Generalizing DPOP: Action-GDL, a new complete
algorithm for DCOPs

(Extended Abstract)

M. Vinyals
1A, Artificial Intelligence
Research Institute
Spanish National Research
Council
meritxell@iiia.csic.es

ABSTRACT

In this paper we made three main contributions (fully de-
tailed in [5]). Firstly, we formulate a new algorithm, the
so-called Action-GDL, that takes inspiration from GDL [1],
extending and applying it to Distributed Constraint Opti-
mization Problems (DCOPs). Secondly, we show the gen-
erality of Action-GDL showing how it generalizes DPOP[4],
one of the low complexity, state-of-the-art algorithm to solve

DCOPs. Finally, we provide empirical evidence of how Action-

GDL can outperform DPOP in terms of the amount of com-
putation, communication and parallelism.

Categories and Subject Descriptors

1.2.11 [Computing Methodologies]: Artificial Intelligence—

Distributed Artificial Intelligence
General Terms
Algorithms theory

Keywords
GDL, DCOP, Distributed Junction Tree, DPOP

Action-GDL is a novel complete algorithm that extends
GDL [1], to efficiently solve DCOPs. GDL is a general
message-passing algorithm that exploits the way a global
function factors into a combination of local functions gener-
alizing a large family of well-known algorithms. In our case,
the rationale to apply (and extend) GDL is that a DCOP re-
quires the maximization of a global function resulting from
the combination of local functions.

GDL is defined over two binary operations [1] that in our
case, since we are concerned with the problem of maximizing
an utility function, correspond to the addition and the maxi-
mization (the max-sum GDL). In order to ensure optimality
and convergence, GDL arranges the objective function to
assess in a junction tree structure (JT)[2].

*This work has been partially funded by the project
TIN2006-15662-C02-01. The work of M.Vinyals is supported
by the Ministry of Education of Spain (FPU grant AP2006-
04636)

Cite as: Title (Extended Abstract), Author(s), Proc. of 8th Int.
Conf. on Autonomous Agents and Multiagent Systems (AA-
MAS 2009), Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10—
15, 2009, Budapest, Hungary, pp. XXX-XXX.

Copyright (©) 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

J.A. Rodriguez-Aguilar
A, Artificial Intelligence
Research Institute
Spanish National Research

_ Council
jar@iiia.csic.es

J. Cerquides *
WAL, Dep. Matematica
Aplicada i Analisi
Universitat de Barcelona
cerquide@maia.ub.es

Py (1, x2)
P1(zy, x2)
c»—;‘ o Ty
6 \ 9
%
= Y (xg, z3, oY
¥5 (e, z5)

‘@

wa(x2, 23, w4) ¥3(x1, 25) Y3(z3,24) vy(zyg)

(b) JT) DJT

Figure 1: CG and JT/DJT arrangements

Fig. 1(a) shows an example of DCOP represented by its
constraint graph (CG). We use the definition and nomencla-
ture for the DCOP as formulated in [5]. Fig.1(b) shows one
of the possible JTs for this DCOP, a tree of three cliques,
where each clique is a subset of variables of the DCOP.
Nodes in the figure stand for cliques and edges for separators.
Thus, for example, C; is composed of variables z1,z2 , C3 is
composed of variables z1, 25 and their separator is composed
of its intersection x1. Each clique C; is associated with a po-
tential 1;, a function whose domain is a subset of C;. More-
over, by making ¥ = {4 = r'2,¢p = r23 4 3% 4 ¢4 gy = #15}
the function encoded is the same as the one in the CG.

Messages/local knowledge K

Message/local knowledge (K)

1. po1 =max,, . Y2(vy. 23, 24)

2. ps1 = max, Y3z, z5)

3. K1 = ¥i(er,e2) + p21(e) +
p31(z1)

4. p12 = maxg, Y1(ey, 22) + p31(e1)
5. p13 = maxg; P1 (21, 22) + p21(z2)
6. Ko = o(z2. w3, 24) + p12(2)

7. K3 = ¥3(e1. 5) + pas(e1)

© H21 = Maxg, o, P2 (g, 23, w4)
- 1131 = max, P3(e1, 5)

= 1 (o1, 22) + p21(22) + 1131 (21)
{01702} = argmaxml zg Ki(er,22)
g12 = c3, 013 = ¢}
Ko = ¢2(012 x3, 1-4) .
. (c3,04) =argmax,, ., Ka(xg, wyq)

Ks = Y3(o13.05)

- c5 = argmax, Ks(e5)

@mﬂasﬂkwwu

Table 1: Traces of GDL (left) and Action-GDL (right)

GDL defines a message-passing phase for cliques to ex-
change information about their variables. Once a clique
has received messages from all its clique neighbors it has
all information related to its variables. Table 1 (left) dis-

plays a trace of GDL over the JT in figure 1(b). At step
1, clique Co = {x2,z3,24} sends a message p21 to clique
C1 = {z1,z2} with the values of its local function, %2, after
"filtering out’ dependence on all variables but those com-
mon to Cz and C; (namely variables which are not in their
separator). An equivalent process is executed by clique Cs
to send a message to C1 (step 2). At step 3, after clique
Cy receives the values of its children’s local functions for its
variables x1, x2, it combines them with its potential into its
local knowledge ;. At that point, since C; has received
messages from all its neighbors, K; contains all the informa-
tion related to its variables x1,x2. At steps 4 and 5, clique
C; sends messages to its children that contain the combina-
tion of its local function, 1, with other children messages
filtering out all variables in the separator. Thus, C2 receives
a message from C; that contains the potential ¥; combined
with psz1 and filtered out over z2. Then it can compute Ko
(step 6).

However, the capability of computing any objective func-
tion, as provided by GDL, is not enough when solving DCOPs.
We need to go one step beyond GDL to allow a group of
agents make a joint decision (regarding their variables’ val-
ues) that maximizes any objective function. For this pur-
pose, Action-GDL extends GDL by: (1) supporting the dis-
tribution of the problem; and (2) inferring decision variables.

Supporting the distribution of the problem. GDL
runs over a JT in which all cliques are considered to be
located in a single agent, which is in charge of running
GDL. Action-GDL solves a DCOP where variables and re-
lations are distributed over agents that cooperatively solve
the problem. Therefore, Action-GDL extends GDL to deal
with cliques that are distributed to different agents and
control that agents have knowledge about the local infor-
mation (potential) related to its cliques. This is accom-
plished by running Action-GDL over a distributed junc-
tion tree (DJT), where each clique is assigned to an agent.
Fig.1(c) shows a DJT for the DCOP of figure 1(a). This
DJT has 5 cliques, one for each agent of the DCOP (clique
C; is assigned to agent a;). The set of potentials contains
the set of relations of the DCOP distributed as follows:
Y1 =112 9y = 23 4 2 g = 3%y = {},95 = r'°. Notice that
this DJT has the property that agents are assigned a clique
whose potential contains relations that this agent knows (in
DCOP relations that contains some agent’s variable). Thus,
agent 2 is assigned clique 2 whose potential contains rela-
tions that include variable x2, namely 23,24, That is not
true in the JT of figure 1(b) since in that case there is not
a single agent who knows all relations assigned to potential
d)Q, namely r23, 7‘34, r2,

To compile such DJT, we propose to use the method intro-
duced in [3] at Action-GDL pre-processing phase, that allow
agents to distributely compile a DJT to fed into Action-
GDL. This method has as advantatge in distributed envi-
ronments that captures how relations are distributed among
agents.

Inferring decision variables In a DCOP, clique vari-
ables are decision variables and computing a clique objective
function stands for assigning values to these decisions. As
explained above in GDL, when a clique has received mes-
sages from all its neighbors, it has all information related to
its variables and it can infer its values. Therefore, when a
clique infers their state solving a DCOP, there is no need to
propagate more information related to its variables down to

the tree since we can propagate directly the decisions taken.
It implies that once all cliques have received messages from
all their children (messages sent up to the tree) the second
message-passing phase of GDL (messages sent down the tree
to children), is no longer necessary. Instead it is replaced by
a second message-passing phase for cliques to exchange de-
cisions with its children (down the tree), which is precisely
the extension that Action-GDL introduces. Henceforth, we
shall refer to the first message-passing phase as utility prop-
agation, and to the second one as walue propagation. It is
relevant to notice that the value propagation phase ensures
that whenever multiple optimal joint decisions are feasible,
cliques converge to the very same joint decision, namely to
the very same solution of a DCOP.

To illustrate that change, table 1 (right) displays a trace
of Action-GDL over the JT in figure 1(b). Steps 1-3 are
equivalent to steps 1-3 in GDL, since they correspond to
message sent up to the tree (messages sent during the utility
propagation phase). However, at step 4 the root clique C
has received messages from all their children and can assess
the optimal value for z1,z2, namely c},c}. At that point, it
starts the value propagation phase, and C: propagates the
optimal value for z1,z2 down the tree to C2 and Cs through
value messages o12 o013 respectively (step 5). At steps 6-7,
C2 assesses the values of z2, 4 using its parent inferred value
for @2, namely c3. Same process is repeated in steps 8-9 for
C'3 using its parent inferred value for z;.

Finally, we claim that DPOP executions are equivalent to
the execution of Action-GDL under certain DJTs. To prove
that, in [5] we: (i) define a mapping from pseudotrees to a
subclass of DJTs; and (ii) prove that, given any pseudotree,
the execution of DPOP over the pseudotree is equivalent to
the execution of Action-GDL over the DJT produced by our
mapping for the pseudotree. Since given a pseudotree there
is a DJT such that Action-GDL execution is equal to DPOP
execution, Action-GDL can be at least as efficient as DPOP
(by mimicking its behavior) when solving DCOPs. Moreover
Action-GDL can yield better algorithmic performance than
DPOP. Action-GDL can achieve such improvement because:
(i) DJTs allow to explore problem arrangements that can-
not be represented via pseudotrees; and (ii) it can assess
multiple variables’ values at once. Hence, our early empir-
ical results, included in [5], indicate that alternative DJT
arrangements can lead to significant savings in communica-
tion and computation costs (which increase as the number
of variables grow) and to reductions of the maximum degree
of parallelism (from 25% to 40% of reduction).

1. REFERENCES

[1] S. M. Aji and R. J. McEliece. The generalized
distributive law. IEEE Transactions on Information
Theory, 46(2):325-343, 2000.

[2] F. V. Jensen and F. Jensen. Optimal junction trees. In
UAI pages 360-366, 1994.

[3] M. A. Paskin, C. Guestrin, and J. McFadden. A robust
architecture for distributed inference in sensor
networks. In IPSN, pages 55—62, 2005.

[4] A. Petcu and B. Faltings. A scalable method for
multiagent constraint optimization. In IJCAI pages
266-271, 2005.

[5] M. Vinyals, J.A.Rodriguez-Aguilar, and J. Cerquides.

Proving the equivalence of action-gdl and dpop.
Technical report, ITTA-CSIC, 2008. Available at http:
//www2.iiia.csic.es/ meritxell/publications/TRR200804.pdf.

