dry vegetation areas of Africa than either of the input maps. The validation exercise, 39 

based on 2,118 estimates from the reference dataset not used in the fusion process, showed 40 

that the fused map had a RMSE 15 – 21% lower than that of the input maps and, most 41 

importantly, nearly unbiased estimates (mean bias 5 Mg dry mass ha
�1

 vs. 21 and 28 Mg ha
�1

 42 

for the input maps). The fusion method can be applied at any scale including the policy�43 

relevant national level, where it can provide improved biomass estimates by integrating 44 

existing regional biomass maps as input maps and additional, country�specific reference 45 

datasets. 46 

 47 

 48 
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Recently, considerable efforts have been made to better quantify the amounts and spatial 50 

distribution of aboveground biomass (AGB), a key parameter for estimating carbon emissions 51 

and removals due to land�use change, and related impacts on climate (Saatchi et al., 2011; 52 

Baccini et al., 2012; Harris et al., 2012; Houghton et al., 2012; Mitchard et al., 2014; Achard 53 

et al., 2014). Particular attention has been given to the tropical regions, where uncertainties 54 

are higher (Pan et al., 2011; Ziegler et al., 2012; Grace et al., 2014). In addition to ground 55 

observations acquired by research networks or for forest inventory purposes, several AGB 56 

maps have been recently produced at different scales, using a variety of empirical modelling 57 

approaches based on remote sensing data calibrated by field observations (e.g., Goetz et al., 58 

2011; Birdsey et al., 2013). AGB maps at moderate resolution have been produced for the 59 

entire tropical belt by integrating various satellite observations (Saatchi et al., 2011; Baccini et 60 

al., 2012), while higher resolution datasets have been produced at local or national level using 61 

medium�high resolution satellite data (e.g., Avitabile et al., 2012; Cartus et al., 2014), 62 

sometimes in combination with airborne Light Detection and Ranging (LiDAR) data (Asner 63 

et al., 2012a, 2012b, 2013, 2014a). The various datasets often have different purposes: 64 

research plots provide a detailed and accurate estimation of AGB (and other ecological 65 

parameters or processes) at the local level, forest inventory networks use a sampling approach 66 

to obtain statistics of biomass stocks (or growing stock volume) per forest type at the sub�67 

national or national level, while high�resolution biomass maps can provide detailed and 68 

spatially explicit estimates of AGB density to assist natural resource management, and large 69 

scale coarse�resolution datasets depict AGB distribution for global�scale carbon accounting 70 

and modelling.  71 

 72 
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In the context of the United Nations mechanism for Reducing Emissions from Deforestation 73 

and forest Degradation (REDD+), emission estimates obtained from spatially explicit biomass 74 

datasets may be favoured over those based on mean values derived from plot networks. This 75 

preference stems from the fact that plot networks are not designed to represent land cover 76 

change events, which usually do not occur randomly and may affect forests with biomass 77 

density systematically different from the mean value (Baccini and Asner, 2013). With very 78 

few tropical countries having national AGB maps or reliable statistics on forest carbon stocks, 79 

regional maps may provide advantages compared to the use of default mean values (e.g., 80 

IPCC (2006) Tier 1 values) to assess emissions from deforestation, as long as their accuracy is 81 

reasonable and their estimates are not affected by systematic errors (Avitabile et al., 2011). 82 

These conditions are difficult to assess, however, since rigorous validation of regional AGB 83 

maps remains problematic, given their large area coverage and large mapping unit (Mitchard 84 

et al., 2013), while ground observations are only available for a limited number of small 85 

sample areas. 86 

 87 

The comparison of two recent pan�tropical AGB maps (Saatchi et al., 2011; Baccini et al., 88 

2012) revealed substantial differences between the two products (Mitchard et al., 2013). 89 

Further comparison with ground observations and high�resolution maps also highlighted 90 

notable differences in AGB patterns at regional scales (Baccini and Asner, 2013; Hills et al., 91 

2013; Mitchard et al., 2014). Such comparisons have stimulated a debate over the use and 92 

capabilities of different types of biomass products (Saatchi et al., 2014; Langner et al., 2014) 93 

and have highlighted both the importance and sometimes the lack of integration of different 94 

datasets. On one hand, the two pan�tropical maps are consistent in terms of methodology 95 

because both use the same primary data source (GLAS LiDAR) alongside a similar modelling 96 

approach to upscale the LiDAR data to larger scales. Moreover, they have the advantage of 97 
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being calibrated using hundreds of thousands of AGB estimates derived from height metrics 98 

computed by a spaceborne LiDAR sensor distributed over the tropics. However, such maps 99 

are based on remotely sensed variables that do not directly measure AGB, but are sensitive to 100 

canopy cover and canopy height parameters that do not fully capture the AGB variability of 101 

complex tropical forests. Furthermore, both products assume global or continental allometric 102 

relationships in which AGB varies only with stand height, and further errors are introduced by 103 

upscaling the calibration data to the coarser satellite data. On the other hand, ground plots use 104 

allometric equations to estimate AGB at individual tree level using directly measurable 105 

parameters such as diameter, height and species identity (hence wood density). However, they 106 

have limited coverage, are not error�free, and compiling various datasets over large areas is 107 

made more complex due to differing sampling strategies (e.g., stratification of landscapes, 108 

plot size, minimum diameter of trees measured). Considering the rapid increase of biomass 109 

observations at different scales and the different capabilities and limitations of the various 110 

datasets, it is becoming more and more important to identify strategies that are capable of 111 

making best use of existing information and optimally integrate various data sources for 112 

improved large area AGB assessment (e.g., see Willcock et al., 2012).  113 

 114 

In the present study, we compiled existing ground observations and locally�calibrated high�115 

resolution biomass maps to obtain a high�quality AGB reference dataset for the tropical 116 

region (Objective 1). This reference dataset was used to assess two existing pan�tropical AGB 117 

maps (Objective 2) and to combine them in a fused map that optimally integrates the two 118 

maps, based on the method presented by Ge et al. (2014) (Objective 3). Lastly, the fused map 119 

was assessed and compared to known AGB stocks and patterns across the tropics (Objective 120 

4).  121 

 122 
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Overall, the approach consisted of pre�processing, screening and harmonizing the pan�tropical 123 

AGB maps (called ‘input maps’), the high�resolution AGB maps (called ‘reference maps’) 124 

and the field plots (called ‘reference plots’; ‘reference dataset’ refers to the maps and plots 125 

combined) to a common spatial resolution and geospatial reference system (Figure 1). The 126 

input maps were combined using bias removal and weighted linear averaging (‘fusion’). The 127 

fusion model was applied independently to areas associated with different error patterns of the 128 

input maps (called ‘error strata’), which were estimated from the reference data and additional 129 

covariates (called ‘covariate maps’). The reference dataset included only a subset of the 130 

reference maps (i.e., the cells with highest confidence) and if a stratum was lacking reference 131 

data (‘reference data gaps’), additional data were extracted from the reference maps 132 

(‘consolidation’). The fused map was validated using independent data and its uncertainty 133 

quantified using model parameters. In this study, the terms AGB refers to aboveground live 134 

woody biomass and is reported in units of Mg dry mass ha
�1

. The fused map and the 135 

corresponding reference dataset can be freely downloaded from 136 

www.wageningenur.nl/grsbiomass.�137 

  138 

 139 

 140 

 141 

 142 

 143 

 144 

 145 

 146 

�147 
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The input maps used for this study were the two pan�tropical datasets published by Saatchi et 150 

al. (2011) and Baccini et al. (2012), hereafter referred to as the “Saatchi” and “Baccini” maps 151 

individually, or as “input” maps collectively. The Baccini map was provided in MODIS 152 

sinusoidal projection with a spatial resolution of 463 m while the Saatchi map was in a 153 

geographic projection (WGS�84) at 0.00833 degrees (approximately 1 km) pixel size. The 154 

two datasets were harmonized by first projecting the Baccini map to the coordinate system of 155 

the Saatchi map using the Geospatial Data Abstraction Library (www.gdal.org) and then 156 

aggregating it to match the spatial resolution and grid of the Saatchi map. Spatial aggregation 157 

was performed by computing the mean value of the pixels whose centre was located within 158 

each 1�km cell of the Saatchi map. Resampling was then undertaken using the nearest 159 

neighbor method.  160 

 161 


������������	���162 

The reference dataset comprised individual tree�based field data and high�resolution AGB 163 

maps independent from the input maps. The field data included AGB estimates derived from 164 

field measurement of tree parameters and allometric equations. The AGB maps included high�165 

resolution (≤ 100 m) datasets derived from satellite data using empirical models calibrated 166 

and validated using local ground observations and, in some cases, airborne LiDAR 167 

measurements. Given the variability of procedures used to acquire and produce the various 168 

datasets, they were first screened according to a set of quality criteria to select only the most 169 

reliable AGB estimates, and then pre�processed to be harmonized with the pan�tropical AGB 170 

maps in terms of spatial resolution and observed variables. Field and map datasets providing 171 

aboveground carbon density were converted to AGB units using the same coefficients used 172 
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for their original conversion from biomass to carbon. The sources and characteristics of the 173 

reference data are listed in the Supplementary Information (Tables S8 � S11). 174 

 175 

�	�	�����������	�
���������������176 

�������������	
�
�����177 

The reference field data were measurements from forest inventory plots for which accurate 178 

geolocation and biomass estimates were available. Pre�processing of the data consisted of a 2�179 

step screening and a harmonization procedure. A preliminary screening selected only the 180 

ground data that satisfied the following criteria: (1) they estimated AGB for all living trees 181 

with diameter at breast height ≥ 5�10 cm; (2) they were acquired on or after the year 2000; (3) 182 

they were not used to calibrate the LiDAR�AGB relationships of the input maps; and (4) their 183 

plot coordinates were measured using a GPS. Since the taxonomic identities of trees strongly 184 

indicate wood density, and hence stand�level biomass (e.g., Baker et al., 2004; Mitchard et al. 185 

2014), plots were only selected if tree AGB was estimated using at least tree diameter and 186 

wood density as input parameters. Datasets were excluded if they did not conform to these 187 

requirements or did not provide clear information on the biomass pool measured, the tree 188 

parameters measured in the field, the allometric model applied, the year of measurement or 189 

the plot geolocation and extent. Next, the plot data were projected to the geographic reference 190 

system WGS�84 and harmonized with the input maps by averaging the AGB values located 191 

within the same 1�km pixel if there was more than one plot per pixel, or by directly attributing 192 

the plot AGB to the respective pixel if there was only one plot per pixel. Field plots not fully 193 

located within one pixel were attributed to the map cell where the majority of the plot area 194 

(i.e., the plot centroid) was located.  195 

 196 
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Lastly, the representativeness of the plot over the 1�km pixels was considered, and the ground 197 

data were further screened to discard plots not representative of the map cells in terms of 198 

AGB density. More specifically, since the two input maps in their native reference systems 199 

are not aligned and therefore their pixels do not correspond to the same geographic area, the 200 

plot representativeness was assessed on the area of both pixels (identified before the map 201 

resampling). The representativeness was evaluated on the basis of the homogeneity of the tree 202 

cover and crown size within the pixel, determined through visual interpretation of high�203 

resolution images provided on the Google Earth platform. If the tree cover and tree crowns 204 

were not homogeneous over at least 90% of the pixel area, the plots located within the pixel 205 

were discarded (Fig. S1). In addition, if subsequent Google Earth images indicated that forest 206 

change processes (e.g., deforestation or regrowth) occurred in the period between the field 207 

measurement and the reference years of the input maps, the corresponding plots were 208 

discarded. 209 

 210 

����������������������211 

The reference biomass maps consisted of high�resolution local or national AGB maps 212 

published in the scientific literature. Maps providing AGB estimates grouped in classes (e.g., 213 

Willcock et al., 2012) were not used since the class values represent the mean AGB over large 214 

areas, usually spanning multiple strata used in the present study (see ‘Stratification approach’). 215 

The reference AGB maps were first pre�processed to match the input maps through re�216 

projection, aggregation and resampling using the same procedures described for the pre�217 

processing of the Baccini map. Then, only the cells with largest confidence (i.e., lowest 218 

uncertainty) were selected from the maps. Since uncertainty maps were usually not available, 219 

and considering that the reference maps were based on empirical models, the map cells with 220 

greatest confidence were assumed to be those in correspondence of the training data (field 221 
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plots and/or LiDAR data). When the locations of the training data were not available, random 222 

pixels were extracted from the maps. For maps based only on radar or optical data, whose 223 

signals saturate above a certain AGB density value, only pixels below such a threshold were 224 

considered. In order to compile a reference database that was representative of the area of 225 

interest and well�balanced among the various input datasets (as defined in ‘Consolidation of 226 

the reference dataset’), the amount of reference data extracted from the AGB maps was 227 

proportional to their area and not greater than the amount of samples provided by the field 228 

datasets representing a similar area. In the case where maps with extensive training areas 229 

provided a disproportionate number of reference pixels, a further screening selected only the 230 

areas underpinned by the largest amount of training data.  231 

 232 

�����
	��������������������
	�	����233 

Considering that the modelling approach used in this study is applied independently by 234 

stratum (which represent areas with homogeneous error structure in both input maps; see 235 

‘Stratification approach’) and is sensitive to the characteristics of the reference data (see 236 

‘Modelling approach’), each stratum requires that calibration data are relatively well�balanced 237 

between the various reference datasets. Specifically, if a stratum contains few calibration data, 238 

the model becomes more sensitive to outliers, while if a reference dataset is much larger than 239 

the others, the model is more strongly determined by the dominant dataset. For these reasons, 240 

for the strata where the reference dataset was under�represented or un�balanced, it was 241 

consolidated by additional reference data taken from the reference AGB maps, if available. 242 

The reference data were considered insufficient if a stratum had less than half of the average 243 

reference data per stratum, and were considered un�balanced if a single dataset provided more 244 

than 75% of the reference data of the whole stratum and it was not representative of more than 245 

75% of its area. In such cases, additional reference data were randomly extracted from the 246 
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reference AGB maps that did not provide more than 75% of the reference data. The amount of 247 

data to be extracted from each map was computed in a way to obtain a reference dataset with 248 

an average number of reference data per stratum and not dominated by a single dataset. If 249 

necessary, additional training data representing areas with no AGB (e.g., bare soil) were 250 

included, using visual analysis of Google Earth images to identify locations without 251 

vegetation. 252 

 253 

�������
�����������
	�	�254 

The AGB reference dataset compiled for this study consisted of 14,477 1�km reference pixels, 255 

distributed as follows: 953 in Africa, 449 in South America, 7,675 in Central America, 400 in 256 

Asia and 5,000 in Australia (Fig. 2, Table 1). The reference data were relatively uniformly 257 

distributed among the strata (Table S6) but their amount varied considerably by continent. 258 

The average amount of reference data per stratum ranged from 50 (Asia) to 958 (Central 259 

America) 1�km reference pixels and their variability (computed as standard deviation relative 260 

to the mean) ranged from 25% (South America) to 52% (Central America). The uneven 261 

distribution of reference data across the continents is mostly caused by the availability of 262 

ground observations: as indicated above, in order to have a balanced reference dataset for 263 

each stratum the reference data extracted from AGB maps were limited to the (smaller) 264 

amount of direct field observations. When AGB maps were the only source of data, this 265 

constraint was not occurring and larger datasets could be derived from the maps (i.e., Central 266 

America, Australia).  267 

 268 

The reference data were selected from 18 ground datasets and from 9 high�resolution AGB 269 

maps calibrated by field observations and, in 4 cases, airborne LiDAR data (Table 1). The 270 

field plots used for the calibration of the maps are not included in this section because they 271 
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were only used to select the reference pixels from the maps. The visual screening of the field 272 

plots removed 35% of the input data (from 6,627 to 4,283) and their aggregation to 1�km 273 

resolution further removed 70% of the reference units derived from field plots (from 4,283 to 274 

1,274), while 10,741 reference pixels were extracted from the high�resolution AGB maps. 275 

The criteria used to select the reference pixels for each map are reported in Table S2. The 276 

consolidation procedure was necessary only for Central America where it added 2,415 277 

reference data, while 47 pixels representing areas with no AGB were identified in Asia (Table 278 

S1)� In general, ground observations were mostly discarded in areas characterized by 279 

fragmented or heterogeneous vegetation cover and high biomass spatial variability. In such 280 

contexts, reference data were often acquired from the AGB maps.  281 

�282 

����������������������283 

Preliminary comparison of the reference data with the input maps showed that the error 284 

variances and biases of the input maps were not spatially homogeneous but varied 285 

considerably in different regions. Since the fusion model used in this study (see ‘Modelling 286 

approach’) is based on bias removal and weighted combination of the input maps, the more 287 

homogeneous the error characteristics in the input maps are, the better they can be reduced by 288 

the model. For this reason, the stratification approach aimed at identifying areas with 289 

homogeneous error structure (hereafter named ‘error strata’) in both input maps. A first 290 

stratification was undertaken based on geographic location (namely Central America, South 291 

America, Africa, Asia and Australia) to reflect the regional allometric relationships between 292 

AGB and tree diameter and height (Feldpausch et al., 2011, 2012).�Then, the error strata were 293 

identified for each continent using a two�step process. First, the error maps of the Saatchi and 294 

Baccini maps were predicted separately. Since the AGB estimates of the input maps were 295 

mostly based on optical and LiDAR data that are sensitive to tree cover and tree height, it was 296 
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assumed that their uncertainties were related to the spatial variation of these parameters. In 297 

addition, the errors of the input maps were found to be linearly correlated with the respective 298 

AGB estimates. For these reasons, the AGB maps themselves, as well as global datasets of 299 

land cover (ESA, 2014a), tree cover (Di Miceli et al., 2014) and tree height (Simard et al., 300 

2011), were used to predict the map errors using a Random Forest model (Breiman, 2001) 301 

calibrated on the basis of the reference dataset. Second, the error maps of the Saatchi and 302 

Baccini datasets were clustered using the K�Means approach. The use of eight clusters (hence, 303 

eight error strata) was considered a sensible trade�off between homogeneity of the errors of 304 

the input maps and number of reference observations available per stratum, with a larger 305 

number of clusters providing only a marginal increase in homogeneity but leading to a small 306 

number of reference data in some strata (Fig. S2). In areas where the predictors presented no 307 

data (i.e., outside the coverage of the Baccini map) or for classes of the categorical predictor 308 

without reference data (i.e., land cover), the error strata (instead of the error maps) were 309 

predicted using an additional Random Forest model based on predictors without missing 310 

values (i.e., Saatchi map, tree cover and tree height) and 10,000 training data randomly 311 

extracted from the stratification map. 312 

 313 

This method produced a stratification map that identified eight strata for each continent with 314 

homogeneous error patterns in the input maps (Fig. S3). The root mean square error (RMSE) 315 

computed on the Out�Of�Bag data (i.e., data not used for training) of the Random Forest 316 

models that predicted the errors of the input maps ranged between 22.8 ± 0.3 Mg ha
�1

 (Central 317 

America) to 83.7 ± 2.5 Mg ha
�1

 (Africa), with the two models (one for each input map) 318 

achieving similar accuracies in each continent (Table S4, Fig. S4). In most cases the main 319 

predictors of the errors of the input maps were the biomass values of the maps themselves, 320 

followed by tree cover and tree height, while land cover was always the least important 321 
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predictor (Table S5). Further details on the processing of the input data are provided in the 322 

Supplementary Information. 323 

 324 

The use of a stratification based on the errors of the input maps was compared with 325 

stratifications based on land cover (used by Ge et al., 2014), tree cover and tree height. A 326 

separate stratification map was obtained for each of these alternative variables by aggregation 327 

into eight strata (to maintain comparability with the number of clusters used in the error 328 

strata), and each stratification map was used to develop a specific fused map. The 329 

performance of alternative stratification approaches was assessed by validating the respective 330 

fused maps (see Supplementary Information – Alternative stratification approaches). The 331 

results demonstrated that the stratification based on error modelling and clustering (i.e., the 332 

error strata) produced a fused map with higher accuracy than that of the maps based on other 333 

stratification approaches, and therefore was used in this study (Fig. S5).  334 

�335 

������������������336 

�����������
���337 

The integration of the two input maps was performed with a fusion model based on the 338 

concept presented by Ge et al. (2014) and further developed for this study. The fusion model 339 

consists of bias removal and weighted linear averaging of the input maps to produce an output 340 

with greater accuracy than each of the input maps. The reference AGB dataset described 341 

above was used to calibrate the model and to assess the accuracy of the input and fused maps. 342 

A specific model was developed for each stratum. 343 

 344 

Following Ge et al. (2014), the � input maps for locations �∈D, where D is the geographical 345 

domain of interest common to the input maps, were combined using a weighted linear average:  346 
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(1)�
1

( ) ( ) ( ( ) ( ))
=

= ⋅ −∑
�

� � ��
� � � � � � � �  347 

where � is the fused map, the ����� are weights, ��� the estimate of the i�th input map and ����� is 348 

the bias estimate. The bias term was computed as the average difference between the input 349 

map and the reference data for each stratum. The weights were obtained from a statistical 350 

model that assumes the map estimates �� to be the sum of the true biomass ��with a bias term 351 

�� and�a random noise term ε� with zero mean for each location �∈D. We further assumed that 352 

the ε��of the input maps are jointly normally distributed with variance�covariance matrix ����. 353 

Differently from Ge et al. (2014), ���� was estimated using a robust covariance estimator as 354 

implemented by the ‘robust’ package in R (Wang et al., 2014), which uses the Stahel�Donoho 355 

estimator for strata with fewer than 5,000 observations and the Fast Minimum Covariance 356 

Determinant estimator for larger strata. Under these assumptions, the variance of the 357 

estimation error of the fused map ���� is minimized by calculating the weights ���� as outlined 358 

by Searle (1971, p. 89):  359 

(2)� ( )
1

1 1( ) ( ) ( )
−− −= � � � � �

� � �� � � �  360 

where �=[1, ..., 1]
T
 is the transpose of the p�dimensional unit vector. The weights computed 361 

for each stratum sum to 1, while their values are approximately inversely proportional to the 362 

error variance of the corresponding input map. Larger weights are assigned to input maps with 363 

lower error variances, although the covariance between map errors influences the weights as 364 

well. Overall, the fused map is expected to provide more accurate estimates after bias removal 365 

and weighted averaging of the input maps. The fusion model assured that the variance of the 366 

error in the fused map was smaller than that of the input maps (Bates and Granger, 1969), 367 

especially if the errors associated with these maps were not strongly positively correlated and 368 

their error variances were close to the smallest error variance. The fusion model can be 369 

applied to any number of input maps. Where there is only one input map, the model estimates 370 

and removes its bias and the weights are set equal to 1.  371 
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 372 

�����
����	�	�������373 

The fusion model computed a set of bias and weight parameters for each stratum and 374 

continent on the basis of their respective reference data, and used these for the linear weighted 375 

combination of the input maps (Table S6). Since the stratification approach grouped together 376 

data with similar error patterns, the biases varied considerably among the strata and could 377 

reach values up to ±200 Mg ha
�1

. However, considering the area of the strata, the biases of 378 

both input maps were smaller than ±45 Mg ha
�1

 for at least 50% of the area of all continents 379 

and smaller than ±100 Mg ha
�1

 for 81% � 98% of the area of all continents.  380 

 381 

��	������		����382 

���
�����������
����������	����������	�������	��383 

The Baccini map covers the tropical belt between 23.4 degree north latitude and 23.4 degree 384 

south latitude while the Saatchi map presents a larger latitudinal coverage (Fig. 2). The fusion 385 

model was first applied to the area common to both input maps (Baccini extent) and then 386 

extended to the area where only the Saatchi map is available. In the latter area, the model 387 

focused only on removing the bias of the Saatchi map using the values estimated for the 388 

Baccini extent. The model predictions for the Saatchi extent were mosaicked to those for the 389 

Baccini extent using a smoothing function (inverse distance weight) on an overlapping area of 390 

1 degree within the Baccini extent between the two maps. Water bodies were masked over the 391 

whole study area using the ESA CCI Water Bodies map (ESA, 2014b). The resulting fused 392 

map was projected to an equal area reference system (MODIS Sinusoidal) before computing 393 

the total AGB stocks for each continent, which were obtained by summing the products of the 394 

AGB density of each pixel with their area.  395 

 396 
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��������������������	���	�
�������	���������397 

The AGB estimates of the fused and input maps in forest areas were further investigated 398 

regarding their distribution in ecozones and between intact and non�intact landscapes. Forest 399 

areas were defined as areas dominated by tree cover according to the GLC2000 map 400 

(Bartholomé and Belward, 2005). Ecozones were defined according to the Global Ecological 401 

Zone (GEZ) map for the year 2000 (FAO, 2000). The intact landscapes were defined 402 

according to the Intact Forest Landscape (IFL) map for the year 2000 (Potapov et al., 2008). 403 

On the basis of these datasets, the mean forest AGB density of the fused and input maps were 404 

computed for intact and non�intact landscapes for each continent and major ecozone. To allow 405 

direct comparison of the results among the maps, the analysis was performed only for the area 406 

common to all maps (Baccini extent). In addition, to reduce the impact of spatial inaccuracies 407 

in the maps, only ecozones with IFL intact forest areas larger than 1,000 km
2
 were considered. 408 

The mean AGB density of intact and non�intact forests per continent was computed as the 409 

area�weighted mean of the contributing ecozones. 410 

 411 

��������������������������412 

Validation of the fused and input maps was performed by randomly splitting the reference 413 

data into a calibration set (70% of the data) and a validation set (remaining 30%). The ‘final’ 414 

fused map presented in Fig. 3 used 100% of the reference data while for validation purposes a 415 

‘test’ fused map was produced using only the calibration data. The estimates of the ‘test’ 416 

fused map, as well as those of the input maps, were compared with the validation data. Note 417 

that validation of the ‘test’ fused map only yields an approximate (i.e., conservative) estimate 418 

of the accuracy  of the ‘final’ fused map. In other words, the ‘final’ fused map is likely more 419 

accurate than the ‘test’ fused map because it uses a larger calibration data set. To maintain full 420 

independence, validation data were not used for any step related to the development of the 421 
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‘test’ fused map, including production of the stratification map. To account for any potential 422 

impacts of the random selection of validation data, the procedure was repeated 100 times, 423 

computing a new random selection of the calibration and validation datasets with each 424 

iteration. This procedure allowed computing the mean RMSE and assessing its standard 425 

deviation for the fused and input maps. 426 

 427 

The uncertainty of the fused map was computed with respect to model uncertainty, not 428 

including the error sources in the input data (see ‘Discussion’). The model uncertainty 429 

consisted of the expected variance of the error of the fused map (which is assumed to be bias�430 

free) and was derived for each stratum from ����� The uncertainty was thus estimated per 431 

strata and not at the pixel level. The error variance was converted to an uncertainty map by 432 

reclassifying the stratification map, where the stratum value was converted to the respective 433 

error variance computed for each stratum and continent.  434 

 435 

 436 

 437 

 438 

 439 

 440 

 441 

 442 

 443 

 444 

 445 

 446 
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�������447 

�����		�����448 

The fusion model produced an AGB map at 1�km resolution for the tropical region, with an 449 

extent equal to that of the Saatchi map (Fig. 3). In terms of stocks, the AGB estimates within 450 

the fused map were lower than both input maps at continental level. The total stock of the 451 

fused map for the tropical belt covered by the Baccini map (23.4 N – 23.4 S, see Fig. 2) was 452 

375 Pg dry mass, 9% and 18% lower than the Saatchi (413 Pg) and Baccini (457 Pg) 453 

estimates, respectively. Considering the larger extent of the Saatchi map, the fused map 454 

estimate was 462 Pg, 15% lower than the estimate of the Saatchi map (545 Pg) (Table S7). 455 

 456 

Moreover, the fused map presented spatial patterns that differed substantially from both input 457 

maps (Fig. 4): the AGB estimates were higher than the Saatchi and Baccini maps in the dense 458 

forest areas in the Congo basin, in West Africa, in the north�eastern part of the Amazon basin 459 

(Guyana shield) and in South�East Asia, and lower in Central America and in most dry 460 

vegetation areas of Africa. In the central part of the Amazon basin the fused map showed 461 

lower estimates than the Baccini map and higher estimates than the Saatchi map, while in the 462 

southern part of the Amazon basin these differences were inversed. Similar trends emerged 463 

when comparing the maps separately for intact and non�intact forest ecozones (Supporting 464 

Information). In addition, the average difference between intact and non�intact forests was 465 

larger than that derived from the input maps in Africa and Asia, similar or slightly larger in 466 

South America, and smaller in Central America (Fig. S6). �467 

 468 

According to the fused map, the highest AGB density (> 400 Mg ha
�1

) is found in the Guyana 469 

shield, in the central and western part of the Congo basin and in the intact forest areas of 470 

Borneo and Papua New Guinea. The analysis of the distribution of forest AGB in intact and 471 
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non�intact ecozones showed that the mean AGB density was greatest in intact African (360 472 

Mg ha
�1

) and Asian (335 Mg ha
�1

) forests, followed by intact forests in South America (266 473 

Mg ha
�1

) and Central America (146 Mg ha
�1

) (Fig. S6). AGB in non�intact forests was much 474 

lower in all regions (Africa, 78 Mg ha
�1

; Asia, 211 Mg ha
�1

; South America, 149 Mg ha
�1

; and 475 

Central America, 57 Mg ha
�1

) (Fig. S6).  476 

 477 

�����������478 

The validation exercise showed that the fused map achieved a lower RMSE (a decrease of 5 – 479 

74%) and bias (a decrease of 90 – 153%) than the input maps for all continents (Fig. 5). While 480 

the RMSE of the fused map was consistently lower than that of the input maps but still 481 

substantial (87 – 98 Mg ha
�1

) in the largest continents (Africa, South America and Asia), the 482 

mean error (bias) of the fused map was almost null in most cases. Moreover, in the three main 483 

continents the bias of the input maps tended to vary with biomass, with overestimation at low 484 

values and underestimation at high values, while the errors of the fused map were more 485 

consistently distributed (Fig. 6). When computing the error statistics for the pan�tropics 486 

(Baccini extent) as the average of the regional validation results weighted by the respective 487 

area coverage, the mean bias (in absolute terms) for the fused, Saatchi and Baccini maps was 488 

5, 21 and 28 Mg ha
�1

 and the mean RMSE was 89, 104 and 112 Mg ha
�1

, respectively (Fig. 5). 489 

The accuracy of the input maps reported above was computed using the validation dataset 490 

(30% of the reference dataset) to be consistent with the accuracy of the fused map. The 491 

accuracy of the input maps was also computed using all reference data and the results (Table 492 

S3) were similar to those based on the validation dataset. 493 

 494 

���������������495 
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The uncertainty of the model predictions indicated that the standard deviation of the error of 496 

the fused map for each stratum was in the range 11 � 108 Mg ha
�1

, with largest uncertainties in 497 

areas with largest AGB estimates (Congo basin, Eastern Amazon basin and Borneo). When 498 

computed in relative terms (as a percentage of the AGB estimate), the model uncertainties 499 

presented opposite patterns, with uncertainties larger than the estimates (> 100%) in the low 500 

AGB areas (< 20 Mg ha
�1

 on average) of Africa, South America and Central America, while 501 

high AGB forests (> 210 Mg ha
�1

 on average) had uncertainties lower than 25% (Fig. 7). The 502 

uncertainty measure derived from ���� was computed only when two or more input maps 503 

were available. Hence, it could not be calculated for Australia because the model for this 504 

continent was based on only one input map (Saatchi map). 505 

�506 

�507 

�508 

�509 

�510 

�511 

�512 

�513 

�514 

�515 

�516 

�517 

�518 

 519 
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�520 

�����		�������	�����	����	������������������������������521 

The AGB map produced with the fusion approach is largely driven by the reference dataset 522 

and essentially the method is aimed at spatializing the AGB patterns indicated by the 523 

reference data using the support of the input maps. For this reason, great care was taken in the 524 

pre�processing of the reference data, which included a two�step quality screening based on 525 

metadata analysis and visual interpretation, and their consolidation after stratification. As a 526 

result, the reference dataset provides an unprecedented compilation of AGB estimates at 1�km 527 

resolution for the tropical region, covering a wide range of vegetation types, biomass ranges 528 

and ecological regions across the tropics. It includes the most comprehensive and accurate 529 

tropical field plot networks and high�quality maps calibrated with airborne LiDAR, which 530 

provide more accurate estimates compared to those obtained from other sensors (Zolkos et al., 531 

2013). The main trends present in the fused map emerged from the combination of different 532 

and independent reference datasets and are in agreement with the estimates derived from 533 

long�term research plot networks (Malhi et al., 2006; Phillips et al., 2009; Lewis et al., 2009; 534 

Slik et al., 2010, 2013; Lewis et al., 2013) and high�resolution maps (Asner et al., 2012a, 535 

2012b, 2013, 2014a). Specifically, the AGB patterns in South America represent spatial 536 

trends described by research plot networks in the dense intact and non�intact forests in the 537 

Amazon basin, forest inventory plots collected in the dense forests of Guyana and samples 538 

extracted from AGB maps for Colombia and Peru representing a wide range of vegetation 539 

types, from arid grasslands to humid forests. Similarly, AGB patterns depicted in Africa were 540 

derived from a combination of various research plots in dense undisturbed forest (Gabon, 541 

Cameroon, Democratic Republic of Congo, Ghana, Liberia), inventory plots in forest 542 

concessions (Democratic Republic of Congo), AGB maps in woodland and savannah 543 

ecosystems (Uganda, Mozambique) and research plots and maps in montane forests (Ethiopia, 544 
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Madagascar). Most vegetation types in Central America, Asia and Australia were also well�545 

represented by the extensive forest inventory plots (Indonesia, Vietnam and Laos) and high�546 

resolution maps (Mexico, Panama, Australia).  547 

 548 

In spite of the extensive coverage, the current database is far from being representative of the 549 

AGB variability across the tropics. As a consequence, the model estimates are expected to be 550 

less accurate in contexts not adequately represented. In the case of the fusion approach, this 551 

corresponds to the areas where the input maps present error patterns different than those 552 

identified in areas with reference data: in such areas the model parameters used to correct the 553 

input maps (bias and weight) may not adequately reflect the errors of the input maps and 554 

hence cannot optimally correct them. In particular, deciduous vegetation and heavily 555 

disturbed forest of Africa and South America, and large parts of Asia were lacking quality 556 

reference data. Moreover, even though plot data were spatially distributed over the central 557 

Amazon and the Congo basin, large extents of these two main blocks of tropical forest have 558 

never been measured (cf. maps in Lewis et al., 2013; Mitchard et al., 2014). Considering the 559 

evidence of significant local differences in forest structure and AGB density within the same 560 

forest ecosystems (Kearsley et al., 2013), additional data are needed to strengthen the 561 

confidence of the fused map as well as that of any other AGB map covering the tropical 562 

region. Moreover, a dedicated gap analysis to assess the main regions lacking AGB reference 563 

data and identify priority areas for new field sampling and LiDAR campaigns would be very 564 

valuable for future improved biomass mapping. 565 

 566 

Regarding the AGB stocks, a previous study showed that despite their often very strong local 567 

differences, the two input maps tended to provide similar estimates of total stocks at national 568 

and biome scales and presented an overall net difference of 10% for the pan�tropics (Mitchard 569 
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et al., 2013). However, such convergence is mostly due to compensation of contrasting 570 

estimates when averaging over large areas. The larger differences with the estimates of the 571 

present study (9% and 18%) suggest an overestimation of the total stocks by the input maps. 572 

This is in agreement with the results of two previous studies that, on the basis of reference 573 

maps obtained by field�calibrated airborne LiDAR data, identified an overestimation of 23% � 574 

42% of total stocks in the Saatchi and Baccini maps in the Colombian Amazon (Mitchard et 575 

al., 2013) and a mean overestimation of about 100 Mg ha
�1

 for the Baccini map in the 576 

Colombian and Peruvian Amazon (Baccini and Asner, 2013).  577 

 578 

In general, the AGB density values of the fused map were calibrated and therefore in 579 

agreement with the existing estimates obtained from plot networks and high�resolution maps. 580 

The comparison of mean AGB values in intact and non�intact forests stratified by ecozone 581 

provided further information on the differences between the maps. The mean AGB values of 582 

the fused map in non�intact forests were mostly lower than those of the input maps, 583 

suggesting that in disturbed forests the AGB estimates derived from stand height parameters 584 

retrieved by spaceborne LiDAR (as in the input maps) tend to be higher compared to those 585 

based on tree parameters or very high�resolution airborne LiDAR measurements (as in the 586 

fused map and reference data). This difference occurred especially in Africa, Asia and Central 587 

America while it was less evident in South America and Australia. By contrast, the 588 

differences among the maps for intact forests varied by continent, with the fused map having, 589 

on average, higher mean AGB values in Africa, Asia and Australia, lower values in Central 590 

America, and variable trends within South America, reflecting the different allometric 591 

relationships used by the various datasets in different continents. 592 

 593 
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As mentioned above, a larger amount of reference data, ideally acquired based on a clear 594 

statistical sampling design instead of one that is opportunistic, will be required to confirm 595 

such conclusions. While dense sampling of tropical forests using field observations is often 596 

impractical, new approaches combining sufficient ground observations of individual trees at 597 

calibration plots with airborne LiDAR measurements for larger sampling transects would 598 

allow a major increase in the quantity of calibration data. In combination with wall�to�wall 599 

medium resolution satellite data (e.g., Landsat) these may be capable of achieving high 600 

accuracy over large areas (10% � 20% uncertainty at 1�ha scale) while being cost�effective 601 

(e.g., Asner et al., 2013, 2014b). In addition, new technologies, such as Terrestrial Laser 602 

Scanning (TLS), allows for better estimates at ground level (Calders et al., 2015; Gonzalez de 603 

Tanago et al., 2015), considerably reducing the uncertainties of field estimates based on 604 

generalized allometric equations and avoiding destructive sampling. Nevertheless, since 605 

floristic composition influences AGB at multiple scales (e.g., the strong pan�Amazon gradient 606 

in wood density shown by ter Steege et al., 2006) such techniques benefit from extensive and 607 

precise measurements of tree identity in order to determine wood density patterns and to 608 

account for variations in hollow stems and rottenness (Nogueira et al., 2006). Moreover, we 609 

note that the reference data do not include lianas, which may constitute a substantial amount 610 

of woody stems, and their inclusion would allow to obtain more correct estimates of total 611 

AGB of vegetation (Phillips et al., 2002; Schnitzer & Bongers, 2011; Durán & Gianoli, 2013).   612 

 613 

��������������	����	��614 

Apart from the uncertainty of the fusion model described above (see ‘Uncertainty’), three 615 

other sources of error were identified and assessed in the present approach: i) errors in the 616 

reference dataset; ii) errors due to temporal mismatch between the reference data and the 617 

input maps; iii) errors in the stratification map.  618 
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 619 

�����������������������
	�	����620 

The reference dataset is not error�free but it inherits the errors present in the field data and 621 

local maps. In addition, additional uncertainties are introduced during the pre�processing of 622 

the data by resampling the maps and upscaling the plot data to 1�km resolution. In particular, 623 

while the geolocation error of the original datasets was considered relatively small (< 50 m) 624 

since plot coordinates were collected using GPS measurements and the AGB maps were 625 

based on satellite data with accurate geolocation (i.e., Landsat, ALOS, MODIS), larger errors 626 

(up to 500 m, half a pixel) could have been introduced with the resampling of the 1�km input 627 

maps. All these error sources were minimized by selecting only the datasets that fulfilled 628 

certain quality criteria and by further screening them through visual analysis of high�629 

resolution images available on the Google Earth platform, discarding the data not 630 

representative of the respective map pixels. In case of reference data that clearly did not 631 

match with the high�resolution images and/or with the input maps (e.g., reporting no AGB in 632 

dense forest areas or high AGB on bare land), the data were considered as an error in the 633 

reference dataset, a geolocation error in the plots or maps, or it was assumed that a land 634 

change process occurred between the plot measurement and the image acquisition time (see 635 

next paragraph).   636 

 637 

������
����������	������	����638 

The temporal difference of input and reference data introduced some uncertainty in the fusion 639 

model. The input maps refer to the years 2000 – 2001 (Saatchi) and 2007 – 2008 (Baccini) 640 

while the reference data mostly spanned the period 2000 – 2013. Therefore, the differences 641 

between the input maps and the reference data may also be due to a temporal mismatch of the 642 

datasets. However, changes due to deforestation were most likely excluded during the visual 643 

Page 26 of 46Global Change Biology



27 

 

selection of the reference data, when high�resolution images showed clear land changes (e.g., 644 

bare land or agriculture) in areas where the input maps provided AGB estimates relative to 645 

forest areas (or ����������, depending on the timing of acquisition of the datasets). However, 646 

changes due to forest regrowth and degradation events that did not affect the forest canopy 647 

could not be considered with the visual analysis and may have affected the mismatch 648 

observed between the reference data and the input maps (< 58 – 80 Mg ha
�1

 for 50% of the 649 

cases of the Saatchi and Baccini maps, respectively). Part of the mismatch was in the range of 650 

AGB changes that can be attributes to regrowth (1 – 13 Mg ha
�1

 year
�1

) (IPCC, 2003) or low�651 

intensity degradation (14 – 100 Mg ha
�1

, or 3 – 15% of total stock) (Asner et al., 2010; 652 

Pearson et al., 2014). On the other hand, considering the limited area affected by degradation 653 

(about 20% in the humid tropics) (Asner et al., 2009), the temporal mismatch could be 654 

responsible only for a correspondent part of the differences observed between the reference 655 

data and the input maps. Small additional offsets may also be caused by the documented 656 

secular changes in AGB density within intact tropical forests, which has been increasing by 657 

0.2 – 0.5% per year (Phillips et al., 1998, Chave et al., 2008, Phillips and Lewis, 2014). It 658 

should also be noted that the reference data were used to optimally integrate the input maps, 659 

and in the case of a temporal difference the fused map was ‘actualized’ to the state of the 660 

vegetation when the reference data were acquired. The reference data were acquired between 661 

2000 and 2013, and their mean acquisition year weighted by their contribution to the fusion 662 

model (by continent) corresponds to the period 2007 – 2010 (2007 in Africa, 2008 in Central 663 

America, 2009 in South America and 2010 in Asia). Therefore the complete fused map cannot 664 

be attributed to a specific year and more generally it represents the first decade of the 2000s.  665 

 666 

����������������	�����	�����	��667 
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The errors in the stratification map (i.e., related to the prediction of the errors of the input 668 

maps) were still substantial in some areas and affected the fused map in two ways. First, the 669 

reference data that were erroneously attributed to a certain stratum introduced ‘noise’ in the 670 

estimation of the model parameters (bias and weight), but the impact of these ‘outliers’ was 671 

largely reduced by the use of a robust covariance estimator. Second, erroneous predictions of 672 

the strata caused the use of incorrect model parameters in the combination of the input maps. 673 

The latter is considered to be the main source of error of the fused map and indicates that the 674 

method can achieve improved results if the errors of the input maps can be predicted more 675 

accurately. However, additional analysis showed that, on average, fused maps based on 676 

alternative stratification approaches achieved lower accuracy than the map based on an error 677 

stratification approach (Fig. S5). Therefore, this approach was preferred over a stratification 678 

based on an individual biophysical variable (e.g., tree cover, tree height, land cover or 679 

ecozone). 680 

 681 

��������������������������������������	�����682 

The fusion method presented in this study allows for the optimal integration of any number of 683 

input maps to match the patterns indicated by the reference data. However, the accuracy of the 684 

fused map depends on the availability of reference data representative of the error patterns of 685 

the input maps. While the current reference database does not represent adequately all error 686 

strata for the tropical region, and the model estimates are expected to have lower confidence 687 

in under�represented areas, the proposed method may be applied locally and provide 688 

improved AGB estimates where additional reference data are available. For example, the 689 

fusion method may be applied at national level using existing forest inventory data, research 690 

plots and local maps that cover only part of the country to calibrate global or regional maps, 691 

which provide national coverage but may not be tailored to the country context. Such country�692 
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calibrated AGB maps may be used to support natural resource management and national 693 

reporting under the REDD+ mechanism, especially for countries that have limited capacities 694 

to map AGB from remote sensing data (Romijn et al., 2012). Considering the increasing 695 

number of global or regional AGB datasets based on different data and methodologies 696 

expected in the coming years, and that likely there will not be a single ‘best map’ but rather 697 

the accuracy of each will vary spatially, the fusion approach may allow to optimally combine 698 

and adjust available datasets to local AGB patterns identified by reference data. 699 

 700 

 701 

 702 
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