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Abstract

Empirical growth analysis has three major problems — variable selection, pa-

rameter heterogeneity and cross-sectional dependence — which are addressed inde-

pendently from each other in most studies. The purpose of this study is to propose

an integrated framework that extends the conventional linear growth regression

model to allow for parameter heterogeneity and cross-sectional error dependence,

while simultaneously performing variable selection. We also derive the asymp-

totic properties of the estimator under both low and high dimensions, and further

investigate the finite sample performance of the estimator through Monte Carlo

simulations. We apply the framework to a dataset of 89 countries over the period

from 1960 to 2014. Our results reveal some cross-country patterns not found in

previous studies (e.g., “middle income trap hypothesis”, “natural resources curse

hypothesis”, “religion works via belief, not practice”, etc.).
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1 Introduction

Following the seminal works of Kormendi and Meguire (1985) and Barro (1991), a vast

amount of studies in the empirical growth literature have attempted to identify salient

determinants of economic growth. A main tool used by these studies is “cross-country

growth regressions” — that is, to regress observed GDP growth on a plethora of possible

explanatory variables that could possibly affect growth across countries. Excellent surveys

of these studies and their role in the broader context of economic growth theory are

provided in Durlauf and Quah (1999), Temple (1999) and Durlauf et al. (2005).

Despite the vast amount of research, the literature has identified a number of problems

with conventional growth regressions, among which three deserve particular attention.

The first problem is determining what variables to be included in growth regressions.

This problem arises because of the nature of growth theories: although a plethora of

growth theories have been proposed to identify factors that affect growth, these theories

are open-ended in the sense that the validity of one causal theory of growth does not

imply the falsity of another (Brock and Durlauf, 2001). In words of Durlauf et al. (2008),

“a given body of candidate growth theories defines a space of possible models rather than

a single specification”. From an empirical perspective, this problem stems from the fact

that the number of potential explanatory variables is large (over 140 identified in Durlauf

et al., 2005) relative to the number of countries with enough data availability, rendering

the all-inclusive regression computationally infeasible (Sala-I-Martin et al., 2004; Durlauf

et al., 2005). In dealing with this problem some studies have resorted to simply “trying”

combinations of variables which could be potentially important determinants of growth

and report the results of their preferred specification. However, as noted by Leamer (1983)

and Sala-I-Martin et al. (2004) such “data-mining” could lead to spurious inference.

The second problem with conventional growth analysis is that most empirical growth

studies assume that the parameters of growth regressions are identical across countries.

This assumption complies with the classical Solow model (Mankiw et al., 1992), which

assumes that all countries share an identical aggregate Cobb-Douglas production function.

However, an increasing number of studies (e.g., Durlauf and Johnson, 1995; Durlauf

et al., 2001; Salimans, 2012) have suggested that the parameters are heterogeneous across

countries. These studies, though using different econometric methods, all suggest that the

assumption of a single linear growth model that applies to all countries is inappropriate.

For example, Durlauf and Johnson (1995) employ a regression tree analysis to show that a

cross-sectional regression using the Summers and Heston (1991) data appears to provide
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support for several distinct regimes in which aggregate production functions vary among

countries according to their level of development, while Durlauf et al. (2001), employing

a varying coefficient growth model, also find strong evidence of parameter heterogeneity

across countries.

The third problem is that few studies in the empirical growth literature allow for

cross-sectional dependence of individual countries. Panel data econometrics has recently

seen an increasing interest in models with unobserved time-varying heterogeneity caused

by latent common shocks influencing all units, possibly to a different degree. This type of

heterogeneity introduces cross-sectional dependence to individual countries, which, when

neglected, can lead to biased estimates and spurious inference (Pesaran, 2006; Bai, 2009).

In the context of cross-country growth analysis, the problem of cross-sectional depen-

dence seems particularly salient due to the omnipresence of common global shocks (such

as global financial crises and world oil price shocks) that affect all countries through

trade and financial linkages (Chudik et al., 2017). Durlauf and Quah (1999) discuss the

possibility of cross-sectional dependence in a Lucas (1993) growth model with human

capital spillovers. They find that these spillovers markedly change the dynamics of con-

vergence and the authors call for the modelling of cross-country interactions in empirical

convergence analysis.

The three aforementioned problems have received more or less individual attention

in the growth literature. For example, Durlauf et al. (2001) address the problem of pa-

rameter heterogeneity using a varying coefficient growth model, but do not deal with the

problems of variable selection and cross-sectional dependence; both Sala-I-Martin et al.

(2004) and Moral-Benito (2012) select growth determinants using Bayesian averaging,

but do not account for parameter heterogeneity and cross-sectional dependence.

The main goal of this study is to propose an integrated framework that is capable

of dealing with parameter heterogeneity and cross-sectional dependence, while simulta-

neously performing variable selection. Specifically, parameter heterogeneity is allowed

for by permitting the coefficients to vary across countries according to a country’s initial

conditions, while cross-sectional dependence is accounted for via a factor structure. We

then propose a least absolute shrinkage and selection operator (LASSO) estimator to se-

lect growth determinants, establish the associated asymptotic results, and further verify

our asymptotic results through extensive simulations, which constitutes another contri-

bution of this paper. We apply this framework to a new dataset of 89 countries over

the period 1960-2014. Our findings broadly support the more “optimistic” conclusion of

Sala-I-Martin (1997), that is, some variables are important regressors for explaining cross-

2



country growth patterns. Moreover, our empirical results also provide support to some

important hypotheses in the growth literature, e.g., “middle income trap hypothesis”,

“natural resources curse hypothesis”, “religion works via belief, not practice”, etc.

The rest of the paper is organized as follows. Section 2 explains how to extend

the canonical cross-country growth regression to account for the aforementioned issues.

Section 3 describes a procedure for estimating the extended growth regression model

in Section 2, and presents the associated asymptotic properties. Section 4 describes

the data. The empirical results are presented in Section 5. Section 6 concludes. Due

to space limitations, preliminary lemmas, proofs of the main theorems and Monte Carlo

simulations, together with auxiliary tables and figures, are presented in the supplementary

Appendix A of this paper. The proofs of the preliminary lemmas are presented in the

supplementary Appendix B of this paper, which can be found at the authors’ website

(https://papers.ssrn.com/sol3/cf dev/AbsByAuth.cfm?per id=646779).

2 A Varying Coefficient Growth Regression Model

with Factor Structure and Sparsity

A generic representation of the canonical cross-country growth regression is

yit = x′itβ0 + eit, (2.1)

where i = 1, 2, . . . , N index countries; t = 1, 2, . . . , T index time; yit is the rate of economic

growth; xit represents a set of observable explanatory variables, including those originally

suggested by Solow as well as other growth theories, and eit is an error term. Equation

(2.1) represents the baseline for much of growth econometrics.

However, as discussed in the Introduction, (2.1) is based on two problematic assump-

tions. First, it assumes that the parameters (i.e., β0) are homogeneous across all countries.

Second, it assumes that there is no cross-sectional dependence across countries.

To relax the two assumptions, in what follows we extend the conventional cross-

country growth regression in (2.1) in two ways. First, in Section 2.1 we allow for parameter

heterogeneity by allowing β0 to vary across countries according to a country’s initial

conditions. Second, in Section 2.2 we introduce cross-sectional dependence into the model

by means of a factor structure.
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2.1 Parameter Heterogeneity

Following Durlauf et al. (2001), we allow for parameter heterogeneity by generalizing

(2.1) into a varying coefficient model:

yit = x′itβ0(zit) + eit, (2.2)

where zit can be interpreted as some measure of “development” (or initial condition) of a

country, and β0(z) = (β01(z), . . . , β0p(z))′ is a vector of smooth functions that maps the

scalar index variable zit into a set of country-specific parameters.

This generalization in (2.2) provides a framework within which one can bridge the gap

between cross-country regression models and new growth theories. For instance, if one

believes that initial GDP per capita causally affects a country’s production technology

and growth as in Durlauf et al. (2001), then initial GDP per capita can be introduced as a

“development” index. As pointed out by Durlauf and Johnson (1995), (2.2) is compatible

both with a model in which economies pass through distinct phases of development

towards a unique steady state as well one in which multiple steady states exist.

2.2 Cross-Sectional Error Dependence

Having accounted for parameter heterogeneity, we next introduce the cross-sectional de-

pendence of error terms into (2.2) using a factor structure:

eit = γ′0if0t + εit, (2.3)

where f0t is an r×1 vector of unobservable common factors, γ0i is an r×1 vector of factor

loadings that capture country-specific responses to the common shocks, and εit is the

idiosyncratic error term. These common factors can be a combination of “strong” factors,

such as world oil price shocks, global financial crises, and recessions in major advanced

economies; and “weak” factors, such as local spillover effects along channels determined

by shared culture heritage, geographic proximity, economic or social interaction (Chudik

et al., 2011). Moreover, the components of the factor structure are allowed to drive

both economic growth and explanatory variables, thus partially accounting for potential

endogeneity of explanatory variables, which is neglected by the traditional approaches to

causal interpretation of cross-country empirical analysis.
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2.3 The Varying Coefficient Growth Regression Model with

Factor Structure and Sparsity

Substituting (2.3) into (2.2) yields the following growth regression model that allows for

parameter heterogeneity and cross-sectional dependence

yit = x′itβ0(zit) + γ′0if0t + εit, t = 1, 2, · · · , T, (2.4)

The model in (2.4) extends the local Solow growth model investigated in Durlauf et al.

(2001) into a panel data context with interactive fixed effects (or factor structure). From

an econometric perspective, (2.4) extends the panel data model with interactive fixed

effects in Bai (2009) into a varying coefficient context. Some closely related studies

include, but are not limited to, Dong et al. (2018) on (2.4) with partially observed factor

structure, Feng et al. (2017) on a special case of (2.4) with discrete zit and γ′0if0t being

reduced to fixed-effects αi, Liu et al. (2018) on a time-varying heterogeneous model with

zit = t
T

, and Malikov et al. (2016) on a binary varying-coefficient panel data setting with

endogenous selection and fixed-effects. There are some key differences between this paper

and the relevant literature. First, it is worth pointing out that these previous studies

introduce parameter heterogeneity and cross-sectional dependence in different manners.

Second, none of them consider performing variable selection on their varying coefficient

models as we will show below particularly in the high-dimensional setting. Finally and

most importantly, both model (2.4) and its asymptotic theory in Section 3 below are

naturally motivated by the relevant empirical literature in economic growth.

In addition to parameter heterogeneity and cross-sectional dependence, we are also

interested in another issue that is prominent in the empirical growth literature — variable

selection. This issue is important because (1) the dimension of xit can be very large; and

(2) not all elements of xit drive economic growth. In other words, for those factors not

driving economic growth, it is reasonable to assume that their associated coefficients are

zero, which is called “sparsity” in the literature of high dimensional econometrics.

In order to formally introduce the sparsity to the model (2.4), we assume that there

exists an unknown set A† ⊆ {1, . . . , p} satisfying that E|β0j(zit)|2 = 0 if and only if j ∈
A†. For notational simplicity, we assume A† = {p∗+ 1, . . . , p} for an unknown integer p∗

satisfying 1 ≤ p∗ < p. Further, let A∗ = {1, . . . , p∗}, x∗it = (xit,1, . . . , xit,p∗)
′, and β∗0(z) =

(β01(z), . . . , β0p∗(z))′. Throughout this study, we always define the variables or functions

corresponding to the sets A∗ and A† with super-indices ∗ and † respectively. Thus,

identifying growth determinants is equivalent to distinguishing A∗ and A†, which will be
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achieved by a LASSO estimator presented in the following section. Finally, regarding the

dimension of regressors, we consider two cases where (1) p is fixed, and (2) p diverges as

the sample size increases. We refer to them as the low dimensional (LD) case and the

high dimensional (HD) case, respectively. In terms of econometric methodology, both

cases with the sparsity setting have not been studied in the literature to the best of our

knowledge.

As discussed in the Introduction, failure to perform variable selection may result in

spurious inference, failure to allow parameters to differ across countries is inconsistent

with the increasing body of research that find cross-country parameter heterogeneity,

and failure to account for cross-sectional dependence can lead to biased estimates and

spurious inference. These possible consequences thus necessitate an integrated approach

to simultaneously addressing the three issues.

In the following section, we introduce a LASSO estimator that is designed specifi-

cally for performing variable selection on the extended growth regression model in (2.4).

The combination of varying coefficients, factor structure, and the LASSO estimator pro-

vides us an integrated framework that is capable of simultaneously addressing the three

problems mentioned in Section 1 — variable selection, parameter heterogeneity, and

cross-sectional dependence.

3 Estimation

In this section, we describe a procedure for estimating the model in (2.4) and derive the

associated asymptotic properties. Specifically, we propose a LASSO estimator to select

the appropriate variables, adopt a sieve method to recover the functional components, and

employ the principle component analysis (PCA) technique to estimate the unobservable

factor structure.

Before proceeding further, it is convenient to introduce some notations. We let

Yi = (yi1, . . . , yiT )′, Xi = (xi1, . . . , xiT )′, Zi = (zi1, . . . , ziT )′, Ei = (εi1, . . . , εiT )′, F0 =

(f01, . . . , f0T )′, and Γ0 = (γ01, . . . , γ0N)′. ‖ · ‖ denotes the Euclidean norm of a vector or

the Frobenius norm of a matrix; for a square matrix W , let ηmin(W ) and ηmax(W ) stand

for the minimum and maximum eigenvalues of W respectively; MW = IT − PW denotes

the orthogonal projection matrix generated by matrix W , where PW = W (W ′W )−1W ′,

and W is a matrix with full column rank.

We adopt the sieve method (e.g., Dong and Linton, 2018) to estimate the functional
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component of (2.4). Specifically, assume that β0` ∈ L2(Vz) for ` = 1, . . . , p, where

L2(Vz) = {g |
∫
Vz
g2(z)dz <∞} is a Hilbert space. Suppose that there exists an orthonor-

mal function sequence {hj(z) | j ≥ 0} in L2(Vz) such that supz∈Vz supj≥0 |hj(z)| < ∞.

Then, for ∀g(z) ∈ L2(Vz), we have an orthogonal series expansion g(z) := gm(z) + δm(z),

where gm(z) =
∑m−1

j=0 cjhj(z), δm(z) =
∑∞

j=m cjhj(z), cj =
∫
Vz
g(z)hj(z)dz, and m is

the so-called truncation parameter. By the Parseval equality, the norm can be ex-

pressed as ‖g‖L2 = {
∫
Vz
g2(z)dz}1/2 = {

∑∞
j=0 c

2
j}1/2. For a vector of functions G(z) =

(g1(z), . . . , gd(z))′, its norm is defined by ‖G‖L2 = {
∑d

`=1 ‖g`‖2
L2}1/2.

Without loss of generality, truncating the expansions of all the elements of β0(z) by

the same m gives

β0(z) = β0,m(z) + ∆m(z), (3.1)

where β0,m(z) = Cβ0Hm(z), Hm(z) = (h0(z), h1(z) . . . , hm−1(z))′, Cβ0 = (C∗β0
′, 0′(p−p∗)×m)′,

and ∆m(z) = (∆∗m(z)′, 0′(p−p∗)×1)′. Thus, the first p∗ elements of β0(z) can be expressed

by β∗0(z) = β∗0,m(z) + ∆∗m(z), where β∗0,m(z) = C∗β0Hm(z).

We are now ready to rewrite (2.4) as

MF0Yi = MF0φi[β0,m] +MF0φi[∆m] +MF0Ei

by projecting out the factor structure, where φi[β] = (x′i1β(zi1), . . . , x′iTβ(ziT ))′ for any

p× 1 vector of functions β(z). The objective function is then defined by

Qλ(Cβ, F ) =
N∑
i=1

(Yi − φi[βm])′MF (Yi − φi[βm]) +

p∑
j=1

λj‖Cβ,j‖, (3.2)

where βm(w) = CβHm(w), Cβ,j stands for the jth row of Cβ, and {λ1, . . . , λp} are the

regularizers of the coefficient functions and are to be determined by data. The estimators

of Cβ0 and F0 for both LD and HD cases are always obtained by

(Ĉβ, F̂ ) = argmin
Cβ ,F∈DF

Qλ(Cβ, F ), (3.3)

where DF = {F | F ′F
T

= Ir}. In what follows, we always partition Ĉβ, according to the

partition A∗ and A†, as Ĉβ = (Ĉ∗β
′, Ĉ†β

′)′ wherever necessary.

At this point it is convenient to state some fundamental assumptions that are needed

for the derivation of the asymptotic results for both LD and HD cases.

Assumption 1.
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1. Let F0
−∞ and F∞τ denote the σ-algebras generated by {(xt, zt, εt, f0t) | t ≤ 0} and

{(xt, zt, εt, f0t) | t ≥ τ} respectively, where xt = (x1t, . . . , xNt)
′, zt = (z1t, . . . , zNt)

′,

εt = (ε1t, . . . , εNt)
′. Let α(τ) = supA∈F0

−∞,B∈F∞τ |Pr(A) Pr(B)− Pr(AB)| be the

mixing coefficient.

(a) {Xi, Zi, Ei, γ0i} is identically distributed over i. {xt, zt, εt, f0t} is strictly sta-

tionary and α-mixing such that for some ν1 > 0, E[‖ε11‖ + ‖x11‖]4+ν1 < ∞,

and the mixing coefficient satisfies
∑∞

t=1[α(t)]ν1/(2+ν1) <∞.

(b) E[ε11] = 0, E[ε2
11] = σ2

ε , and {εit} is independent of the other variables. Let

E[εi1εj1] = σij for i 6= j,
∑

i 6=j |σij| = O(N), and
∑N

i,j=1

∑T
t,s=1 |E[εitεjs]| =

O(NT ).

2. Let
∥∥ 1
T
F ′0F0 − Σf

∥∥ = OP

(
1√
T

)
and

∥∥ 1
N

Γ′0Γ0 − Σγ

∥∥ = OP

(
1√
N

)
, where Σf and Σγ

are deterministic and positive definite. Moreover, E‖f01‖4 <∞ and E‖γ01‖4 <∞.

Assumption 2.

1. Suppose that supz∈Vz ‖∆m(z)‖ = O(m−µ/2), and ηmax( 1
NT

∑N
i=1Z ′iZ ′i) < ∞ with

probability approaching one, where Zi = (Zi1, . . . ,ZiT )′ and Zit = Hm(zit)⊗ xit.

2. Let Ω1(F ) = 1
NT

∑N
i=1Z ′iMFZi, Ω2(F ) = 1

NT

∑N
i=1 γ0i⊗(MFZi) and Ω3 =

Γ′0Γ0

NT
⊗IT .

Suppose infF∈DF ηmin(Ω(F )) > 0, where Ω(F ) = Ω1(F )− Ω′2(F )Ω−1
3 Ω2(F ).

Assumption 1 is standard in the literature. The mixing conditions are similar to

Assumption C of Bai (2009) and Assumption 3.4 of Fan et al. (2016). In Assumption

2.1, the condition supz∈Vz ‖∆m(z)‖ = O(m−µ/2) is the same as Assumption 3 of Newey

(1997), and essentially requires certain smoothness of the elements of β0(·). The con-

dition ηmax( 1
NT

∑N
i=1Z ′iZ ′i) < ∞ of Assumption 2.1 is similar to Assumption 3.1 of Fan

et al. (2016). Now, consider a special case where {zit}, {xit} and {f0t} are mutually

independent, E[xit] = 0 and E[xitx
′
it] = Ip. Under this setting, it is easy to see that

ηmax( 1
NT

∑N
i=1Z ′iZ ′i) <∞ holds true for both of the LD and HD cases by some standard

analyses. Assumption 2.2 ensures that the estimators given in (3.3) are well defined, and

is equivalent to Assumption A of Bai (2009).

Based on the above setting, we move on to investigate the asymptotic results associ-

ated with (3.3) under the LD setting.
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3.1 Low Dimensional Case

In order to identify A∗ and A† and establish the asymptotic distribution, we further make

the following assumptions.

Assumption 3.

1. m2

T
→ 0 and λ∗max

N
3
4 T
→ 0, where λ∗max = max{λ1, . . . , λp∗}.

2. N
T
→ κ0 and

λ†min

m
1
2N

7
8 T
→ κ1, where λ†min = min{λp∗+1, . . . , λp}, 0 ≤ κ0 < ∞, and

κ1 > 0.

Assumption 4.

1. Suppose that for t ≥ s, E[f ′0tf0s | XNt] = ats, and
∑T

t=1

∑t
s=1 |ats| = O(T ), where

XNt := {(x1t, z1t), . . . , (xNt, zNt)}. Moreover, NT
mµ+1 → 0, mN

T
→ 0, T

N2 → 0 and
mλ∗max√
NT
→ 0.

2. Let Σ∗Z = E[Z∗11Z∗11
′] and Ω? = lim

(N,T )→(∞,∞)
E[Ψ1Ψ′1] for ∀z ∈ Vz, where

Ψ1 =

√
NT

m
[H ′m(z)⊗ Ip∗ ] Ψ−1

2 Σ∗−1
Z · 1

NT

N∑
i=1

{
Z ′i +

1

N

N∑
j=1

Z∗j
′γ′0jΣ

−1
γ γ0i

}
Ei,

Ψ2 = Imp∗ − Σ∗−1
Z E[Z∗11γ

′
01]Σ−1

γ E[γ01Z∗11
′], and Z∗it = Hm(zit)⊗ x∗it.

Suppose that for ∀z ∈ Vz, as (N, T )→ (∞,∞), Ψ1 →D N(0,Ω?).

The conditions of Assumption 3, though seemingly complicated, can be easily satisfied.

For example, let N = bT b0c, m = bT b1c, λ∗max = T b2 , and λ†min = T b3 , where bac means

the largest integer part of a real number a. Then Assumption 3 essentially requires that

0 < b0 ≤ 1, 0 < b1 <
1
2
, b2 <

3
4
b0 + 1 and b3 ≥ b1

2
+ 7b0

8
+ 1.

The current requirements of Assumption 4.1 are in the same spirit as Connor et al.

(2012, Eq. 3 and Eq. 20) and Jiang et al. (2017, pp. 21-22). Without this assumption,

some other types of conditions would be needed to achieve asymptotic normality. For

example, one can require N/T → ρ with 0 < ρ < ∞ and establish the normality with

biases as in Theorem 3 of Bai (2009). Assumption 4.2 is equivalent to Assumption E of

Bai (2009). It is worth mentioning that deriving the rates of convergence in Lemma A.3

and Lemma A.5 of the supplementary Appendix A does not require Assumption 4 at all.

For better presentation and in order not to deviate from our main goal, we present these

lemmas in the supplementary Appendix A instead of the main text.
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Theorem 3.1. Let Assumptions 1-3 hold.

1. Pr(‖Ĉ†β‖ = 0)→ 1.

2. Suppose Assumption 4 also holds. Then
√

NT
m

(β̂∗m(z) − β∗0(z)) →D N(0,Ω?) for

∀z ∈ Vz, as (N, T )→ (∞,∞), where β̂∗m(z) = Ĉ∗βHm(z).

The first result of Theorem 3.1 indicates that we are able to distinguish A∗ and A†;
while the second result of Theorem 3.1 establishes the asymptotic distribution of the

coefficient functions associated with the variables which truly drive economic growth.

To complete our discussion on the LD case, we propose the following BIC type criteria

in order to select λ practically.

BICλ = ln RSSλ + dfλ
lnN
4
√
N
, (3.4)

where RSSλ = 1
NT

∑N
i=1

(
Yi − φi[β̂

λ
m]
)′
MF̂λ

(
Yi − φi[β̂

λ
m]
)
, β̂λm(z) = Ĉλ

βHm(z), (Ĉλ
β , F̂

λ)

are obtained by implementing (3.3) using λ as the weight vector, and dfλ is the num-

ber of nonzero coefficient functions identified by Ĉλ
β . The penalty term lnN

4√N
of (3.4) is

constructed in view of the slow rate documented in Lemma A.2 of the supplementary

Appendix A. We select λ by

λ̂ = argmin
λ

BICλ. (3.5)

Further let Sλ̂ = {j | ‖Ĉ λ̂
β,j‖ > 0, 1 ≤ j ≤ p} indicate the set of relevant variables identified

by Ĉ λ̂
β . Then the next result follows.

Theorem 3.2. Let Assumptions 1-3 hold. Pr(Sλ̂ = A∗)→ 1 as (N, T )→ (∞,∞).

Again, Assumption 4 is unnecessary for establishing Theorem 3.2.

3.2 High Dimensional Case

In this subsection, we allow the dimension of xit to diverge as the sample size increases.

The following assumptions are crucial for deriving the asymptotic results for the HD case.

Assumption 5.

1. ‖E‖sp = OP (max{
√
N,
√
T}), where ‖ · ‖sp denotes the spectral norm of a matrix

and E = (E1, . . . , EN)′;
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2. p∗λ∗max
4√ξNT

NT
→ 0, ( ξNT+mp

NT
+ p∗m−µ)

√
ξNT → κ2,

8√ξNTλ†min

NT
→ κ3, where ξNT =

min{N, T}, 0 ≤ κ2 <∞ and κ3 > 0.

Assumption 5.1 is identical to Assumption iii of Li et al. (2016) and Assumption A.1.v

of Lu and Su (2016). Assumption 5.2 further imposes bounds on some parameters, and

can be verified in exactly the same way as shown under Assumption 3.

With regard to the selection of λ, we still use the BIC criterion with a minor modifi-

cation:

BICλ = ln RSSλ + dfλΥNT , (3.6)

where ΥNT is a penalty term satisfying ΥNT → 0 as (N, T ) → (∞,∞); and all other

notations are defined in exactly the same way as in the LD case. Select λ by λ̂ =

argminλ BICλ.

Then the next theorem holds.

Theorem 3.3. Let Assumptions 1, 2 and 5 hold. As (N, T )→ (∞,∞),

1. Pr(‖Ĉ†β‖ = 0)→ 1.

2. Additionally, let ΥNT ξ
1/8
NT → κ4 > 0. Then Pr(Sλ̂ = A∗)→ 1.

Once the zero coefficient functions are identified, the rest of the analysis (such as the

investigation of the rate of convergence) will be similar to that done in Section 3.1 except

that one needs to account for the divergence of both m and p∗. To avoid repetition, we

will not present the analysis here again.

In summary, in either of the two cases (LD and HD), when Pr(Sλ̂ = A∗) → 1, all

zero coefficient functions can be identified. In the growth regression context, this is

equivalent to saying that when Pr(Sλ̂ = A∗) → 1, all variables not driving economic

growth can be identified and thus removed from the growth regression. In the meantime,

the varying coefficients can be recovered using the sieve method, while the factor structure

can be estimated by the PCA technique. Thus, all the three aforementioned issues

that are prominent in the empirical growth literature (i.e., variable selection, parameter

heterogeneity, and cross-sectional dependence) can be addressed simultaneously within

a single, integrated framework. Before moving on to the empirical analysis, we next

describe the data employed in this study.
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4 Data

Of the many variables that have been found to be significantly correlated with growth

in the literature, we choose a total of 60 (including the dependent variable, the growth

rate of per capita GDP). The choice of these variables is based on previous studies (e.g.,

Sala-I-Martin et al., 2004; Moral-Benito, 2012) and data availability. Our final dataset

covers 89 countries over the period 1960 - 2014. It contains countries in different stages

of development and with a wide geographic dispersion. The explanatory variables cover

a wide range of factors, including stage of development, social issues, health, geography,

politics, education and more. The variable names, their means, and standard deviations

are presented in Table Table 1. Table 2 provides a list of the included countries.

A common practice in the literature is to take a five-year simple moving average of

both dependent and independent variables1. This technique has the advantages of reduc-

ing the potential effects of short-term fluctuations and maintaining a high number of time

series observations. Despite these advantages, this technique may still suffer from reverse

causality or simultaneity, because causality between regressors and growth could go the

other way as well or some regressors and growth may be simultaneously determined (e.g.,

Bils and Klenow, 2000). To mitigate this problem, we deviate from the common prac-

tice by measuring dependent and independent variables differently. Specifically, while

the dependent variable is measured as a five-year moving average of economic growth,

all explanatory variables are measured at the beginning of each five-year period, with

the exception of the variables related to war, geography, and terms of trade2 (Salimans,

2012). These latter explanatory variables are expected to be truly independent of con-

temporaneous economic growth, and thus also are measured as five-year moving averages

(as with the dependent variable). This treatment further alleviates endogeneity, which is

already mitigated by the use of multi-factor error structure as discussed in Section 2.

1Another popular method of looking at annual data in empirical growth literature is to use averaged
five-year period data. But, as is stressed by Soto (2003) and Attanasio et al. (2000), the use of n-year
averages is not suitable because of the lost of information that it implies, and attempting to use data on
averaged five-year periods severely limited the number of observations to draw from in the data.

2Specifically, these variables include: fraction spent in war (each five-year period); number of war
participation (each five-year period); number of revolutions (each five-year period); coups d’etat and
coup attempts within (each five-year period); time of independence; East Asian dummy; African dummy;
European dummy; Latin American dummy; British colony dummy; Spanish colony dummy; landlocked
country dummy; percentage of land area in Koeppen-Geiger tropics; percentage of land area within 100
km of ice-free coast; terms of trade; and terms of trade growth.
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5 Empirical Results

5.1 Choices of the Number of Factors and the Development

Index

In Section 3, we assume that the number of factors r is known. In practice, r is unknown

and has to be estimated. The main tool for estimating the number of factors of large

dimensional datasets is the use of information criteria. In view of the fact that there are

59 observable explanatory variables in our case, we follow Ando and Bai (2017) to choose

the number of the factors by minimizing the next criteria function:

PIC(r) = σ̂2
ε ·
(

1 + r · N + T

NT
log(NT )

)
, (5.1)

where σ̂2
ε = 1

NT

∑N
i=1

∑T
t=1

(
yit − x′itβ̂m − f̂ ′t γ̂i

)2

, and for ∀r, β̂m, f̂t and γ̂i are the corre-

sponding estimates using the approach of Section 2.

We now turn to the choice of the development index, zit. In Section 2 we have

specified a varying coefficient growth regression model capable of capturing parameter

heterogeneity by means of a development index. Of the possible development indexes,

output and human capital are believed to be the most important ones in previous studies

(e.g., Durlauf and Johnson, 1995; Liu and Stengos, 1999; Minier, 2007; Salimans, 2012).

Following those studies, we consider four alternative development indexes in log form: (1)

initial GDP per capita, (2) initial primary schooling enrolment rate, (3) initial secondary

schooling enrolment, and (4) initial higher education enrolment rate.

When choosing among the four alternative development indices, we use the in-sample

root mean squared error (RMSE) which is consistent with the criterion function used

in estimation. Specifically, for each development index, we first choose the number of

factors and select the regressors. Then we run post selection regression as documented in

Section A.1 of the supplementary Appendix A without including the weight parameters

to calculate the corresponding RMSE. Table 3 presents the chosen number of factors and

in-sample RMSE for each of the four development indices. In addition, we also consider

the homogeneous parameter growth regression model where β0 (i.e., the coefficients of

growth determinants) is homogeneous across countries, and the results are reported in

the first column of Table 3. This table shows that the model with initial GDP per capita

as the development index has the lowest in-sample RMSE and thus fits the data best.

In summary, the model with six factors and initial GDP per capita as the development

index (i.e., r = 6 and z = initial GDP per capita) receives the most support from the
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data. Hence, in what follows we concentrate on the results obtained from this model.

5.2 Estimates of the Common Factors and Their Associated

Loadings

Figure 1 and Figure 2 plot the estimates of the factors identified above and their cor-

responding loadings respectively. The former shows that all the common factors varies

considerably over time with the exception of the first factor which exhibits a relatively

small amount of variation during the sample period, while the latter shows that all the

factor loadings vary substantially across countries.

We are also interested in the importance of each common factor in explaining the

total variance of the error terms eit’s of (2.3). Table 4 shows the proportion of the total

variance attributed to each common factor. As the table shows, the first common factor

accounts for 87.86% percent of the total variance, and the other five factors account

for 7.01%, 1.78%, 1.45%, 0.61%, 0.30% respectively. Overall these six common factors

account for 99.01% of the total variance, indicating a fairly parsimonious description of

the data.

5.3 Estimates of the Coefficient Functions of Selected Variables

5.3.1 General Findings

Our results are broadly consistent with those of Fernández et al. (2001) and Sala-I-Martin

et al. (2004) in that we have identified a number of robust growth determinants (vari-

ables) that are also found to be significant in the previous studies. In this sense, our

results broadly support the more “optimistic” conclusion of Sala-I-Martin (1997), that

is, some variables are important regressors for explaining cross-country growth patterns.

Specifically, we have identified 31 robust growth determinants, providing evidentiary sup-

port for the canonical neoclassical growth variables; i.e., initial income, investment, and

population growth, as well as macroeconomic policies, geography, institutions, religion

and ethnic fractionalization. Table 5 reports the estimates of the coefficients of each of

the 31 robust growth determinants for ln(initial GDP per capita) = 3.98 (minimum), 5,

6, 7, 8, and 8.81 (maximum), together with their associated 95% bootstrapped confidence

intervals (CI)3. To see these coefficients more clearly, we also plot them against initial

3Note that these confidence intervals need to be interpreted carefully. As well understood, one cannot
establish the confidence intervals for the estimates under HD case unless certain transformation is further
employed (e.g., Huang et al., 2008; Dong et al., 2017). However, if one regards 31 (the number of
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GDP per capita in Figure A.5 of the supplementary file.

Despite the similarity, there are at least three differences between the results of this

study and those of the previous studies. First, our set of robust growth determinants

differs from those identified in the previous studies, in spite of many overlaps between

them. Specifically, some variables appear to be robust in our study but not in the previous

(such as secondary school enrolment rate and terms of trade growth) or vice versa (such

as primary school enrolment rate and fraction GDP of mining). There are at least three

possible reasons for this difference: (1) we use a different model specification that allows

for both parameter heterogeneity and cross-sectional dependence; (2) we use a different

variable selection procedure (i.e., a LASSO estimator); and (3) we use a different dataset

that spans a longer time period and covers a slightly different set of countries.

Second, our estimates of the coefficients of the robust growth determinants vary con-

siderably across countries according to their level of development, while those in most

previous studies are identical across countries. Specifically, we find that some coefficients

have the same sign but different values across different levels of initial GDP per capita

(such as civil liberty, terms of trade growth, and percentage of land area in tropics),

while other coefficients not only have different signs but also different magnitudes across

different levels of initial GDP per capita (such as consumption share of government, life

expectancy, military expenditure, and OPEC dummy). These findings suggest that it is

inappropriate to apply a growth regression with homogeneous parameters to all countries.

Third, our estimates of the coefficients of the robust growth determinants reveal some

cross-country patterns not found in previous studies. Taking the coefficient of initial

GDP per capita for example, we find that its estimate is positive for countries with

GDP per capita between $1,780 and $2,117 in 1960 U.S. dollars (between $13,166 and

$15,665 in 2014 U.S. dollars) while being negative for all other countries. This finding

is in accordance with the “middle income trap hypothesis”, which refers to countries

that have experienced rapid growth and thus quickly reached middle-income status but

then failed to overcome that income range to further catch up to the developed countries

(Gill and Kharas, 2007). To give another example, our estimate of the oil reserve coeffi-

cient increases monotonically with GDP per capita and eventually becomes positive for

economies with initial GDP per capital above $2,175 in 1960 U.S. dollars ($16,094 in 2014

selected variables) as a relatively small number, then one can treat our regression as a LD case and
employ the same bootstrap procedure as in Su et al. (2015). In order to ensure the validity of the
bootstrap procedure, stronger assumptions on the error terms are needed. For example, one can employ
the martingale difference type of assumptions (see Assumption A.4 of Su et al., 2015), or simply assume
that the error terms are i.i.d. over both i and t. Generally speaking, when the error term exhibits both
cross-sectional and serial correlation, the bootstrap results are not reliable or incorrect.

15



U.S. dollars). This latter finding is consistent with recent studies (e.g., Leite and Weid-

mann, 1999) which suggest that in developed economies where economic institutions are

generally well-developed, natural resources tend to promote economic growth; whereas in

developing economies where economic institutions are generally weak, natural resources

tend to hamper economic growth. We will discuss these two examples in more details

below where it is appropriate.

5.3.2 Specific Findings

We now analyse some of the variables that are “significantly” related to growth in more

details. Figure 3.1 presents our estimate of the coefficient of initial GDP per capita. This

figure reveals three findings. First, this estimate is negative for most GDP per capita

levels, thus being largely consistent with findings in the existing conditional convergence

literature as well as previous studies that have employed model averaging methods to

growth. Second, the coefficient has an inverse U-shaped relationship with initial GDP per

capita. This finding is consistent with those reported by previous studies. For example,

Durlauf et al. (2001) find that the coefficient of initial GDP per capita does not exhibit any

sort of monotonicity with respect to level of development; Salimans (2012) finds that the

coefficient of initial GDP per capita first increases with level of development up to a point

and then declines afterwards; and Durlauf and Johnson (1995) find that the coefficient of

initial GDP per capita is not monotonic with respect either GDP per capita or literacy

rate. Third, the coefficient is positive for countries with GDP per capita between $319

and $1,812 in 1960 U.S. dollars (or between $2,554 and $14,510 in 2014 U.S. dollars),

suggesting that some of these countries have been unable to catch up with more developed

countries. This finding is in line with the “middle-income trap” hypothesis, which refers

to the phenomenon of hitherto rapidly growing economies stagnating at middle-income

levels and failing to graduate into the ranks of high-income countries (e.g., Eichengreen

et al., 2014). In our sample South Africa and Columbia are two example countries that

have never been able leave the “middle-income range” over the entire sample period since

their GDP per capita fell into this range at the beginning of the sample period (i.e.,

1960).

Figure 3.2 shows our estimate of the coefficient of price for investment goods. Three

findings emerge from this figure. First, this estimate is negative for countries with initial

GDP per capita up to $543 in 1960 U.S. dollars (or $4,348 in 2014 U.S. dollars), suggesting

that for these countries a relative low price of investment goods in the first year of each

five-year period is strongly and positively related to subsequent income growth. This
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finding is not surprising because a low investment price stimulates investment (including

investment in machinery and equipment), which further spurs economic growth (De Long

and Summers, 1991, 1992). Second, the estimated coefficient falls in absolute value as

initial GDP per capita increases, meaning that the marginal effect of investment price

on growth is stronger for poor countries than for rich countries. This latter finding is

consistent with Temple (1999) who find that the growth-spurring effects of investment is

greater for developing countries, because total investment includes machinery embodying

well-established technologies and developing countries may be able to take advantage of

new and old equipment because they have little of any technology. Third, for countries

with initial GDP per capita above $543 in 1960 U.S. dollars (or $4,348 in 2014 U.S. dollars)

the estimated coefficient of investment goods price is positive but insignificant, because

the associated confidence intervals contain zero. This suggests that investment goods

price has no growth effects for these countries. A possible reason for this latter finding

is that the data from the Penn World Table is not disaggregated enough to distinguish

price of equipment investment, which has strong growth effects, and price of other forms

of investment, which have little growth effects (De Long and Summers, 1991).

Figure 3.3 shows our estimate of the coefficient of secondary schooling enrolment. As

this figure shows, this estimate is positive for most levels of initial GDP per capita. This

is not surprising because secondary education is a vital part of a virtuous circle of eco-

nomic growth within the context of a globalized knowledge economy. Many studies have

documented that a large pool of workers with secondary education is indispensable for

knowledge spillover to take place and for attracting imports of technologically advanced

goods and foreign direct investment (Borensztein et al., 1998; Caselli and Coleman II,

2001). That said, we also note that the estimated coefficient for secondary schooling

is negative for middle income countries with initial GDP per capita between $272 and

$1,192 in 1960 U.S. dollars (or between $2178 and $9,545 in 2014 U.S. dollars). This

result suggests that a possible reason for the “middle income trap” discussed above is

that these middle income countries, unlike other countries, fail to take advantage of the

benefits brought by secondary schooling.

We also note from Figure 3.4 that the estimate of the coefficient of higher education

is negative for almost all countries with the exception of middle income countries. This

finding is consistent with Sala-I-Martin et al. (2004) and Salimans (2012), both of which

find that the higher schooling coefficient is negative for most of their sample countries but

positive for the rest. It also parallels the concavity argument that the earnings function

is concave in education, meaning that returns are higher for lower levels of education
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(Psacharopoulos, 1994; Psacharopoulos and Patrinos, 2004).

Figure 3.5 shows our estimate of the coefficient of oil reserve. Two findings stand out

from this figure. First, this estimate is negative for countries with initial GDP per capita

below $2,373 in 1960 U.S. dollars (or $19,002 in 2014 U.S. dollars). This finding is consis-

tent with the “natural resources curse hypothesis” (e.g., Sachs and Warner, 2001) and can

be explained by the rent-seeking behaviour of countries with large endowments of natural

resources. Second, the oil reserve coefficient increases monotonically with GDP per capita

and eventually becomes positive for economies with initial GDP per capita above $2,373

in 1960 U.S. dollars (or $19,002 in 2014 U.S. dollars). This latter finding accords with

recent studies (e.g., Leite and Weidmann, 1999) on the nexus between natural resources

and economic growth. Specifically, these studies suggest that the contribution of natural

resources to a country’s economy does not take place in isolation, but rather in the overall

context of the country’s economic management and institutions. It is thus the quality

and competency of these policies and institutions that will determine whether natural re-

sources can promote economic growth, or whether revenues generated by the sector might

impede development. Therefore, in developed economies where economic institutions are

generally well-developed, natural resources tend to promote economic growth; whereas in

developing economies where economic institutions are generally weak, natural resources

tend to hamper economic growth.

Figure 3.6 presents the estimate of the coefficient of terms of trade growth. As this

figure shows, our estimate of the terms of trade growth coefficient is positive for all

countries, suggesting that growth tends to be faster in countries where the rate of change

of terms of trade is higher. This finding is consistent with previous studies (Mendoza,

1995, 1997; Kose and Riezman, 2001; Bleaney and Greenaway, 2001) that find that an

improvement in the terms of trade leads to higher levels of investment, and hence long-

run economic growth. In addition, this figure shows that the terms of trade growth

coefficient increases with GDP per capita, indicating that the marginal effect of terms of

trade growth is larger in richer countries than in poorer ones. This latter finding is also

consistent with previous studies (e.g., Blattman et al., 2007). Specifically, those studies

argue that higher volatility in the terms of trade reduces investment and hence growth

because of aversion to risk, and that rich countries with more sophisticated institutions

and markets are likely to have cheaper ways to insure against price volatility than poor

countries, so terms of trade instability is likely to have a smaller negative impact on rich

countries.

Here we note that as in Sala-I-Martin et al. (2004), trade openness (defined as exports
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plus imports as a share of GDP) is insignificant, presumably reflecting the crudity of this

measure, and perhaps the distinction between opening to international trade generating

a one-time step increase in income as factors are reallocated according to comparative

advantage versus an ongoing growth impact associated with greater openness.

Figures 3.7-3.9 show the estimates of the coefficients of fraction of Christian, Muslim,

and Jewish respectively. These coefficients are negative at all levels of development

or nearly all levels of development. This finding is consistent with that of Barro and

McCleary (2005) who find that religion works via belief, not practice. They argue that

higher church attendance uses up time and resources and eventually runs into diminishing

returns. The “religion sector”, as they call it, can consume more than it yields.

6 Conclusion

A rigorous cross-country growth regression analysis should simultaneously account for

three major problems identified in the literature — variable selection, parameter het-

erogeneity, and cross-sectional dependence. Though these three problems have received

individual attention, little or no research has sought to integrate them into a single,

comprehensive framework. The purpose of this study is to fill this void by proposing a

new, integrated framework that is capable of dealing with parameter heterogeneity and

cross-sectional dependence, while simultaneously performing variable selection. Specif-

ically, parameter heterogeneity is allowed for by means of a varying coefficient growth

regression model, while cross-sectional dependence is introduced into the model via a

multi-factor structure. For simplicity, we refer to the resulting growth regression model

as the “varying coefficient growth regression model with factor structure and sparsity”.

We then propose a LASSO estimator that is capable of performing variable selection on

this model. In addition, we have established the associated asymptotic results for this es-

timator and further investigate the performance of the estimator by conducting extensive

simulations.

We apply the above framework to a new dataset that covers 89 countries over the

period from 1960 to 2014. We have identified 31 robust growth determinants, providing

evidentiary support for the canonical neoclassical growth variables; i.e., initial income,

investment, and population growth, as well as macroeconomic policies, geography, insti-

tutions, religion and ethnic fractionalization. Moreover, we find that all the coefficients

of the robust growth determinants vary considerably across countries according to their

level of development, which reveals some interesting cross-country patterns not found in
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previous studies. For example, we find that the coefficient of the initial GDP per capita is

positive for countries with GDP per capita between $319 and $1,812 in 1960 U.S. dollars

(or between $2,554 and $14,510 in 2014 U.S. dollars), suggesting that some of these coun-

tries have fallen into the so-called “middle income trap”. As another example, we find

that the oil reserve coefficient increases monotonically with GDP per capita and even-

tually becomes positive for economies with initial GDP per capita above $2,373 in 1960

U.S. dollars (or $19,002 in 2014 U.S. dollars), thus being consistent with recent studies

that stress the role of institutions in determining how natural resources affect economic

growth.
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Table 1: Definitions of All Variables in the Regression
Variables Description Formula Mean Std
EG Economic growth rate ln(rgdpot/rgdpot−1) 0.0363 0.0649
log(GPC) log GDP per capita 6.0642 0.9861
csh g Government consumption share 0.2074 0.1163
Openness Openness measure csh x + csh m -0.0322 0.1274
IP Investment price, i.e., price level of capital formation 0.4213 0.3220
PGR Population growth rates ln(popt/popt−1) 0.0197 0.0127
Sch P Primary school enrollment 0.7396 0.2170
Sch S Secondary school enrollment 0.4672 0.3204
Sch H Higher education School Enrollment 0.1336 0.1581
LE Life Expecancy 0.5932 0.1102
PESS Public education spending share in GDP 0.0399 0.0296
PIS Public investment share GFCF - GFCF PS 0.0713 0.0501
Land Land area (sq. km / 1,000,000) 0.8719 2.1518
Exports Percentage of Primary Export Exports OM + Exports ARM 0.1978 0.2085
Mining Fraction GDP in mining 0.0733 0.0874
Fertility Fertility rate, total (births per woman) 4.7412 1.9724
Military Military expenditure share in GDP 0.0295 0.0302
PCS Public consumption share GGFCE - PESS - Military 0.0809 0.0501
Malaria Malaria prevalence: Incidence of malaria 155.1712 245.5145

(per 1,000 population at risk)
Inflation Inflation rate 1.3854 7.0448
Political Political rights 4.2100 1.9429
Civil Civil liberties 4.1496 1.6628
Cap Degree of capitalism 3.2697 1.7275
Trade Terms of trade 1.3475 2.2807
Tra Gro Terms of trade growth 0.0073 0.0974
Locked Landlocked country dummy (1, yes; 0, no) 0.2697 0.4438
Ind Year Time of independence 1.4382 1.0382

<=1914 = 0; 1915-1945 = 1; 1946-1989 = 2; >= 1990 = 3
kgatr Percentage of land area in Koeppen-Geiger tropics 0.4017 0.4205
kgptr Percentage of population in Koeppen-Geiger tropics 0.3915 0.4217
lcr100km Percentage of Land area within 100 km of ice-free coast 0.3788 0.3640
pop100cr Ratio of population within 100 km of ice-free 0.4520 0.3728

coast/navigable river to total population
cen lat latitude of country centroid 0.1522 0.2197
Bri Col British colony dummy (1, yes; 0, no) 0.2584 0.4378
Spa Col Spanish colony dummy (1, yes; 0, no) 0.1910 0.3931
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Oil OPEC Oil-producing country dummy (1, yes; 0, no) 0.0674 0.2508
Gas proved reserves (cubic meters / 10ˆ12) 1.3789 6.1997
Oil proved reserves (bbl / 10ˆ9) 4.5521 19.1378
Chris Percentage of Christian 0.5369 0.3807
Mus Percentage of Muslim 0.3046 0.3825
Hin Percentage of Hindu 0.0263 0.1211
Bud Percentage of Buddhist 0.0410 0.1541
Fol Percentage of Folk religion 0.0284 0.0628
Oth Percentage of other religion 0.0037 0.0064
Jew Percentage of Jewish 0.0019 0.0027
GS Government spending share of GDP 0.1501 0.0686
Distortion Real exchange rate distortions 129.6824 35.8479
OO Outward orientation -2.7398 0.7542
SIL Ethnolinguistic fractionalization 0.4886 0.3127
ESP English-speaking population in percentage 0.1762 0.2692
EA East Asian dummy 0.0225 0.1482
AF African dummy 0.4270 0.4947
EU European dummy 0.1124 0.3158
LA Latin American dummy 0.1573 0.3641
WarFrac Fraction spent in war (1960-2014) 0.3265 0.4343
NoWars No. of war participation (1960-2014) 0.8028 1.2609
Coup coups d’etat and coup attempts within (1960-2014) 0.1870 0.4964
Revolution Number of revolutions (1960-2014) 0.1941 0.5038
Pop Dens Population Density/1000 0.0812 0.1135
WorkIR Growth rate of work force ln(WPt/WPt−1) 0.0210 0.0132
rgdpo — Size of economy (GDP in million)

pop — Population (in million)

csh x — Share of merchandise exports

csh m — Share of merchandise imports

WP — Fraction population of work force (1-A65-U15)

A65 — Fraction population over 65 years old

U15 — Fraction population under 15 years old

GFCF — Gross fixed capital formation

GFCF PS — Gross fixed capital formation, private sector

Exports OM — Percentage of Ores and metals exports

Exports ARM — Percentage of Agricultural raw materials exports

GGFCE — General government final consumption expenditure share in GDP
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Table 2: Sample Countries and Their Associated ISO 3166-1 alpha-3 Codes
AGO Angola HND Honduras PAK Pakistan
ALB Albania HRV Croatia PAN Panama
ARM Armenia HTI Haiti PER Peru
AZE Azerbaijan IND India PHL Philippines
BDI Burundi IRN Iran, Islamic Republic of POL Poland
BEN Benin JAM Jamaica PRY Paraguay
BFA Burkina Faso JOR Jordan RUS Russian Federation
BGD Bangladesh JPN Japan RWA Rwanda
BGR Bulgaria KAZ Kazakhstan SDN Sudan
BLR Belarus KEN Kenya SEN Senegal
BRA Brazil KGZ Kyrgyzstan SLE Sierra Leone
BWA Botswana KHM Cambodia SLV El Salvador
CAF Central African Republic LAO Lao People’s Democratic Republic SWZ Swaziland
CIV Côte d’Ivoire LBN Lebanon SYR Syrian Arab Republic
CMR Cameroon LKA Sri Lanka TCD Chad
COG Congo LSO Lesotho TGO Togo
COL Colombia MDA Moldova, Republic of THA Thailand
DOM Dominican Republic MDG Madagascar TTO Trinidad and Tobago
DZA Algeria MEX Mexico TUN Tunisia
ECU Ecuador MKD Macedonia TUR Turkey
EGY Egypt MLI Mali TZA Tanzania, United Republic of
ETH Ethiopia MNG Mongolia UGA Uganda
GAB Gabon MOZ Mozambique UKR Ukraine
GBR United Kingdom MWI Malawi URY Uruguay
GEO Georgia MYS Malaysia USA United States
GHA Ghana NAM Namibia VEN Venezuela, Bolivarian Republic of
GIN Guinea NER Niger YEM Yemen
GMB Gambia NIC Nicaragua ZAF South Africa
GNB Guinea-Bissau NPL Nepal ZWE Zimbabwe
GTM Guatemala OMN Oman
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Table 3: Comparison among Alternative Development Indexes (z)

Parametric
z of Varying Coefficient

ln(GPC) School P School S School H

RMSE 0.022 0.017 0.019 0.027 0.020

No. of factors 6 6 6 3 5

Table 4: Cumulative Variation of the Residuals Explained by the Factors

No. Factors 1 2 3 4 5 6

Cumulative Variation 87.86% 94.87% 96.65% 98.10% 98.71% 99.01%
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Table 5: Estimates of Coefficients at log(GPC)=3.98, 5, 6, 7, 8 and 8.81
log(GPC)=3.98 log(GPC)=5 log(GPC)=6 log(GPC)=7 log(GPC)=8 log(GPC)=8.81

log(GPC) -0.0766 -0.0447 0.0117 0.0255 -0.0531 -0.2055
(-0.1145, -0.0429) (-0.0618, -0.0305) (-0.0038, 0.0249) (0.0080, 0.0469) (-0.0886, -0.0034) (-0.2883, -0.0898)

csh g 0.3341 0.1483 -0.0587 -0.2143 -0.2619 -0.1964
(0.1077, 0.5534) (0.0706, 0.2248) (-0.1110, -0.0107) (-0.3141, -0.1454) (-0.5782, 0.0082) (-0.9416, 0.4733)

IP -0.1284 -0.0545 -0.0093 0.0160 0.0282 0.0325
(-0.1971, -0.0621) (-0.0686, -0.0422) (-0.0191, 0.0059) (-0.0046, 0.0406) (-0.0146, 0.0638) (-0.0895, 0.1209)

PGR 3.2821 0.5353 0.8485 1.5689 0.6502 -2.2853
(1.7325, 4.7072) (0.0426, 0.9486) (0.4054, 1.2542) (1.1371, 1.9781) (-0.1228, 1.3620) (-3.5441, -0.7206)

School S 0.1322 0.0823 -0.0420 -0.0147 0.3303 0.9119
(-0.1505, 0.4845) (0.0108, 0.1495) (-0.0780, -0.0081) (-0.0548, 0.0177) (0.1989, 0.4201) (0.5495, 1.1719)

School H -1.5869 -0.1175 0.2220 0.0326 -0.2066 -0.1808
(-2.4454, -0.7631) (-0.3214, 0.1119) (0.1562, 0.3020) (-0.0157, 0.0921) (-0.2810, -0.1039) (-0.3986, 0.1401)

LE 0.3148 0.2935 -0.0597 -0.2370 0.1455 1.0373
(-0.0171, 0.6403) (0.1811, 0.3938) (-0.1739, 0.0389) (-0.3918, -0.0990) (-0.2875, 0.5411) (0.0000, 1.9922)

PESS -1.2399 -0.5737 -0.2476 -0.0158 0.3070 0.7260
(-2.4950, 0.0107) (-0.7969, -0.3513) (-0.4210, -0.0944) (-0.2163, 0.1716) (-0.6249, 1.3302) (-1.5776, 3.4530)

Military -1.1748 -0.1436 -0.0428 -0.0020 0.6417 1.9197
(-2.4253, -0.0639) (-0.3588, 0.1047) (-0.1667, 0.0719) (-0.2609, 0.1609) (0.0134, 1.1085) (0.1982, 3.4369)

Inflation -0.0055 0.0006 -0.0011 -0.0031 0.0007 0.0107
(-0.0094, -0.0012) (0.0000, 0.0012) (-0.0016, -0.0005) (-0.0039, -0.0023) (-0.0043, 0.0048) (-0.0020, 0.0209)

Civil 0.0183 0.0050 -0.0004 0.0033 0.0166 0.0340
(0.0048, 0.0308) (0.0011, 0.0085) (-0.0027, 0.0024) (0.0000, 0.0064) (0.0027, 0.0282) (-0.0036, 0.0661)

Tra Gro 0.0009 0.0304 0.0048 0.0018 0.0796 0.2279
(-0.1138, 0.1100) (0.0117, 0.0458) (-0.0162, 0.0252) (-0.0248, 0.0351) (-0.0062, 0.1727) (-0.0124, 0.4799)

kgatr -0.3099 -0.0815 -0.0763 -0.1422 -0.1597 -0.0776
(-0.4367, -0.1693) (-0.1281, -0.0391) (-0.1161, -0.0447) (-0.1887, -0.0969) (-0.2602, -0.0333) (-0.3270, 0.2396)

lcr100km 0.6793 0.1930 0.0511 -0.0621 -0.3850 -0.9133
(0.5005, 0.8498) (0.1396, 0.2461) (0.0127, 0.0940) (-0.1305, -0.0005) (-0.5977, -0.2168) (-1.4617, -0.5189)

cen lat 0.5894 0.0293 0.0360 0.1693 0.0873 -0.3058
(0.3011, 0.8198) (-0.0723, 0.1294) (-0.0315, 0.1114) (0.0985, 0.2655) (-0.0526, 0.2459) (-0.6344, 0.0789)

Spa Col -0.5174 -0.1564 -0.0204 0.0548 0.1945 0.4167
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(-0.6748, -0.3222) (-0.2111, -0.1080) (-0.0503, 0.0091) (0.0171, 0.0950) (0.1040, 0.3131) (0.1867, 0.6800)
Oil OPEC -0.1254 -0.0460 -0.0947 -0.0815 0.1358 0.5247

(-1.0835, 0.6246) (-0.2325, 0.1181) (-0.1496, -0.0423) (-0.1383, -0.0344) (-0.0124, 0.2413) (0.1090, 0.8785)
Oil -0.0100 -0.0021 -0.0008 -0.0011 0.0008 0.0057

(-0.0217, 0.0018) (-0.0051, 0.0009) (-0.0017, 0.0000) (-0.0022, -0.0001) (-0.0010, 0.0023) (0.0004, 0.0099)
Chris 0.2689 0.1112 -0.0056 -0.1262 -0.2818 -0.4469

(0.1164, 0.4267) (0.0650, 0.1711) (-0.0535, 0.0461) (-0.2001, -0.0629) (-0.4824, -0.1333) (-0.8908, -0.0694)
Mus -0.0736 0.0130 -0.0292 -0.1685 -0.3744 -0.5692

(-0.1864, 0.0735) (-0.0383, 0.0599) (-0.0774, 0.0195) (-0.2344, -0.1004) (-0.5710, -0.2335) (-1.0085, -0.2474)
Oth -3.7386 0.6890 -1.1133 2.9016 21.6126 51.3537

(-13.0771, 4.1928) (-1.3860, 2.4081) (-3.0584, 0.7782) (0.2919, 6.3889) (11.6269, 32.3911) (27.3474, 75.2005)
Jew -32.4452 -10.5477 -2.0163 -0.9826 -2.7502 -3.6114

(-55.7335, -10.0679) (-18.6022, -3.8609) (-7.6269, 3.6243) (-6.9105, 4.0461) (-12.1471, 5.8912) (-27.3730, 18.2231)
GS -0.2516 -0.2079 -0.0476 -0.0738 -0.5101 -1.2583

(-0.5709, 0.0529) (-0.3047, -0.1254) (-0.1142, 0.0215) (-0.1676, 0.0172) (-0.8230, -0.1881) (-2.1023, -0.4396)
Distortion 0.0231 0.0884 0.1085 0.0482 -0.1148 -0.3280

(-0.0449, 0.1048) (0.0580, 0.1187) (0.0701, 0.1435) (-0.0064, 0.1025) (-0.2793, 0.0061) (-0.6718, -0.0148)
OO 1.0569 4.1811 5.1496 2.3016 -5.4384 -15.5641

(-2.1588, 4.9579) (2.7557, 5.6164) (3.3263, 6.8047) (-0.2707, 4.8851) (-13.1848, 0.3040) (-31.9253, -0.7429)
ESP 0.3819 0.1039 0.0581 0.1010 0.1193 0.0577

(0.2151, 0.5483) (0.0575, 0.1465) (0.0214, 0.0975) (0.0494, 0.1631) (-0.0059, 0.2319) (-0.2260, 0.2967)
EA 0.2924 0.0841 0.0263 -0.1256 -0.5515 -1.1753

(-0.1574, 0.7975) (-0.0589, 0.2081) (-0.0668, 0.1185) (-0.2975, 0.0293) (-1.0307, -0.1357) (-2.2484, -0.2191)
EU -1.0237 -0.2206 -0.0275 0.0738 0.4780 1.2174

(-1.7313, -0.3070) (-0.3896, -0.0438) (-0.0797, 0.0197) (0.0169, 0.1225) (0.3182, 0.6845) (0.7527, 1.7964)
WarFrac -0.0044 -0.0035 -0.0120 -0.0130 0.0058 0.0411

(-0.0372, 0.0351) (-0.0121, 0.0072) (-0.0179, -0.0040) (-0.0208, -0.0036) (-0.0157, 0.0235) (-0.0227, 0.0882)
Coup -0.0190 -0.0004 -0.0028 -0.0070 0.0016 0.0251

(-0.0287, -0.0089) (-0.0031, 0.0020) (-0.0051, -0.0005) (-0.0102, -0.0038) (-0.0086, 0.0113) (-0.0005, 0.0502)
Revolution -0.0052 0.0044 -0.0016 -0.0066 0.0021 0.0252

(-0.0198, 0.0090) (0.0007, 0.0075) (-0.0042, 0.0011) (-0.0106, -0.0020) (-0.0054, 0.0084) (-0.0034, 0.0464)
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Figure 1: Estimates of Common Factors
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f̂t,j stands for the estimate of the jth factor, where j = 1 . . . , 6.

Figure 2: Estimates of Factor Loadings

A
G

O

A
L

B

A
R

M

A
Z

E

B
D

I

B
E

N

B
F

A

B
G

D

B
G

R

B
L

R

B
R

A

B
W

A

C
A

F

C
IV

C
M

R

C
O

G

C
O

L

D
O

M

D
Z

A

E
C

U

E
G

Y

E
T

H

G
A

B

G
B

R

G
E

O

G
H

A

G
IN

G
M

B

G
N

B

G
T

M

H
N

D

H
R

V

H
T

I

IN
D

IR
N

J
A

M

J
O

R

J
P

N

K
A

Z

K
E

N

K
G

Z

K
H

M

L
A

O

L
B

N

L
K

A

L
S

O

M
D

A

M
D

G

M
E

X

M
K

D

M
L

I

M
N

G

M
O

Z

M
W

I

M
Y

S

N
A

M

N
E

R

N
IC

N
P

L

O
M

N

P
A

K

P
A

N

P
E

R

P
H

L

P
O

L

P
R

Y

R
U

S

R
W

A

S
D

N

S
E

N

S
L

E

S
L

V

S
W

Z

S
Y

R

T
C

D

T
G

O

T
H

A

T
T

O

T
U

N

T
U

R

T
Z

A

U
G

A

U
K

R

U
R

Y

U
S

A

V
E

N

Y
E

M

Z
A

F

Z
W

E

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

γ̂i,j stands for the estimate of the jth factor loading, where j = 1 . . . , 6.
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Figure 3: Estimates of Selected Coefficient Functions
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Appendix A is divided into five sections. Section A.1 provides the numerical algorithm.

Section A.2 examines the asymptotic results of Section 3 through several simulations. Section

A.3 presents the preliminary lemmas and the proofs of the main theorems. Section A.4 explains

why our method can partially solve the issue of time trend that has found limited attention in

the empirical growth literature. In Section A.5, we provide auxiliary tables and figures of the

empirical study.

Recall that in the main text, we have let ξNT = min{N,T}, ‖ · ‖sp be the spectral norm of a

matrix, and bac stand for the largest integer part of a real number a. Here we further define some

notations, which will be used throughout this file. Let φ∗i [β
∗] = (x∗i1

′β∗(zi1), . . . , x∗iT
′β∗(ziT ))′,

and φ†i [β
†] = (x†i1

′
β†(zi1), . . . , x†iT

′
β†(ziT ))′, where β∗(·) and β†(·) are p∗ × 1 and (p − p∗) ×

1 respectively. Moreover, diag{A1, . . . , Ak} means constructing block diagonal matrix from

matrices (or scalars) A1, . . . , Ak.

A.1 Numerical Implementation

The following procedure essentially combines two algorithms discussed in Bai (2009) and Wang

and Xia (2009) together. For each given λ = (λ1, . . . , λp)
′, the estimates can be obtained using

the following iteration procedure. Let Ĉ
(n)
β and F̂ (n) be the estimates obtained from the nth ≥ 1

iteration. Then, for the (n+ 1)th iteration, the estimates are obtained as

Sub-step 1: vec(Ĉ
(n+1)
β ) =

(
N∑
i=1

Z ′iMF̂ (n)Zi +
D

(n)
m,p

2

)−1 N∑
i=1

Z ′iMF̂ (n)Yi,

Sub-step 2:
1

NT

N∑
i=1

(
Yi − φi[β̂(n+1)

m ]
)(

Yi − φi[β̂(n+1)
m ]

)′
F̂ (n+1) = F̂ (n+1)VNT ,

where Dm,p = Im ⊗ diag

{
λ1

‖Ĉ(n)
β,1‖

, . . . ,
λp

‖Ĉ(n)
β,p‖

}
; and VNT is a diagonal matrix with the diagonal

being the r largest eigenvalues of

1

NT

N∑
i=1

(
Yi − φi[β̂(n+1)

m ]
)(

Yi − φi[β̂(n+1)
m ]

)′

1



arranged in descending order. We stop the iteration when the estimates reach certain criteria,

say ‖Ĉ(n+1)
β − Ĉ(n)

β ‖ ≤ ε. To start the above iteration, we randomly generate F̂ (0), where each

element of F̂ (0) follows from N(0, 1).

To choose the optimal λ, we follow Wang and Xia (2009) to simplify it as follows:

λ = ν
(
‖C̄β,1‖−1, . . . , ‖C̄β,p‖−1

)′
, (A.1)

where ν is a scalar, and C̄β,j stands for the jth row of the unregularized estimator C̄β (i.e.,

implementing (3.3) of the main text with λ = 0p×1). With the specification of (A.1), the idea

for choosing lambda becomes straightforward. The unregularized estimator C̄β is a consistent

estimator. It provides information on how likely each row of Cβ0 is a zero row. In other words,

smaller ‖C̄β,j‖ implies that the jth row of Cβ0 is more likely to be zero and hence suggests a

larger regularizer on ‖Cβ,j‖. Given (A.1), the selection on the vector λ reduces to the selection

on the scalar ν. Finally, we consider the possible value of ν over a sufficiently large interval of

the real line. The optimal ν is chosen by minimizing the BIC type criteria proposed in the main

text. For the HD case, ΥNT is chosen as ln ξNT
8√ξNT

in view of the development of Lemma A.7 and

Theorem 3.3.

A.2 A Numerical Study

In this section, we examine the performance of the methodology of Section 3 through several

simulations. Consider the model (2.4) of the main text. For the factor structure, let f0t ∼
i.i.d. N(0r×1, Ir) and γ0i ∼ i.i.d. N(0.5 · 1r×1, Ir). In order to generate the regressors and

univariate index variable, we firstly generate vit = 0.5 ·vi,t−1 +ξit, where ξit ∼ i.i.d. N(0p×1, Ip).

Then let xit = vit + |γ′0if0t|, and zit = |vit,1| + i.i.d. N(0, 1), where vit,1 stands for the first

element of vit. By doing so, we generate certain correlation between the regressors and the

factor structure, and also introduce some correlation between zit and xit. The error terms are

generated as εt = 0.5 · εt−1 + ζt in which ζt ∼ i.i.d. N(0N×1,Σζ) and Σζ = {0.5|i−j|}N×N , so

that the weak cross-sectional dependence among individuals, and serial correlation over time

dimension are generated. For both LD and HD cases, the rest settings are as follows:

• LD Case: p∗ = 2, p = 5, r = 3, and let β01(z) = exp(−z2/2) + 0.4 and β02(z) =

z · exp(−z2/2) + 0.7;

• HD Case: p∗ = 2·b1.2(NT )1/6c, p = 30, r = 3. For j = 1, . . . , p∗, β0j(z) = exp(−z2/2)+

0.4 when j is odd, and β0j(z) = z · exp(−z2/2) + 0.7 when j is even.

For each dataset generated, we implement the procedure of Section 3 to perform variable

selection first. After identifying A∗ and A†, we implement post-selection estimation (i.e., remove

the irrelevant regressors and then implement (3.3) of the main text with λ = 0p×1) for the

2



coefficient functions. We adopt the Hermite functions of Dong and Linton (2018) as the basis

functions, repeat the above procedure 1000 times, and let1 N ∈ {40, 80, 120}, T ∈ {40, 80, 120},
and m = b1.2(NT )1/6c.

To evaluate our simulation results, we firstly report two percentages: (1) the percentage

of missed true regressors (i.e., false negative rate, FNR); and (2) the percentage of falsely

selected noise regressors (i.e., false positive rate, FPR). Secondly, we evaluate the estimates

on the components of β0(·). Take β01(·) as an example. For the jth replication, we obtain

β̂1j(z) for ∀z (given it is not identified as 0; otherwise, we record 0 as the estimate). For ∀z,
we calculate β̂1(z) = 1

1000

∑1000
j=1 β̂1j(z), and also record the 95% confidence bands based on

{β̂1j(z) | j = 1, . . . , 1000}. We plot these values over a certain range of z. The values of β01(z)

are plotted in solid black line, and the values of β̂1(z) are plotted in red dotted line, and the

associated 95% confidence bands are plotted in blue dashed curves.

Table A.1 summarizes the FNR and FPR for the LD and HD cases respectively. It is clear

that our method proposed in Section 3 works well, as both FNR and FPR are either 0 or very

close to 0. It is worth mentioning that although FPR is slightly higher than zero for the HD

case, over selecting the regressors will still yield consistent estimation.

Table A.1: FNR & FPR

FNR FPR

N \ T 40 80 120 40 80 120

LD 40 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

40 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

120 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

HD 40 0.00% 0.00% 0.00% 9.90% 1.10% 1.60%

40 0.00% 0.00% 0.00% 1.70% 1.90% 1.20%

120 0.00% 0.00% 0.00% 3.60% 1.00% 0.80%

For both the LD and HD cases, we plot β01(z) and β02(z) on [−1, 2] in Figures A.1-A.4,

as the majority of zit’s lie in this range. Due to similarity, we do not report the estimates of

the rest coefficient functions for HD case. It is easy to see that as the sample size increases,

the 95% confidence bands become much narrower and the mean estimate approaches the true

curve. Also, the estimates from the HD case have wider 95% confidence bands, and seem to be

less accurate compared to the LD case as expected.

1Note that the optimal choice of m may not be the optimal one, but it satisfies all the requirements
of our assumptions. Although the optimal choice of truncation parameter and the optimal bandwidth
selection have been solved for some cross-sectional models and time series models (e.g., Gao, 2007; Hall
et al., 2007) under the low dimensional cases, it is well understood that the question is still open even
for the nonparametric panel data model with fixed effects (cf., Chen et al., 2012; Su and Jin, 2012). The
question is even more daunting when the factor structure and variable selection procedure get involved.

3
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Figure A.1: LD: β01(z) = exp(−z2/2) + 0.4
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Figure A.2: LD: β02(z) = z exp(−z2/2) + 0.7
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Figure A.3: HD: β01(z) = exp(−z2/2) + 0.4
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Figure A.4: HD: β02(z) = z exp(−z2/2) + 0.7

A.3 Proofs

Before proving the main theorems, we present the following preliminary lemmas.

Lemma A.1. Consider two non-singular symmetric matrices A,B with the same dimensions

k × k, where k tends to ∞. Suppose that their minimum eigenvalues satisfy that ηmin(A) > 0

and ηmin(B) > 0 uniformly in k. Then
∥∥A−1 −B−1

∥∥ ≤ η−1
min (A) · η−1

min ‖A−B‖.

Lemma A.2. Let Assumptions 1 and 2 hold. As (N,T )→ (∞,∞),

1. ‖ 1
NT E

′E‖ = OP

(
1√
N

)
+ OP

(
1√
T

)
and ‖ 1

NT EE
′‖ = OP

(
1√
N

)
+ OP

(
1√
T

)
, where E =

(E1, . . . , EN )′,

2. sup
F∈DF

1

NT

N∑
i=1

E ′iPFEi = OP

(
1√
N

)
+OP

(
1√
T

)
,

3. sup
F∈DF

∣∣∣∣∣ 1

NT

N∑
i=1

γ′0iF
′
0MFEi

∣∣∣∣∣ = OP

(
1

4
√
N

)
+OP

(
1

4
√
T

)
,

4. sup
‖Cβ‖≤M,F∈DF

∣∣∣∣∣ 1

NT

N∑
i=1

(φi[β0,m]− φi[βm])′MFEi

∣∣∣∣∣ = OP

(
1

4
√
N

)
+OP

(
1

4
√
T

)
,

5. sup
F∈DF

∣∣∣∣∣ 1

NT

N∑
i=1

φi[∆m]′MFφi[∆m]

∣∣∣∣∣ = OP
(
m−µ

)
,

6. sup
F∈DF

∣∣∣∣∣ 1

NT

N∑
i=1

φi[∆m]′MFF0γ0i

∣∣∣∣∣ = OP (m−
µ
2 ),

7. sup
‖Cβ‖≤M,F∈DF

∣∣∣∣∣ 1

NT

N∑
i=1

φi [∆m]′MF {φi [βm]− φi [β0,m]}

∣∣∣∣∣ = OP (m−
µ
2 ),

5



where M is a sufficiently large constant.

Let Π−1
NT = VNT (F ′0F̂ /T )−1(Γ′0Γ0/N)−1, where VNT is a diagonal matrix with the diagonal

being the r largest eigenvalues of

1

NT

N∑
i=1

(
Yi − φi[β̂m]

)(
Yi − φi[β̂m]

)′
arranged in descending order.

Lemma A.3. Let Assumptions 1, 2 and 3.1 hold. As (N,T )→ (∞,∞),

1. ‖β̂m − β0‖L2 = oP (1);

2. ‖P
F̂
− PF0‖ = oP (1);

3. VNT →P V , where V is an r × r diagonal matrix consisting of the eigenvalues of ΣfΣγ;

4. 1√
T
‖F̂Π−1

NT − F0‖ = OP (‖β̂m − β0‖L2) +OP

(
1√
N

)
+OP

(
1√
T

)
;

5.
∥∥∥ 1
T F̂
′(F̂ − F0ΠNT )

∥∥∥ = OP (‖β̂m − β0‖L2) +OP
(

1
N

)
+OP

(
1
T

)
;

6. ‖P
F̂
− PF0‖2 = OP (‖β̂m − β0‖L2) +OP

(
1
N

)
+OP

(
1
T

)
.

Lemma A.4. Let Assumptions 1, 2 and 3 hold. As (N,T )→ (∞,∞), Pr(‖Ĉ†β‖ = 0)→ 1.

Lemma A.5. Let Assumptions 1-3 hold. As (N,T )→ (∞,∞),

‖Ĉ∗β − C∗β0‖ = OP

(√
m

NT

)
+OP (m−

µ
2 ) +OP

(
mλ∗max

NT

)
.

Lemma A.6. Let Assumptions 1, 2 and 5 hold. As (N,T )→ (∞,∞),

1. sup
‖Cβ‖≤a0

√
p, F∈DF

∣∣∣∣∣ 1

NT

N∑
i=1

(φi[β0,m]− φi[βm])′MFEi

∣∣∣∣∣ = OP

(√
p(ξNT +mp)

NT

)
;

2. sup
F∈DF

∣∣∣∣∣ 1

NT

N∑
i=1

φi[∆m]′MFφi[∆m]

∣∣∣∣∣ = OP
(
p∗m−µ

)
;

3. sup
F∈DF

∣∣∣∣∣ 1

NT

N∑
i=1

φi[∆m]′MFF0γ0i

∣∣∣∣∣ = OP (
√
p∗m−

µ
2 );

4. sup
F∈DF

∣∣∣∣∣ 1

NT

N∑
i=1

φi[∆m]′MFEi

∣∣∣∣∣ = OP (
√
p∗m−

µ
2 );

5. sup
‖Cβ‖≤a0

√
p, F∈DF

∣∣∣∣∣ 1

NT

N∑
i=1

φi [∆m]′MF {φi [βm]− φi [β0,m]}

∣∣∣∣∣ = OP (
√
p p∗m−

µ
2 ),
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where a0 is a sufficiently large constant.

Lemma A.7. Let Assumptions 1, 2 and 5 hold. As (N,T )→ (∞,∞),

1. ‖β̂m − β0‖L2 = oP (1);

2. ‖P
F̂
− PF0‖ = oP (1).

Proof of Theorem 3.1:

(1). The first result follows from Lemma A.4.

(2). Based on the development of Lemma A.5, the definition of β̂∗m and (3.1), we can write

for ∀z ∈ Vz, √
NT

m

(
β̂∗m(z)− β∗0(z)

)
=

√
NT

m

[
H ′m(z)⊗ Ip∗

] [
vec(Ĉ∗β − C∗β0)

]
+

√
NT

m
∆∗m(z)

=

√
NT

m

[
H ′m(z)⊗ Ip∗

] [
vec(Ĉ∗β − Ĉ

]
β) + vec(Ĉ]β − C

∗
β0)
]

+ oP (1)

=

√
NT

m

[
H ′m(z)⊗ Ip∗

]
A−1

1NTΣ∗−1
Z · 1

NT

N∑
i=1

{
Z∗i
′M

F̂
+A3,i

}
Ei

+

√
NT

m

[
H ′m(z)⊗ Ip∗

]
A−1

1NTΣ∗−1
Z · J6NT,1 +OP

(
m‖λ∗‖√
NT

)
+ oP (1)

=

√
NT

m

[
H ′m(z)⊗ Ip∗

]
A−1

1NTΣ∗−1
Z · 1

NT

N∑
i=1

{
Z∗i
′M

F̂
+A3,i

}
Ei + oP (1)

:= Λ1 + oP (1),

where the second equality follows from ‖∆m(z)‖ = O(m−µ/2) and the condition NT
mµ+1 → 0; the

third equality follows from the above development on vec(Ĉ∗β)−vec(Ĉ]β) and vec(Ĉ]β)−vec(C∗β0),

and the fact that Σ∗−1
Z,f reduces to Σ∗−1

Z using Assumption 4; and the fourth equality follows

from (B.22) of Appendix B, mN
T → 0, and mλ∗max√

NT
→ 0.

We next consider Λ1 by starting with 1
NT

∑N
i=1Z∗i

′M
F̂
Ei.

1

NT

N∑
i=1

Z∗i
′M

F̂
Ei =

1

NT

N∑
i=1

Z∗i
′MF0Ei +

1

NT

N∑
i=1

Z∗i
′(M

F̂
−MF0)Ei

=
1

NT

N∑
i=1

Z∗i
′MF0Ei −

1

NT

N∑
i=1

Z∗i
′(P

F̂
− PF0)Ei

:= D1 −D2.

Firstly, we shall show

∥∥∥∥√NT
m [H ′m(z)⊗ Ip∗ ]A−1

1NTΣ∗−1
Z D2

∥∥∥∥ = oP (1). Let Z∗i,j be the jth column

of Z∗i , and let Z∗it,j be the tth element of Z∗i,j . Write

7



D2 =
1

NT

N∑
i=1

Z∗i
′
(
F̂ F̂ ′

T
− PF0

)
Ei

=
1

NT

N∑
i=1

Z∗i
′(F̂ − F0ΠNT )

T
Π′NTF

′
0Ei +

1

NT

N∑
i=1

Z∗i
′(F̂ − F0ΠNT )

T
(F̂ − F0ΠNT )′Ei

+
1

NT

N∑
i=1

Z∗i
′F0ΠNT

T
(F̂ − F0ΠNT )′Ei +

1

NT

N∑
i=1

Z∗i
′F0

T
[ΠNTΠ′NT − (F ′0F0/T )−1]F ′0Ei

:= D21 +D22 +D23 +D24,

where the definitions of D21 to D24 are obvious.

In the following, we let D2`,j be the jth row of D2` for ` = 1, 2, 3, 4. Thus, for D21, consider

‖D21,j‖ =

∥∥∥∥∥ 1

NT

N∑
i=1

Z∗i,j
′(F̂ − F0ΠNT )

T
Π′NTF

′
0Ei

∥∥∥∥∥
≤

∥∥∥∥∥ 1

NT

N∑
i=1

(E ′iF0)⊗
Z∗i,j

′
√
T

∥∥∥∥∥ ·
∥∥∥∥ 1√

T
vec
[
(F̂ − F0ΠNT )Π′NT

]∥∥∥∥
= OP

(
1√
NT

)
1√
T
‖F̂ − F0ΠNT ‖.

Summing up over j for D21,j , we obtain that ‖D21‖ = OP
(√

m
NT

)
1√
T
‖F̂ − F0ΠNT ‖.

For D22, write

‖D22,j‖ =

∥∥∥∥∥ 1

NT

N∑
i=1

Z∗i,j
′(F̂ − F0ΠNT )

T
(F̂ − F0ΠNT )′Ei

∥∥∥∥∥
≤

∥∥∥∥∥ 1

NT

N∑
i=1

E ′i ⊗Z∗i,j
′

∥∥∥∥∥ ·
∥∥∥∥ 1

T
vec
[
(F̂ − F0ΠNT )(F̂ − F0ΠNT )′

]∥∥∥∥
= OP

(
1√
N

)
1

T
‖F̂ − F0ΠNT ‖2.

Summing D22,j up over j, we obtain that ‖D22‖ = OP
(√

m
N

)
1
T ‖F̂ − F0ΠNT ‖2.

For D23, write

‖D23,j‖ =

∥∥∥∥∥ 1

NT

N∑
i=1

Z∗i,j
′F0ΠNT

T
(F̂ − F0ΠNT )′ei

∥∥∥∥∥
≤

∥∥∥∥∥ 1

NT

N∑
i=1

E ′i ⊗
Z∗i,j

′F0√
T

∥∥∥∥∥ ·
∥∥∥∥ 1√

T
vec
[
ΠNT (F̂ − F0ΠNT )′

]∥∥∥∥ .
Note that

E

∥∥∥∥∥ 1

NT

N∑
i=1

E ′i ⊗
Z∗i,j

′F0√
T

∥∥∥∥∥
2

=
1

N2T 3
E

∥∥∥∥∥
N∑
i=1

E ′i ⊗
T∑
t=1

Z∗it,jf ′0t

∥∥∥∥∥
2

=
1

N2T 3

T∑
s=1

E

∥∥∥∥∥
N∑
i=1

εis

T∑
t=1

Z∗it,jf ′0t

∥∥∥∥∥
2

8



=
1

N2T 3

T∑
s=1

N∑
i1=1

N∑
i2=1

E

[(
T∑
t=1

Z∗i1t,jf
′
0t

)(
T∑
t=1

Z∗i2t,jf0t

)]
E[εi1sεi2s]

=
1

N2T 2

N∑
i1=1

N∑
i2=1

E

[(
T∑
t=1

Z∗i1t,jf
′
0t

)(
T∑
t=1

Z∗i2t,jf0t

)]
σi1i2

=
1

N2T 2

T∑
t=1

N∑
i1=1

N∑
i2=1

E
[
Z∗i1t,jZ

∗
i2t,jE

[
‖f0t‖2 | XNt

]]
σi1i2

+
2

N2T 2

∑
t1>t2

N∑
i1=1

N∑
i2=1

E
[
Z∗i1t1,jZ

∗
i2t2,jE

[
f ′0t1f0t2 | XNt1

]]
σi1i2

=
1

N2T 2

T∑
t=1

N∑
i1=1

N∑
i2=1

E
[
Z∗i1t,jZ

∗
i2t,j

]
attσi1i2

+
2

N2T 2

∑
t1>t2

N∑
i1=1

N∑
i2=1

E
[
Z∗i1t1,jZ

∗
i2t2,j

]
at1t2σi1i2

≤ O(1)
2

N2T 2

∑
t1≥t2

N∑
i1=1

N∑
i2=1

|at1t2 | · |σi1i2 | = O(1)
1

NT
,

where the fourth equality follows from Assumption 1.2; the sixth equality follows from Assump-

tion 4; and the seventh equality follows from both Assumptions 1.1 and 4.1.

Thus, ‖D23,j‖ = OP

(
1√
NT

)
1√
T

∥∥∥F̂ − F0ΠNT

∥∥∥. Summing D23,j up over j, we obtain that

‖D23‖ = OP
(√

m
NT

)
1√
T
‖F̂ − F0ΠNT ‖.

Similarly, write for D24,

‖D24,j‖ =

∥∥∥∥∥ 1

NT

N∑
i=1

Z∗i,j
′F0

T
[ΠNTΠ′NT − (F ′0F0/T )−1]F ′0Ei

∥∥∥∥∥
≤

∥∥∥∥∥ 1

NT

N∑
i=1

(E ′iF0)⊗
Z∗i,j

′F0

T

∥∥∥∥∥ · ∥∥ΠNTΠ′NT − (F ′0F0/T )−1
∥∥

= OP

(
1√
NT

)∥∥ΠNTΠ′NT − (F ′0F0/T )−1
∥∥ .

Summing D24,j up over j, we obtain that ‖D24‖ = OP
(√

m
NT

) ∥∥ΠNTΠ′NT − (F ′0F0/T )−1
∥∥,

where
∥∥ΠNTΠ′NT − (F ′0F0/T )−1

∥∥ = oP (1) by the development for the fourth result of Lemma

A.3.

Based on the analyses of D21 to D24, we obtain√
NT

m
‖D2‖ = OP (1)

1√
T
‖F̂ − F0ΠNT ‖+OP (1)

∥∥ΠNTΠ′NT − (F ′0F0/T )−1
∥∥

+OP (1)
√
T · 1

T
‖F̂ − F0ΠNT ‖2

which further gives

∥∥∥∥√NT
m [H ′m(z)⊗ Idx ]A−1

1NTΣ∗−1
Z D2

∥∥∥∥ = oP (1) by Lemma A.3 and the con-

dition T
N2 → 0.

Similarly, we obtain

9



∥∥∥√NT

m

[
H ′m(z)⊗ Ip∗

]
A−1

1NTΣ∗−1
Z

1

NT

N∑
i=1

A3,iEi

−
√
NT

m

[
H ′m(z)⊗ Ip∗

]
A−1

1NTΣ∗−1
Z

1

NT

N∑
i=1

Ã3,iEi
∥∥∥ = oP (1),

where Ã3,i = 1
N

∑N
j=1Z∗j

′MF0γ
′
0j(Γ

′
0Γ0/N)−1γ0i.

Finally, by Assumption 4 and after some simple algebra, we obtain

Λ1 =

√
NT

m

[
H ′m(z)⊗ Ip∗

]
Ã−1

1NTΣ∗−1
Z · 1

NT

N∑
i=1

{
Z∗i
′MF0 + Ã3,i

}
Ei + oP (1)

→D N(0,Ω?),

where Ã1NT = Imp∗ −Σ∗−1
Z Ã2NT and Ã2NT = 1

N2T

∑N
i=1

∑N
j=1Z∗i

′MF0Z∗j γ′0jΣ−1
γ γ0i. The proof

is then complete. �

Proof of Theorem 3.2:

Recall that we have denoted the set A∗. Before proceeding further, we introduce some vari-

ables to facilitate the development. For an arbitrary model S, we say it is under-fitted if it misses

at least one variable with a nonzero coefficient2; it is over-fitted if S not only includes all relevant

variables but also includes at least one redundant regressor (i.e., A∗ ⊂ S but A∗ 6= S). Then,

according to whether the model Sλ is under fitted, correctly fitted, or over fitted, we create three

mutually exclusive sets A−, A0 = {λ ∈ Rp : Sλ = A∗} and A+ = {λ ∈ Rp : Sλ ⊃ A∗, Sλ 6= A∗}.
Suppose that there is a sequence {λNT } that ensures the conditions required by Lemma A.4.

Let (ĈλNTβ , F̂ λNT ) denote the estimator obtained by implementing (3.3) using λNT .

Case 1: Under-fitted model. Without loss of generality, we assume that only one variable

is missing, and suppose that the first p∗−1 rows of Ĉλβ are obtained from the under-fitted model

and the p∗th row of Ĉλβ is a 0 row. Moreover, let RSS0 = 1
NT

∑N
i=1

(
Yi − φi[β0,m]

)′
MF0

(
Yi −

φi[β0,m]
)
.

We then write

RSSλ − RSS0 =
1

NT

N∑
i=1

(
Yi − φi[β̂λm]

)′
M
F̂λ

(
Yi − φi[β̂λm]

)
− 1

NT

N∑
i=1

(
Yi − φi[β0,m]

)′
MF0

(
Yi − φi[β0,m]

)
≥ ρ1‖Cβ0,p∗‖2 >

ρ1

2
‖β0p∗‖2L2 > 0,

where the first inequality follows from the development given for (B.3) of Appendix B.

Again, using the development given for (B.3) of Appendix B, we have

2Under-fitted case allows for including redundant regressor.
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RSSλNT − RSS0

= vec(Cβ0 − Ĉ
λNT
β )′

1

NT

N∑
i=1

Z ′iMF̂λNT
Zi vec(Cβ0 − Ĉ

λNT
β )

+
1

NT
tr
(
M
F̂λNT

F0Γ′0Γ0F
′
0MF̂λNT

)
+2 vec(Cβ0 − Ĉ

λNT
β )′

1

NT

N∑
i=1

Z ′iMF̂λNT
F0γ0i + oP (1)

= oP (1),

where the second equality follows from the development of Lemma A.3.

Thus, we can conclude that Pr (infλ∈A− BICλ > BICλNT )→ 1.

Case 2: Over-fitted model. Consider ∀λ ∈ A+ and recall that Ĉλβ determines a model

Sλ. Under such a model Sλ, we can define another unpenalized estimator as

(Čβ, F̌ ) = argmin
Cβ ,F

1

NT

N∑
i=1

(
Yi − φi[βm]

)′
MF

(
Yi − φi[βm]

)
(A.1)

subject to F ∈ DF , where ‖Cβ,j‖ = 0 with ∀j /∈ Sλ. In other words, (Čβ, F̌ ) is the unpenalized

estimator under the model determined by Ĉλβ . By definition, we obtain immediately that

RSSλ ≥ RSSSλ , where RSSSλ = 1
NT

∑N
i=1

(
Yi − φi[β̌m]

)′
MF̌

(
Yi − φi[β̌m]

)
.

Write

ln RSSSλ − ln RSSλNT = ln

(
1 +

RSSSλ − RSSλNT
RSSλNT

)
≥ −RSSSλ − RSSλNT

RSSλNT
.

In view of the proof of Lemma A.3, it is easy to see that RSSλNT converges to a positive constant.

With regard to RSSSλ − RSSλNT , we have

RSSSλ − RSSλNT =
1

NT

N∑
i=1

(
Yi − φi[β̌m]

)′
MF̌

(
Yi − φi[β̌m]

)
− 1

NT

N∑
i=1

(
Yi − φi[β̂λNTm ]

)′
M
F̂λNT

(
Yi − φi[βλNTm ]

)
.

By Lemmas A.2 and A.5, it is not hard to see |RSSSλ − RSSλNT | ≤ OP (1) 1
4√N

, so we can

further write

ln RSSSλ − ln RSSλNT ≥ −
RSSSλ − RSSλNT

RSSλNT
≥ −

∣∣∣∣OP (1)
1

4
√
N

∣∣∣∣ .
We then write

inf
λ∈A+

BICλ − BICλNT = inf
λ∈A+

ln RSSSλ − ln RSSλNT + (dfλ − dfλNT )
lnN
4
√
N
.
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By Lemma A.4, we know that Pr(dfλNT = p∗) → 1. Since λ ∈ A+, we must have that

Pr(dfλ ≥ p∗ + 1)→ 1. Then it is clear that Pr (infλ∈A+ BICλ > BICλNT )→ 1.

Combining Cases 1 and 2, we obtain that Pr (infλ∈A−∪A+ BICλ > BICλNT ) → 1. This

further indicates that Pr(S
λ̂

= A∗)→ 1. The proof is now complete. �

Proof of Theorem 3.3:

(1). By (B.26) of Appendix B, and the development of (1) and (5) of Lemma A.6, we now

can further conclude that∣∣∣∣∣ 1

NT

N∑
i=1

(
φi[β0,m]− φi[β̂m]

)′
M
F̂
Ei

∣∣∣∣∣ = oP

(√
ξNT +mp

NT

)
,∣∣∣∣∣ 1

NT

N∑
i=1

φi [∆m]′M
F̂

{
φi

[
β̂m

]
− φi [β0,m]

}∣∣∣∣∣ = oP (
√
p∗m−

µ
2 ),

which allows us to improve the rate of (B.26) of Appendix B as follows.

‖Cβ0 − Ĉβ‖2 = oP

(√
ξNT +mp

NT
+
√
p∗m−

µ
2

)
+OP

(
1

4
√
ξNT

+
p∗λ∗max

NT

)
. (A.2)

Then we can conclude ‖Cβ0 − Ĉβ‖ = OP (h
1/2
NT ) by Assumption 5.2, where hNT = 1

4√ξNT
.

Thus, for a large constant A, Ĉβ lies in a ball
{
Cβ | ‖Cβ − Cβ0‖ ≤ Ah

1/2
NT

}
with probability

approaching 1. Corresponding to Ĉ∗β and Ĉ†β, construct Cβ and U as Cβ = (C∗′β , C
†′
β )′ and

U = (U∗′, U †′)′, where C∗β = C∗β0 + h
1/2
NTU

∗ and C†β = C†β0 + h
1/2
NTU

† = h
1/2
NTU

† with ‖U‖2 ≤ A2.

Further define

Vλ(U∗, U †, F ) =
1

NT
Qλ
(
Cβ, F

)
=

1

NT
Qλ
(
(C∗′β0 + h

1/2
NTU

∗′, h
1/2
NTU

†′)′, F
)
, (A.3)

so Ĉ∗β and Ĉ†β can be obtained by minimizing Vλ(U∗, U †, F ) over ‖U‖2 ≤ A2 except on an event

with probability converging to 0.

It suffices to show that for any U = (U∗, U †) with ‖U‖2 ≤ A2 and ‖U †‖ > 0, Vλ(U∗, U †, F ) >

VNT (U∗, 0(p−p∗)×m, F ) with probability converging to 1 regardless the value of F . Recall that

some notations used below have been defined in the beginning of the supplementary file. Further

denote that β†m(·) = C†βHm(·). Then write

Vλ(U∗, U †, F )− VNT (U∗, 0(p−p∗)×m, F )

=
1

NT

N∑
i=1

∆φ∗i [β
∗
m]′MF∆φ∗i [β

∗
m] +

1

NT

N∑
i=1

∆φ†i [β
†
m]′MF∆φ†i [β

†
m]

+
1

NT

N∑
i=1

γ′0iF
′
0MFF0γ0i +

1

NT

N∑
i=1

E ′iMFEi

+
2

NT

N∑
i=1

∆φ∗i [β
∗
m]′MFEi +

2

NT

N∑
i=1

∆φ†i [β
†
m]′MFEi +

2

NT

N∑
i=1

γ′0iF
′
0MFEi

12



+
2

NT

N∑
i=1

∆φ∗i [β
∗
m]′MFF0γ0i +

2

NT

N∑
i=1

∆φ†i [β
†
m]′MFF0γ0i

+
2

NT

N∑
i=1

∆φ∗i [β
∗
m]′MFφ

†
i [β
†
m] +

p∗∑
j=1

λj
NT
‖Cβ,j‖+

p∑
j=p∗+1

λj
NT
‖Cβ,j‖

− 1

NT

N∑
i=1

∆φ∗i [β
∗
m]′MF∆φ∗i [β

∗
m]− 1

NT

N∑
i=1

γ′0iF
′
0MFF0γ0i −

1

NT

N∑
i=1

E ′iMFEi

− 2

NT

N∑
i=1

∆φ∗i [β
∗
m]′MFEi −

2

NT

N∑
i=1

γ′0iF
′
0MFEi

− 2

NT

N∑
i=1

∆φ∗i [β
∗
m]′MFF0γ0i −

p∗∑
j=1

λj
NT
‖Cβ,j‖

=
1

NT

N∑
i=1

∆φ†i [β
†
m]′MF∆φ†i [β

†
m] +

2

NT

N∑
i=1

∆φ∗i [β
∗
m]′MFφ

†
i [β
†
m]

+
2

NT

N∑
i=1

∆φ†i [β
†
m]′MFEi +

2

NT

N∑
i=1

∆φ†i [β
†
m]′MFF0γ0i +

p∑
j=p∗+1

λj
NT
‖Cβ,j‖

= B1NT + 2B2NT + 2B3NT + 2B4NT +B5NT ,

where the definitions of BjNT for j = 1, . . . , 5 are obvious.

For B1NT + 2B2NT , write

B1NT + 2B2NT ≥
1

NT

N∑
i=1

∆φ†i [β
†
m]′MF∆φ†i [β

†
m]

− 1

NT

N∑
i=1

∆φ∗i [β
∗
m]′MF∆φ∗i [β

∗
m]− 1

NT

N∑
i=1

φ†i [β
†
m]′MFφ

†
i [β
†
m]

≥ − 1

NT

N∑
i=1

∆φ∗i [β
∗
m]′MF∆φ∗i [β

∗
m]

≥ −hNT
1

NT

N∑
i=1

U∗′Z∗i
′MFZ∗i U∗

≥ −hNTρ1‖U∗‖2 ≥ −hNTρ1A
2

where the third inequality follows by construction.

For B3NT +B4NT , it is easy to know that

|B3NT +B4NT | ≤

{
1

NT

N∑
i=1

‖∆φ†i [β
†
m]‖2

}1/2

·

{
1

NT

N∑
i=1

E ′iMFEi

}1/2

+

{
1

NT

N∑
i=1

‖∆φ†i [β
†
m]‖2

}1/2

·

{
1

NT

N∑
i=1

γ′0iF
′
0MFF0γ0i

}1/2

= OP (1)h
1/2
NT .
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For B5NT , we have

B5NT =

p∑
j=p∗+1

λj
NT
‖Cβ,j‖ ≥

λ†min

NT

 p∑
j=p∗+1

‖Cβ,j‖2
1/2

=
λ†min

NT
‖U †‖.

In view of the above development and the condition
λ†min

NTh
1/2
NT

→ κ3 with κ3 being sufficiently

large, the first result follows.

(2). As in the case of Theorem 3.2, we define three mutually exclusive sets A−, A0 =

{λ ∈ Rp : Sλ = A∗} and A+ = {λ ∈ Rp : Sλ ⊃ A∗, Sλ 6= A∗} according to whether the model

Sλ is under fitted, correctly fitted, or over fitted respectively. Suppose that there is a sequence

{λNT } that satisfies he conditions required by the first result of this theorem. Let (ĈλNT , F̂ λNT )

denote the estimator obtained by implementing (3.3) using λNT .

Case 1: Under-fitted model. Without loss of generality, we assume that only one variable

is missing, so suppose that the first p∗− 1 rows of Ĉλβ are obtained from the under-fitted model

and the p∗th row of Ĉλβ is a 0 row. Moreover, let RSS0 = 1
NT

∑N
i=1

(
Yi − φi[β0,m]

)′
MF0

(
Yi −

φi[β0,m]
)
.

We then write

RSSλ − RSS0 =
1

NT

N∑
i=1

(
Yi − φi[β̂λm]

)′
M
F̂λ

(
Yi − φi[β̂λm]

)
− 1

NT

N∑
i=1

(
Yi − φi[β0,m]

)′
MF0

(
Yi − φi[β0,m]

)
≥ ρ1‖Cβ0,p∗‖2 >

ρ1

2
‖β0p∗‖2L2 > 0,

where the first inequality follows from the development of Lemma A.7. Similarly, we have

RSSλNT − RSS0

= vec(Cβ0 − Ĉ
λNT
β )′

1

NT

N∑
i=1

Z ′iMF̂λNT
Zi vec(Cβ0 − Ĉ

λNT
β )

+
1

NT
tr
(
M
F̂λNT

F0Γ′0Γ0F
′
0MF̂λNT

)
+2 vec(Cβ0 − Ĉ

λNT
β )′

1

NT

N∑
i=1

Z ′iMF̂λNT
F0γ0i + oP (1)

= oP (1).

Thus, we can conclude that Pr (infλ∈A− BICλ > BICλNT )→ 1.

Case 2: Over-fitted model. Consider ∀λ ∈ A+ and recall that Ĉλβ determines a model

Sλ. Under such a model Sλ, we can define another unpenalized estimator as

(Čβ, F̌ ) = argmin
Cβ ,F

1

NT

N∑
i=1

(
Yi − φi[βm]

)′
MF

(
Yi − φi[βm]

)
(A.4)
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subject to ‖Cβ‖ ≤ a0
√
p and F ∈ DF , where, for j = 1, . . . , p, ‖Cβ,j‖ = 0 with ∀j /∈ Sλ. In other

words, (Čβ, F̌ ) is the unpenalized estimator under the model determined by Ĉλβ . By definition,

we obtain immediately that RSSλ ≥ RSSSλ , where RSSSλ = 1
NT

∑N
i=1

(
Yi − φi[β̌m]

)′
MF̌

(
Yi −

φi[β̌m]
)
.

Write

ln RSSSλ − ln RSSλNT = ln

(
1 +

RSSSλ − RSSλNT
RSSλNT

)
≥ −RSSSλ − RSSλNT

RSSλNT
.

In view of the proof of Lemma A.7, it is easy to see that RSSλNT converges to a positive constant.

As for RSSSλ − RSSλNT , we obtain

RSSSλ − RSSλNT =
1

NT

N∑
i=1

(
Yi − φi[β̌m]

)′
MF̌

(
Yi − φi[β̌m]

)
− 1

NT

N∑
i=1

(
Yi − φi[β̂λNTm ]

)′
M
F̂λNT

(
Yi − φi[βλNTm ]

)
.

Using the development of Lemma A.7, it is not hard to see |RSSSλ − RSSλNT | ≤ OP (1)h
1/2
NT .

Thus, we can further write

ln RSSSλ − ln RSSλNT ≥ −
RSSSλ − RSSλNT

RSSλNT
≥ −

∣∣∣OP (1)h
1/2
NT

∣∣∣ .
We then write

inf
λ∈A+

BICλ − BICλNT = inf
λ∈A+

ln RSSSλ − ln RSSλNT + (dfλ − dfλNT )ΥNT .

By the first result of this theorem, we know that Pr(dfλNT = p∗)→ 1. Since λ ∈ A+, we must

have Pr(dfλ ≥ p∗+1)→ 1. Given ΥNTh
−1/2
NT →∞, it is clear Pr (infλ∈A+ BICλ > BICλNT )→ 1.

Combining Cases 1 and 2, we obtain that Pr (infλ∈A−∪A+ BICλ > BICλNT ) → 1. This

further indicates that Pr(S
λ̂

= A∗)→ 1. The proof is now complete. �

A.4 Discussion on Time Trends

As mentioned in Section 1, our primary focus is on proposing an integrated framework to tackle

the three issues of variable selection, parameter heterogeneity, and cross-sectional dependence in

the context of cross-country growth regressions. We do not attempt to address other interesting

topics such as convergence of countries or any further model specification issues. That said,

we would like to briefly discuss the issue of time trend that has found limited attention in the

empirical growth literature (Eberhardt and Teal, 2011) but can be partially solved under our

setting.
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As pointed out by Eberhardt and Teal (2011), any macro production function is likely to

contain at least some countries with certain time trends in the input and output variables,

and these time-series properties need to be taken into account in the empirical analysis. The

question in fact has somewhat been addressed by recent developments in econometrics. We

provide two examples below.

Though macro variables are likely to have certain time trends, they do not have to be as

strong as polynomial terms t or t2 (Dong and Linton, 2018). More often than not, it can simply

be captured by a structure like

xit = A′id0t +B′if0t + uit, (A.1)

where f0t is the same as that of (2.4) of the main text, d0t includes other unobservable common

shocks, both Ai and Bi are the unknown factor loadings, and uit stands for an error term. This

structure has been well discussed in Pesaran (2006) and Kapetanios et al. (2011).

In the second case, as in Pedroni (2007) we assume that different countries have different

types of time trends. This case has been partially discussed in Chen et al. (2012) and Gao et al.

(2018). In particular, Gao et al. (2018) allow the regressors xit to have the following form

xit = gi(t/T ) + vi + uit, (A.2)

where gi(·) is some trending function and varies across i, vi is an individual effect, and uit

stands for an error term. Using (A.2), gi(t/T ) can mimic different types of time trends for each

individual country.

For either case of (A.1) and (A.2), our methodology including the estimator and its asymp-

totic results remains valid with some minor modifications regarding the proof.

16



A.5 Additional Tables and Figures for the Empirical

Results

Figure A.5: Estimates of Coefficient Functions of All Selected Variables
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3.98 6.38 8.81

0

20

40

60

Oth

3.98 6.38 8.81

-40

-20

0

20

Jew

3.98 6.38 8.81

-2

-1

0

GS

3.98 6.38 8.81

-0.6

-0.4

-0.2

0

Distortion

3.98 6.38 8.81

-20

-10

0

OO

3.98 6.38 8.81

-0.2

0

0.2

0.4

ESP

3.98 6.38 8.81

-2

-1

0

EA

3.98 6.38 8.81

-2

0

2

EU

3.98 6.38 8.81

0

0.05

0.1

WarFrac

3.98 6.38 8.81

-0.05

0

0.05

Coup

3.98 6.38 8.81

0

0.02

0.04

Revolution

As discussed in the context of Figure 1 in the main text, these confidence intervals need to be interpreted
with caution. As well understood, one cannot establish the confidence intervals for the estimates under
HD case unless certain transformation is further employed (e.g., Huang et al., 2008; Dong et al., 2017).
However, if one regards 31 as a relatively small number after selection, we can then employ a procedure
similar to the relevant literature by considering our regression under LD framework. In order to ensure
the validity of the bootstrap procedure, stronger assumptions on the error terms are needed. For example,
one can employ the martingale difference type of assumptions (see Assumption A.4 of Su et al., 2015), or
simply assume that the error terms are i.i.d. over both i and t. Generally speaking, when the error term
exhibits both cross-sectional and serial correlation, the bootstrap results are not reliable or incorrect.
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Appendix B provides proofs of the preliminary lemmas stated in the supplementary Ap-

pendix A.

Proof of Lemma A.1:

Write

∥∥A−1 −B−1∥∥ =
∥∥B−1 (B −A)A−1

∥∥ =
∥∥vec

(
B−1 (B −A)A−1

)∥∥
=
∥∥(A−1 ⊗B−1) vec (B −A)

∥∥ ≤ η−1min (A⊗B) ‖vec (B −A)‖

= η−1min (A) · η−1min (B) ‖A−B‖ .

The proof is then complete. �

Proof of Lemma A.2:

(1). Firstly, write

1

N2T 2
E‖E ′E‖2 = E

∥∥∥∥∥ 1

NT

N∑
i=1

EiE ′i

∥∥∥∥∥
2

=
1

N2T 2

T∑
t=1

T∑
s=1

 N∑
i=1

E[ε2itε
2
is] +

∑
i 6=j

E[εitεisεjtεjs]


=

1

N2T 2

T∑
t=1

T∑
s=1

 N∑
i=1

E[ε2itε
2
is] +

∑
i 6=j

E[(εitεjt − σij)(εisεjs − σij)] +
∑
i 6=j

σ2ij


=

1

N2T 2

T∑
t=1

 N∑
i=1

E[ε4it] +
∑
i 6=j

E[(εitεjt − σij)2]


+

1

N2T 2

∑
t6=s

 N∑
i=1

E[ε2itε
2
is] +

∑
i 6=j

E[(εitεjt − σij)(εisεjs − σij)]

+
1

N2

∑
i 6=j

σ2ij

= O(1)
1

N
+O(1)

1

T
, (B.1)

where the fifth equality follows from using the mixing condition on eitejt across t. Thus,

1
NT ‖E

′E‖ = OP

(
1√
N

)
+OP

(
1√
T

)
.

Secondly, note that

1



E

∥∥∥∥ 1

NT
EE ′
∥∥∥∥2 =

{
E

[
1

NT
E ′iEj

]2}
N×N

=

N∑
i=1

N∑
j=1

1

N2T 2

T∑
t=1

T∑
s=1

E [εitεjtεisεjs]

=
T∑
t=1

T∑
s=1

1

N2T 2

 N∑
i=1

E[ε2itε
2
is] +

∑
i 6=j

E[εitεisεjtεjs]

 = O

(
1

N

)
+O

(
1

T

)
,

where the last step follows from (B.1). Thus, 1
NT ‖EE

′‖ = OP

(
1√
N

)
+OP

(
1√
T

)
.

(2). Write

sup
F∈DF

1

NT

N∑
i=1

E ′iPFEi = sup
F∈DF

1

NT
tr
(
PFE ′E

)
≤ sup

F∈DF

r

NT
‖PF ‖sp‖E ′E‖sp

≤ sup
F∈DF

r

NT
‖PF ‖sp‖E ′E‖ = OP

(
1√
N

)
+OP

(
1√
T

)
,

where the first inequality follows from the fact that |tr (A)| ≤ rank (A) ‖A‖sp; and the second

equality follows from (1) of this lemma.

(3). Write

sup
F∈DF

∣∣∣∣∣ 1

NT

N∑
i=1

γ′0iF
′
0MFEi

∣∣∣∣∣ = sup
F∈DF

∣∣∣∣ 1

NT
tr
(
F ′0MFE ′Γ0

)∣∣∣∣ ≤ sup
F∈DF

r

NT

∥∥F ′0MFE ′Γ0

∥∥
sp

≤ sup
F∈DF

r

NT
‖F0‖sp ‖MF ‖sp

∥∥Γ′0E
∥∥
sp

= sup
F∈DF

r

NT
‖F0‖sp

∥∥Γ′0EE ′Γ0

∥∥1/2
sp

= sup
F∈DF

r√
NT
‖F0‖sp ‖Γ0‖sp

(
1

NT

∥∥EE ′∥∥)1/2

= OP

(
1

NT

∥∥EE ′∥∥)1/2

= OP

(
1

4
√
N

)
+OP

(
1

4
√
T

)
,

where the first inequality follows from the fact that |tr (A)| ≤ rank (A) ‖A‖sp; the second equality

follows from Fact 5.10.18 of Bernstein (2005); and the last equality follows from (1) of this

lemma.

(4). Write

1

NT

N∑
i=1

(φi[β0,m]− φi[βm])′MFEi

=
1

NT

N∑
i=1

(φi[β0,m]− φi[βm])′ Ei +
1

NT

N∑
i=1

(φi[β0,m]− φi[βm])′ PFEi

:= Λ1 + Λ2.

For Λ1, write

sup
‖Cβ‖≤M

∣∣∣∣∣ 1

NT

N∑
i=1

(φi[β0,m]− φi[βm])′ Ei

∣∣∣∣∣ ≤ sup
‖Cβ‖≤M

‖ vec(Cβ0 − Cβ)‖ ·

∥∥∥∥∥ 1

NT

N∑
i=1

Z ′iEi

∥∥∥∥∥
2



= sup
‖Cβ‖≤M

‖Cβ0 − Cβ‖ ·OP
(√

m

NT

)
= OP

(√
m

NT

)
,

where the first equality follows from some standard analysis on the term 1
NT

∑N
i=1Z ′iEi using

Assumption 1.1; and the last equality follows from ‖Cβ‖ ≤M .

In order to consider Λ2, let ∆b = (φ1[β0,m]− φ1[βm], . . . , φN [β0,m]− φN [βm]). Note that

sup
‖Cβ‖≤M

1

NT
‖∆b‖2 = sup

‖Cβ‖≤M

1

NT

N∑
i=1

(Cβ − Cβ0)′Z ′iZi(Cβ − Cβ0)

≤ OP (1) sup
‖Cβ‖≤M

‖Cβ − Cβ0‖2 = OP (1), (B.2)

where the inequality follows from Assumptions 2.1, and
∥∥∥ 1
NT

∑N
i=1Z ′iZ ′i − ΣZ

∥∥∥ = oP (1) by

some standard analysis using Assumption 1.1; and the last equality follows from ‖Cβ‖ ≤M .

Then we are able to write

sup
‖Cβ‖≤M,F∈DF

∣∣∣∣∣ 1

NT

N∑
i=1

(φi[β0,m]− φi[βm])′ PFEi

∣∣∣∣∣ = sup
‖Cβ‖≤M,F∈DF

∣∣∣∣ 1

NT
tr
(
PFE ′∆b′

)∣∣∣∣
≤ r

NT
sup

‖Cβ‖≤M,F∈DF
‖PFE ′∆b′‖sp ≤ sup

‖Cβ‖≤M,F∈DF

r

NT
‖PF ‖sp‖E‖sp‖∆b‖sp

= sup
‖Cβ‖≤M,F∈DF

r‖PF ‖sp
(

1

NT
‖EE ′‖

)1/2( 1√
NT
‖∆b‖

)
= OP

(
1

4
√
N

)
+OP

(
1

4
√
T

)
,

where the second equality follows from Fact 5.10.18 of Bernstein (2005); and the last step follows

from (1) of this lemma and (B.2).

Based on the above development on Λ1 and Λ2, the result follows.

(5). Write

sup
F∈DF

∣∣∣∣∣ 1

NT

N∑
i=1

φi [∆m]′MFφi [∆m]

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

NT

N∑
i=1

φi [∆m]′ φi [∆m]

∣∣∣∣∣ = OP
(
m−µ

)
,

where the last equality follows from the development of Dong and Linton (2018) using Assump-

tion 2.1.

(6). Write

sup
F∈DF

∣∣∣∣∣ 1

NT

N∑
i=1

φi [∆m]′MFF0γ0i

∣∣∣∣∣ = sup
F∈DF

∣∣∣∣ 1

NT
tr
(
MFF0Γ

′
0∆
′)∣∣∣∣

≤ r

NT
sup
F∈DF

‖MF ‖sp ‖F0‖sp ‖Γ0‖sp ‖∆‖sp = OP (m−
µ
2 ),

where ∆ = (φ1(∆m), . . . , φN (∆m)); and the second equality follows from 1
NT ‖∆‖

2 = OP (m−µ)

as in (5) of this lemma.
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(7). Write

sup
‖Cβ‖≤M,F∈DF

∣∣∣∣∣ 1

NT

N∑
i=1

φi [∆m]′MF {φi [βm]− φi [β0,m]}

∣∣∣∣∣
≤

{
1

NT

N∑
i=1

‖φi [∆m] ‖2
}1/2

· sup
‖Cβ‖≤M

{
1

NT

N∑
i=1

‖φi [βm]− φi [β0,m] ‖2
}1/2

= OP (m−
µ
2 ),

where the last equality follows from (5) of this lemma. The proof is now complete. �

Proof of Lemma A.3:

(1). For notational simplicity, let ∆φi[βm] = φi[β0,m] − φi[βm]. Let ξF = vec (MFF0) ,

A1F = 1
NT

∑N
i=1Z ′iMFZi, A2 = 1

NT (Γ′0Γ0)⊗ IT , and A3F = 1
NT

∑N
i=1 γ0i ⊗ (MFZi), where Zi

has been defined in Assumption 2. By the definition of (3.3) and Lemma A.2, we have

0 ≥ 1

NT
Qλ(Ĉβ, F̂ )− 1

NT
Qλ(Cβ0 , F0)

=
1

NT

N∑
i=1

(
∆φi[β̂m] + F0γ0i

)′
M
F̂

(
∆φi[β̂m] + F0γ0i

)
+

1

NT

N∑
i=1

E ′iMF̂
Ei

+
2

NT

N∑
i=1

(
∆φi[β̂m] + F0γ(vi)

)′
M
F̂
Ei +

p∑
j=1

λj
NT
‖Ĉβ,j‖

− 1

NT

N∑
i=1

(φi[∆m] + Ei)′MF0 (φi[∆m] + Ei)−
p∗∑
j=1

λj
NT
‖Cβ0,j‖

=
1

NT

N∑
i=1

(
∆φi[β̂m] + F0γ0i

)′
M
F̂

(
∆φi[β̂m] + F0γ0i

)

+

p∑
j=1

λj
NT
‖Ĉβ,j‖ −

p∗∑
j=1

λj
NT
‖Cβ0,j‖+OP

(
1

4
√
ξNT

+m−
µ
2

)

= vec(Cβ0 − Ĉβ)′
1

NT

N∑
i=1

Z ′iMF̂
Zi vec(Cβ0 − Ĉβ) +

1

NT
tr
(
M
F̂
F0Γ

′
0Γ0F

′
0MF̂

)
+2 vec(Cβ0 − Ĉβ)′

1

NT

N∑
i=1

Z ′iMF̂
F0γ0i +

p∑
j=1

λj
NT
‖Ĉβ,j‖ −

p∗∑
j=1

λj
NT
‖Cβ0,j‖

+OP

(
1

4
√
ξNT

+m−
µ
2

)
,

where the second equality follows from Lemma A.2. Thus, we can further write

p∗∑
j=1

λj
NT
‖Cβ0,j‖ ≥ vec(Cβ0 − Ĉβ)′

1

NT

N∑
i=1

Z ′iMF̂
Zi vec(Cβ0 − Ĉβ) +

1

NT
tr
(
M
F̂
F0Γ

′
0Γ0F

′
0MF̂

)
+2 vec(Cβ0 − Ĉβ)′

1

NT

N∑
i=1

Z ′iMF̂
F0γ0i +OP

(
1

4
√
ξNT

+m−
µ
2

)
≥ vec(Cβ0 − Ĉβ)′

(
A

1F̂
−A′

3F̂
A−12 A

3F̂

)
vec(Cβ0 − Ĉβ)

4



+[ξ′
F̂

+ vec(Cβ0 − Ĉβ)′A′
3F̂
A−12 ]A2[ξF̂ +A−12 A

3F̂
vec(Cβ0 − Ĉβ)]

+OP

(
1

4
√
ξNT

+m−
µ
2

)
≥ OP (1)‖Cβ0 − Ĉβ‖2 +OP

(
1

4
√
ξNT

+m−
µ
2

)
. (B.3)

Till now, we can conclude that

‖Cβ0 − Ĉβ‖2 = OP

(
1

4
√
ξNT

+m−
µ
2 +

λ∗max

NT

)
= oP (1), (B.4)

where the second equality follows from Assumption 3.

(2). By (B.3) and (B.4), we can further obtain that

op(1) ≥ 1

NT
tr
[(
F ′0MF̂

F0

) (
Γ′0Γ0

)]
+ oP (1) ,

so 1
NT tr

[(
F ′0MF̂

F0

)
(Γ′0Γ0)

]
= oP (1). As in Bai (2009, p. 1265), we can further conclude

that 1
T tr

(
F ′0MF̂

F0

)
= oP (1),

∥∥P
F̂
− PF0

∥∥ = oP (1), and 1
T F̂
′F0 is invertible with probability

approaching one. Thus, the second result of this lemma follows.

(3). For the results result of this lemma, note that minimizing (3.2) with respect to F

is equivalent to minimizing
∑N

i=1 (Yi − φi[βm])′MF (Yi − φi[βm]) without involving the penalty

term. Thus, following the same arguments as in Bai (2009, p. 1236), the estimate F̂ of (3.3) is

obtained by

1

NT

N∑
i=1

(
Yi − φi[β̂m]

)(
Yi − φi[β̂m]

)′
F̂ = F̂ VNT , (B.5)

where VNT is a diagonal matrix with the diagonal being the r largest eigenvalues of

1

NT

N∑
i=1

(
Yi − φi[β̂m]

)(
Yi − φi[β̂m]

)′
arranged in descending order.

We now consider VNT and write

F̂ VNT =

[
1

NT

N∑
i=1

(
Yi − φi[β̂m]

)(
Yi − φi[β̂m]

)′]
F̂

=

[
1

NT

N∑
i=1

(
φi[β0] + F0γ0i + Ei − φi[β̂m]

)(
φi[β0] + F0γ0i + Ei − φi[β̂m]

)′]
F̂

=
1

NT

N∑
i=1

(
φi[β0]− φi[β̂m]

)(
φi[β0]− φi[β̂m]

)′
F̂

+
1

NT

N∑
i=1

(
φi[β0]− φi[β̂m]

)
(F0γ0i)

′ F̂ +
1

NT

N∑
i=1

(F0γ0i)
(
φi[β0]− φi[β̂m]

)′
F̂

5



+
1

NT

N∑
i=1

(
φi[β0]− φi[β̂m]

)
E ′iF̂ +

1

NT

N∑
i=1

Ei
(
φi[β0]− φi[β̂m]

)′
F̂

+
1

NT

N∑
i=1

EiE ′iF̂ +
1

NT

N∑
i=1

F0γ0iE ′iF̂ +
1

NT

N∑
i=1

Eiγ′0iF ′0F̂ +
1

NT

N∑
i=1

F0γ0iγ
′
0iF
′
0F̂

:= I1NT (β̂m, F̂ ) + · · ·+ I5NT (β̂m, F̂ ) + I6NT (F̂ ) + · · ·+ I9NT (F̂ ),

where the definitions of I1NT (β, F ) to I5NT (β, F ) and I6NT (F ) to I9NT (F ) should be obvious.

Note that I9NT (F̂ ) = F0(Γ
′
0Γ0/N)(F ′0F̂ /T ). Thus, we can write

F̂ VNT − F0(Γ
′
0Γ0/N)(F ′0F̂ /T )

= I1NT (β̂m, F̂ ) + · · ·+ I5NT (β̂m, F̂ ) + I6NT (F̂ ) + · · ·+ I8NT (F̂ ). (B.6)

Right multiplying each side of (B.6) by (F ′0F̂ /T )−1(Γ′0Γ0/N)−1, we obtain

F̂ VNT (F ′0F̂ /T )−1(Γ′0Γ0/N)−1 − F0

=
[
I1NT (β̂m, F̂ ) + · · ·+ I8NT (F̂ )

]
(F ′0F̂ /T )−1(Γ′0Γ0/N)−1. (B.7)

Below, we examine each term on the right hand side of (B.7) and show that VNT is non-

singular. Write

1√
T

∥∥∥F̂ VNT (F ′0F̂ /T )−1(Γ′0Γ0/N)−1 − F0

∥∥∥
≤ 1√

T

[
‖I1NT (β̂m, F̂ )‖+ · · ·+ ‖I8NT (F̂ )‖

]
· ‖(F ′0F̂ /T )−1(Γ′0Γ0/N)−1‖. (B.8)

We already know (F ′0F̂ /T )−1 = OP (1) by the proofs of the second result of this lemma and

(Γ′0Γ0/N)−1 = OP (1), so focus on 1√
T
‖IjNT (β̂m, F̂ )‖ with j = 1, 2, . . . , 5 and 1√

T
‖IjNT (F̂ )‖

with j = 6, 7, 8.

For I1NT (β̂m, F̂ ), we have

1√
T

∥∥∥I1NT (β̂m, F̂ )
∥∥∥ ≤ √r

NT

N∑
i=1

∥∥∥φi[β0]− φi[β̂m]
∥∥∥2

≤
√
r

NT

N∑
i=1

∥∥∥φi[β0,m]− φi[β̂m]
∥∥∥2 +

√
r

NT

N∑
i=1

‖∆m‖2

= vec(Cβ0 − Ĉβ)′
√
r

NT

N∑
i=1

Z ′iZi vec(Cβ0 − Ĉβ) +OP (m−µ)

= OP (‖Cβ0 − Ĉβ‖2) +OP (m−µ) = OP (‖β̂m − β0‖2L2),

where the first and second equalities follow from Assumption 2.1.

For I2NT (β̂m, F̂ ), write

1√
T

∥∥∥I2NT (β̂m, F̂ )
∥∥∥ ≤ √r

NT

N∑
i=1

∥∥∥(φi[β0]− φi[β̂m]
)

(F0γ0i)
′
∥∥∥

6



≤
√
r
{ 1

NT

N∑
i=1

∥∥∥φi[β0]− φi[β̂m]
∥∥∥2 }1/2{ 1

NT

N∑
i=1

‖F0γ0i‖2
}1/2

= OP (‖β̂m − β0‖L2), (B.9)

where the second inequality follows from Cauchy-Schwarz inequality; and the last line follows

from the same arguments given for I1NT (β̂m, F̂ ) and the fact that 1
NT

∑N
i=1 ‖F0γ0i‖2 = OP (1).

Similar to (B.9), we have 1√
T

∥∥∥IjNT (β̂m, F̂ )
∥∥∥ = OP (‖β̂m − β0‖L2) for j = 3, 4, 5. By (1) of

Lemma A.2 and 1√
T
‖F̂‖ = O(1), we also obtain 1√

T
‖I6NT (F̂ )‖ = OP

(
1√
N

)
+OP

(
1√
T

)
.

For I7NT (F̂ ) and I8NT (F̂ ), write

E

∥∥∥∥∥ 1

NT

N∑
i=1

F0γ0iE ′i

∥∥∥∥∥
2

=
T∑
t=1

T∑
s=1

1

N2T 2

N∑
i=1

N∑
j=1

E[f ′0tγ0iεisf
′
0tγ0jεjs]

=

T∑
t=1

T∑
s=1

1

N2T 2

N∑
i=1

N∑
j=1

E[f ′0tγ0if
′
0tγ0j ]E[εisεjs]

≤ O(1)
T∑
t=1

T∑
s=1

1

N2T 2

N∑
i=1

N∑
j=1

{
E‖f0t‖4E‖γ0i‖4E‖f0t‖4E‖γ0j‖4

}1/4 |σij |
≤ O(1)

1

N2

N∑
i=1

N∑
j=1

|σij | = O

(
1

N

)
,

where the first inequality follows from Cauchy-Schwarz inequality and Assumption 1. We then

can conclude that 1√
T
‖I7NT (F̂ )‖ = 1√

T
‖I8NT (F̂ )‖ = OP

(
1√
N

)
.

Based on the above analysis and by left multiplying (B.6) by F̂ ′/T , we obtain

VNT − (F̂ ′F0/T )(Γ′0Γ0/N)(F ′0F̂ /T ) =
1

T
F̂ ′
[
I1NT (β̂m, F̂ ) + · · ·+ I8NT (F̂ )

]
= oP (1).

Thus, VNT = (F̂ ′F0/T )(Γ′0Γ0/N)(F ′0F̂ /T ) + oP (1). When proving the second result of this

lemma, we have shown that F ′0F̂ /T is non-singular with probability approaching one, which

implies that VNT is invertible with probability approaching one. We now left multiply (B.6) by

F ′0/T to obtain

(F ′0F̂ /T )VNT = (F ′0F0/T )(Γ′0Γ0/N)(F ′0F̂ /T ) + oP (1)

based on the above analysis. It shows that the columns of F ′0F̂ /T are the (non-normalized)

eigenvectors of the matrix (F ′0F0/T )(Γ′0Γ0/N), and VNT consists of the eigenvalues of the same

matrix (in the limit). Thus, the first result of this lemma follows.

(4). According to the above analysis, (B.7) can be summarized by

1√
T
‖F̂Π−1NT − F0‖ = OP (‖β̂m − β0‖L2) +OP

(
1√
N

)
+OP

(
1√
T

)
.

(5). According to (B.7),
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1

T
F ′0(F̂ − F0ΠNT ) =

1

T
F ′0

[
I1NT (β̂m, F̂ ) + · · ·+ I8NT (F̂ )

]
V −1NT .

Note that V −1NT = OP (1), so we focus on 1
T F
′
0

[
I1NT (β̂m, F̂ ) + · · ·+ I8NT (F̂ )

]
below. By the

proof given for the first result of this lemma, it is easy to show that∥∥∥∥ 1

T
F ′0

[
I1NT (β̂m, F̂ ) + · · ·+ I5NT (β̂m, F̂ )

]∥∥∥∥ = OP (‖β̂m − β0‖L2).

We now consider
∥∥∥ 1
T F
′
0I6NT (F̂ )

∥∥∥. Firstly, note that it is easy to show 1
NT

∑N
i=1 ‖F ′0Ei‖2 =

OP (1). Secondly, for 1
NT

∑N
i=1

∥∥∥E ′iF̂∥∥∥2 , we have

1

NT

N∑
i=1

∥∥∥E ′iF̂∥∥∥2 ≤ 2

NT

N∑
i=1

∥∥E ′iF0ΠNT

∥∥2 +
2

NT

N∑
i=1

∥∥∥E ′i (F̂ − F0ΠNT

)∥∥∥2
=

2

NT

N∑
i=1

∥∥E ′iF0ΠNT

∥∥2 +
2

NT

N∑
i=1

tr

{
E ′i
(
F̂ − F0ΠNT

)(
F̂ − F0ΠNT

)′
Ei
}

=
2

NT

N∑
i=1

∥∥E ′iF0ΠNT

∥∥2 +
2

NT
tr

{(
F̂ − F0ΠNT

)(
F̂ − F0ΠNT

)′
E ′E
}

≤ OP (1) +O(1)
1

N

∥∥E ′E∥∥ 1

T

∥∥∥F̂ − F0ΠNT

∥∥∥2 ,
where E has been defined in Lemma A.2. In connection with (1) of Lemma A.2 and (2) of this

lemma, it gives that∥∥∥∥ 1

T
F ′0I6NT (F̂ )

∥∥∥∥ ≤ 1

T

(
1

NT

N∑
i=1

‖F ′0Ei‖2
)1/2(

1

NT

N∑
i=1

∥∥∥E ′iF̂∥∥∥2
)1/2

= OP (1)
1

T
+OP

(
1√
T

){
1

NT

∥∥E ′E∥∥ 1

T

∥∥∥F̂ − F0ΠNT

∥∥∥2}1/2

= OP (1)
1

T
+OP

(
1√
T

)
OP

(
1

4
√
N

+
1

4
√
T

)
OP

(
‖β̂m − β0‖L2 +

1√
N

+
1√
T

)
= OP (1)

{
1

T
+
‖β̂m − β0‖L2√

T 4
√
N

+
1

√
T

4
√
N3

}
≤ oP (1)‖β̂m − β0‖L2 +OP (1)

1

T
+OP (1)

1
√
T

4
√
N3

,

where the second equality follows from (1) of Lemma A.2 and the second result of this lemma.

For
∥∥∥ 1
T F
′
0I7NT (F̂ )

∥∥∥, we have

∥∥∥∥ 1

T
F ′0I7NT (F̂ )

∥∥∥∥ ≤ ∥∥∥∥ 1

T
F ′0F0

∥∥∥∥ ·
∥∥∥∥∥ 1

NT

N∑
i=1

γ0iE ′i(F̂ − F0ΠNT )

∥∥∥∥∥
+

∥∥∥∥ 1

T
F ′0F0

∥∥∥∥ ·
∥∥∥∥∥ 1

NT

N∑
i=1

γ0iE ′iF0ΠNT

∥∥∥∥∥
≤
∥∥∥∥ 1

T
F ′0F0

∥∥∥∥ ·
∥∥∥∥∥ 1

N
√
T

N∑
i=1

γ0iE ′i

∥∥∥∥∥ · 1√
T
‖F̂ − F0ΠNT ‖
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+

∥∥∥∥ 1

T
F ′0F0

∥∥∥∥ ·
∥∥∥∥∥ 1

NT

N∑
i=1

γ0iE ′iF0

∥∥∥∥∥ · ‖ΠNT ‖.

By Assumption 1.2,
∥∥ 1
T F
′
0F0

∥∥ = OP (1). By the first two results of this lemma, we have

‖ΠNT ‖ = OP (1) and 1√
T
‖F̂ −F0ΠNT ‖ = OP (‖β̂m−β0‖L2) +OP

(
1√
N

)
+OP

(
1√
T

)
. Therefore,

we focus on
∥∥∥ 1
N
√
T

∑N
i=1 γ0iE ′i

∥∥∥ and
∥∥∥ 1
NT

∑N
i=1 γ0iE ′iF0

∥∥∥ below. Write

E

∥∥∥∥∥ 1

N
√
T

N∑
i=1

γ0iE ′i

∥∥∥∥∥
2

=
1

N2T

N∑
i=1

N∑
j=1

T∑
t=1

E[γ′0iγ0j ]E[εitεjt]

≤ O(1)
1

N2T

N∑
i=1

N∑
j=1

T∑
t=1

|E[εitεjt]| = O(1)
1

N2

N∑
i=1

N∑
j=1

|σij | = O

(
1

N

)
(B.10)

and using Assumption 1, it is easy to show that

E

∥∥∥∥∥ 1

NT

N∑
i=1

γ0iE ′iF0

∥∥∥∥∥
2

= O

(
1

NT

)
, (B.11)

which immediately yields∥∥∥∥ 1

T
F ′0I7NT (F̂ )

∥∥∥∥ = OP

(
‖β̂m − β0‖L2 ·

1√
N

)
+OP

(
1

N

)
+OP

(
1√
NT

)
≤ OP

(
‖β̂m − β0‖2L2

)
+OP

(
1

N

)
+OP

(
1

T

)
.

Similarly,
∥∥∥ 1
T F
′
0I8NT (F̂ )

∥∥∥ = OP

(
‖β̂m − β0‖2L2

)
+OP

(
1
N

)
+OP

(
1
T

)
.

Based on the above analysis, we have∥∥∥∥ 1

T
F ′0(F̂ − F0ΠNT )

∥∥∥∥ = OP (‖β̂m − β0‖L2) +OP

(
1

N

)
+OP

(
1

T

)
, (B.12)

which further indicates∥∥∥∥ 1

T
F̂ ′(F̂ − F0ΠNT )

∥∥∥∥ =

∥∥∥∥ 1

T
(F̂ − F0ΠNT + F0ΠNT )′(F̂ − F0ΠNT )

∥∥∥∥
≤
∥∥∥∥ 1

T
(F̂ − F0ΠNT )′(F̂ − F0ΠNT )

∥∥∥∥+ ‖ΠNT ‖ ·
∥∥∥∥ 1

T
F ′0(F̂ − F0ΠNT )

∥∥∥∥
= OP (‖β̂m − β0‖L2) +OP

(
1

N

)
+OP

(
1

T

)
. (B.13)

(6). Note (B.12) and (B.13) can be respectively expressed as

1

T
F ′0F̂ −

1

T
F ′0F0ΠNT = OP (‖β̂m − β0‖L2) +OP

(
1

N

)
+OP

(
1

T

)
and

Ir −
1

T
F̂ ′F0ΠNT = OP (‖β̂m − β0‖L2) +OP

(
1

N

)
+OP

(
1

T

)
,
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which further give

1

T
Π′NTF

′
0F̂ −

1

T
Π′NTF

′
0F0ΠNT = OP (‖β̂m − β0‖L2) +OP

(
1

N

)
+OP

(
1

T

)
and

Ir −
1

T
Π′NTF

′
0F̂ = OP (‖β̂m − β0‖L2) +OP

(
1

N

)
+OP

(
1

T

)
.

Summing up the above two equations yields

Ir −
1

T
Π′NTF

′
0F0ΠNT = OP (‖β̂m − β0‖L2) +OP

(
1

N

)
+OP

(
1

T

)
. (B.14)

Note that it is easy to show that∥∥P
F̂
− PF0

∥∥2 = tr
[
(P

F̂
− PF0)2

]
= tr

[
P
F̂
− P

F̂
PF0 − PF0PF̂ + PF0

]
= tr [Ir]− 2tr

[
P
F̂
PF0

]
+ tr [Ir] = 2tr

[
Ir − F̂ ′PF0F̂ /T

]
and, when proving this lemma, we have shown that

F ′0F̂

T
=
F ′0F0

T
ΠNT +OP (‖β̂m − β0‖L2) +OP

(
1

N

)
+OP

(
1

T

)
.

Therefore, we can write

F̂ ′PF0F̂ /T = Π′NT

(
F ′0F0

T

)
ΠNT +OP (‖β̂m − β0‖L2) +OP

(
1

N

)
+OP

(
1

T

)
.

In connection with (B.14), we then obtain that

F̂ ′PF0F̂ /T = Ir +OP (‖β̂m − β0‖L2) +OP

(
1

N

)
+OP

(
1

T

)
. (B.15)

Then the proof of the last result of this lemma is completed. �

Proof of Lemma A.4:

For simplicity, we show that Pr(‖Ĉβ,p‖ = 0) → 1 only. The proofs for ‖Ĉβ,j‖ with j =

p∗ + 1, . . . , p− 1 are the same. By (B.4) and Assumption 3, we can conclude that

‖Cβ0 − Ĉβ‖ = OP

(
1

8
√
ξNT

)
. (B.16)

If ‖Ĉβ,p‖ 6= 0, the following equation must hold:

0 =
∂

∂Cβ,p
Qλ(Cβ, F )

∣∣
(C,F )=(Ĉβ ,F̂ )

= −2B1 +B2, (B.17)

where B1 =
∑N

i=1 Z
′
ipMF̂

(Yi − φi[β̂m]), Zip = (xi1,pHm(zi1), . . . , xiT,pHm(ziT ))′ and B2 =
λp

‖Ĉβ,p‖
Ĉ ′β,p. For B1, write

10



1

NT
B1 =

1

NT

N∑
i=1

Z′ipMF̂
(φi[β0]− φi[β̂m] + F0γi + Ei)

In view of (B.16) and the development of Lemma A.3, it is easy to know
8√ξNT√
m
· 1
NTB1 = OP (1).

On the other hand,
∥∥∥ 8√ξNT√

m
· 1
NTB2

∥∥∥ ≥ 8√ξNTλ†min√
mNT

≥ κ1 by Assumption 3. Therefore, Pr(‖B1‖ <

‖B2‖)→ 1, which implies that, with a probability tending to 1, (B.17) does not hold. The above

analysis implies that Ĉβ,p must be located at a place where the objective function Qλ(Cβ, F )

is not differentiable with respect to Cβ,p. Since Qλ(Cβ, F ) is not differentiable with respect to

Cβ,p only at the origin, we immediately obtain that Pr(‖Ĉβ,p‖ = 0) → 1. Similarly, we can

show Pr(‖Ĉβ,j‖ = 0)→ 1 with j = p∗ + 1, . . . , p− 1. The proof is complete. �

Proof of Lemma A.5:

Note that (B.16) only gives a slow rate. Below, we aim to improve this rate. Having proved

Pr(‖Ĉ†β‖ = 0)→ 1, we delete the corresponding rows of Ĉβ and xit,j for j = p∗ + 1, . . . , p from

the objective function. Thus, following the same arguments as in Bai (2009, p. 1236), the

estimator Ĉ∗β given by (3.3) can be written as

vec(Ĉ∗β) =

(
N∑
i=1

Z∗i
′M

F̂
Z∗i +

Dm,p∗

2

)−1 N∑
i=1

Z∗i
′M

F̂
Yi,

where Z∗i = (Z∗i1, . . . ,Z∗iT )′ and Dm,p∗ = Im ⊗ diag

{
λ1
‖Ĉβ,1‖

, . . . ,
λp∗

‖Ĉβ,p∗‖

}
. Correspondingly, we

denote that

vec(Ĉ]β) =

(
N∑
i=1

Z∗i
′M

F̂
Z∗i

)−1 N∑
i=1

Z∗i
′M

F̂
Yi.

Thus, we can write

Ĉ∗β − C∗β0 = (Ĉ∗β − Ĉ
]
β) + (Ĉ]β − C

∗
β0). (B.18)

Below, we investigate each term on the right hand side of (B.18).

Firstly, consider Ĉ∗β − Ĉ
]
β, and write

vec(Ĉ∗β)− vec(Ĉ]β) =


(

N∑
i=1

Z∗i
′M

F̂
Z∗i +

Dm,p∗

2

)−1
−

(
N∑
i=1

Z∗i
′M

F̂
Z∗i

)−1
N∑
i=1

Z∗i
′M

F̂
Yi.

By Lemma A.1 and Assumption 2, we just need to consider the next term in order to get the

difference between Ĉ∗β and Ĉ]β.∥∥∥∥∥ 1

NT

N∑
i=1

Z∗i
′M

F̂
Z∗i +

Dm,p∗

2NT
− 1

NT

N∑
i=1

Z∗i
′M

F̂
Z∗i

∥∥∥∥∥
11



=

∥∥∥∥Dm,p∗

2NT

∥∥∥∥ = O

(√
mλ∗max

NT

)
. (B.19)

Moreover, it is easy to know
∥∥∥ 1
NT

∑N
i=1Z∗i

′M
F̂
Yi

∥∥∥ = OP (
√
m), which in connection with (B.19)

indicates ‖Ĉ∗β − Ĉ
]
β‖ = OP

(
mλ∗max
NT

)
.

We now focus on Ĉ]β − C
∗
β0

, and write

vec(Ĉ]β)− vec(C∗β0) =

[
N∑
i=1

Z∗i
′M

F̂
Z∗i

]−1 N∑
i=1

Z∗i
′M

F̂
Ei

+

[
N∑
i=1

Z∗i
′M

F̂
Z∗i

]−1 N∑
i=1

Z∗i
′M

F̂
F0γ0i

+

[
N∑
i=1

Z∗i
′M

F̂
Z∗i

]−1 N∑
i=1

Z∗i
′M

F̂
φ∗i [∆

∗
m]

:= Λ1 + Λ2 + Λ3,

where the definitions of Λ1-Λ3 should be obvious. Note

1

NT

N∑
i=1

Z∗i
′M

F̂
Z∗i =

1

NT

N∑
i=1

Z∗i
′MF0Z∗i · (1 + oP (1)) = Σ∗Z,f · (1 + oP (1)),

where Σ∗Z,f = E[Z∗11Z∗11′]−E[Z∗11f ′01]Σ
−1
f E[f01Z∗11′]. Similar to (A.5) of Su and Jin (2012), we

obtain ‖Λ3‖ = OP

(
m−

µ
2

)
. In the following, we focus on studying Λ2 at first, and then turn to

Λ1.

In the rest proofs of this lemma, we always let ΞNT = (F ′0F̂ /T )−1(Γ′0Γ0/N)−1 for simplicity,

and we have shown ‖ΞNT ‖ = OP (1) in the proof of Lemma A.3. Recall that we have denoted

ΠNT and VNT in Lemma A.3, so Π−1NT = VNTΞNT . Then we start our investigation on Λ2, and

write

1

NT

N∑
i=1

Z∗i
′M

F̂
F0γ0i =

1

NT

N∑
i=1

Z∗i
′M

F̂

(
F̂Π−1NT − F0

)
γ0i

=
1

NT

N∑
i=1

Z∗i
′M

F̂

[
I1NT (β̂∗m, F̂ ) + · · ·+ I8NT (F̂ )

]
ΞNTγ0i

:= J1NT + · · ·+ J8NT ,

where the second equality follows from (B.7); I1NT (β, F ) to I8NT (F ) have been defined in the

proof of Lemma A.3 but excluding xit,j for j = p∗ + 1, . . . , p; and the definitions of J1NT to

J8NT should be obvious. In view of the decomposition of J2NT below, it is easy to know that

‖J1NT ‖ = oP (‖Ĉ∗β − C∗β0‖). Thus, we start from J2NT and write

J2NT =
1

NT

N∑
i=1

Z∗i
′M

F̂
I2NT (β̂∗m, F̂ )ΞNTγ0i

12



=
1

NT

N∑
i=1

Z∗i
′M

F̂

1

NT

N∑
j=1

(
φ∗j [β

∗
0,m]− φ∗j [β̂∗m]

)
(F0γ0j)

′ F̂ΞNTγ0i

+
1

NT

N∑
i=1

Z∗i
′M

F̂

1

NT

N∑
j=1

φ∗j [∆
∗
m] (F0γ0j)

′ F̂ΞNTγ0i

=
1

N2T

N∑
i=1

N∑
j=1

Z∗i
′M

F̂
Z∗j γ′0j

(F ′0F̂
T

)(F ′0F̂
T

)−1(Γ′0Γ0

N

)−1
γ0i

[
vec(Ĉ∗β)− vec(C∗β0)

]

+
1

NT

N∑
i=1

Z∗i
′M

F̂

1

NT

N∑
j=1

φ∗j [∆
∗
m] (F0γ0j)

′ F̂ΞNTγ0i

=
1

N2T

N∑
i=1

N∑
j=1

Z∗i
′M

F̂
Z∗j γ′0j

(Γ′0Γ0

N

)−1
γ0i

[
vec(Ĉ∗β)− vec(C∗β0)

]

+
1

NT

N∑
i=1

Z∗i
′M

F̂

1

NT

N∑
j=1

φ∗j [∆
∗
m] (F0γ0j)

′ F̂ΞNTγ0i

:= J2NT,1 + J2NT,2.

By a derivation similar (A.5) of Su and Jin (2012), we know

∥∥∥∥[∑N
i=1Z∗i

′M
F̂
Z∗i
]−1

NTJ2NT,2

∥∥∥∥ =

OP

(
m−

µ
2

)
, so negligible. We will further study J2NT,1 later.

For J3NT , write

J3NT =
1

NT

N∑
i=1

Z∗i
′M

F̂
I3NT (β̂∗m, F̂ )ΞNTγ0i

=
1

NT

N∑
i=1

Z∗i
′M

F̂

1

NT

N∑
j=1

F0γ0j

(
φ∗j [β

∗
0 ]− φ∗j [β̂∗m]

)′
F̂ΞNTγ0i

=
1

NT

N∑
i=1

Z∗i
′M

F̂
(F̂Π−1NT − F0)

1

NT

N∑
j=1

γ0j

(
φ∗j [β

∗
0 ]− φ∗j [β̂m]

)′
F̂ΞNTγ0i

:=
1

NT

N∑
i=1

Z∗i
′M

F̂
J3NT,i,

where J3NT,i = (F̂Π−1NT − F0)
1
NT

∑N
j=1 γ0j(φ

∗
j [β
∗
0 ] − φ∗j [β̂∗m])′F̂ΞNTγ0i. Below, we are going to

show that ∥∥∥∥∥∥
[
N∑
i=1

Z∗i
′M

F̂
Z∗i

]−1
NTJ3NT

∥∥∥∥∥∥ = oP (‖Ĉβ − Cβ0‖) (B.20)

By the procedure similar to (A.5) of Su and Jin (2012), we just need to focus on 1
NT

∑N
i=1 ‖J3NT,i‖2.

1

NT

N∑
i=1

‖J3NT,i‖2 ≤
1

NT

N∑
i=1

‖F̂Π−1NT − F0‖2
∥∥∥ 1

NT

N∑
j=1

γ0j(φ
∗
j [β
∗
0 ]− φ∗j [β̂∗m])′

∥∥∥2‖F̂ΞNTγ0i‖2

≤ OP (1)
1

T
‖F̂Π−1NT − F0‖2

 1

N
√
T

N∑
j=1

‖φ∗j [β∗0 ]− φ∗j [β̂∗m]‖

2

13



= OP (1)
1

T
‖F̂Π−1NT − F0‖2

 1

N

N∑
j=1

{
1

T
‖φ∗j [β∗0 ]− φ∗j [β̂∗m]‖2

}1/2
2

= oP (‖Ĉβ − Cβ0‖2),

where the second inequality follows from ΞNT = OP (1) and 1√
T
‖F̂‖ = O(1); and the last

equality follows from 1√
T
‖F̂Π−1NT − F0‖ = oP (1). Thus, we can conclude that (B.20) holds.

For J4NT , write

J4NT =
1

NT

N∑
i=1

Z∗i
′M

F̂
I4NT (β̂∗m, F̂ )ΞNTγ0i

≤ 1

N2T 2

N∑
i=1

N∑
j=1

Z∗i
′M

F̂

(
φ∗j [β

∗
0,m]− φ∗j [β̂∗m]

)
E ′jF0ΠNTΞNTγ0i

+
1

N2T 2

N∑
i=1

N∑
j=1

Z∗i
′M

F̂
φ∗j [∆

∗
m]E ′jF0ΠNTΞNTγ0i

+
1

N2T 2

N∑
i=1

N∑
j=1

Z∗i
′M

F̂

(
φ∗j [β

∗
0 ]− φ∗j [β̂∗m]

) [
E ′j(F̂ − F0ΠNT )

]
ΞNTγ0i

:= J4NT,1 + J4NT,2 + J4NT,3.

For J4NT,1, write

‖J4NT,1‖ =

∥∥∥∥∥∥ 1

N2T 2

N∑
i=1

N∑
j=1

Z∗i
′M

F̂

(
φ∗j [β

∗
0,m]− φ∗j [β̂∗m]

)
E ′jF0ΠNTΞNTγ0i

∥∥∥∥∥∥
=

∥∥∥∥∥∥ 1

N2T 2

N∑
i=1

N∑
j=1

Z∗i
′M

F̂
Z∗j vec(Ĉ∗β − C∗β0)E ′jF0ΠNTΞNTγ0i

∥∥∥∥∥∥
≤

∥∥∥∥∥∥ 1

N2T 2

N∑
i=1

N∑
j=1

Z∗i
′M

F̂
Z∗j E ′jF0ΠNTΞNTγ0i

∥∥∥∥∥∥ · ‖ vec(Ĉ∗β − C∗β0)‖

≤ OP (1)
1

NT

N∑
i=1

∥∥Z∗i ′MF̂

∥∥ ‖γ0i‖ · 1

N

N∑
j=1

∥∥Z∗j ∥∥ 1

T
‖E ′jF0‖ · ‖ vec(Ĉ∗β − C∗β0)‖

≤ 1

T
OP (
√
mT ) ·OP (

√
mT ) ·OP (T−1/2) · ‖ vec(Ĉβ − Cβ0)‖

= oP (‖Ĉ∗β − C∗β0‖),

where the last line follows from m2

T → 0. Thus, ‖J4NT,1‖ is negligible. Similarly, we can show

both ‖J4NT,2‖ and ‖J4NT,3‖ are negligible by taking 1
T ‖φ

∗
j [∆
∗
m]‖2 = O(m−µ) and 1√

T
‖F̂Π−1NT −

F0‖ = oP (1) into account, respectively. Analogous to the derivations of J3NT and J4NT , we can

obtain that ‖J5NT ‖ is negligible.

Below, we take a careful look at J6NT . According to Assumption 1, let Ωe = E[EiE ′i], which

is a deterministic matrix uniformly in i. Thus, write

14



J6NT =
1

NT

N∑
i=1

Z∗i
′M

F̂

1

NT

N∑
j=1

EjE ′jF̂ΞNTγ0i

=
1

NT 2

N∑
i=1

Z∗i
′M

F̂
ΩeF̂ΞNTγ0i

+
1

NT

N∑
i=1

Z∗i
′M

F̂

1

NT

N∑
j=1

(
EjE ′j − Ωe

)
F̂ΞNTγ0i

:= J6NT,1 + J6NT,2.

We focus on J6NT,2 at first.

J6NT,2 =
1

N2T 2

N∑
i=1

N∑
j=1

Z∗i
′ (EjE ′j − Ωe

)
F̂ΞNTγ0i

+
1

N2T 2

N∑
i=1

N∑
j=1

Z∗i
′P
F̂

(
EjE ′j − Ωe

)
F̂ΞNTγ0i

:= J6NT,21 + J6NT,22.

Further decompose J6NT,21 as

J6NT,21 =
1

N2T 2

N∑
i=1

N∑
j=1

Z∗i
′ (EjE ′j − Ωe

)
F0ΠNTΞNTγ0i

+
1

N2T 2

N∑
i=1

N∑
j=1

Z∗i
′ (EjE ′j − Ωe

)
(F̂ − F0ΠNT )ΞNTγ0i

:= J6NT,211 + J6NT,212.

Then by a development similar to Jiang et al. (2017, pp. 30-31), we obtain that ‖J6NT,21‖ =

oP
(√

m
NT

)
. Similarly, ‖J6NT,22‖ = oP

(√
m
NT

)
. Therefore, we obtain ‖J6NT,2‖ = oP

(√
m
NT

)
.

We will consider J6NT,1 together with J2NT,1 and J8NT later on. Then we only have one

term J7NT left to consider.

J7NT =
1

NT

N∑
i=1

Z∗i
′M

F̂

1

NT

N∑
j=1

F0γ0jE ′jF̂ΞNTγ0i

=
1

NT

N∑
i=1

Z∗i
′M

F̂
(F0 − F̂Π−1NT )

1

NT

N∑
j=1

γ0jE ′jF̂ΞNTγ0i.

Notice that

1

NT

N∑
j=1

γ0jE ′jF̂ =
1

NT

N∑
j=1

γ0jE ′jF0 +
1

NT

N∑
j=1

γ0jE ′j(F0 − F̂Π−1NT )

= OP

(
1√
NT

)
+

∥∥∥∥∥∥ 1

N
√
T

N∑
j=1

γ0jE ′j

∥∥∥∥∥∥ 1√
T
‖F0 − F̂Π−1NT ‖

15



= OP

(
1√
NT

)
+OP

(
1√
N

)
1√
T
‖F0 − F̂Π−1NT ‖,

where the second equality follows from (B.11); and the third equality follows from (B.10).

Following the arguments given for J6 of Bai (2009, pp. 1271-1272), it is easy to show that

‖J7NT ‖ = oP
(√

m
NT

)
+ oP (‖Ĉβ − Cβ0‖).

Based on the above analyses and Assumption 4, we have

vec(Ĉ]β)− vec(C∗β0)− Σ∗−1Z,f J2NT,1 · (1 + oP (1))

= Σ∗−1Z,f

{
1

NT

N∑
i=1

Z∗i
′M

F̂
Ei + J6NT,1 + J8NT

}
· (1 + oP (1))

= Σ∗−1Z,f ·
1

NT

N∑
i=1

Z∗i ′MF̂
+

1

N

N∑
j=1

Z∗j
′M

F̂
γ′0j(Γ

′
0Γ0/N)−1γ0i

 Ei · (1 + oP (1))

+Σ∗−1Z,f · J6NT,1 · (1 + oP (1)).

Further organise the above equation, we have

vec(Ĉ]β)− vec(C∗β0) = A−11NTΣ∗−1Z,f ·
1

NT

N∑
i=1

{
Z∗i
′M

F̂
+A3,i

}
Ei · (1 + oP (1))

+A−11NTΣ∗−1Z,f · J6NT,1 · (1 + oP (1)),

where

A1NT = Imp∗ − Σ∗−1Z,f A2NT · (1 + oP (1)),

A2NT =
1

N2T

N∑
i=1

N∑
j=1

Z∗i
′M

F̂
Z∗j γ′0j

(Γ′0Γ0

N

)−1
γ0i,

A3,i =
1

N

N∑
j=1

Z∗j
′M

F̂
γ′0j(Γ

′
0Γ0/N)−1γ0i. (B.21)

Note that√
NT

m
J6NT,1 =

1

(mN)
1
2T

3
2

N∑
i=1

Z∗i
′M

F̂
ΩeF̂ΞNTγ0i

=

√
N√
mT
· 1

NT

N∑
i=1

Z∗i
′M

F̂
ΩeF̂ΞNTγ0(vi) = OP

(√
N

T

)
= OP (1). (B.22)

where the last equality follows from Assumption 3. Thus, we obtain ‖J6NT,1‖ = OP
(√

m
NT

)
.

Moreover, it is easy to show 1
NT

∑N
i=1

{
Z∗i
′M

F̂
+A3,i

}
Ei = OP

(√
m
NT

)
. Based on the above

development, the proof is complete. �

Note that under the HD setting, the elements of βm(z) belonging to L2(Vz) indicates that

‖Cβ‖ ≤ a0
√
p with a0 being a large constant. We will be repeatedly using this fact below.
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Proof of Lemma A.6:

(1). Write

1

NT

N∑
i=1

(φi[β0,m]− φi[βm])′MFEi

=
1

NT

N∑
i=1

(φi[β0,m]− φi[βm])′ Ei +
1

NT

N∑
i=1

(φi[β0,m]− φi[βm])′ PFEi

:= Λ1 + Λ2.

For Λ1, write

sup
‖Cβ‖≤a0

√
p

∣∣∣∣∣ 1

NT

N∑
i=1

(φi[β0,m]− φi[βm])′ Ei

∣∣∣∣∣ ≤
∥∥∥∥∥ 1

NT

N∑
i=1

Z ′iEi

∥∥∥∥∥ · sup
‖Cβ‖≤a0

√
p
‖vec(Cβ0 − Cβ)‖

= O

(√
mp

NT

)
· sup
‖Cβ‖≤a0

√
p
‖Cβ0 − Cβ‖ = OP

(√
mp2

NT

)

where the first equality follows from some standard analysis on the term 1
NT

∑N
i=1Z ′iEi using

Assumption 1.1; and the last equality follows from ‖Cβ‖ ≤ a0
√
p.

In order to consider Λ2, let ∆b = (φ1[β0,m]−φ1[βm], . . . , φN [β0,m]−φN [βm]), and note that

sup
‖Cβ‖≤a0

√
p

1

NT
‖∆b‖2 = sup

‖Cβ‖≤a0
√
p

1

N

N∑
i=1

(Cβ − Cβ0)′Z ′iZi(Cβ − Cβ0)

≤ OP (1) sup
‖Cβ‖≤a0

√
p
‖Cβ − Cβ0‖2 = OP (p), (B.23)

where the inequality follows from Assumption 2.1.

Then we are able to write

sup
‖Cβ‖≤a0

√
p, F∈DF

∣∣∣∣∣ 1

NT

N∑
i=1

(φi[β0,m]− φi[βm])′ PFEi

∣∣∣∣∣
= sup
‖Cβ‖≤a0

√
p, F∈DF

∣∣∣∣ 1

NT
tr
(
PFE ′∆b′

)∣∣∣∣ ≤ r

NT
sup

‖Cβ‖≤a0
√
p, F∈DF

‖PFE ′∆b′‖sp

≤ sup
‖Cβ‖≤a0

√
p, F∈DF

r

NT
‖PF ‖sp‖E‖sp‖∆b‖sp = OP

(√
p ξNT
NT

)
,

where the last equality follows from Assumption 5.1 and (B.23).

Based on the above development, the result follows.

(2). Write

sup
F∈DF

∣∣∣∣∣ 1

NT

N∑
i=1

φi [∆m]′MFφi [∆m]

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

NT

N∑
i=1

φi [∆m]′ φi [∆m]

∣∣∣∣∣
=

1

NT

N∑
i=1

T∑
t=1

‖x∗it‖2‖∆∗m(zit)‖2 = OP
(
p∗m−µ

)
, (B.24)
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where the last equality follows from Assumption 2.1 and E‖x∗it‖2 = O(p∗).

(3). Write

sup
F∈DF

∣∣∣∣∣ 1

NT

N∑
i=1

φi [∆m]′MFF0γ0i

∣∣∣∣∣ = sup
F∈DF

∣∣∣∣ 1

NT
tr
(
MFF0Γ

′
0∆
′)∣∣∣∣

≤ r

NT
sup
F∈DF

‖MF ‖sp ‖F0‖sp ‖Γ0‖sp ‖∆‖sp = OP (
√
p∗m−

µ
2 ),

where ∆ = (φ1(∆m), . . . , φN (∆m)); and the second equality follows from that 1
NT ‖∆‖

2 =

OP (p∗m−µ) as in (2) of this lemma.

(4). Similar to the proof for (3) of this lemma, the result follows.

(5). Write

sup
‖Cβ‖≤a0

√
p, F∈DF

∣∣∣∣∣ 1

NT

N∑
i=1

φi [∆m]′MF {φi [βm]− φi [β0,m]}

∣∣∣∣∣
≤

{
1

NT

N∑
i=1

‖φi [∆m] ‖2
}1/2

· sup
‖Cβ‖≤a0

√
p

{
1

NT

N∑
i=1

‖φi [βm]− φi [β0,m] ‖2
}1/2

= OP (
√
p∗m−

µ
2 ) ·OP (

√
p),

where the equality follows from (B.23) and (B.24). Then the proof is complete. �

Proof of Lemma A.7:

(1). Still, let ∆φi[βm] = φi[β0,m] − φi[βm], ξF = vec (MFF0) , A1F = 1
NT

∑N
i=1Z ′iMFZi,

A2 = 1
NT (Γ′0Γ0)⊗IT , and A3F = 1

NT

∑N
i=1 γ0i⊗ (MFZi). By the definition of (3.3) and Lemma

A.6, we have

0 ≥ 1

NT
Qλ(Ĉβ, F̂ )− 1

NT
Qλ(Cβ0 , F0)

=
1

NT

N∑
i=1

(
∆φi[β̂m] + F0γ0i

)′
M
F̂

(
∆φi[β̂m] + F0γ0i

)
+

1

NT

N∑
i=1

E ′iMF̂
Ei

+
2

NT

N∑
i=1

(
∆φi[β̂m] + F0γ(vi)

)′
M
F̂
Ei +

p∑
j=1

λj
NT
‖Ĉβ,j‖

− 1

NT

N∑
i=1

(φi[∆m] + Ei)′MF0 (φi[∆m] + Ei)−
p∗∑
j=1

λj
NT
‖Cβ0,j‖

=
1

NT

N∑
i=1

(
∆φi[β̂m] + F0γ0i

)′
M
F̂

(
∆φi[β̂m] + F0γ0i

)

+

p∑
j=1

λj
NT
‖Ĉβ,j‖ −

p∗∑
j=1

λj
NT
‖Cβ0,j‖+OP

(
1

4
√
ξNT

+

√
p(ξNT +mp)

NT
+
√
p p∗m−

µ
2

)

= vec(Cβ0 − Ĉβ)′
1

NT

N∑
i=1

Z ′iMF̂
Zi vec(Cβ0 − Ĉβ) +

1

NT
tr
(
M
F̂
F0Γ

′
0Γ0F

′
0MF̂

)
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+2 vec(Cβ0 − Ĉβ)′
1

NT

N∑
i=1

Z ′iMF̂
F0γ0i +

p∑
j=1

λj
NT
‖Ĉβ,j‖ −

p∗∑
j=1

λj
NT
‖Cβ0,j‖

+OP

(
1

4
√
ξNT

+

√
p(ξNT +mp)

NT
+
√
p p∗m−

µ
2

)
,

where the second equality follows from (1) of Lemma A.2, and Lemma A.6. Thus, we can

further write

p∗∑
j=1

λj
NT
‖Cβ0,j‖ ≥ vec(Cβ0 − Ĉβ)′

1

NT

N∑
i=1

Z ′iMF̂
Zi vec(Cβ0 − Ĉβ) +

1

NT
tr
(
M
F̂
F0Γ

′
0Γ0F

′
0MF̂

)
+2 vec(Cβ0 − Ĉβ)′

1

NT

N∑
i=1

Z ′iMF̂
F0γ0i

+OP

(
1

4
√
ξNT

+

√
p(ξNT +mp)

NT
+
√
p p∗m−

µ
2

)
≥ vec(Cβ0 − Ĉβ)′

(
A

1F̂
−A′

3F̂
A−12 A

3F̂

)
vec(Cβ0 − Ĉβ)

+[ξ′
F̂

+ vec(Cβ0 − Ĉβ)′A′
3F̂
A−12 ]A2[ξF̂ +A−12 A

3F̂
vec(Cβ0 − Ĉβ)]

+OP

(
1

4
√
ξNT

+

√
p(ξNT +mp)

NT
+
√
p p∗m−

µ
2

)

≥ OP (1)‖Cβ0 − Ĉβ‖2 +OP

(
1

4
√
ξNT

+

√
p(ξNT +mp)

NT
+
√
p p∗m−

µ
2

)
. (B.25)

Till now, we can conclude that

‖Cβ0 − Ĉβ‖2 = OP

(
1

4
√
ξNT

+

√
p(ξNT +mp)

NT
+
√
p p∗m−

µ
2 +

p∗λ∗max

NT

)
= oP (1), (B.26)

where the second equality follows from Assumption 5.2.

(2). By (B.25) and (B.26), we can further write that

op(1) ≥ 1

NT
tr
[(
F ′0MF̂

F0

) (
Γ′0Γ0

)]
+ oP (1) ,

so 1
NT tr

[(
F ′0MF̂

F0

)
(Γ′0Γ0)

]
= oP (1). As in Bai (2009, p. 1265), we can further conclude

that 1
T tr

(
F ′0MF̂

F0

)
= oP (1),

∥∥P
F̂
− PF0

∥∥ = oP (1), and 1
T F̂
′F0 is invertible with probability

approaching one. Thus, the second result of this theorem follows. �
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