Generalizing DPOP: Action-GDL, a new complete algorithm for DCOPs

(Extended Abstract)

M. Vinyals IIIA, Artificial Intelligence Research Institute Spanish National Research Council meritxell@iiia.csic.es J.A. Rodriguez-Aguilar IIIA, Artificial Intelligence Research Institute Spanish National Research Council jar@iiia.csic.es J. Cerquides * WAI, Dep. Matemàtica Aplicada i Anàlisi Universitat de Barcelona cerquide@maia.ub.es

ABSTRACT

In this paper we made three main contributions (fully detailed in [5]). Firstly, we formulate a new algorithm, the so-called Action-GDL, that takes inspiration from GDL [1], extending and applying it to Distributed Constraint Optimization Problems (DCOPs). Secondly, we show the generality of Action-GDL showing how it generalizes DPOP[4], one of the low complexity, state-of-the-art algorithm to solve DCOPs. Finally, we provide empirical evidence of how Action-GDL can outperform DPOP in terms of the amount of computation, communication and parallelism.

Categories and Subject Descriptors

I.2.11 [Computing Methodologies]: Artificial Intelligence— Distributed Artificial Intelligence

General Terms

Algorithms theory

Keywords

GDL, DCOP, Distributed Junction Tree, DPOP

Action-GDL is a novel complete algorithm that extends GDL [1], to efficiently solve DCOPs. GDL is a general message-passing algorithm that exploits the way a global function factors into a combination of local functions generalizing a large family of well-known algorithms. In our case, the rationale to apply (and extend) GDL is that a DCOP requires the maximization of a global function resulting from the combination of local functions.

GDL is defined over two binary operations [1] that in our case, since we are concerned with the problem of maximizing an utility function, correspond to the addition and the maximization (the max-sum GDL). In order to ensure optimality and convergence, GDL arranges the objective function to assess in a *junction tree structure* (JT)[2].

Cite as: Title (Extended Abstract), Author(s), Proc. of 8th Int. Conf. on Autonomous Agents and Multiagent Systems (AA-MAS 2009), Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10– 15, 2009, Budapest, Hungary, pp. XXX-XXX.

Copyright © 2009, International Foundation for Autonomous Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

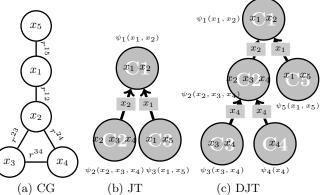
Figure 1: CG and JT/DJT arrangements

Fig. 1(a) shows an example of DCOP represented by its constraint graph (CG). We use the definition and nomenclature for the DCOP as formulated in [5]. Fig.1(b) shows one of the possible JTs for this DCOP, a tree of three cliques, where each clique is a subset of variables of the DCOP. Nodes in the figure stand for cliques and edges for separators. Thus, for example, C_1 is composed of variables x_1, x_2 , C_3 is composed of variables x_1, x_5 and their separator is composed of its intersection x_1 . Each clique C_i is associated with a potential ψ_i , a function whose domain is a subset of C_i . Moreover, by making $\Psi = \{\psi_1 = r^{12}, \psi_2 = r^{23} + r^{34} + r^{24}, \psi_3 = r^{15}\}$ the function encoded is the same as the one in the CG.

Message/local knowledge ($\widehat{\mathcal{K}}$)	Messages/local knowledge $\widehat{\mathcal{K}}$
1. $\mu_{21} = \max_{x_3, x_4} \psi_2(x_2, x_3, x_4)$	1. $\mu_{21} = \max_{x_3, x_4} \psi_2(x_2, x_3, x_4)$
2. $\mu_{31} = \max_{x_5} \psi_3(x_1, x_5)$	2. $\mu_{31} = \max_{x_5} \psi_3(x_1, x_5)$
3. $\widehat{\mathcal{K}}_1 = \psi_1(x_1, x_2) + \mu_{21}(x_2) +$	3. $\widehat{\mathcal{K}}_1 = \psi_1(x_1, x_2) + \mu_{21}(x_2) + \mu_{31}(x_1)$
$\mu_{31}(x_1)$	4. $\{c_1^*, c_2^*\} = \arg \max_{x_1, x_2} \widehat{\mathcal{K}}_1(x_1, x_2)$
4. $\mu_{12} = \max_{x_1} \psi_1(x_1, x_2) + \mu_{31}(x_1)$	5. $\sigma_{12} = c_2^*, \sigma_{13} = c_1^*$
5. $\mu_{13} = \max_{x_1} \psi_1(x_1, x_2) + \mu_{21}(x_2)$	6. $\widehat{\mathcal{K}}_2 = \psi_2(\sigma_{12}, x_3, x_4)$
6. $\mathcal{K}_2 = \psi_2(x_2, x_3, x_4) + \mu_{12}(x_2)$	7. $(c_3^*, c_4^*) = \arg \max_{x_3, x_4} \widehat{\mathcal{K}}_2(x_3, x_4)$
7. $\widehat{\mathcal{K}}_3 = \psi_3(x_1, x_5) + \mu_{13}(x_1)$	8. $\hat{\mathcal{K}}_3 = \psi_3(\sigma_{13}, x_5)$
	9. $c_5^* = \arg \max_{x_5} \widehat{\mathcal{K}}_3(x_5)$

Table 1: Traces of GDL (left) and Action-GDL (right)

GDL defines a message-passing phase for cliques to exchange information about their variables. Once a clique has received messages from all its clique neighbors it has all information related to its variables. Table 1 (left) dis-



^{*}This work has been partially funded by the project TIN2006-15662-C02-01. The work of M.Vinyals is supported by the Ministry of Education of Spain (FPU grant AP2006-04636)

plays a trace of GDL over the JT in figure 1(b). At step 1, clique $C_2 = \{x_2, x_3, x_4\}$ sends a message μ_{21} to clique $C_1 = \{x_1, x_2\}$ with the values of its local function, ψ_2 , after 'filtering out' dependence on all variables but those common to C_2 and C_1 (namely variables which are not in their separator). An equivalent process is executed by clique C_3 to send a message to C_1 (step 2). At step 3, after clique C_1 receives the values of its children's local functions for its variables x_1, x_2 , it combines them with its potential into its local knowledge $\hat{\mathcal{K}}_1$. At that point, since \mathcal{C}_1 has received messages from all its neighbors, $\hat{\mathcal{K}}_1$ contains all the information related to its variables x_1, x_2 . At steps 4 and 5, clique C_1 sends messages to its children that contain the combination of its local function, ψ_1 , with other children messages filtering out all variables in the separator. Thus, C_2 receives a message from \mathcal{C}_1 that contains the potential ψ_1 combined with μ_{31} and filtered out over x_2 . Then it can compute $\hat{\mathcal{K}}_2$ (step 6).

However, the capability of computing any objective function, as provided by GDL, is not enough when solving DCOPs. We need to go one step beyond GDL to allow a group of agents make a joint decision (regarding their variables' values) that maximizes any objective function. For this purpose, Action-GDL extends GDL by: (1) supporting the distribution of the problem; and (2) inferring decision variables.

Supporting the distribution of the problem. GDL runs over a JT in which all cliques are considered to be located in a single agent, which is in charge of running GDL. Action-GDL solves a DCOP where variables and relations are distributed over agents that cooperatively solve the problem. Therefore, Action-GDL extends GDL to deal with cliques that are distributed to different agents and control that agents have knowledge about the local information (potential) related to its cliques. This is accomplished by running Action-GDL over a distributed junction tree (DJT), where each clique is assigned to an agent. Fig.1(c) shows a DJT for the DCOP of figure 1(a). This DJT has 5 cliques, one for each agent of the DCOP (clique C_i is assigned to agent a_i). The set of potentials contains the set of relations of the DCOP distributed as follows: $\psi_1 = r^{12}, \psi_2 = r^{23} + r^{24}, \psi_3 = r^{34}, \psi_4 = \{\}, \psi_5 = r^{15}.$ Notice that this DJT has the property that agents are assigned a clique whose potential contains relations that this agent knows (in DCOP relations that contains some agent's variable). Thus, agent 2 is assigned clique 2 whose potential contains relations that include variable x_2 , namely r^{23}, r^{24} . That is not true in the JT of figure 1(b) since in that case there is not a single agent who knows all relations assigned to potential ψ_2 , namely r^{23}, r^{34}, r^{24} .

To compile such DJT, we propose to use the method introduced in [3] at Action-GDL pre-processing phase, that allow agents to distributely compile a DJT to fed into Action-GDL. This method has as advantatge in distributed environments that captures how relations are distributed among agents.

Inferring decision variables In a DCOP, clique variables are decision variables and computing a clique objective function stands for assigning values to these decisions. As explained above in GDL, when a clique has received messages from all its neighbors, it has all information related to its variables and it can infer its values. Therefore, when a clique infers their state solving a DCOP, there is no need to propagate more information related to its variables down to the tree since we can propagate directly the decisions taken. It implies that once all cliques have received messages from all their children (messages sent up to the tree) the second message-passing phase of GDL (messages sent down the tree to children), is no longer necessary. Instead it is replaced by a second message-passing phase for cliques to exchange *decisions* with its children (down the tree), which is precisely the extension that Action-GDL introduces. Henceforth, we shall refer to the first message-passing phase as *utility propagation*, and to the second one as *value propagation*. It is relevant to notice that the value propagation phase ensures that whenever multiple optimal joint decisions are feasible, cliques converge to the very same joint decision, namely to the very same solution of a DCOP.

To illustrate that change, table 1 (right) displays a trace of Action-GDL over the JT in figure 1(b). Steps 1-3 are equivalent to steps 1-3 in GDL, since they correspond to message sent up to the tree (messages sent during the utility propagation phase). However, at step 4 the root clique C_1 has received messages from all their children and can assess the optimal value for x_1, x_2 , namely c_1^*, c_2^* . At that point, it starts the value propagation phase, and C_1 propagates the optimal value for x_1, x_2 down the tree to C_2 and C_3 through value messages $\sigma_{12} \sigma_{13}$ respectively (step 5). At steps 6-7, C_2 assesses the values of x_2, x_4 using its parent inferred value for x_2 , namely c_2^* . Same process is repeated in steps 8-9 for C_3 using its parent inferred value for x_1 .

Finally, we claim that DPOP executions are equivalent to the execution of Action-GDL under certain DJTs. To prove that, in [5] we: (i) define a mapping from pseudotrees to a subclass of DJTs; and (ii) prove that, given any pseudotree, the execution of DPOP over the pseudotree is equivalent to the execution of Action-GDL over the DJT produced by our mapping for the pseudotree. Since given a pseudotree there is a DJT such that Action-GDL execution is equal to DPOP execution, Action-GDL can be at least as efficient as DPOP (by mimicking its behavior) when solving DCOPs. Moreover Action-GDL can yield better algorithmic performance than DPOP. Action-GDL can achieve such improvement because: (i) DJTs allow to explore problem arrangements that cannot be represented via pseudotrees; and (ii) it can assess multiple variables' values at once. Hence, our early empirical results, included in [5], indicate that alternative DJT arrangements can lead to significant savings in communication and computation costs (which increase as the number of variables grow) and to reductions of the maximum degree of parallelism (from 25% to 40% of reduction).

1. **REFERENCES**

- S. M. Aji and R. J. McEliece. The generalized distributive law. *IEEE Transactions on Information Theory*, 46(2):325–343, 2000.
- [2] F. V. Jensen and F. Jensen. Optimal junction trees. In UAI, pages 360–366, 1994.
- [3] M. A. Paskin, C. Guestrin, and J. McFadden. A robust architecture for distributed inference in sensor networks. In *IPSN*, pages 55–62, 2005.
- [4] A. Petcu and B. Faltings. A scalable method for multiagent constraint optimization. In *IJCAI*, pages 266–271, 2005.
- [5] M. Vinyals, J.A.Rodriguez-Aguilar, and J. Cerquides. Proving the equivalence of action-gdl and dpop. Technical report, IIIA-CSIC, 2008. Available at http: //www2.iiia.csic.es/~meritxell/publications/TRR200804.pdf.