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Abstract 

Background 

Drug pharmacokinetics parameters, drug interaction parameters, and pharmacogenetics data 

have been unevenly collected in different databases and published extensively in the 

literature. Without appropriate pharmacokinetics ontology and a well annotated 

pharmacokinetics corpus, it will be difficult to develop text mining tools for 

pharmacokinetics data collection from the literature and pharmacokinetics data integration 

from multiple databases. 

Description 

A comprehensive pharmacokinetics ontology was constructed. It can annotate all aspects of 

in vitro pharmacokinetics experiments and in vivo pharmacokinetics studies. It covers all 

drug metabolism and transportation enzymes. Using our pharmacokinetics ontology, a PK-

corpus was constructed to present four classes of pharmacokinetics abstracts: in vivo 

pharmacokinetics studies, in vivo pharmacogenetic studies, in vivo drug interaction studies, 

and in vitro drug interaction studies. A novel hierarchical three level annotation scheme was 

proposed and implemented to tag key terms, drug interaction sentences, and drug interaction 

pairs. The utility of the pharmacokinetics ontology was demonstrated by annotating three 

pharmacokinetics studies; and the utility of the PK-corpus was demonstrated by a drug 

interaction extraction text mining analysis. 



Conclusions 

The pharmacokinetics ontology annotates both in vitro pharmacokinetics experiments and in 

vivo pharmacokinetics studies. The PK-corpus is a highly valuable resource for the text 

mining of pharmacokinetics parameters and drug interactions. 

Background 

Pharmacokinetics (PK) is a very important translational research field, which studies drug 

absorption, disposition, metabolism, excretion, and transportation (ADMET). PK 

systematically investigates the physiological and biochemical mechanisms of drug exposure 

in multiple tissue types, cells, animals, and human subjects [1]. There are two major 

molecular mechanisms of a drug‟s PK: metabolism and transportation. The drug metabolism 

mainly happens in the gut and liver; while drug transportation exists in all tissue types. If the 

PK can be interpreted as how a body does on the drug, pharmacodynamics (PD) can be 

defined as how a drug does on the body. A drug‟s pharmacodynamics effect ranges widely 

from the molecular signals (such as its targets or downstream biomarkers) to clinical 

symptoms (such as the efficacy or side effect endpoints) [1]. 

Drug-drug interaction (DDI) is another important pharmacology concept. It is defined as 

whether one drug‟s PK or PD response is changed due to the presence of another drug. PD 

based drug interaction has a wide range of interpretations (i.e. from molecular markers to 

clinical endpoints). PK based drug interaction mechanism is very well defined: metabolism 

enzyme based and transporter based DDIs. Pharmacogenetic (PG) variations in a drug‟s PK 

and PD pathways can also affect its responses [1]. In this paper, we will focus our discussion 

on the PK, PK based DDI, and PK related PG. 

Although significant efforts have been invested to integrate biochemistry, genetics, and 

clinical information for drugs, significant gaps exist in the area of PK. For example 

DrugBank (http://www.drugbank.ca/) doesn‟t have in vitro PK and its associated DDI data; 

DiDB (http://www.druginteractioninfo.org/) doesn‟t have sufficient PG data; and PharmGKB 

(http://www.pharmgkb.org/) doesn‟t have sufficient in vivo and in vitro PK and its associated 

DDI data. As an alternative approach to collect PK from the published literature, text mining 

has just started to be explored ([1–4] 

From either database construction or literature mining, the main challenge of PK data 

integration is the lack of PK ontology. This paper developed a PK ontology first. Then, a PK 

corpus was constructed. It facilitated DDI text mining from the literature. 

Construction and Content 

PK Ontology is composed of several components: experiments, metabolism, transporter, 

drug, and subject (Table 1). Our primary contribution is the ontology development for the PK 

experiment, and integration of the PK experiment ontology with other PK-related ontologies. 



Table 1 PK Ontology Categories 

Categories Description Resources 

Pharmacokinetics 

Experiments 

Pharmacokinetics 

studies and parameters. 

There are two major 

categories: in vitro 

experiments and in vivo 

studies. 

Manually accumulated from text books and 

literatures. 

Transporters Drug transportation 

enzymes 

http://www.tcdb.org 

Metabolism 

Enzymes 

Drug metabolism 

enzymes 

http://www.cypalleles.ki.se/ 

Drugs Drug names http://www.drugbank.ca/ 

Subjects Subject description for a 

pharmacokinetics study. 

It is composed three 

categories: disease, 

physiology, and 

demographics 

http://bioportal.bioontology.org/ontologies/42056 

http://bioportal.bioontology.org/ontologies/39343 

http://bioportal.bioontology.org/ontologies/42067 

Experiment specifies in vitro and in vivo PK studies and their associated PK parameters. 

Table 2 presents definitions and units of the in vitro PK parameters. The PK parameters of 

the single drug metabolism experiment include Michaelis-Menten constant (Km), maximum 

velocity of the enzyme activity (Vmax), intrinsic clearance (CLint), metabolic ratio, and 

fraction of metabolism by an enzyme (fmenzyme) [5]. In the transporter experiment, the PK 

parameters include apparent permeability (Papp), ratio of the basolateral to apical 

permeability and apical to basolateral permeability (Re), radioactivity, and uptake volume 

[6]. There are multiple drug interaction mechanisms: competitive inhibition, non-competitive 

inhibition, uncompetitive inhibition, mechanism based inhibition, and induction [7]. IC50 is 

the inhibition concentration that inhibits to 50% enzyme activity; it is substrate dependent; 

and it doesn‟t imply the inhibition mechanism. Ki is the inhibition rate constant for 

competitive inhibition, noncompetitive inhibition, and uncompetitive inhibition. It represents 

the inhibition concentration that inhibits to 50% enzyme activity, and it is substrate 

concentration independent. Kdeg is the degradation rate constant for the enzyme. KI is the 

concentration of inhibitor associated with half maximal Inactivation in the mechanism based 

inhibition; and Kinact is the maximum degradation rate constant in the presence of a high 

concentration of inhibitor in the mechanism based inhibition. Emax is the maximum induction 

rate, and EC50 is the concentration of inducer that is associated with the half maximal 

induction 



Table 2 in vitro PK Parameters 

Experiment 

Types 

Parameters Description Unit References 

Single Drug 

Metabolism 

Experiment 

Km Michaelis-Menten 

constant. 

mg L
-1

 Segel p28. 

 Vmax Maximum velocity of the 

enzyme activity. 

mg h
-1

 

mg
-1

 

protein 

Segel p19 

 CLint Intrinsic metabolic 

clearance is defined as 

ratio of maximum 

metabolism rate, Vmax, 

and the Michaelis-Menten 

constant, Km. 

ml h
-1

 

mg
-1

 

protein 

RT p165 

 Metabolic ratio Parent drug/metabolite 

concentration ratio 

NA  

 fmenzyme Fraction of drug 

systemically available that 

is converted to a 

metabolite through a 

specific enzyme. 

NA RT xiii 

Single Drug 

Transporter 

Experiment 

Papp The apparent permeability 

of compounds across the 

monolayer cells. 

cm/sec Transport 

Consortium 

 Re Re is the ratio of 

basolateral to apical over 

apical to basolateral. 

NA Transport 

Consortium 

 Radioactivity Total radioactivity in 

plasma and bile samples is 

measured in a liquid 

scintillation counter 

dpm/mg 

protein 

Transport 

Consortium 

 Uptake Volume The amount of 

radioactivity associated 

with the cells divided by its 

concentration in the 

incubation medium. 

ul/mg 

protein 

Transport 

Consortium 

Drug 

Interaction 

Experiment 

IC50 Inhibitor concentration that 

inhibits to 50% of enzyme 

activity. 

mg L
-1

  

 Ki Inhibition rate constant for 

competitive inhibition, 

noncompetitive inhibition, 

and uncompetitive 

inhibition. 

mg L
-1

 Segel p103 

 Kdeg The natural degradation 

rate constant for the 

Enzyme. 

h
-1

 Rostami-

Hodjegan 

and Tucker 



 KI The concentration of 

inhibitor associated with 

half maximal Inactivation 

in the mechanism based 

inhibition. 

mg L
-1

 Rostami-

Hodjegan 

and Tucker 

 Kinact The maximum degradation 

rate constant in the 

presence of a high 

concentration of inhibitor 

in the mechanism based 

inhibition. 

h
-1

 Rostami-

Hodjegan 

and Tucker 

 Emax Maximum induction rate Unit free Rostami-

Hodjegan 

and Tucker 

 EC50 The concentration of 

inducer that is associated 

with the half maximal 

induction. 

mg L
-1

 Rostami-

Hodjegan 

and Tucker 

Type of Drug 

Interactions 

Competitive inhibition, 

noncompetitive inhibition, 

uncompetitive inhibition, 

mechanism based 

inhibition, and induction. 

Rostami-Hodjegan and 

Tucker 

  

Note: Segel H. Irwin. Enzyme Kinetics – Behavior and analysis of rapid equilibrium and 

steady state enzyme systems. John Wiley & Sons, Inc. 1975, New York. Rostami-Hodjegan 

Amin and Tucker Geoff „In silico‟ simulations to assess the „in vivo‟ consequences of „in 

vitro‟ metabolic drug-drug interactions. Drug Discovery Today, 2004, 1, 441 – 448. The 

International Transporter Consortium, Membrane transporters in drug development. Nature 

Review Drug Discovery, 9, 215–236. Rowland Malcolm and Tozer N. Thomas Clinical 

Pharmacokinetics Concepts and Applications, 3
rd

 edition. 1995, Lippincott Williams & 

Wilkins. 

The in vitro experiment conditions are presented in Table 3. Metabolism enzyme experiment 

conditions include buffer, NADPH sources, and protein sources. In particular, protein sources 

include recombinant enzymes, microsomes, hepatocytes, and etc. Sometimes, genotype 

information is available for the microsome or hepatocyte samples. Transporter experiment 

conditions include bi-directional transporter, uptake/efflux, and ATPase. Other factors of in 

vitro experiments include pre-incubation time, incubation time, quantification methods, 

sample size, and data analysis methods. All these info can be found in the FDA website 

(http://www.abclabs.com/Portals/0/FDAGuidance_DraftDrugInteractionStudies2006.pdf). 



Table 3 in vitro Experiment Conditions 

Experimental 

Conditions: 

drugs Substrate, metabolite, and inhibitor/inducer FDA Drug 

Interaction 

Guidance, 

2006. 
Metabolism 

Enzymes 

Buffer Salt composition 

EDTA concentration 

MgCl2 concentration Cytochrome b5 

concentration 

NADPH 

source 

Concentration of exogenous NADPH added 

isocytrate dehydrogenase + NADP 

protein Non-

recombinant 

enzymes 

Microsomes (human liver 

microsomes, human intestine 

microsomes, S9 fraction, 

cytosol, whole cell lysate, 

hepatocytes. 

Recombinant 

enzymes 

Enzyme name mg/mL or uM 

genotype  

Transporters Bi-Directional CHO; Caco-2 cells; HEK-293; Hepa-RG; 

LLC; LLC-PK1 MDR1 cells; MDCK; MDCK-

MDR1 cells; Suspension Hepatocyte 
Transport 

Uptake/efflux tumor cells, cDNA transfected cells, oocytes 

injected with cRNA of transporters 

ATPase membrane vesicles from various tissues or 

cells expressing P-gp, Reconstituted P-gp 

Other factors Pre-incubation time 

Incubation time 

Quantification 

methods 

HPLC/UV, LC/MS/MS, LC/MS, radiographic 

Sample size 

Data Analysis log-linear regression, plotting; and nonlinear 

regression 

Note. 

http://www.abclabs.com/Portals/0/FDAGuidance_DraftDrugInteractionStudies2006.pdf 

The in vivo PK parameters are presented in Table 4. All of the information are summarized 

from two text books [1,8]. There are several main classes of PK parameters. Area under the 

concentration curve parameters are (AUCinf, AUCSS, AUCt, AUMC); drug clearance 

parameters are (CL, CLb, CLu, CLH, CLR, CLpo, CLIV, CLint, CL12); drug concentration 

parameters are (Cmax, CSS); extraction ratio and bioavailability parameters are (E, EH, F, FG, 

FH, FR, fe, fm); rate constants include elimination rate constant k, absorption rate constant ka, 

urinary excretion rate constant ke, Michaelis-Menten constant Km, distribution rate constants 

(k12, k21), and two rate constants in the two-compartment model (λ1, λ2); blood flow rate (Q, 

QH); time parameters (tmax, t1/2); volume distribution parameters (V, Vb, V1, V2, Vss); 

maximum rate of metabolism, Vmax; and ratios of PK parameters that present the extend of 

the drug interaction, (AUCR, CL ratio, Cmax ratio, Css ratio, t1/2 ratio). 



Table 4 in vivo PK Studies 

Category Name Description Unit reference 

PK parameters AUCinf Area under the drug concentration time 

curve. 

mg h 

L
-1

 

RT p37 

AUCSS Area under the drug concentration time 

curve within a dosing curve at steady state. 

mg h 

L
-1

 

RT pxi 

AUCt Area under the drug concentration time 

curve from time 0 to t. 

mg h 

L
-1

 

RT p37 

AUMC Area under the first moment of 

concentration versus time curve. 

mg
2
 h 

L
-2

 

RT p486 

AUCR AUC ratio (drug interaction parameter). Unit 

free 

 

CL Total clearance is defined as the 

proportionality factor relating rate of drug 

elimination to the plasma drug 

concentration. 

ml h
-1

 RT p23 

CLb Blood clearance is defined as the 

proportionality factor relating rate of drug 

elimination to the blood drug 

concentration. 

ml h
-1

 RT p160 

CLu Unbound clearance is defined as the 

proportionality factor relating rate of drug 

elimination to the unbounded plasma drug 

concentration. 

ml h
-1

 RT p163 

CLH Hepatic portion of the total clearance. ml h
-1

 RT p161 

CLR Renal portion of the total clearance. ml h
-1

 RT p161 

CLpo Total clearance of drug following an oral 

dose. 

ml h
-1

  

CLIV Total clearance of drug following an IV 

dose. 

ml h
-1

  

CLint Intrinsic metabolic clearance is defined as 

ratio of maximum metabolism rate, Vmax, 

and the Michaelis-Menten constant, Km. 

ml h
-1

 RT p165 

CL12 Inter-compartment distribution between the 

central compartment and the peripheral 

compartment. 

ml h
-1

  

CL ratio Ratio of the clearance (drug interaction 

parameter). 

Unit 

free 

 

Cmax Highest drug concentration observed in 

plasma following administration of an 

extravascular dose. 

mg L
-

1
 

RT pxii 

Cmax ratio The ratio of Cmax (drug interaction 

parameter). 

Unit 

free 

 

Css Concentration of drug in plasma at steady 

state during a constant rate intravenous 

infusion. 

mg L
-

1
 

RT pxii 



Css ratio The ratio of Css (drug interaction 

parameter). 

Unit 

free 

 

E Extraction ratio is defined as the ratio 

between blood clearance, CLb, and the 

blood flow. 

Unit 

free 

RT p159 

EH Hepatic extraction ratio. Unit 

free 

RT p161 

F Bioavailability is defined as the proportion 

of the drug reaches the systemic blood. 

Unit 

free 

RT p42 

FG Gut-wall bioavailability. Unit 

free 

 

FH Hepatic bioavailability. Unit 

free 

RT p167 

FR Renal bioavailability. Unit 

free 

RT p170 

fe Fraction of drug systemically available that 

is excreted unchanged in urine. 

Unit 

free 

RT pxiii 

fm Fraction of drug systemically available that 

is converted to a metabolite. 

Unit 

free 

RT pxiii 

fu Ratio of unbound and total drug 

concentrations in plasma. 

Unit 

free 

RT pxiii 

k Elimination rate constant. h
-1

 RT pxiii 

K12, k21 Distribution rate constants between central 

compartment and peripheral compartment. 

h
-1

  

ka Absorption rate constant. h
-1

 RT pxiii 

ke Urinary excretion rate constant. h
-1

 RT pxiii 

km Rate constant for the elimination of a 

metabolite. 

h
-1

 RT pxiii 

Km Michaelis-Menten constant. mg L
-

1
 

RT pxiii 

MRT Mean time a molecular resides in body. h RT pxiv 

Q Blood flow. L h
-1

 RT pxiv 

QH Hepatic blood flow. L h
-1

 RT pxiv 

tmax Time at which the highest drug 

concentration occurs following 

administration of an extravascular dose. 

h RT pxiv 

t1/2 Half-life of the drug disposition. h RT pxiv 

t1/2 ratio Half-life ratio (drug interaction parameter). Unit 

free 

 

t1/2,α Half-life of the fast phase drug disposition. h  

t1/2,β Half-life of the slow phase drug 

disposition. 

h  

V Volume of distribution based on drug 

concentration in plasma. 

L RT pxiv 

Vb Volume of distribution based on drug 

concentration in blood. 

L RT pxiv 



V1 Volume of distribution of the central 

compartment. 

L RT pxiv 

V2 Volume of distribution of the peripheral 

compartment. 

L  

Vss Volume of distribution under the steady 

state concentration. 

L RT pxiv 

Vmax Maximum rate of metabolism by an 

enzymatically mediated reaction. 

mg h
-

1
 

RT pxiv 

λ1, λ2 Disposition rate constants in a two-

compartment model. 

h
-1

 GP p84 

Pharmacokinetics 

Models 

Non-

Compartment 

Use drug concentration measurements directly to 

estimate PK parameters, such as AUC, CL, Cmax, 

Tmax, t1/2, F, and V. 

GP p409 

One 

Compartment 

Model 

It assumes the whole body is a homogeneous 

compartment, and the distribution of the drug 

from the blood to tissue is very fast. It assumes 

either a first order or a zero order absorption rate 

and a first order eliminate rate. Its PK parameters 

include (ka, V, CL, F). 

RT p34 

GP p1 

Two 

Compartment 

Model 

It assumes the whole body can be divided into 

two compartments: central compartment (i.e. 

systemic compartment) and peripheral 

compartment (i.e. tissue compartment). It 

assumes either a first order or a zero order 

absorption rate and a first order eliminate and 

distribution rates. Its PK parameters include (ka, 

V1, V2, CL, CL12, F). 

GP p84 

Study Designs Hypothesis Bioequivalence, drug interaction, 

pharmacogenetics, and disease conditions. 

 

Design Single arm or multiple arms; cross-over or fixed 

order design; with or without randomization; with 

or without stratification; prescreening or no-

prescreening; prospective or retrospective studies; 

and case reports or cohort studies. 

 

Sample size The number of subjects, and the number of 

plasma or urine samples per subject. 

 

Time points Sampling time points and dosing time points.  

Sample types Blood, plasma, and urine.  

Dose Subject specific doses.  

Quantification 

methods 

HPLC/UV, LC/MS/MS, LC/MS, radiographic  

Rowland Malcolm and Tozer N. Thomas Clinical Pharmacokinetics Concepts and 

Applications, 3
rd

 edition. 1995, Lippincott Williams & Wilkins. 

Gibaldi Milo and Perrier Donald. Pharmacokinetics, 2
nd

 edition. 1982, Dekker. 

It is also shown in Table 4 that two types of pharmacokinetics models are usually presented 

in the literature: non-compartment model and one or two-compartment models. There are 

multiple items need to be considered in an in vivo PK study. The hypotheses include the 



effect of bioequivalence, drug interaction, pharmacogenetics, and disease conditions on a 

drug‟s PK. The design strategies are very diverse: single arm or multiple arms, cross-over or 

fixed order design, with or without randomization, with or without stratification, pre-

screening or no-pre-screening based on genetic information, prospective or retrospective 

studies, and case reports or cohort studies. The sample size includes the number of subjects, 

and the number of plasma or urine samples per subject. The time points include sampling 

time points and dosing time points. The sample type includes blood, plasma, and urine. The 

drug quantification methods include HPLC/UV, LC/MS/MS, LC/MS, and radiographic. 

CYP450 family enzymes predominantly exist in the gut wall and liver. Transporters are tissue 

specific. Table 5 presents the tissue specific transports and their functions. Probe drug is 

another important concept in the pharmacology research. An enzyme‟s probe substrate means 

that this substrate is primarily metabolized or transported by this enzyme. In order to 

experimentally prove whether a new drug inhibits or induces an enzyme, its probe substrate is 

always utilized to demonstrate this enzyme‟s activity before and after inhibition or induction. 

An enzyme‟s probe inhibitor or inducer means that it inhibits or induces this enzyme 

primarily. Similarly, an enzyme‟s probe inhibitor needs to be utilized if we investigate 

whether a drug is metabolized by this enzyme. Table 6 presents all the probe inhibitors, 

inducers, and substrates of CYP enzymes. Table 7 presents all the probe inhibitors, inducers, 

and substrates of the transporters. All these information were collected from industry 

standard 

(http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm0649

82.htm), reviewed in the top pharmacology journal [9]. 

Table 5 Tissue Specific Transporters 

Gene Aliases Tissue type Function 

ABCB1 P-gp, MDR1 Intestinal enterocyte, kidney proximal tubule, 

hepatocyte (canalicular), brain endothelia 

Efflux 

ABCG2 BCRP Intestinal enterocyte, hepatocyte (canalicular), kidney 

proximal tubule, brain endothelia, placenta, stem 

cells, mammary gland (lactating) 

Efflux 

SLCO1B1 OATP1B1, OATP-

C, OATP2, LST-1 

Hepatocyte (sinusoidal) Uptake 

SLCO1B3 OATP1B3, OATP-

8 

Hepatocyte (sinusoidal) Uptake 

SLC22A2 OCT2 Kidney proximal tubule Uptake 

SLC22A6 OAT1 Kidney proximal tubule, placenta Uptake 

SLC22A8 OAT3 Kidney proximal tubule, choroid plexus, brain 

endothelia 

Uptake 



Table 6 in vivo Probe Inhibitors/Inducers/Substrates of CYP Enzymes 

CYP 

Enzymes 

Inhibitors Inducers Substrates 

CYP1A2 Ciprofloxacin, enoxacin, 

fluvoxamine, Methoxsalen, 

mexiletine, oral 

contraceptives, 

phenylpropanolamine, 

thiabendazole, vemurafenib, 

zileuton, acyclovir, 

allopurinol, caffeine, 

cimetidine, daidzein, 

disulfiram, Echinacea, 

famotidine, norfloxacin, 

propafenone, propranolol, 

terbinafine, ticlopidine, 

verapamil 

Montelukast, phenytoin, 

smokers versus non-

smokers, moricizine, 

omeprazole, 

phenobarbital 

Alosetron, caffeine, 

duloxetine, melatonin, 

ramelteon, tacrine, 

tizanidine, theophylline, 

tizanidine 

CYP2B6 Clopidogrel, ticlopidine 

prasugrel 

Efavirenz, rifampin, 

nevirapine 

Bupropion, efavirenz 

CYP2C8 Gemfibrozil, fluvoxamine, 

ketoconazole, trimethoprim 

Rifampin Repaglinide, Paclitaxel 

CYP2C9 Amiodarone, fluconazole, 

miconazole, oxandrolone, 

capecitabine, cotrimoxazole, 

etravirine, fluvastatin, 

fluvoxamine, metronidazole, 

sulfinpyrazone, tigecycline, 

voriconazole, zafirlukast 

Carbamazepine, 

rifampin, aprepitant, 

bosentan, phenobarbital, 

St. John‟s wort 

Celecoxib, Warfarin, 

phenytoin 

CYP2C19 Fluconazole, fluvoxamine, 

ticlopidine, esomeprazole, 

fluoxetine, moclobemide, 

omeprazole, voriconazole, 

allicin (garlic derivative), 

armodafinil, carbamazepine, 

cimetidine, etravirine, human 

growth hormone (rhGH), 

felbamate, ketoconazole, oral 

contraceptives 

Rifampin, artemisinin Clobazam, lansoprazole, 

omeprazole, 

Smephenytoin, S-

mephenytoin 

CYP3A Boceprevir, clarithromycin, 

conivaptan, grapefruit juice, 

indinavir, itraconazole, 

Avasimibe, 

carbamazepine, 

phenytoin, rifampin, St. 

Alfentanil, aprepitant, 

budesonide, buspirone, 

conivaptan, darifenacin, 



ketoconazole, 

lopinavir/ritonavir, 

mibefradil, nefazodone, 

nelfinavir, posaconazole, 

ritonavir, saquinavir, 

telaprevir, telithromycin, 

voriconazole, amprenavir, 

aprepitant, atazanavir, 

ciprofloxacin, crizotinib, 

darunavir/ritonavir, diltiazem, 

erythromycin, fluconazole, 

fosamprenavir, grapefruit 

juice, imatinib, verapamil, 

alprazolam, amiodarone, 

amlodipine, atorvastatin, 

bicalutamide, cilostazol, 

cimetidine, cyclosporine, 

fluoxetine, fluvoxamine, 

ginkgo, goldenseal, isoniazid, 

lapatinib, nilotinib, oral 

contraceptives, pazopanib, 

ranitidine, ranolazine, 

tipranavir/ritonavir, 

ticagrelor, zileuton 

John‟s wort, bosentan, 

efavirenz, etravirine, 

modafinil, nafcillin, 

amprenavir, aprepitant, 

armodafinil, 

clobazamechinacea, 

pioglitazone, prednisone, 

rufinamide, vemurafenib 

darunavir, dasatinib, 

dronedarone, eletriptan, 

eplerenone, everolimus, 

felodipine, indinavir, 

fluticasone, lopinavir, 

lovastatin, lurasidone, 

maraviroc, midazolam, 

nisoldipine, quetiapine, 

saquinavir, sildenafil, 

simvastatin, sirolimus, 

tolvaptan, tipranavir, 

triazolam, ticagrelor, 

vardenafil, Alfentanil, 

astemizole, cisapride, 

cyclosporine, 

dihydroergotamine, 

ergotamine, fentanyl, 

pimozide, quinidine, 

sirolimus, tacrolimus, 

terfenadine 

CYP2D6 Bupropion, fluoxetine, 

paroxetine, quinidine, 

cinacalcet, duloxetine, 

terbinafine, 

NA Atomoxetine, desipramine, 

dextromethorphan, 

metoprolol, nebivolol, 

perphenazine, tolterodine, 

venlafaxine, Thioridazine, 

pimozide 
amiodarone, celecoxib, 

clobazam, cimetidine, 

desvenlafaxine, diltiazem, 

diphenhydramine, echinacea, 

escitalopram, febuxostat, 

gefitinib, hydralazine, 

hydroxychloroquine, 

imatinib, methadone, oral 

contraceptives, pazopanib, 

propafenone, ranitidine, 

ritonavir, sertraline, 

telithromycin, verapamil, 

vemurafenib 



Table 7 in vivo Probe Inhibitors/Inducers/Substrates of Selected Transporters 

Transporter Inhibitor Inducer Substrate 

P-gp Amiodarone, azithromycin, 

captopril, carvedilol, 

clarithromycin, conivaptan, 

cyclosporine, diltiazem, 

dronedarone, erythromycin, 

felodipine, itraconazole, 

ketoconazole, lopinavir and 

ritonavir, quercetin, 

quinidine, ranolazine, 

ticagrelor, verapamil 

Avasimibe, 

carbamazepine, 

phenytoin, rifampin, 

St John‟s wort, 

tipranavir/ritonavir 

Aliskiren, ambrisentan, 

colchicine, dabigatran 

etexilate, digoxin, 

everolimus, fexofenadine, 

imatinib, lapatinib, 

maraviroc, nilotinib, 

posaconazole, ranolazine, 

saxagliptin, sirolimus, 

sitagliptin, talinolol, 

tolvaptan, topotecan 

BCRP Cyclosporine, elacridar 

(GF120918), eltrombopag, 

gefitinib 

NA Methotrexate, 

mitoxantrone, imatinib, 

irrinotecan, lapatinib, 

rosuvastatin, sulfasalazine, 

topotecan 

OATP1B1 Atazanavir, cyclosporine, 

eltrombopag, gemfibrozil, 

lopinavir, rifampin, ritonavir, 

saquinavir, tipranavir 

NA Atrasentan, atorvastatin, 

bosentan, ezetimibe, 

fluvastatin, glyburide, SN-

38 (active metabolite of 

irinotecan), rosuvastatin, 

simvastatin acid, 

pitavastatin, pravastatin, 

repaglinide, rifampin, 

valsartan, olmesartan 

OATP1B3 Atazanavir, cyclosporine, 

lopinavir, rifampin, ritonavir, 

saquinavir 

NA Atorvastatin, rosuvastatin, 

pitavastatin, telmisartan, 

valsartan, olmesartan 

OCT2 Cimetidine, quinidine NA Amantadine, amiloride, 

cimetidine, dopamine, 

famotidine, memantine, 

metformin, pindolol, 

procainamide, ranitidine, 

varenicline, oxaliplatin 

OAT1 Probenecid NA Adefovir, captopril, 

furosemide, lamivudine, 

methotrexate, oseltamivir, 

tenofovir, zalcitabine, 

zidovudine 

OAT3 Probenecid cimetidine, 

diclofenac 

NA Acyclovir, bumetanide, 

ciprofloxacin, famotidine, 

furosemide, methotrexate, 

zidovudine, oseltamivir 

acid, (the active metabolite 

of oseltamivir), penicillin 

G, pravastatin, 

rosuvastatin, sitagliptin 



Metabolism The cytochrome P450 superfamily (officially abbreviated as CYP) is a large and 

diverse group of enzymes that catalyze the oxidation of organic substances. The substrates of 

CYP enzymes include metabolic intermediates such as lipids and steroidal hormones, as well 

as xenobiotic substances such as drugs and other toxic chemicals. CYPs are the major 

enzymes involved in drug metabolism and bioactivation, accounting for about 75% of the 

total number of different metabolic reactions [10]. CYP enzyme names and genetic variants 

were mapped from the Human Cytochrome P450 (CYP) Allele Nomenclature Database 

(http://www. cypalleles.ki.se/). This site contains the CYP450 genetic mutation effect on the 

protein sequence and enzyme activity with associated references. 

Transport Proteins are proteins which serves the function of moving other materials within 

an organism. Transport proteins are vital to the growth and life of all living things. Transport 

proteins involved in the movement of ions, small molecules, or macromolecules, such as 

another protein, across a biological membrane. They are integral membrane proteins; that is 

they exist within and span the membrane across which they transport substances. Their names 

and genetic variants were mapped from the Transporter Classification Database 

(http://www.tcdb.org). In addition, we also added the probe substrates and probe inhibitors to 

each one of the metabolism and transportation enzymes (see prescribed description). 

Drug names was created using the drug names from DrugBank 3.0 [2]. DrugBank consists of 

6,829 drugs which can be grouped into different categories of FDA-approved, FDA approved 

biotech, nutraceuticals, and experimental drugs. The drug names are mapped to generic 

names, brand names, and synonyms. 

Subject included the existing ontologies for human disease ontology (DOID), suggested 

Ontology for Pharmacogenomics (SOPHARM),, and mammalian phenotype (MP) from 

http://bioportal.bioontology.org (see Table 1)The PK ontology was implemented with 

Protégé [11] and uploaded to the BioPortal ontology platform. 

PK corpus 

A PK abstract corpus was constructed to cover four primary classes of PK studies: clinical 

PK studies (n = 56); clinical pharmacogenetic studies (n = 57); in vivo DDI studies (n = 218); 

and in vitro drug interaction studies (n = 210). The PK corpus construction process is a 

manual process. The abstracts of clinical PK studies were selected from our previous work, in 

which the most popular CYP3A substrate, midazolam was investigated [12]. The clinical 

pharmacogenetic abstracts were selected based on the most polymorphic CYP enzyme, 

CYP2D6. We think these two selection strategies represent very well all the in vivo PK and 

PG studies. In searching for the drug interaction studies, the abstracts were randomly selected 

from a PubMed query, which used probe substrates/inhibitors/inducers for metabolism 

enzymes reported in the Table 6. 

Once the abstracts have been identified in four classes, their annotation is a manual process 

(Figure 1). The annotation was firstly carried out by three master level annotators (Shreyas 

Karnik, Abhinita Subhadarshini, and Xu Han), and one Ph.D. annotator (Lang Li). They have 

different training backgrounds: computational science, biological science, and pharmacology. 

Any differentially annotated terms were further checked by Sara K. Quinney and David A. 

Flockhart, one Pharm D. and one M.D. scientists with extensive pharmacology training 

background. Among the disagreed annotations between these two annotators, a group review 

was conducted (Drs Quinney, Flockhart, and Li) to reach the final agreed annotations. In 



addition a random subset of 20% of the abstracts that had consistent annotations among four 

annotators (3 masters and one Ph.D.), were double checked by two Ph.D. level scientists. 

Figure 1 PK Corpus Annotation Flow Chart. 

A structured annotation scheme was implemented to annotate three layers of 

pharmacokinetics information: key terms, DDI sentences, and DDI pairs (Figure 2). DDI 

sentence annotation scheme depends on the key terms; and DDI annotations depend on the 

key terms and DDI sentences. Their annotation schemes are described as following. 

Figure 2 A Three Level Hierarchical PK and DDI Annotation Scheme. 

Key terms include drug names, enzyme names, PK parameters, numbers, mechanisms, and 

change. The boundaries of these terms among different annotators were judged by the 

following standard. 

• Drug names were defined mainly on DrugBank 3.0. In addition, drug metabolites were 

also tagged, because they are important in in vitro studies. The metabolites were judged by 

either prefix or suffix: oxi, hydroxyl, methyl, acetyl, N-dealkyl, N-demethyl, nor, dihydroxy, 

O-dealkyl, and sulfo. These prefixes and suffixes are due to the reactions due to phase I 

metabolism (oxidation, reduction, hydrolysis), and phase II metabolism (methylation, 

sulphation, acetylation, glucuronidation) (Brunton). 

• Enzyme names covered all the CYP450 enzymes. Their names are defined in the human 

cytochrome P450 allele nomenclature database, http://www. cypalleles.ki.se/. The variations 

of the enzyme or gene names were considered. Its regular expression is 

(?:cyp|CYP|P450|CYP450)?[0–9][a-zA-Z][0–9]{0,2}(?:\*[0–9]{1,2})?$. 

• PK parameters were annotated based on the defined in vitro and in vivo PK parameter 

ontology in Table 2 and 4. In addition, some PK parameters have different names, CL = 

clearance, t1/2 = half-life, AUC = area under the concentration curve, and AUCR = area 

under the concentration curve ratio. 

• Numbers such as dose, sample size, the values of PK parameters, and p-values were all 

annotated. If presented, their units were also covered in the annotations. 

• Mechanisms denote the drug metabolism and interaction mechanisms. They were 

annotated by the following regular expression patterns: inhibit(e(s|d)?|ing|ion(s)?|or)$, 

catalyz(e(s|d)?|ing)$, correlat(e(s|d)?|ing|ion(s)?)$, metaboli(z(e(s|d)?|ing)|sm)$, 

induc(e(s|d)?|ing|tion(s)?|or)$, form((s|ed)?|ing|tion(s)?|or)$, stimulat(e(s|d)?|ing|ion(s)?)$, 

activ(e(s)?|(at)(e(s|d)?|ing|ion(s)?))$, and suppress(e(s|d)?|ing|ion(s)?)$. 

• Change describes the change of PK parameters. The following words were annotated in 

the corpus to denote the change: strong(ly)?, moderate(ly)?, high(est)?(er)?, slight(ly)?, 

strong(ly)?, moderate(ly)?, slight(ly)?, significant(ly)?, obvious(ly)?, marked(ly)?, great(ly)?, 

pronounced(ly)?, modest(ly)?, probably, may, might, minor, little, negligible, doesn‟t 

interact, affect((s|ed)?|ing|ion(s)?)?$, reduc(e(s|d)?|ing|tion(s)?)$, and increas(e(s|d)?|ing)$. 

The middle level annotation focused on the drug interaction sentences. Because two 

interaction drugs were not necessary all presented in the sentence, sentences were categorized 

into two classes: 

• Clear DDI Sentence (CDDIS): two drug names (or drug-enzyme pair in the in vitro study) 

are in the sentence with a clear interaction statement, i.e. either interaction, or non-

interaction, or ambiguous statement (i.e. such as possible or might and etc.). 



• Vague DDI Sentence (VDDIS): One drug or enzyme name is missed in the DDI sentence, 

but it can be inferred from the context. Clear interaction statement also is required. 

Once DDI sentences were labeled, the DDI pairs in the sentences were further annotated. 

Because the fundamental difference between in vivo DDI studies and in vitro DDI studies, 

their DDI relationships were defined differently. In in vivo studies, three types of DDI 

relationships were defined (Table 8): DDI, ambiguous DDI (ADDI), and non-DDI (NDDI). 

Four conditions are specified to determine these DDI relationships. Condition 1 (C1) requires 

that at least one drug or enzyme name has to be contained in the sentence; condition 2 (C2) 

requires the other interaction drug or enzyme name can be found from the context if it is not 

from the same sentence; condition 3 (C3) specifies numeric rules to defined the DDI 

relationships based on the PK parameter changes; and condition 4 (C4) specifies the language 

expression patterns for DDI relationships. Using the rules summarized in Table 8, DDI, 

ADDI, and NDDI can be defined by C1 ˄ C2 ˄ (C3 ˄ C4). The priority rank of in vivo PK 

parameters is AUC > CL > t1/2 > Cmax. In in vitro studies, six types of DDI relationships were 

defined (Table 8). DDI, ADDI, NDDI were similar to in vivo DDIs, but three more drug-

enzyme relationships were further defined: DEI, ambiguous DEI (ADEI), and non-DDI 

(NDEI). C1, C2, and C4 remained the same for in vitro DDIs. The main difference is in C3, 

in which either Ki or IC50 (inhibition) or EC50 (induction) were used to defined DDI 

relationship quantitatively. The priority rank of in vitro PK parameters is Ki > IC50. Table 9 

presented eight examples of how DDIs or DEIs were determined in the sentences. 

Table 8 DDI Definitions in Corpus 

DDI 

relationship 

C1 C2 C3** C4** 

IN VIVO STUDY 

DDI Yes Yes The PK parameter with the highest 

priority* must satisfy p-value <0.05 and 

FC > 1.50 or FC < 0.67 

Significant, obviously, 

markedly, greatly, 

pronouncedly and etc. 

Ambiguous 

DDI (ADDI) 

The PK parameter with the highest 

priority* in the conditions of p-value 

<0.05 but 0.67 < FC < 1.50; or FC >1.50 

or FC <0.67, but p-value > 0.05. 

Modestly, moderately, 

probably, may, might, and 

etc. 

Non-DDI 

(NDDI) 

The PK parameter with the highest 

priority*are in the condition of p-value > 

0.05 and 0.67 < FC < 1.50 

Minor significance, 

slightly, little or negligible 

effect, doesn‟t interact etc. 

IN VITRO STUDY 

DDI Yes Yes (0< Ki < 10 or 0< EC50 < 10 microM, 

and p-value <0.05) 

Significant, obviously, 

markedly, greatly, 

pronouncedly and etc. 
DEI 

Ambiguous 

DDI (ADDI) 

(10 < Ki < 100 or 10 < EC50 < 100 

microM, and p-value <0.05 or vice versa) 

Modestly, moderately, 

probably, may, might, and 

etc. Ambiguous 

DEI (ADEI) 

Non-DDI 

(NDDI) 

(Ki > 100 microM or EC50 > 100 

microM, and p-value >0.05) 

Minor significance, 

slightly, little or negligible 

effect, doesn‟t interact etc. Non-DEI 

(NDEI) 



Note: 

C1: At least one drug or enzyme name has to be contained in the sentence. 

C2: Need to label the drug name if it is not from the same sentence. 

C3: PK-parameter and value dependent. 

C4: Significance statement. 

*Priority issue: When C3 and C4 occur and conflict, C3 dominates the sentence.**For the 

priority of PK parameters: AUC > CL > t1/2 > Cmax;; the priority of in vitro PK parameters: 

Ki>IC50. 

Table 9 Examples of DDI Definitions 

PMID DDI sentence Relationship and commend 

20012601 The pharmacokinetic parameters of verapamil 

were significantly altered by the co-administration 

of lovastatin compared to the control. 

Because of the words, 

“significantly”, (Verapamil, 

lovastatin) is a DDI. 

20209646 The clearance of mitoxantrone and etoposide was 

decreased by 64% and 60%, respectively, when 

combined with valspodar. 

Because of the fold changes 

were less than 0.67, 

(mitoxantrone, valspodar.) and 

(etoposide, valspodar) are 

DDIs. 

20012601 The (AUC (0-infinity)) of norverapamil and the 

terminal half-life of verapamil did not significantly 

changed with lovastatin coadministration. 

Because of the words, “not 

significantly changed”, 

(verapamil, ovastatin) is a 

NDDI. 

17304149 Compared with placebo, itraconazole treatment 

significantly increase the peak plasma 

concentration (Cmax) of paroxetine by 1.3 fold 

(6.7 2.5 versus 9.0 3.3 ng/mL, P≤0.05) and the area 

under the plasma concentration-time curve from 

zero to 48 hours [AUC(0–48)] of paroxetine by 1.5 

fold (137 73 versus 199 91 ng*h/mL, P≤0.01). 

AUC has a higher rank than 

Cmax, and it had a 1.5 fold-

change and less than 0.05 p-

value, thus, (itraconazole, 

paroxetine) is a DDI. 

13129991 The mean (SD) urinary ratio of dextromethorphan 

to its metabolite was 0.006 (0.010) at baseline and 

0.014 (0.025) after St John’s wort administration 

(P=.26) 

The change in PK parameter is 

more than 1.5 fold but P-value 

is >0.05. Thus, 

(dextromethorphan, St John‟s 

wort) is an ADDI. 

19904008 The obtained results show that perazine at its 

therapeutic concentrations is a potent inhibitor of 

human CYP1A2. 

Because of words, “potent 

inhibitor”, (perazine, CYP1A2) 

is a DEI. 

19230594 After human hepatocytes were exposed to 10 

microM YM758, microsomal activity and mRNA 

level for CYP1A2 were not induced while those for 

CYP3A4 were slightly induced. 

Because of words, “not 

induced” and “slightly 

induced”, (YM758, CYP1A2) 

and (YM758, CYP1A2) are 

NDEIs. 

19960413 From these results, DPT was characterized to be a 

competitive inhibitor of CYP2C9 and CYP3A4, 

with K(i) values of 3.5 and 10.8 microM in HLM 

and 24.9 and 3.5 microM in baculovirus-insect 

cell-expressed human CYPs, respectively. 

Because K was larger than 

10microM, (DPT, CYP2C9) 

and (DPT, CYP3A4) are 

ADEIs. 



Krippendorff's alpha [13] was calculated to evaluate the reliability of annotations from four 

annotators. The frequencies of key terms, DDI sentences, and DDI pairs are presented in 

Table 10. Their Krippendorff's alphas are 0.953, 0.921, and 0.905, respectively. Please note 

that the total DDI pairs refer to the total pairs of drugs within a DDI sentence from all DDI 

sentences. 

Table 10 Annotation Performance Evaluation 

Key Terms Annotation Categories Frequencies Krippendorff's alpha 

Drug 8633 0.953 

CYP 3801 

PK Parameter 1508 

Number 3042 

Mechanism 2732 

Change 1828 

Total words 97291 

DDI sentences CDDI sentences 1191 0.921 

VDDI sentences 120 

Total sentences 4724 

DDI Pairs DDI 1239 0.905 

ADDI 300 

NDDI 294 

DEI 565 

ADEI 95 

NDEI 181 

Total Drug Pairs 12399 



Table 11 Clinical PK Studies 
Ontology Pharmacogenetics Trial Drug Interaction Trail 

 

Tamoxifen (TAM) Midazolam (MDZ, PO 4mg; IV 0.05mg/kg), 

Ketoconazole (KTZ, PO, 200, 400 mg) 

  

in-vivo in-vivo 

  

HPLC/MS HPLC/MS 

SOLTAMOX™, 20mg/day  MDZ PO, IV; KTZ PO 

month 1, 4, 8, 12 before and 0.5, 0.75, 1, 2, 4, 6, 9 hrs 

TAM and its metabolites 

conc 

MDZ and KTZ: AUC, AUCR, t1/2, and Cmax 

  

298 24 

Blood blood 

prior chemo, menopausal  

  

  

  

  

 inhibition 

Longitudinal three-phase crossover 

prospective, single arm prospective, single arm 

  

steady state  

  

  

  

CYP2D6, 2C9, 2B6  

CYP3A4/5 CYP3A4/5 

  

  

  

breast cancer healthy volunteers 

  

Caucasian/African 

American 

 

ESR1/ESR2  

Note: The annotations are aligned for each row. The left column is the ontology tree 

presentation. The central and right columns display their corresponding annotations from the 

paper. 



Table 12 in vitro PK Study 
Ontology in-vitro study 

 

MDZ, APZ, TZ, CLAR, TAM, DTZ, NIF, BFC, HFC, TEST, 

E2 

Compare metabolic capabilities of CYP3A4, 3A5, 3A7 

 

 

sodium phosphate, NADPH, methanol. 

 

 

WinNonlin 

4 fold, 10% methanol (TZ) 

5 min 

insect cell (CYP3A) 

N/A 

3min; 6 min 

HPLC, MS, Fluorimetry 

CYP3A4/5/7, P450 reductase, b5 

1mol, 6.6mol, 9mol 

BD Gentest, PanVera, PanVera 

 

CYP3A 

 

 

 

 

 

 

 

 

 

 

CL for individual substrates 

Km for individual substrates 

Vmax for individual substrates 

MDZ, APZ, TZ, CLAR, TAM, DTZ, NIF, BFC, HFC, TEST, 

E2 

 

 

 

CYP3A4, 3A5, 3A7 

 

 

Note: The annotations are aligned for each row. The left column is the ontology tree 

presentation. The central and right columns display their corresponding annotations from the 

paper. 



The PK corpus was constructed by the following process. Raw abstracts were downloaded 

from PubMed in XML format. Then XML files were converted into GENIA corpus format 

following the gpml.dtd from the GENIA corpus [14]. The sentence detection in this step is 

accomplished by using the Perl module Lingua::EN::Sentence, which was downloaded from 

The Comprehensive Perl Archive Network (CPAN, www.cpan.org). GENIA corpus files 

were then tagged with the prescribed three levels of PK and DDI annotations. Finally, a 

cascading style sheet (CSS) was implemented to differentiate colours for the entities in the 

corpus. This feature allows the users to visualize annotated entities. We would like to 

acknowledge that a DDI Corpus was recently published as part of a text mining competition 

DDIExtraction 2011 (http://labda.inf.uc3m.es/ DDIExtraction2011/dataset.html). Their DDIs 

were clinical outcome oriented, not PK oriented. They were extracted from DrugBank, not 

from PubMed abstracts. Our PK corpus complements to their corpus very well. 

Utility 

Example 1: An annotated tamoxifen pharmacogenetics study 

This example shows how to annotate a pharmacogenetics studies with the PK ontology. We 

used a published tamoxifen PG study (Borges, Desta et al.). The key information from this 

tamoxifen PG trial was extracted as a summary list. Then the pre-processed information was 

mapped to the PK ontology (column 2 in Table 9). This PG study investigates the genetics 

effects (CYP3A4, CPY3A5, CYP2D6, CYP2C9, CYP2B6) on the tamoxifen 

pharmacokinetics outcome (tamoxifen metabolites) among breast cancer patients. It was a 

single arm longitudinal study (n = 298), patients took SOLTAMOX
TM

 20mg/day, and the 

drug steady state concentration was sampled (1, 4, 8, 12) months after the tamoxifen 

treatment. The study population was a mixed Caucasian and African American. In Table 9, 

the trial summary is well organized by the PK ontology. 

Example 2 midazolam/ketoconazole drug interaction study 

This was a cross-over three-phase drug interaction study [15] (n = 24) between midazolam 

(MDZ) and ketoconazole (KTZ). Phase I was MDZ alone (IV 0.05 mg/kg and PO 4mg); 

phase II was MDZ plus KTZ (200mg); and phase III was MDZ plus KTZ (400mg). Genetic 

variable include CYP3A4 and CYP3A5. The PK outcome is the MDZ AUC ratio before and 

after KTZ inhibition. Its PK ontology based annotation is shown in Table 9 column three. 

Example 3 in vitro Pharmacokinetics Study 

This was an in vitro study [16], which investigated the drug metabolism activities for 3 

enzymes, such as CYP3A4, CYP3A5, and CYP3A7 in a recombinant system. Using 10 

CYP3A substrates, they compared the relative contribution of 3 enzymes among 10 drug‟s 

metabolism. Its PK ontology based annotation is shown in Table 10. 

Example 4 A drug interaction text mining example 

We implemented the approach described by [17] for the DDI extraction. Prior to performing 

DDI extraction, the testing and validation DDI abstracts in our corpus was pre-processed and 

converted into the unified XML format [17]. The following steps were conducted: 



• Drugs were tagged in each of the sentences using dictionary based on DrugBank. This 

step revised our prescribed drug name annotations in the corpus. One purpose is to reduce the 

redundant synonymous drug names. The other purpose is only keep the parent drugs and 

remove the drug metabolites from the tagged drug names from our initial corpus, because 

parent drugs and their metabolites rarely interacts. In addition, enzymes (i.e. CYPs) were also 

tagged as drugs, since enzyme-drug interactions have been extensively studied and published. 

The regular expression of enzyme names in our corpus was used to remove the redundant 

synonymous gene names. 

• Each of the sentences was subjected to tokenization, PoS tags and dependency tree 

generation using the Stanford parser [18]. 

• C2
n
 drug pairs form the tagged drugs in a sentence were generated automatically, and they 

were assigned with default labels as no-drug interaction. Please note that if a sentence had 

only one drug name, this sentence didn‟t have a DDI. This setup limited us considering only 

CDDI sentence in our corpus. 

• The drug interaction labels were then manually flipped based on their true drug interaction 

annotations from the corpus. Please note that our corpus had annotated DDIs, ADDIs, 

NDDIs, DEIs, ADEIs, and NDEIs. Here only DDIs and DEIs were labeled as true DDIs. The 

other ADDIs, NDDIs, DEIs, and ADEIs were all categorized into the no-drug interactions. 

Then sentences were represented with dependency graphs using interacting components 

(drugs) (Figure 3). The graph representation of the sentence was composed of two items: i) 

One dependency graph structure of the sentence; ii) a sequence of PoS tags (which was 

transformed to a linear order "graph" by connecting the tags with a constant edge weight). 

We used the Stanford parser [18] to generate the dependency graphs. Airola et al. proposed to 

combine these two graphs to one weighted, directed graph. This graph was fed into a support 

vector machine (SVM) for DDI/non-DDI classification. More details about the all paths 

graph kernel algorithm can be found in [17]. A graphical representation of the approach is 

presented in Figure 3. 

Figure 3 Drug Interaction Extraction Algorithm Flow Chart. 

DDI extraction was implemented in the in vitro and in vivo DDI corpus separately. Table 13 

presented the training sample size and testing sample size in both corpus sets. Then Table 14 

presents the DDI extraction performance. In extracting in vivo DDI pairs, the precision, 

recall, and F-measure in the testing set are 0.67, 0.79, and 0.73, respectively. In the in vitro 

DDI extraction analysis, the precision, recall, and F-measure are 0.47, 0.58, 0.52 respectively 

in the in vitro testing set. In our early DDI research published in the DDIExtract 2011 

Challenge [19], we used the same algorithm to extract both in vitro and in vivo DDIs at the 

same time, the reported F-measure was 0.66. This number is in the middle of our current in 

vivo DDI extraction F-measure 0.73 and in vitro DDI extraction F-measure 0.52. 



Table 13 DDI Data Description 

Datasets Abstracts Sentences DDI Pairs True DDI Pairs 

in vivo DDI training 174 2112 2024 359 

in vivo DDI testing 44 545 574 45 

in vitro DDI training 168 1894 7122 783 

in vitro DDI testing 42 475 1542 146 

Table 14 DDI Extraction Performance 

Datasets Precision Recall F-measure 

in vivo DDI Training 0.67 0.78 0.72 

in vivo DDI Testing 0.67 0.79 0.73 

in vitro DDI Training 0.51 0.59 0.55 

in vitro DDI Testing 0.47 0.58 0.52 

Error analysis was performed in testing samples. Table 15 summarized the results. Among 

the known reasons for the false positives and false negatives, the most frequent one is that 

there are multiple drugs in the sentence, or the sentence is long. The other reasons include 

that there is no direct DDI relationship between two drugs, but the presence of some words, 

such as dose, increase, and etc., may lead to a false positive prediction; or DDI is presented in 

an indirect way; or some NDDI are inferred due to some adjectives (little, minor, negligible). 



Table 15 DDI Extraction Error Analysis from Testing DDI Sets 

No. Error Categories Error 

type 

Frequency Examples 

In 

vivo 

In 

vitro 

1 There are multiple drugs in the sentence, 

and the sentence is long. 

FP 6 34 PMID: 12426514. In 3 subjects with measurable concentrations in the single-

dose study, rifampin significantly decreased the mean maximum plasma 

concentration (C(max)) and area under the plasma concentration-time curve 

from 0 to 24 h [AUC(0–24)] of praziquantel by 81% (P <.05) and 85% (P 

<.01), respectively, whereas rifampin significantly decreased the mean C(max) 

and AUC(0–24) of praziquantel by 74% (P <.05) and 80% (P <.01), 

respectively, in 5 subjects with measurable concentrations in the multiple-dose 

study 

FN 2 17 PMID: 10608481. Erythromycin and ketoconazole showed a clear inhibitory 

effect on the 3-hydroxylation of lidocaine at 5 microM of lidocaine (IC50 9.9 

microM and 13.9 microM, respectively), but did not show a consistent effect at 

800 microM of lidocaine (IC50 >250 microM and 75.0 microM, respectively). 

2 There is no direct DDI relationship 

between two drugs, but the presence of 

some words, such as dose, increase, and 

etc. may lead to a false positive 

prediction 

FP 6 14 PMID: 17192504. A significant fraction of patients to be treated with 

HMR1766 is expected to be maintained on warfarin 

3 DDI is presented in an indirect way. FN 2 19 PMID: 11994058. In CYP2D6 poor metabolizers, systemic exposure was 

greater after chlorpheniramine alone than in extensive metabolizers, and 

administration of quinidine resulted in a slight increase in CLoral. 

4 Design issue. Some NDDI are inferred 

due to some adjectives (little, minor, 

negligible) 

FP 1 3 PMID: 10223772. In contrast,the effect of ranitidine or ebrotidine on CYP3A 

activity in vivo seems to have little clinical significance. 

5 Unknown FP 5 44 PMID: 10383922. CYP1A2, CYP2A6, and CYP2E1 activities were not 

significantly inhibited by azelastine and the two metabolites. 



FN 6 26 PMID: 10681383. However, the most unusual result was the interaction 

between testosterone and nifedipine. 



Conclusions and discussions 

A comprehensive PK ontology was constructed. It annotates both in vitro PK experiments 

and in vivo PK studies. Using our PK ontology, a PK corpus was also developed. It consists 

of four classes of PK studies: in vivo PK studies, in vivo PG studies, in vivo DDI interaction 

studies, and in vitro DDI studies. This PK corpus is a highly valuable resource for text mining 

drug interactions relationship. 

We previously had developed entity recognition algorithm or tools to tag PK parameters and 

their associated numerical data (Wang [4]). We had shown that for one drug, midazolam, we 

have achieved very high accuracy and recall rate in tagging PK parameter, clearance (CL), 

and its associated numerical values. However, using our newly developed PK corpus, we 

cannot regain such a good performance in a more general class of drugs and PK parameters. 

This area will need much further investigation. 

We would like to acknowledge that a DDI Corpus was recently published as part of a text 

mining competition DDIExtraction 2011 (http://labda.inf.uc3m.es/ 

DDIExtraction2011/dataset.html). Their DDIs were clinical outcome oriented, not PK 

oriented. They were extracted from DrugBank, not from PubMed abstracts. Our PK corpus 

complements to their corpus very well. 

Availability, links, and requirement 

PK ontology is available in OWL for download at 

http://rweb.compbio.iupui.edu/corpus/ontology/, which can be accessed by using any OWL 

editor/viewer, e.g., protégé. PK corpuses are available in XML at 

http://rweb.compbio.iupui.edu/corpus/. 

Abbreviation 

ADMET, Absorption, disposition, metabolism, excretion, and transportation; DDI, Drug-drug 

interaction; KTZ, Ketoconazole; MDZ, Midazolam; POS, Part of speech; PK, 

Pharmacokinetics; PG, _harmacogenetics 

Authors’ contributions 

Hengyi Wu developed the three level hierarchical PK and DDI annotation scheme for the 

corpus; Shreyas Karnik designed the PK corpus annotation implementation scheme and was 

one of the master annotator; Abhinita Subhadarshini designed the PK ontology and was one 

of the master annotator; Zhiping Wang applied the PK ontology to three PK studies; Santosh 

Philips collected the pharmacogenetics abstracts; Xu Han was one of the master annotator; 

Chienwei Chiang collect the ontology information for the transporter; Lei Liu advised the 

utility of protégé; Malaz Boustani, Luis M Rocha and Sara K. Quinney defined the in vitro 

and in vivo PK terminologies; Sara K. Quinney was one of the Ph.D. level annotator; David 

Flockhart confirmed the disagreed annotations and double checked the PK terminologies and 

study design; and Lang Li contributed the idea, guide this research, and wrote the manuscript. 

All authors read and approved the final manuscript. 



Acknowledgements 

This work is supported by the U.S. National Institutes of Health grants R01 GM74217 (Lang 

Li) and AHRQ Grant R01HS019818-01 (Malaz Boustani), 2012ZX10002010-002-002 (Lei 

Liu), and 2012ZX09303013-015 (Lei Liu) 

References 

1. Rowland M, Tozer TN: Clinical pharmacokinetics concept and applications. London: 

Lippincott Williams & Wilkins; 1995. 

2. Knox C, Law V, Jewison T, Liu P, Ly S, et al: "Drugbank 3.0: a comprehensive 

resource for 'omics' research on drugs. Nucleic Acids Res 2011:D1035–D1041. 

3. Tari L, Anwar S, Liang S, Cai J, Baral C: Discovering drug-drug interactions: a text-

mining and reasoning approach based on properties of drug metabolism. Bioinformatics 

2010, 26(18):i547–i553. 

4. Wang Z, Kim S, et al: Literature mining on pharmacokinetics numerical data: a 

feasibility study. J Biomed Inform 2009, 42(4):726–735. 

5. Segel HI: "Enzyme kinetics – behavior and analysis of rapid equilibrium and steady state 

enzyme systems.". New York: John Wiley & Sons, Inc; 1975. 

6. Consortium TIT: Membrane transporters in drug development. Nature Review Drug 

Discovery 2010, 9:215–236. 

7. Rostami-Hodjegan A, Tucker G: "In silico" simulations to assess the "in vivo" 

consequences of "in vitro" metabolic drug-drug interactions. Drug Discovery Today: 

Technologies 2004, 1:441–448. 

8. Gibaldi M, Perrier D: Pharmacokinetics. 2nd edition.: Dekker; 1982. 

9. Huang SM, Temple R, Throckmorton DC, Lesko LJ: Drug interaction studies: study 

design, data analysis, and implications for dosing and labeling. Clin Pharmacol Ther 

2007, 81(2):298–304. 

10. Guengerich FP: Cytochrome p450 and chemical toxicology. Chem Res Toxicol 2008, 

21(1):70–83. 

11. Rubin DL, Noy NF, et al: Protege: a tool for managing and using terminology in 

radiology applications. J Digit Imaging 2007, 20(Suppl 1):34–46. 

12. Wang Z, Kim SK, Quinney S, Guo Y, Hall SD, Rocha LM, Li L: Literature mining on 

pharmacokinetics numerical data: a feasibility study. J Biomedical Informatics 2009, 

42(4):725–735. 

13. Krippendorff K: "Content analysis: an introduction to its methodology.". Thousand Oaks, 

CA: Sage; 2004. 



14. Kim JD, Ohta T, Tateisi Y, Tsujii J: Genia corpus—a semantically annotated corpus 

for bio-textmining. Bioinformatics 2003, 19(Supp 1):i180–i182. 

15. Chien JY, Lucksiri A, et al: Stochastic prediction of cyp3a-mediated inhibition of 

midazolam clearance by ketoconazole. Drug Metab Dispos 2006, 34(7):1208–1219. 

16. Williams JA, Ring BJ, et al: Comparative metabolic capabilities of cyp3a4, cyp3a5, 

and cyp3a7. Drug Metab Dispos 2002, 30(8):883–891. 

17. Airola A, Pyysalo S, Bjorne J, Pahikkala T, Ginter F, Salakoski T: All- paths graph 

kernel for protein-protein interaction extraction with evaluation of cross-corpus 

learning. BMC Bioinforma 2008, 9(suppl 11):S2. 

18. De Marneffe M, MacCartney B, Manning C: Generating typed dependency parses 

from phrase structure parses. Proceedings of LREC 2006, 6:449–454. 

19. Karnik S, Subhadarshini A, Wang Z, Rocha LM, Li L: "Extraction of drug-drug 

interactions using all paths graph kernel.". Proc. of the 1st Challenge task on Drug Drug 

Interaction Extraction 2011, :83–88. 

20. Borges S, Desta Z, et al: "Composite functional genetic and comedication cyp2d6 

activity score in predicting tamoxifen drug exposure among breast cancer patients.". J 

Clin Pharmacol, 50(4):450–458. 

21. Brunton LL, Chabner BA, Knollmann BC: "Goodman & Gilman's The Pharmacological 

Basis Of Therapeutics.".:12. 

22. Segura-Bedmar I, Martínez P, de Pablo-Sánchez C: Using a shallow linguistic kernel 

for drug-drug interaction extraction. J Biomed Inform 2011, 44(5):789–804. 


