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Abstract: Neuropathic pain (NeuP) is a syndrome that results from damaged nerves and/or 

aberrant regeneration. Common etiologies of neuropathy include chronic illnesses and medica-

tion use. Chronic disorders, such as diabetes and alcoholism, can cause neuronal injury and 

consequently NeuP. Certain medications with antineoplastic effects also carry an exquisitely 

high risk for neuropathy. These culprits are a few of many that are fueling the NeuP epidemic, 

which currently affects 7%–10% of the population. It has been estimated that approximately 10% 

and 7% of US adults carry a diagnosis of diabetes and alcohol disorder, respectively. Despite 

its pervasiveness, many physicians are unfamiliar with adequate treatment of NeuP, partly due 

to the few reviews that are available that have integrated basic science and clinical practice. In 

light of the recent Centers for Disease Control and Prevention guidelines that advise against the 

routine use of μ-opioid receptor-selective opioids for chronic pain management, such a review 

is timely. Here, we provide a succinct overview of the etiology and treatment options of diabetic 

and alcohol- and drug-induced neuropathy, three different and prevalent neuropathies fusing 

the combined clinical and preclinical pharmacological expertise in NeuP of the authors. We 

discuss the anatomy of pain and pain transmission, with special attention to key ion channels, 

receptors, and neurotransmitters. An understanding of pain neurophysiology will lead to a better 

understanding of the rationale for the effectiveness of current treatment options, and may lead 

to better diagnostic tools to help distinguish types of neuropathy. We close with a discussion of 

ongoing research efforts to develop additional treatments for NeuP.

Keywords: small-fiber neuropathy, pain, alcohol use disorder, diabetes mellitus, chemotherapy, 

opioid receptors

Introduction
Neuropathic pain (NeuP) arises from aberrant or incomplete regeneration of damaged 

nerves, and is characterized by hyperalgesia and allodynia, enhanced sensitivity to 

pain, and exaggerated pain response to normal stimuli.1 The prevalence of NeuP varies 

around the world, but has been cited as at a minimum of 3%,2–4 and true prevalence 

has been estimated to be around 7%–10%.5 The incidence of NeuP also varies by type, 

as categorized by the mechanism of injury: diabetic neuropathy, alcoholic neuropa-

thy, and medication-induced neuropathy.6 A concerning trend in the US is the rise in 

diagnosis of neuropathies caused by type 2 diabetes.7 This may in part be fueled by 

increased health care costs hampering proper management of diabetes (diabetes.org).8 

Alcoholic neuropathy in the US occurs in roughly 65% of patients diagnosed with an 

alcohol-use disorder.9 Anticancer medications, especially taxanes, are also known to 

cause neuropathy. A study found that 100% of patients receiving paclitaxel developed 
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symptoms of neuropathy.10 On a clinical level, NeuP trans-

lates to a complex syndrome that is often multidrug-resistant 

and unresponsive to alternative therapies. Therefore, it is 

imperative that clinicians understand the etiology of NeuP 

and the mechanism and effectiveness of the current repertoire 

of treatments.

Significance and limitations
In this integrative review, an internal medicine physician 

and preclinical behavioral pharmacologist summarize dif-

ferences and overlap in etiologies and treatment options for 

NeuP. This review focuses on three of the most common 

neuropathies – diabetic, alcohol-induced, and drug-induced 

neuropathy – describes the specific nerve fibers associated 

with each neuropathy, and lists recommended treatment 

options for NeuP. The review is purposely succinct, aimed 

at providing clinicians with insight into the etiology of NeuP 

and educating preclinical scientists on the diagnosis and 

choice of treatment for NeuP. The review favors conciseness 

over an extensive in-depth analysis of the available literature, 

thus limiting its scope.

Materials and methods
A PubMed search was performed to identify clinical and 

preclinical studies detailing etiology and treatment of NeuP. 

Emphasis was given to articles published in the last 10 years, 

with older articles used primarily to provide a frame of 

reference.

Basic anatomy of pain
Comprehending the pathophysiology of peripheral neu-

ropathy and the mechanism of action for drugs requires a 

basic appreciation of the anatomy of the somatosensory 

system, especially with respect to pain. Noxious stimuli, 

such as thermal, chemical, and high-threshold mechanical 

stimuli, are detected in the periphery and conducted to the 

spinal cord via two types of small fibers. The C fibers are 

unmyelinated, slow-conducting, and localize pain poorly. 

The Aδ fibers are thinly myelinated, faster-conducting, and 

localize pain better.11,12 Larger and more thickly myelin-

ated than Aδ fibers are Aα and Aβ fibers, which primarily 

transmit information about proprioception and vibration.13 

It is primarily the Aδ and C fibers that are indiscriminately 

affected in the different types of neuropathies (Figure 1). 

Measuring which type of fibers are impacted is not trivial, 

but can be attempted by clinical examination; loss of tactile 

or vibratory skin sensation or tendon reflexes are indicative 

of large-fiber neuropathy, whereas alterations in lower-limb 

pinprick sensation and a visual analog scale pain score >40 

suggest small-fiber neuropathy.14 Small-fiber neuropathy can 

also be determined by measuring intraepidermal nerve-fiber 

density following biopsy.15 Aδ-fiber neuropathy can be mea-

Sodium channels

Calcium channels

NMDA/AMPA/TRP channels

Serotonin, adrenergic, opioid receptors

Substance P, glutamate, CGRP

Diabetic, drug-, alcohol
(acetaldehyde)-induced
neuropathy

Ascending
pathway

Central pain
sensitization

C fibers

Aδ fibers

Aα/Aβ fibers

Descending
pathway

Alcohol (thiamine)- 
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Dorsal root

ganglia
Spinal cord,
dorsal horn

Figure 1 Overview of neuropathies affecting pain pathways.
Notes: C and Aδ fibers are affected by diabetes, drugs, and alcohol (and its metabolite acetaldehyde), whereas large, myelinated Aα and Aβ fibers are affected by drugs and 
thiamine deficiency. Channels (sodium, calcium) and receptors (NMDA, serotonin, adrenergic, opioid) along the pain pathway serve as drug targets for treatment of chronic 
neuropathic pain.
Abbreviations: NMDA, N-methyl-d-aspartate; AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; TRP, transient receptor potential; CGRP, calcitonin gene-
related peptide.
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sured noninvasively by laser evoked-potential16,17 and contact 

heat-evoked potential.18,19 Nerve-conducting studies are a 

useful technique for NeuP research, but less relevant for 

clinical studies, as they primarily measure Aβ-fiber function, 

which supersedes small-fiber neuropathy20 and is laborious.21

Receptors on primary sensory neurons convert environ-

mental stimuli, such as pain, into an electrical signal that is 

transmitted to the dorsal root ganglia, with an important role 

for sodium channels.22,23 In the terminals of the dorsal root 

ganglia, neurons subsequently convert this electric signal into 

chemical signals by releasing neurotransmitters and neuro-

peptides, including glutamate, substance P, and calcitonin 

gene-related peptide into the dorsal horn ( Figure 1). A sig-

nificant event that occurs during the development of a chronic 

pain state is central sensitization, where postsynaptic gluta-

mate (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 

acid [AMPA] and N-methyl-d-aspartate [NMDA]) receptors 

become increasingly more adaptive in transmitting pain 

signals.24–28 Activation of presynaptic calcium channels can 

reduce the release of neurotransmitters and dampen central 

sensitization (Figure 1).29,30 In the spinal cord, this nocicep-

tive signal can be modulated by inhibitory interneurons using 

γ-aminobutyric acid (GABA) and glycine as their main neu-

rotransmitters. Following the reception of a pain signal in the 

cortical structures of the brain, the experience of pain can still 

be suppressed by a descending system that originates from 

the brain stem. This efferent system attenuates the afferent 

signal via neurotransmitters, such as endogenous opioids, 

serotonin, and noradrenaline.31–33

Diagnosis of neuropathic pain
The diagnosis of NeuP is usually made on clinical grounds. 

Screening questionnaires are available for NeuP, including 

the Leeds Assessment of Neuropathic Symptoms and Signs,34 

PainDetect,35 and Douleur Neuropathique 4 (DN4).36 Of 

these, the DN4 has the higher sensitivity and specificity. 

The DN4 is a questionnaire that consists of four questions 

and incorporates both subjective and objective information, 

namely the patient’s perception of pain and the physician’s 

exam findings. It has been validated as a screening tool for 

different types of NeuP, including diabetic neuropathy, and 

has sensitivity and specificity of 80% and 92%, respectively, 

at a score cutoff of 4.36 At a score cutoff of 3, sensitivity and 

specificity are 84%.36 While these screening tools are useful, 

the diagnosis ultimately hinges on the clinician’s intuition 

from effective interviewing and physical examination. 

Symptoms of neuropathy can range from hypoalgesia and 

paresthesia (tingling) to hyperalgesia, especially prominent 

in the distal extremities, known as the “stocking and glove” 

distribution. Patients with neuropathy may exhibit a painful 

response to benign stimuli, such as light touch from a cotton 

swab or a finger. Patients may also exhibit an attenuated/

exaggerated response to a pinprick. These phenomena are 

known as allodynia and hypo/hyperalgesia, respectively. As 

the neuropathy progresses, more severe symptoms, including 

burning sensations and electric shocks, can arise. Symptoms 

are aggravated during rest and prolonged weakness and sen-

sory loss in extremities; particularly feet can culminate in gait 

impairment.37 Because the diagnosis is based on subjective 

data, it can sometimes be challenging for the physician to 

track response to therapeutics. With this said, the threshold 

to treat NeuP is exceedingly low, given the good side-effect 

profile of most drugs. In our experience, most physicians 

would trial a serotonin–norepinephrine reuptake inhibitor 

(SNRI) if a patient complained of burning pain, even if no 

other findings were present.

Three major types of neuropathy
Diabetic neuropathy
Peripheral neuropathy is one of the most common microvas-

cular complications of diabetes. It has been estimated that 

~50% of diabetics suffer from peripheral neuropathy,38 and 

50% of these neuropathies are considered at least moderate in 

severity.39–41 Histological studies suggest that primarily small 

C fibers are affected by diabetes and glucose intolerance,42–45 

although Aδ fibers have also been shown to be affected by 

type 1 and type 2 diabetes.46–48 Morbidities associated with 

diabetic neuropathy amount to more than $10 billion in the 

US.49

Diabetes or glucose intolerance can impair vasodilation 

and lead to ischemia, which is thought to be central to the 

pathogenesis of peripheral neuropathy, including trigeminal 

neuralgia.50,51 A recent study demonstrated that patients with 

glucose intolerance, even without carrying the diagnosis 

of diabetes, exhibited C-fiber neuropathy, highlighting the 

devastating effect of prolonged hyperglycemia on neuronal 

health.52 On a molecular level, there are at least five prevailing 

mechanisms of how hyperglycemia leads to different com-

plications of diabetes, with the polyol and PARP pathways 

being the most relevant to neuronal death.53 In the polyol 

pathway, the influx of glucose into the cell activates aldose 

reductase to convert glucose to sorbitol. Sorbitol is then con-

verted to fructose via sorbitol dehydrogenase. Both of these 

steps generate oxidative species that contribute to neuronal 

injury.53,54 In Schwann cells, endothelial cells, and sensory 

neurons, PARP is stimulated by oxidative species and induces 
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further oxidative stress in a feedback mechanism.55–59 PARP is 

a nuclear enzyme that can also alter gene expression, leading 

to impairment of neuronal conduction velocity, small-fiber 

neuropathy (Figure 1), hyperalgesia, and allodynia, as well 

as other diabetic complications.53,55,60–64

Alcoholic neuropathy
The prevalence of alcohol-related peripheral neuropathy has 

been estimated to occur in two-thirds of chronic alcohol-

ics.9 Alcohol-related peripheral neuropathy is historically 

regarded as a large-fiber neuropathy from thiamine defi-

ciency (Figure 1).65–69 In contrast to small sensory fibers, 

large fibers are responsible for vibration and proprioception. 

However, advances in scientific techniques have reshaped 

the pathophysiology of alcoholic neuropathy. Observations 

that neuropathy can develop even in the setting of normal 

thiamine levels70 and that the early stages of alcoholic neu-

ropathy are characterized by painful paresthesia71 have led 

scientists to postulate that alcohol and its metabolites have 

direct neurotoxic effects on small C fibers (Figure 1).72,73 

Acetaldehyde is a known neurotoxin that is formed when 

alcohol is metabolized by alcohol dehydrogenase. The pre-

cise mechanism underlying alcoholic neuropathy is yet to be 

fully elucidated. Some proposed explanations include direct 

neurotoxic effects of alcohol or its metabolite acetaldehyde70 

through activation of spinal cord microglia,74 involvement 

of metabotropic glutamate 5 and opioid receptors74,75 in the 

spinal cord, promotion of oxidative stress by the activity of 

alcohol-metabolizing enzymes in the liver,76 and release of 

proinflammatory cytokines coupled with phosphorylation 

of protein kinase C77 and extracellular signal-regulated 

kinases.78 Taken together, these different initiating events may 

ultimately lead to DNA fragmentation and neuronal apopto-

sis.79 Once formed, acetaldehyde is metabolized by ALDH 

into a much less harmful acetate. Interestingly, pharmaco-

logical and genetic data suggest that reducing ALDH activity 

can precipitate peripheral neuropathy, whereas increasing its 

activity may carry therapeutic potential. As such, disulfiram, 

an ALDH inhibitor, has the side effect of causing NeuP.80

Medication-induced neuropathy
Disulfiram is not unique in causing NeuP; in fact, many and 

more commonly prescribed drugs, which span the spectrum 

of chemotherapy to cardiovascular medications, are known to 

induce neuropathy. This section focuses on taxanes, with men-

tion of statin-induced neuropathy. Paclitaxel and docetaxel are 

antineoplastic taxanes used to treat numerous types of solid 

tumors, including ovarian, breast, lung, and head and neck 

malignancies. Paclitaxel has its chemotherapeutic effect by 

promoting microtubule assembly in a disorganized manner, 

thereby prohibiting mitotic division. It is by this very same 

mechanism that paclitaxel causes peripheral neuropathy, one 

of the most common and limiting side effects of the drug. In 

vivo studies have demonstrated that paclitaxel causes abnor-

mal microtubule accumulation, leading to demyelination,81,82 

and inhibits the regenerative capacities of neurons.83,84 In a 

non-dose-dependent manner, paclitaxel causes hyperalgesia 

and allodynia without affecting motor performance.85 Clini-

cally, patients have complained of sensory neuropathy and 

decreased vibration and proprioception, indicating that both 

small C and Aδ fibers are affected (Figure 1).86–89 One of the 

original articles on paclitaxel-induced neuropathy studied 

paclitaxel infusion at three doses, and found that neuropathy 

developed in >80% of the patients at all doses and was dose-

limiting in 70% of patients at the highest dose.90

It is noteworthy that diabetes is a predisposition to drug-

induced neuropathy. In a retrospective study comparing 

the rates of taxane-induced neuropathy, chronic diabetics 

(defined by >5 years) developed neuropathy more fre-

quently compared to nondiabetics.91 With regard to treating 

chemotherapy-induced peripheral neuropathy, SNRIs have 

been shown to be superior to placebo.92 These drugs are also 

used in the treatment of diabetic neuropathy. Together, these 

data suggest that taxanes and diabetes act differently but 

synergistically in causing peripheral nerve damage and NeuP.

Statins are prescribed to >40 million patients in the US 

alone (https://meps.ahrq.gov), and are frequently prescribed 

to diabetics to reduce their cardiovascular risk. It is interest-

ing to note that there have been reports of statin-induced 

peripheral neuropathy.93,94 Though statins are demonstrated 

to have pleiotropic effects, preclinical studies suggest that 

they can attenuate NeuP by potentiating antioxidation.95,96 

Promising data have also been found in human studies 

where rosuvastatin improved both the intensity of diabetic 

neuropathy pain and nerve conduction.97 In combination 

with the rarity of statin-induced neuropathy, these data sug-

gest that this potential side effect of statin should minimally 

influence the physician’s decision to prescribe statins for 

vascular protection.

Current neuropathic pain therapies
Based on a 2015 analysis of a systemic review and meta-

analysis performed by the Neuropathic Pain Special Interest 

Group on clinical studies of NeuP pharmacotherapy, a new 

guideline for treatment of NeuP was recently proposed.98 The 

guidelines highlight the difficulty in adequately treating NeuP, 
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but recommend the use of tricyclic antidepressants (TCAs), 

SNRIs, pregabalin, and gabapentin as first-line treatment 

options for NeuP.98 In the following section, we discuss these 

medications in more detail.

Tricyclic antidepressants
A number of randomized controlled trials have shown that 

TCAs may exert their NeuP-relieving effect via multiple 

mechanisms of action.99,100 The potential of TCAs in pain 

relief is primed by their inhibition of presynaptic reuptake 

of serotonin and norepinephrine101,102 and activity at NMDA 

receptors and sodium channels,103 all of which are involved 

in pain transmission. Amitriptyline and nortriptyline are two 

of the oldest TCAs on the market. Although their use to treat 

depression has declined with the increased popularity of 

SNRIs and selective serotoninreuptake inhibitors, they con-

tinue to be used off-label to treat NeuP. However, according 

to recent Cochrane meta-analyses, no high-quality evidence 

exists to support the analgesic effect of both amitriptyline 

and nortriptyline, despite an extensive history of anecdotal 

success.104,105 A factor for the declining use of TCAs, whether 

for depressive disorders or NeuP, is that TCAs have a higher 

risk for fatal overdose and require careful dosing. Therefore, 

TCAs should not be advocated for use as first-line treatment 

of NeuP.

Serotonin–norepinephrine reuptake 
inhibitors
Venlafaxine and duloxetine are SNRIs that are prescribed to 

treat depression, anxiety, and NeuP. Serotonin and norepi-

nephrine play integral parts in the descending pain pathway 

to suppress pain.106–108 Preclinical and clinical research has 

shown that drugs that increase serotonergic and noradren-

ergic neurotransmissions exert antinociceptive properties. 

For example, SNRIs significantly attenuated pain-related 

behaviors in the formalin model of persistent pain and the 

L5–L6 spinal nerve ligation model of NeuP in rats.109 SNRIs 

are also efficacious in the treatment of pain and functional 

impairment associated with fibromyalgia, as per a number 

of randomized controlled trials.110–113

Pharmacological studies have demonstrated that for cer-

tain SNRIs, serotonin reuptake inhibition predominates at 

low drug concentration, whereas inhibition of norepinephrine 

reuptake occurs only at much higher doses.114 Unlike treating 

depression, the treatment for NeuP with SNRIs is achieved 

at higher doses and more rapidly. For venlafaxine, the usual 

antidepressant dosage is much lower than what is needed 

for pain relief,115 suggesting that norepinephrine contributes 

more strongly to attenuating pain. The importance of nor-

epinephrine is further exemplified by the effect of clonidine 

and the adrenergic receptor agonist in alleviating pain.116 

However, a Cochrane review found that venlafaxine had 

limited efficacy compared to placebo.32 Despite relatively 

similar pharmacology, duloxetine was effective for the relief 

of NeuP.117 Duloxetine is a much more potent inhibitor of the 

serotonin- and norepinephrine reuptake transporters than 

venlafaxine.114 Therefore, when choosing an SNRI, we would 

favor the use of duloxetine.

Calcium-channel blockers
Changes in the expression and activity of voltage-gated cal-

cium channels are known to modulate neuronal excitability 

and synaptic plasticity in the dorsal horn, culminating in pain 

processing.118–120 The Ca
v
α

2
δ

1
subunit, an important accessory 

subunit for calcium channels, plays an important role in 

NeuP development, based on reports of increased expression 

in the dorsal root ganglia and spinal neurons during NeuP 

states.121–123 Further supporting evidence shows that blockade 

of the Ca
v
α

2
δ

1
 subunit could reverse tactile allodynia in nerve-

injured animals.124,125 Interestingly, the Ca
v
α

2
δ

1
subunit is the 

binding site for pregabalin and gabapentin.126 Pregabalin and 

gabapentin were developed and US Food and Drug Admin-

istration (FDA) approved for treatment of epilepsy, but have 

become first-line treatments for NeuP.

A Cochrane review using randomized double-blind 

trials found pregabalin to be effective for the treatment of 

NeuP. Pregabalin at doses of >300 mg provided moderate 

pain relief (50% improvement from baseline) in different 

types of pain.127 Another Cochrane review investigated 

the efficacy of gabapentin on NeuP using randomized 

double-blind controlled studies, and concluded that 1,200 

mg daily was needed to achieve 50% pain relief. This 

effect was found in 35% of study participants compared 

to 21% in the placebo group.128 To avoid sedating effects, 

gabapentin is divided into three doses, and patients are 

routinely instructed to titrate the dose, starting at 300 mg 

daily. However, compliance is a major issue in patients 

on gabapentin, usually as they dismiss the medications 

as ineffective and discontinue the medications before 

reaching the therapeutic dose. Therefore, it is prudent to 

educate patients of this therapeutic range. Moreover, a 

recent study has shown that the endogenous lipid palmi-

toylethanolamide has synergistic effects with gabapentin 

to relieve chemotherapy-induced allodynia in mice, which 

makes it possible to reduce the dosage of gabapentin and 

lower its side effects.13
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To illustrate further the vital role of calcium channels in 

pain transmission, ziconotide is a selective calcium-channel 

blocker and potent analgesic. Ziconotide is FDA approved for 

the treatment of refractory chronic pain.129 As ziconotide is a 

large peptide that cannot readily cross the blood–brain bar-

rier, it can thus only be administered intrathecally. Intrathecal 

drug delivery can be used to manage chronic pain effectively, 

and may provide the most targeted approach with the fewest 

side effects.130–133

Opioids and drug development
Although opioids are intended for short-term use for acute 

pain, they have repeatedly been used to treat chronic pain. For 

example, tramadol has been used to treat chronic pain, in part 

due to its dual action as a μ-opioid agonist and SNRI.98 Patients 

frequently cite failures of different adjunctive therapies to alle-

viate their pain, and revert to the use of opioids. In light of the 

rapid increase in patients suffering from opioid-dependence/

use disorders, the Centers for Disease Control and Prevention 

(CDC) has recently published guidelines to avoid routinely 

prescribing narcotics for the management of chronic pain. In 

addition to dependence, opioids also cause other serious side 

effects, including tolerance, ileus, and respiratory depression. 

The latter side effect explains the high hospitalization and 

mortality rate associated with opioid overdose, which has 

increased concomitantly with the rise in opioid dependence. 

Moreover, prolonged use of (escalating doses of) opioids can 

lead to paradoxical pain, also known as opioid-induced hyper-

algesia, and discontinuation of opioids leads to withdrawal of 

hyperalgesia. While the CDC guidelines are helpful for guiding 

narcotic use, it will be challenging to unearth the culture of 

pain management that is heavily rooted in narcotics. The CDC 

currently excludes these guidelines from patients with active 

malignancy, which remains a challenge to treat, despite rapidly 

escalating doses of opioids. Clearly, safer and more potent and 

selective therapeutics are necessary and overdue. Although the 

CDC raised concerns regarding the use of μ-opioids in chronic 

pain, it is important not to dismiss completely their analgesic 

potential for acute pain and palliative care.134 Importantly, 

other opioid-receptor subtypes like μ are also expressed along 

descending pain pathways, and increasing research efforts have 

identified these non-μ-opioid receptors as potential analgesic 

targets for chronic pain.

While current analgesic opioids target μ-opioid recep-

tors, there are three other opioid-receptor subtypes. One of 

the most intriguing new developments in the use of opioids 

for NeuP comes from work focused on δ-opioid receptors 

(DORs), κ-ORs (KORs), and nociception ORs (NORs). 

DORs, KORs, and NORs are expressed in several levels 

of pain pathways, including the periphery, spinal cord, and 

supraspinal regions.135–141 The expression of opioid-peptide 

messenger RNA also increases under conditions of chronic 

pain.142–144 Preclinical evidence has demonstrated that inhi-

bition of DORs or KORs via either opioid antagonists or 

genetic ablation in mice enhances allodynia and hyperal-

gesia following spinal cord injury.145–148 Additionally, both 

DOR and KOR agonists have elicited antinociceptive and 

antiallodynic effects in animal models of NeuP.142,149–151 An 

intriguing recent study identified 6-methoxyflavanone as a 

positive allosteric modulator of GABA
A
 channels that can 

alleviate streptozotocin-induced diabetic NeuP in female 

rats in a naloxone-reversible manner, potentially via direct 

interaction with DORs and KORs.152 In contrast, the role of 

NORs in nociception is less linear: analgesic actions of the 

nociceptin system in rodents are bidirectional, depending 

upon the doses and assays.153–156 Encouragingly, the activation 

of NORs produces only attenuated and not intensified pain 

in primates regardless of experimental conditions,157,158 and 

thus their therapeutic potential in humans remains.

Summary
NeuP results from nerve damage, and can be classified 

based on the inciting factors, such as hyperglycemia (as in 

diabetes), toxins from alcohol metabolism, and drugs like 

chemotherapy. In basic pain anatomy, noxious stimuli are 

detected in the periphery, and are transmitted via small fibers 

to the central nervous system, where they are converted into 

the experience of pain (Figure 1). This afferent system is 

modulated by an efferent system via GABAergic neurons 

and neurotransmitters, such as serotonin and norepinephrine. 

Opioids that act on GABAergic neurons have been used 

in pain relief for millennia. However, the side effects of 

opioids, especially their addictive properties, have recently 

led the CDC to advise against their use in chronic pain. 

Therefore, an understanding of adjunctive therapies for 

NeuP is essential. Meta-analyses show the most promising 

efficacy in calcium-channel ligands and SNRIs over older 

TCAs, but these medications still leave a number of patients 

untreated. Sodium-channel blockers may represent a broadly 

applicable strategy for many types of NeuP.159–162 However, 

improved diagnosis of symptoms paired with increased 

understanding and detection of the exact fibers affected by 

disease-specific neuropathies may guide the development 

of more precise therapeutics.163 Targeting receptors or ion 

channels that are uniquely expressed in Aβ, Aδ, or C fibers, 

including DORs and transient receptor-potential (TRPV, 

TRPA1) channels164–166 may represent a new direction for 

NeuP treatment.
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