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Abstract—This paper presents a passive phase-shift keying
(PPSK) modulator for uplink data transmission for biomedical
implants with simultaneous power and data transmission over a
single 13.56 MHz inductive link. The PPSK modulator provides a
data rate up to 1.35 Mbps with a modulation index between 3%
and 38% for a variation of the coupling coefficient between 0.05
and 0.26. This modulation scheme is particularly suited for bio-
medical implants that have high power demand and low coupling
coefficients. The PPSK modulator operates in conjunction with on-
off-keying downlink communication. The same inductive link is
used to provide up to 100 mW of power to a multi-channel
stimulator. The majority of the system on the implant side was
implemented as an application specific integrated circuit (ASIC),
fabricated in 0.6-µm high voltage CMOS technology. The the-
ory of PPSK modulation, simulated and measured performance
evaluation, and comparison with other state-of-the-art impedance
modulation techniques is presented. The measured bit error rate
around critical coupling at 1.35 Mbps is below 6 × 10

−8.

Index Terms—Application specific integrated circuit (ASIC),
implantable device, inductive link, passive phase-shift keying
(PPSK), power and data telemetry.

I. INTRODUCTION

INDUCTIVELY powered implantable neural stimulators,

such as cochlear implants [1], visual prostheses [2]–[5],

spinal cord stimulators [6], [7], deep brain stimulators [8] and

vestibular prostheses [9]–[12], are often equipped with back

telemetry, over which the device operational parameters, such

as electrode voltage, power supply level, humidity and temper-
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ature, are reported to external controllers for optimising power

transfer and monitoring implant safety. In some applications,

back telemetry is also used to record neural activities and

transmit the digitised readings to an external processor, where

the data can be analysed and integrated into neural modulation

algorithms for closed-loop stimulation control [1], [12]–[14].

Transmission of multi-channel neural recording data from an

inductively powered implant is technically challenging. On one

hand, a wide bandwidth is preferable to allow high resolution

real-time recording; on the other hand, the implementation must

take account of the tight restriction on the physical size and

power consumption. Active transmitters provide wide band-

width at the cost of extra components such as RF antenna and

power consumption [15]–[17]. The alternative of passive im-

pedance modulation has been widely used because of its circuit

simplicity and power efficiency [18]–[31]. However, a trade-

off exists in impedance modulation between the modulation

index, data rate and power transfer efficiency. The coil size

constraints for biomedical implants result in small coupling co-

efficients over the inductive link. In addition, some implantable

devices such as neurostimulators demand high power resulting

in small load impedance. Small coupling coefficients and load

impedance limit the modulation index that can be achieved. As

a consequence, the working range of the coil separation and

data rate are also limited. Changing the load impedance for a

longer period of time allows more time for the voltage on the

receiver side to settle and hence increases the modulation index.

However, this would slow down the data transmission and

inevitably disturb the power transfer hence reduce the power

transfer efficiency. One approach to address this trade-off is to

use separate power and data links. Data rates in the region of

megabit per second (Mbps) have been achieved [24]–[27] at the

expense of larger device size and circuit complexity. Other ap-

proaches include using a series secondary ohmic configuration

for a larger dynamic range of impedance modulation to increase

the modulation index [21], or carefully choosing the timing of

modulation to achieve a high data rate [23], [28]–[30].

In the presented design a passive phase-shift keying (PPSK)

modulation scheme, reported in [29], has been developed.

PPSK modulation uses superficially similar circuits to the

conventional load impedance modulation, but imposes precise

control on the timing of modulation to generate a fast transient

response over the inductive link with a relatively high amplitude

change. This modulation scheme is particularly suitable for

biomedical implants that require a high uplink bandwidth but
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Fig. 1. Modeling PPSK modulation. (a) Simplified circuit model of an inductive
link with PPSK modulation. (b) Equivalent circuit model of the inductive link.

have small coupling coefficients and low load impedances.

A high modulation index can be achieved without sacrificing

the data rate. By reducing the duration of the impedance change

the disturbance on power transfer is also minimized. The PPSK

modulator was designed for use in an integrated stimulator for

a vestibular prosthesis [12] (which describes the multi-channel

stimulators and the recording unit). It specifies a minimum

data rate of 600 kbps and up to 100 mW of power for device

operation.

The focus of this paper is the telemetry design. A preliminary

presentation of the PPSK modulator was reported in [28].

This paper presents in detail the theoretical principles of PPSK

modulation, performance evaluation and comparison with other

state-of-the-art impedance modulation techniques. Included are

further circuit details of the application specific integrated cir-

cuit (ASIC), comprehensive measured results including mod-

ulation index, bit error rate, an improved data rate (up to

1.35 Mbps over a 13.56 MHz inductive link), gain factor and

efficiency of the power transfer.

The rest of the paper is organized as follows. Section II

presents the theory of PPSK and evaluates its performance

in simulation. Section III describes the implementation of the

integrated PPSK modulator and the corresponding demodulator

in the external transmitter. Section IV presents the imple-

mentation of the inductive link and the external transmitter.

In Section V the operation of the inductive link is demon-

strated with measured results. Concluding remarks are drawn in

Section VI.

II. THEORY OF PPSK

A. Principle of Modulation

The principle of PPSK modulation [30] can be explained with

reference to Fig. 1. Fig. 1(a) shows a simplified circuit model of

an inductive link for PPSK modulation. In this model, L1 and

L2 are the inductively coupled primary and secondary coils, re-

spectively, with a mutual inductance M , where M = k
√
L1L2

and k is the coupling coefficient between the two coils. During

inductive powering, L1 is tuned with C1 and L2 with C2 at the

carrier frequency. R1 is the total serial loss resistance on the

primary side, including the serial loss resistance of the primary

coil and the loss resistance from the driver, vS . RP is the

parallel loss resistance of the secondary coil and RL is the total

equivalent load resistance from the circuits driven by the sec-

ondary coil. The total load resistance seen by L2 can be repre-

sented as R2, where R2 = RP ‖(RL/2). A switch, S1, connects

both ends of L2 for PPSK modulation. For every binary bit “1,”

S1 closes to short L2 before it opens after a short time interval.

This action creates a transient current surge in the primary loop,

which can be detected by sensing the voltage peak on C1.

An equivalent circuit model of Fig. 1(a) is shown in Fig. 1(b).

Assume during operation, both L1 − C1 and L2 − C2 resonate

at the carrier frequency ωo, generated by the driver vS , a

sinusoidal signal with unity peak amplitude. vS , and the current

in the primary and secondary loops, i1 and i2, are
⎧

⎪

⎨

⎪

⎩

vS = sinωot

i1 = I1,peak sinωot

i2 = I2,peak sin
(

ωot+
π
2

)

.

(1)

At resonance, i1 is in phase with vS and lags i2 by π/2, and

also i1 leads vC1 by π/2 and i2 leads vC2 by π/2. Therefore,

at a specific time instant t0, where ωot0 = 0, signals vS , i1, and

vC2 are crossing zero towards the positive phase, while i2 is

at its positive peak, I2,peak, with a phase of π/2 and vC1 is at

its negative peak with a phase of −π/2. Similarly, at a specific

time instant t1, where ωot1 = π, signals vS , i1, and vC2 are

crossing zero again but towards the negative values, while i2 is

at its negative peak, −I2,peak, with a phase of −π/2 and vC1 is

at its positive peak.

If the switch S1 closes at t0 to short L2 for half a carrier

cycle, i2 is held at I2,peak during this period (given the on

resistance of S1 is small). S1 is then opened after half a carrier

cycle, i.e., at time instant t1. At this instant, both vS and i1 are

still crossing zero towards the negative phase and vC1 is still

at its positive peak, but i2 is now forced to be at the positive

peak instead of the negative peak in the steady-state. Denoting

i2,steady(t1) = −I2,peak as the steady-state i2, then i2(t1) =
i2,steady(t1) + 2I2,peak. It can be regarded as injecting a tran-

sient current of i2,transient(t1) = 2I2,peak into the secondary

loop that has been running in the steady-state. The energy of

the injected current contributes to a transient current surge in

the primary loop. The loop response to the transient current

superimposes itself onto the steady-state response, resulting in

a transient voltage increase on top of the peak value of vC1.

Using the circuit model in Fig. 1(b), the Kirchhoff equations of

the transient response at t1 are

⎧

⎪

⎨

⎪

⎩

R1i1 + L1
di1
dt

+ 1
C1

∫

i1dt−M di2
dt

= 0

L2
di2
dt

+ 1
C2

∫

(i2 − i3)dt−M di1
dt

= 0
1
C2

∫

(i3 − i2)dt+R2i3 = 0

(2)

where i1, i2, and i3 are all transient currents as a result of

injecting i2,transient(t1) = 2I2,peak, but “transient” has been

removed in the subscripts for simplicity. These transient cur-

rents are superimposed on the steady-state currents. Applying
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TABLE I
PARAMETERS OF THE INDUCTIVE LINK

Laplace transform to (2) with the initial condition of i2(t1) =
2I2,peak at t1, yields
⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

R1+sL1+
1

sC1

)

I1(s)−sMI2(s)+2I2,peak=0

sL2I2(s)−2I2,peak+
1

sC2

(I2(s)−I3(s))−sMI1(s)=0
1

sC2

(I3(s)−I2(s))+R2I3(s)=0

(3)

where s is the Laplace operator. From (3), rearranging I1(s) as a

function of I1,peak results in a Laplace transform with a quartic

denominator

I1(s)

=
−s

2k2ω2
o

√
1+Q2

2

1−k2 I1,peak

s4+s3
ωo

(

1

Q1
+ 1

Q2
− k2

Q2

)

1−k2 +s2
ω2

o

(

2+ 1

Q1Q2

)

1−k2 +s
ω3

o

(

1

Q1
+ 1

Q2

)

1−k2 + ω4
o

1−k2

(4)

where Q1 = ωoL1/R1, Q2 = R2C2ωo, and I1,peak = I2,peak/

(k
√

C1/C2

√

1 +Q2
2). Applying inverse Laplace transform,

the i1 natural transient can be expressed as

i1(t)=2|r′|e−α′t cos(ω′t+θ′)+2|r′′|e−α′′tcos(ω′′t+θ′′). (5)

i1(t) is a pair of damped cosine waves. When k2 ≪ 1, the inter-

action between the primary and secondary sides are minor,

α′ and α′′ are the damping factors of the primary and secondary

circuits, respectively, whereα′≈R1/2L1 andα′′≈1/2R2C2; ω′

andω′′ are the damped frequencies on the primary and secondary

respectively, where ω′≈
√

ω2
o−(α′)2 and ω′′≈

√

ω2
o−(α′′)2.

For k2≪1, ω′≈ω′′≈ωo. As k increases, the interaction be-

tween the primary and secondary circuits varies the values of

α′, α′′, ω′, ω′′, r′ and r′′, resulting in changes of the peak value

and the rate of increase and decay of the envelope of i1(t).
By way of example the link parameters inTable I are specified

for a vestibular prosthesis [12]. They were derived following the

design procedure in Section IV.A. To evaluate i1(t) in (5) nu-

merical analysis was conducted in Matlab with the parameters

in Table I. Fig. 2 shows the variation of the parameters α, ω, r,

and θ of (5) with k. There is a distinct change in parameter varia-

tion as k approaches kcrit(= 0.107). There is always a 180◦

phase difference between θ′ and θ′′. As a result, the composite

waveform of i1(t) always has an envelope increasing to a

peak and then decaying. Fig. 3 shows the resultant transient

waveforms for different values of k. For large values of k, α′≈
α′′ and |r′| ≈ |r′′|, and an additional low frequency (ω′ − ω′′)
sinewave multiplying factor develops and causes ringing.

Fig. 2. Variation of the parameters of the i1 natural transient in (5) versus
coupling coefficient k using the parameters in Table I.

Fig. 3. Transient waveforms of the i1 natural transient for different values of
the coupling coefficient k with reference to the results in Fig. 2.

B. Evaluation With ADS Simulation Model

To evaluate the performance of PPSK modulation, a simula-

tion model based on the circuit model in Fig. 1(a) was created

in Keysight Advanced Design System (ADS) v2015.01. The

coupling coefficient was calculated from the coil geometry [32]

using the parameters in Table I. PPSK modulation is imple-

mented by switching on S1, to short the secondary coil L2.

The variables in the simulations are the coupling coefficient k,

the equivalent load resistance R2 on the secondary coil, and the

time instants at which S1 is closed and released. For the vestibu-

lar prosthesis application, the required working range of coil

separation is 5–15 mm, corresponding to calculated coupling

coefficients between 0.169 and 0.048.
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Fig. 4. Transient responses of the voltages and current in the operation of
PPSK modulation. The dotted lines indicate the time instants when the sec-
ondary coil is shorted and released.

1) Transient Response: Fig. 4 shows the transient change

on i2, vC1, and vC2 when S1 is closed at the instant i2 is at

its positive peak and is then released after half a carrier cycle.

k is set to 0.08 corresponding to 10.5 mm coil separation (this

distance is in the middle of the expected working range of coil

separation for a vestibular implant design). As shown in Fig. 4,

a clear transient voltage surge can be seen on vC1. The rise

and fall of the voltage surge shows a pattern of summation of

two damped cosine waves. vC1 returns to its steady-state level

approximately 10 carrier cycles after S1 is closed. This gives a

data rate of 1.35 Mbps over a carrier frequency of 13.56 MHz.

2) Comparison With Other Load Modulation Schemes: The

analysis in Section II.A shows that S1 should ideally close at

t0 and open at t1. Any timing offset from these two critical time

instants will result in a lower i1 transient and hence, lower mod-

ulation index. This is because the equivalent extra current in-

jected into the secondary coil is at its maximum, 2I2,peak, when

S1 is on for half a carrier cycle, i.e., ωot1=π. When S1 remains

closed for longer, ωot2>π, where t2 is the new time instant

when S1 opens, the new phase of the original i2 is not opposite

to the stored i2 at π/2, and thus the equivalent extra injected

current is lowered. The performance of PPSK was compared

with two other load modulation schemes: the ISO/IEC 14443-

Type B phase-shift keying (BPSK) load modulation scheme [33]

(termed as BPSK-LSK below), and the cyclic on-off keying

(COOK) scheme described in [23]. For all three schemes, the

carrier frequency was set to 13.56 MHz and the data rate to

847.5 kbps. The onset of load modulation was set to the positive

zero-crossing point of vC2, at which point S1 was turned on to

short the secondary coil, for all the three schemes. S1 remained

on for half a carrier cycle for PPSK, one carrier cycle for

COOK and eight carrier cycles for BPSK-LSK. The modulation

repeated every sixteen carrier cycles. The equivalent load resis-

tance, R2, was set to 644 Ω for all the three schemes. This value

was derived from the measured RL (1344Ω) in parallel with the

measured RP (15.34 kΩ) of the secondary coil.

Fig. 5(a) compares the modulation index of different modula-

tion schemes. The modulation index on the primary coil is com-

pared over the targeted working range of coil separation. The

modulation index is defined as m = (A−B)/(A+B), where

A and B are the peak voltage and steady-state voltage of vC1,

respectively. The results show that the BPSK-LSK scheme pro-

vides the highest modulation index among the three schemes,

while COOK gives the lowest. PPSK produces a modulation in-

dex close to that of BPSK-LSK when k < 0.08. Fig. 5(b) shows

the influence of these three schemes on power transfer with ref-

erence to the power transfer link efficiency when no modulation

is applied to the link. In contrast to the relative performance of

the modulation index, COOK has the minimum disturbance on

the power transfer, while BPSK-LSK reduces the link efficiency

significantly. PPSK has a link efficiency slightly lower than that

of COOK. Comparing the modulation index performance in

Fig. 3(a), BPSK-LSK achieves the highest modulation index

by having the longest duration of modulation. As a result it

causes the most reduction in the power transfer. PPSK shorts

the secondary coil for only half a carrier cycle. It achieves a

modulation index higher than COOK by momentarily reversing

the phase of LC resonance on the secondary side, and subse-

quently injecting extra current into the primary side. However,

this phase reversal of LC resonance causes more energy loss

than COOK, despite the fact that its modulation duration is

shorter. Fig. 5(c) shows the minimum time required for the

carrier to recover after single bit modulation with PPSK and

COOK. The recovery time for both schemes increases as the

coupling coefficients decreases. At strong coupling, a high data

rate can be achieved as shown in [23].

The modulation strategy for specific applications can be

chosen from the simulated performance. BPSK-LSK would

be favourable for its highest modulation index in applications

that only require occasional uplink communication with a low

volume of data to transmit, such as RFID. The reduction in link

efficiency from occasional disturbance on power transfer will

not be significant. On the other hand, at strong coupling, COOK

has the advantage of providing a high data rate with high link

efficiency and acceptable modulation index. For biomedical

implants with low coupling and a demand for constant uplink

communication at high speed, as well as high power demand

(e.g., vestibular prosthesis), PPSK is the optimal choice. At

low coupling, it provides a modulation index much higher than

COOK and comparable to BPSK-LSK, while it is much more

power efficient than BPSK-LSK and close to COOK.

Fig. 5(d) plots the simulated modulation index against the

timing error of the onset and length of the switch closure

duration for PPSK modulation. The timing error is presented as

the percentage of a carrier period. The modulation index is sim-

ulated with a k of 0.08 and R2 of 2 kΩ. The highest modulation

index of 0.32 occurs when both the onset and length error are

zero. The results suggest a tolerance of −15% to 10% for the

length error, and −10% to 5% for the onset error within which

the modulation index remains above 90% of the peak value.
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Fig. 5. Simulated performance of PPSK with comparison to COOK and BPSK-LSK, with a R2 of 644 Ω, data rate of 847.5 kbps and carrier frequency of
13.56 MHz. (a) Simulated modulation index at different coupling coefficients. (b) Simulated power transfer link efficiency at different coupling coefficients.
(c) Simulated minimum number of carrier cycles per bit of PPSK and COOK for different coupling coefficients. (d) Simulated modulation index of PPSK with
regard to timing offset of both the start and duration of the switch closure.

Fig. 6. System architecture of the power telemetry with PPSK modulation. The integrated components are in the area labeled ASIC.

III. IMPLEMENTATION OF THE TELEMETRY

A. System Overview

A power telemetry with an integrated PPSK modulator was

implemented as part of an implantable stimulator for vestibu-

lar prosthesis (requiring up to 100 mW power delivery and

600 kbps uplink data communication [12]). The system archi-

tecture is shown in Fig. 6 with emphasis on the power and data

telemetry. Power transfer is via the inductive link with its tuning

network, including L1, C1a, C1b on the primary side and L2,

C2 on the secondary side. The tuning network is adjusted to the

carrier frequency of 13.56 MHz. Downlink data transmission

uses on-off keying (OOK) while uplink employs PPSK. The

implant subsystem was integrated in an ASIC as highlighted
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Fig. 7. Timing sequence of the control logic.

in Fig. 6. Diodes D2 −D5 are glass case Schottky diodes and

C4 is a 10 µF tantalum capacitor. The ASIC includes a power

regulator providing a stable high voltage, VDDH, of 12 V for

the stimulator output stage and a stable low voltage, VDDA,

of 5 V for the rest of system, comprising a PPSK modulator,

an OOK demodulator, an implant management unit and a

stimulation and recording unit. Details of the management unit

and stimulation and recording circuits were presented in [11],

[12]. The carrier is generated by a class-D power amplifier in

the external transmitter. The voltage developed in the resonant

tank L2 − C2 is rectified by a half-wave rectifier, D5 − C4,

for the power regulator. The signal on the secondary coil is

connected to the OOK demodulator and the PPSK modulator.

B. PPSK Operation

The PPSK modulation is managed by a control logic that

operates on a clock extracted from the carrier by the RF clock

generator. The control logic contains a shift register for the data,

two counters and a delay block. The shift register streams out

data received from the implant management unit at a speed de-

fined by the RF counter. The timing sequence of the modulation

control is shown in Fig. 7. A Send Data signal from the implant

management unit triggers the modulation procedure in which

the RF counter starts counting the RF CLK pulses generated

from the RF Carrier. At the overflow value of the counter (7 in

Fig. 7 for a bit rate of 847.5 kbps), if the current bit is logic

“1,” a Bit Data pulse is generated to trigger the monostable

m2 to generate a pulse on Dout. This pulse turns on switch S1

for PPSK modulation. S1 was implemented by a high voltage

NMOS transistor with dimensions W/L = 1995 µm/1.3 µm,

yielding an on resistance of 17 Ω.

Since the received carrier disappears for a few cycles when

modulation occurs due to shorting the secondary coil, RF CLK

becomes momentarily irregular during modulation, as shown in

Fig. 7. To maintain regularity and constant timing between bits,

a blanking mechanism was implemented. After the RF Counter

Value reaches its overflow value, a Blanking Start pulse is

generated to trigger the monostable m1, which generates a

blanking pulse of about 570–590 ns, sufficiently longer than

the required time for the carrier to recover. This pulse blanks

the clock to the control logic from RF CLK, keeping CLK static

until RF CLK returns to regular action. The data rate is pro-

grammable by setting the overflow value of the RF counter. This

value is set by the external transmitter during system initialisa-

tion. Once the counter exceeds this value, it resets and starts the

next modulation period, where the shift register streams out the

next bit and the bit counter increments by 1. The overall period

for each bit is the sum of the length of the blanking pulse and

the number of carrier cycles set by the overflow value.

As discussed in Section II, the timing of switching on and off

S1 is critical for achieving the maximum modulation index. A

delay cell, τ , was inserted at the input of S1 to align the switch

onset. The length of the delay is a sum of the delay from the

monostable m2, the control logic and the RF clock generator.

Its value was derived from Monte-Carlo simulation to ensure

the onset error is within 10% of one period of the carrier. In

addition, m2 is made programmable so that the length of the

S1 pulse can be fine-tuned to reduce the length error.

C. Monostable

The circuit implementation and operation of the two

monostable units (m1 and m2, Fig. 6) are shown in Fig. 8.

Fig. 8(a) shows the overall architecture of the monostable. In

operation, a rising edge at the input IN switches the output

OUT to “1” and turns on the current source IC to charge the

capacitor C. When the voltage on C reaches a high threshold

value, Vhi, the D-flip flop is reset. As a result, its output Q
becomes “0” and IC is turned off and the current sink, ID
is switched on to discharge C. Once the voltage on C drops to

Vlow, OUT is switched back to “0.” The circuit stays in this state

until the next pulse on IN arrives. The width of the output pulse

on OUT is decided by the charging and discharging current

value, the capacitance of C and the threshold values of Vhi and

Vlow. Vhi and Vlow are the threshold voltages of inverter “hi”

and “low” in Fig. 8(a), respectively. The charging time, tc, and

the discharging time, td, are

tc =
CVhi

IC
(6)

td =
C(Vhi − Vlow)

ID
. (7)

The threshold voltage of a simple CMOS inverter is [34]

Vth =
VthN

√

βN

βP
+ VDDA − VthP

1 +
√

βN

βP

(8)

where βN/βP is the transconductance ratio of the NMOS and

PMOS transistors; VthN and VthP are the threshold voltages.

The current source and sink of m2 are programmable as

shown in Fig. 8(c). IC is mirrored with transistors M15, M25,

M27, M28, M36, and M37 to generate a fixed current of 136µA.

ID consists of two parts: a fixed current Ibase of 80 µA

mirrored with M15, M19, M22, and M24, and a tuning current

Icontrol. Icontrol is eight times the programmable current Iprogram
generated from M1 −M14. The variation range of Icontrol is

between 0 µA and 60 µA with a step size of 4 µA. Icontrol is

programmed by the digital values of A0, A1, A2, and A3 that

are set by the external transmitter. Charging and discharging

are controlled by signal Qn that turns on or off of the transistor

switches M21, M23, M33, and M38.
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Fig. 8. Programmable monostable implementation. (a) Monostable schematic. (b) Operation of the monostable. (c) Programmable current source.

The value of the capacitorC in m2 is 1.68 pF (included in the

ASIC). The transistor dimensions of the inverters are: for “high,”

PMOS W/L=4 µm/10 µm and NMOS W/L=1 µm/10 µm;

for “low,” PMOS W/L = 3 µm/10 µm and NMOS W/L =
5 µm/10 µm. The duration of the m2 output pulse (OUT ) is

between 107 ns and 116.3 ns with a step size of 0.62 ns. This is

suitable for matching 1.5 cycles of the 13.56 MHz carrier. The

choice of 1.5 cycles instead of 0.5 cycle is to allow a larger C so

that the effect of the process variation is reduced. A switch

closure of 1.5 carrier cycles generates the same PPSK modu-

lation performance because the switch release time is still at the

opposite phase of the switch closure onset, while the current

loss in the secondary loop during switch closure is low given the

high parallel loss resistance of the coil and the low on resistance

of the switch.

The implementation of the monostable m1 is the same archi-

tecture as that in Fig. 8(a) but with IC = 40 µA, ID = 48 µA

and C = 5.73 pF (included in the ASIC).

D. RF Clock Generator

To extract the carrier frequency from the RF signal in the

digital domain a level shifting circuit was implemented as

shown in Fig. 9. The differential amplifier generates a pulse

when the carrier amplitude is above 0 V. This results in a square

wave at the output of the differential amplifier. The following

Fig. 9. RF clock generator.

inverters generate a square wave compatible digital signal to

serve as the clock for the PPSK control logic.

E. OOK Demodulator

The implant receives control settings from the external trans-

mitter via the inductive link using OOK modulation with a data

rate of 400 kbps. The circuit of the OOK envelope detector

to extract the signal from the modulated carrier is shown in

Fig. 10. As the recovery time of the carrier varies with the load

and coupling coefficient, the time constant of the RCd peak
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Fig. 10. Implementation of the OOK demodulator.

detector should be set to a larger value than the worst case rise

time of the carrier. The implemented R is 44.9 kΩ and Cd is

2.8 pF. Transistors M5–M10 form a Schmitt trigger to generate

a digital output from the peak detector.

F. Power Regulator

The power regulator module includes a voltage monitoring

unit, a voltage regulator and a power-on reset. The voltage mon-

itoring unit reports to the external transmitter when the received

voltage is too high or too low (by respectively setting PH and

PL; see Fig. 6) and the driving voltage Vdriver on the class-D

amplifier (see Fig. 11) is adjusted accordingly. The voltage reg-

ulator generates a stable 5 V supply for the implant electronics.

The voltage regulator and the power-on reset are implemented

in standard circuit architecture as described in [34].

IV. EXTERNAL TRANSMITTER AND

COMMUNICATION PROTOCOL

A. Link Design

The diameter of the secondary coil and the coil separation

are mainly defined by the surgical constraints. In the example

of the vestibular application, the layout of the implant is similar

to commercial cochlear implants [35], where the secondary

coil locates alongside a hermetically sealed hybrid. Both the

coil and hybrid are encapsulated with medical grade silicone

rubber. The diameter of the secondary coil L2 was set to 16 mm.

The working range of the coil separation takes into account the

thickness of the skin behind the ear where the device will

be implanted, and the thickness of the secondary coil after

encapsulation. It is set between 5 mm and 15 mm, while the

gain factor of the power transfer peaks around 7–10 mm. To

accommodate misalignment due to relative movement between

the coils on implantation, the diameter of the primary coil L1

was set to 25 mm to ensure 100% overlap.

The gain factor of the power transfer (refer to Fig. 1) can be

expressed as [36]

AG =
|vC2|
|vS |

=

√

R2

R1

(

kc

k
+ k

kc

) (9)

where kc is the critical coupling coefficient

kc =

√

C1R1

C2R2

. (10)

Fig. 11. Architecture of the external transmitter.

Equation (9) indicates that AG peaks when kc = k. Therefore,

the values for C1, C2, R1, and R2 are bounded by (9) so that

kc = k at 8 mm coil separation. Among the variables, R1 is a

combination of the primary coil serial loss resistance and the

loss resistance of the power amplifier and R2 = RP ‖(RL/2).
For this design, R1 is 1.15 Ω, while the load resistance of the

implant, RL, is about 1344 Ω from measurements. The carrier

frequency is 13.56 MHz. Based on the values of R1, R2, the

geometry of the coils and the carrier frequency,L1 and L2 were

chosen to satisfy kc = k at 8 mm coil separation, where the

value of k was derived using the procedure in [30]. The link

parameters are listed in Table I. According to these parameters,

k is between 0.048 and 0.169, and kc is 0.107 at 8 mm coil

separation.

B. External Transmitter

The architecture of the external transmitter is shown in

Fig. 11. A class-D power amplifier was constructed with the

primary LC tank driven by a pair of power switches built

with two complementary power MOSFETs, Si7501DN, and a

dual MOSFET driver UCC37323. A XC2V64 CPLD (complex

programmable logic device) operates the power switches at a

switching frequency of 13.56 MHz. A microcontroller (MCU)

controls the power transfer level by adjusting the supply voltage

of the class-D amplifier. According to the feedback voltage

measurement from the implant, the MCU programs a digital

potentiometer, AD5220, in the dc/dc converter that supplies the

class-D amplifier. The MCU also generates control settings for

the implant. These settings are sent via SPI (serial peripheral

interface) to the CPLD, where they are packed into frames with

cyclic redundancy check (CRC) code generated and attached.

The CPLD also shifts the frames into a bit-stream and performs

OOK modulation on each bit. The modulation is implemented

by switching on or off the driving signal to the power switches

at 400 kbps. Logic “1” switches off the carrier while logic “0”

keeps the carrier unchanged.

The uplink data stream is demodulated in the PPSK de-

modulator. A simple capacitive voltage divider, C1a and C1b,

scales down the modulated carrier in the primary LC tank to

the dynamic input range of the amplifiers in the filtering and
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Fig. 12. Schematic of the PPSK demodulator.

Fig. 13. Communication protocol and the frame structures.

amplifying stage. The ratio between capacitors C1a and C1b is

1 : 8.57. The voltage on C1b is applied to the PPSK demodulator,

which comprises an envelope detector, a filter and amplifier

stage and a level detector. The circuit details of the three stages

are shown in Fig. 12. The envelope detector extracts the voltage

transient on C1b from the input. The time constant of the

Re1 − Ce1 network was set to be higher than the carrier period

(73.7 ns) but lower than a single bit width (> 740 ns). A RC

low pass filter (Rf1 − Cf1) with a cut-off frequency of 2 MHz

attenuates the carrier frequency components from the output of

the envelope detector. The ac components in the filtered signal

are applied to a two-stage amplifier with a dc bias at the mid-

supply range. The two-stage amplifier consists of two AD8656

op-amps and a low-pass filter between the two amplifiers. The

amplified signal is translated into a digital bit-stream by a level

detector implemented with a comparator TLV3502.

C. Communication Protocol

The external transmitter and the implant communicate over

the inductive link following a half-duplex protocol shown in

Fig. 13. There are two types of downlink frame, CTC and STC,

and two types of uplink frame, CM and D. All frames begin

with a logic “1” as Start and end with a logic “0” as Stop, so that

the RF carrier remains intact when there is no communication.

Fig. 14. ASIC microphotograph with the building blocks of the telemetry
highlighted.

When the implant is powered up, it sends CM frames to the

transmitter repetitively every 250 µs as Ping signals until the

transmitter responds. The procedure for stimulation, recording

and housekeeping requests consists of two stages. The trans-

mitter firstly sends a CTC frame for handshake. The Request

section in the frame defines the request. The implant completes

the handshake with a CM frame as acknowledgement. The

transmitter then sends a STC frame with the settings for the

request, such as the pulse profile and channel for stimulation

or recording window length and channel selection. Details of

the stimulation and recording settings are described in [12].

The housekeeping request includes settings for the PPSK data

rate control and programmable monostable. The settings can be

sent over multiple STC frames. The implant acknowledges each

STC frame with a CM frame. The Ack. section in the CM frame

informs the transmitter whether the STC frame was correctly re-

ceived or not. For a recording request, the transmitter repeatedly

sends CTC frames to check if the 320-bit buffer in the implant,

corresponding to a 1.6 ms neural recording window length, has

been filled up with recorded data. The implant reports the buffer

status in the Ack. section of the CM frames. Once the buffer is

full, the implant starts transmitting data in a D frame. All the

frames contain CRC for error detection at the receiving end.

The length of CRC depends on the length of a frame. Each CM

frame also contains two power bits, PH and PL, for reporting

whether or not the received voltage is too high or too low, so

that the transmitter can adjust the power transfer accordingly.

V. MEASURED RESULTS

The ASIC was implemented in 0.6-µm high voltage CMOS

technology. Fig. 14 shows the die microphotograph with the

building blocks of the telemetry highlighted. Table II lists fea-

tures and measured performance. For the measurements, the

external transmitter and the implant electronics were mounted

on two separate printed circuit boards (PCBs). The implant

electronics includes the ASIC shown in Fig. 14, the auxiliary

discrete components for the telemetry (D2 −D5, C2, and C4

shown in Fig. 6), and resistors used as equivalent electrode load

impedances [12]. The primary and secondary coils as specified

in Table I were connected closely to the two PCBs. The two

coils were mounted onto two parallel panels in a coaxial

position. The distance between the two coils was adjusted by

moving one panel along the axis.
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TABLE II
SUMMARY OF FEATURES AND PERORMANCE

Fig. 15. Modeled and measured coupling coefficient for different coil
separations.

Fig. 16. Modeled and measured gain factor for different coil separations.

A. Power Transfer

The coupling coefficients at different coil separations were

calculated from measured mutual inductance and compared to

those modeled shown in Fig. 15. The modeled coupling coeffi-

cients in the figure were derived from the coil geometry using

the procedure in [32]. Fig. 16 shows the gain factor against coil

separation of the inductive link driving the vestibular prosthesis

with RL = 1344 Ω. The measured gain factor matches the

result derived from (9) using the modeled coupling coefficients.

The gain factor peaks around 8 mm coil separation, agreeing

with the calculated critical coupling position.

Fig. 17. (a) Oscilloscope screenshot of the transmission of a CM packet with
PPSK modulation at a coil separation of 7 mm. (b) Zoomed in view of two
consecutive bits of “1.”

B. PPSK Modulation and Demodulation

Fig. 17 shows the performance of the PPSK modulator with

the vestibular implant sending a CM frame over the induc-

tive link. The coil separation was 7 mm, corresponding to

a measured k of around 0.14. A CM frame with an 11-bit

sequence (10100011110) was transferred over the inductive

link. In Fig. 17(a), the top trace is the power regulator output

VDDH that supplies the implant. VDDH is a stable dc voltage

of 12 V. The middle trace is the voltage vS1 recorded at the

drain of the switch S1, as shown in Fig. 6. S1 is shorted at

every logic “1” bit for 1.5 carrier cycles. As a result, a transient

voltage surge on vC1 can clearly be seen in the bottom trace

in Fig. 17(a). Fig. 17(b) shows a zoom-in view of vS1 and vC1

when two consecutive logic “1” bits are transmitted. Switching

of S1 causes a transient voltage surge on vC1 that lasts for nine

carrier cycles before it returns to the steady-state. In order to

allow sufficient settling time over the entire working range of

5–15 mm for the coil separation, each bit of the uplink data

lasts for sixteen carrier cycles before transmitting the next bit.

This corresponds to data rates up to 847.5 kbps.

The measurement was repeated with different coil separa-

tions, and the recorded modulation index is shown in Fig. 18

alongside the simulated modulation index from ADS with

R2 = 644 Ω. As shown, the measured values approximately

agree with the simulation, decreasing with the increase of the

coil separation.
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Fig. 18. Simulated and measured variation in modulation index for different
coil separations.

Fig. 19. Simulated and measured minimum number of carrier cycles needed to
transmit one bit, for different coil separations.

Fig. 20. Measured BER for data rates of 847.5 kbps and 1.35 Mbps.

The minimum numbers of carrier cycles per bit were also

recorded in these measurements and are plotted in Fig. 19

alongside the simulated values. It is shown that the chosen data

rate of 16 carrier cycles per bit is enough for the specified

working range of coil separation, but there is potential for a

higher data rate, especially for small coil separations.

Bit error rate (BER) was measured with the PPSK modulator

configured to continuously transmit a pseudorandom bit-stream

generated from a 24-bit linear feedback shift register. For

each measurement, 16.78 Mbits were collected from the PPSK

demodulator and erroneous bits were counted to obtain the

BER. The BER was measured with RL = 1344 Ω, similar to

the simulations. The measured BERs over a coil separation

range between 0 mm and 15 mm at data rates of 847.5 kbps and

1.35 Mbps in open air, are shown in Fig. 20. Over the working

Fig. 21. Oscilloscope screenshot of signals in the PPSK demodulation stages.

Fig. 22. Oscilloscope screenshot of telemetry operation for a handshake be-
tween the transmitter and the receiver.

range of 5 mm to 15 mm coil separation, the BER at 847.5 kbps

is below 1.01× 10−6 and the BER at 1.35 Mbps is below

1× 10−5. To examine the effect of skin/tissue on the PPSK

modulation the BER at 1.35 Mbps was measured with a pork

skin sample (of thickness 3–4 mm) attached to the secondary

coil. The measured BER with the pork skin is also plotted in

Fig. 20. The results show that the BER is only very slightly

downgraded at long coil separations.

Fig. 21 shows the waveforms in the PPSK demodulation

stages for extracting a 9-bit sequence (111110101). The captured

waveforms are: the input to the envelope detector (VC1b), the
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TABLE III
COMPARISON WITH OTHER SINGLE-INDUCTIVE-LINK DESIGNS

output from the envelope detector, the output from the second

amplifier, and the output digital bit-stream from the comparator.

The probe positions capturing these waveforms are labeled in

Fig. 11 as A, B, C, and D, respectively.

C. Bi-Directional Communication

Fig. 22 shows the recorded procedure of initiating biphasic

stimulating pulses with the bi-directional communication over

the inductive link as illustrated in Fig. 13. Fig. 22(a) shows

four downlink data packets were sent to the implant using

OOK, among which are one CTC packet for selecting the semi-

circular canal and three STC packets for setting the stimulation.

The implant responds to each packet with a CM packet using

PPSK modulation. After the communication the stimulator

starts generating biphasic current pulses (Istim), as shown in the

top trace in Fig. 22(a). Fig. 22(b) shows a zoom-in view of the

enclosed area in Fig. 22(a), which includes the CTC packet,

the first STC packet and their corresponding CM packets.

The OOK and PPSK modulations are clearly visible in the trace

of vC1.

D. Comparison With State-of-the-Art

A comparison of performance of the implemented power

and data telemetry with other work is shown in Table III. This

comparison is specific to designs that use a single inductive

link for both power transfer and data communication, where the

performance of the data link is limited by the implementation

of the power link. PPSK modulation provides high load power

and has a high data rate at low coupling with a good BER.

VI. CONCLUSION

This paper has presented a telemetry system with simultane-

ous power delivery and bi-directional data transmission over a

single pair of inductively coupled coils. The telemetry has been

used to operate efficiently a vestibular prosthesis which requires

both a high data rate and high power. An integrated PPSK mod-

ulator has been implemented in 0.6-µm high voltage CMOS

technology. A fast data rate of 1.35 Mbps has been achieved for

the uplink over the same pair of coils at a carrier frequency

of 13.56 MHz to transmit out neural recording data. The

performance of the PPSK modulator and its dependence on the

inductive link parameters have been investigated and verified.
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