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Abstract – In this paper, we develop an integrated prognostics method considering a time-

varying operating condition, which integrates physical gear models and sensor data. By taking 

advantage of stress analysis in finite element modeling (FEM), the degradation process governed 

by Paris’ law can adjust itself immediately to respond to the changes of the operating condition. 
The capability to directly relate the load to the damage propagation is a key advantage of the 

proposed integrated prognostics approach over the existing data-driven methods for dealing with 

time-varying operating conditions. In the proposed method, uncertainties in material parameters 

are considered as sources responsible for randomness in the predicted failure life. The joint 

distribution of material parameters is updated as sensor data become available. The updated 

distribution better characterizes the material parameters, and reduces the uncertainty in life 

prediction for the specific individual unit under condition monitoring. The update process is 

realized via Bayesian inference. To reduce the computational effort, a polynomial chaos 

expansion (PCE) collocation method is applied in computing the likelihood function in the 

Bayesian inference and the predicted failure time distribution. Examples based on crack 

propagation in a spur gear tooth are given to demonstrate the effectiveness of the proposed 

method. In addition, the example also shows that the proposed approach is effective even when 

the current loading profile is different from the loading profile under which historical data were 

collected. 

Index Terms – Integrated prognostics, time-varying operating condition, polynomial chaos 

expansion, Bayesian update, uncertainty quantification. 

 

ACRONYMS AND ABBREVIATIONS 

FEM        finite element modeling 

PCE polynomial chaos expansion 
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RUL        remaining useful life 

PHM proportional hazard model 

FE finite element 

SIF stress intensity factor 

MCMC Markov chain Monte Carlo 

PDF probability density function 

 

NOTATION 𝑎        crack size 𝑚, 𝐶   material parameters in Paris’ law 𝑁        number of loading cycles ∆𝐾      SIF range 𝐾𝐼      opening mode SIF 𝐾𝐼𝐼     sliding mode SIF 𝑙𝑜        loading condition 𝜀       model uncertainty 𝑎𝑟𝑒𝑎𝑙
 real crack size 𝑎𝑒𝑠𝑡𝑖
 estimated crack size 𝑎𝑠𝑖𝑚
 simulated crack size 𝑎𝑠,𝑁𝑠𝑖𝑚
 polynomial chaos approximation to simulated crack size 𝑒       measurement error 𝜎       standard deviation of measurement error ∆𝑁    incremental number of loading cycles 𝝃⃗         random vector of material parameters 𝜻⃗         Gaussian random vector with independent components Π  joint PDF of material parameters  𝚺 covariance matrix  
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𝑳 triangular matrix in Cholesky decomposition 𝜙 Orthogonal polynomial basis function Φ PDF of Gaussian random variable Χ       joint PDF of independent bivariate Gaussian vector  φ PDF of standard Gaussian random variable  Ψ      Hermite orthogonal polynomial basis function 𝑇𝑅𝑈𝐿 RUL 𝑎0 initial crack size 𝑎𝐶     critical crack size 𝑃𝑁(∙) polynomial orthogonal projection operator 𝐼𝑁(∙)      function operator based on numerical integration 𝑓𝑝𝑟𝑖𝑜𝑟(∙) joint prior distribution of material parameters 𝑙(∙) likelihood function in Bayesian inference 𝑓𝑝𝑜𝑠𝑡(∙) joint posterior distribution of material parameters 𝔼(∙)      expectation operator in 𝐿2- norm 

 

 

I. INTRODUCTION 

Condition based maintenance (CBM) [1], [2] is a maintenance strategy based on the health 

condition of equipment under condition monitoring. The condition monitoring system can detect 

and locate anomalies through diagnostics, which provides a starting point for prognostics. The 

task of prognostics is to predict the remaining useful life (RUL) of the faulty component given a 

fault model, and expected future loading condition. Prognostics is an essential component in 

CBM, based on which maintenance can be scheduled in an optimal way with respect to cost, 

reliability, availability, or other logistic metrics of interest. Accurate, reliable prognostics 

methods could result in several advantages.   

 Good prognostics can reduce unscheduled maintenance via providing accurate 

reliability information in advance. 
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 Asset cost can be reduced by making full use of the remaining life of critical 

components. 

 The safety risk which operators face can be minimized via predicting the equipment 

health condition.  

 Production can be enhanced via optimizing the maintenance policy.  

 Logistic cost can be reduced by better managing spares. 

Prognostics approaches can be categorized into three classes: data-driven methods [3]-[5], 

model-based (physics-based) methods [6]-[9], and integrated (hybrid) methods [10]-[15]. Data-

driven methods rely heavily on the failure and suspension histories of the components collected 

from the field or laboratory, and include the proportional hazard model (PHM), and artificial 

intelligence based techniques [16]-[19]. They are not effective when the historical data are 

insufficient. Model-based methods use physical models, such as finite element (FE) models, and 

damage propagation models. However, it is not a trivial task to build a complex physical model 

with high fidelity considering all the possible interactions, and the parameters in the model are 

sometimes difficult to determine. Because of the limitations of both the data-driven and physics-

based methods, there is a motivation for an integrated method, which combines the best aspects 

of both methods. In the integrated prognostics methods, the physical model is updated when new 

inspection data become available, which carry information on the health status of the component. 

In this way, the prediction via the model is expected to reflect the current health status, adapt 

itself, and predict the failure time more accurately. 

The recent interest in prognostics under variable loads is fuelled by operations and 

maintenance personnels’ need for decision support tools. Prognostics should account for changes 

in load, and report a more accurate RUL in a timely manner. The consideration of time-varying 

operating conditions in this paper is driven by the need for on-line prognostics for transportation 

mechanisms, manufacturing processes, numerical controlled machining, as well as other 

scenarios where the changes in operating conditions during operations is unavoidable. The time-

varying environment could be due to the changes in temperature, load, lubrication, speed, etc. In 

this study, a gearbox with spur gears under varying loading condition is investigated, because 

loading is the most important operating condition factor for a power transmission system.  



 

5 

 

The existing studies concerning prognostics under a time-varying environment are mostly 

data-driven. In [20], a linear degradation model was assumed. The effects on the degradation 

caused by time-varying operating conditions were taken into account by the coefficients assigned 

to these time-varying environmental parameters. The Bayesian method was used to derive the 

posterior distribution of these coefficients. Because of the linear model assumption, analytical 

expressions for the posterior distribution as well as those for the residual life distribution were 

available. The authors in [21] extended the prognostics in a time-varying condition to non-linear 

models, in which the degradation process was assumed to be governed by a Brownian motion 

with linear drift. Stress changes were accounted for in the instantaneous drift parameter. 

Bayesian inference was employed to estimate the posterior distribution of coefficients in the drift 

parameter. These approaches tackle the prognostics under a time-varying condition through the 

coefficients estimation in the degradation model. Unfortunately, these data-driven methods do 

not address the physical mechanism of the degradation, and hence the load has no direct 

relationship with the parameters in the degradation model. In addition, the effectiveness of data-

driven methods also depends heavily on the availability of a set of dense, well-distributed data. It 

is thus particularly challenging for a time-varying condition because it is unlikely that the 

training set encompasses all operating conditions.  

One major challenge in prognostic algorithm development is how to capture and manage the 

inherent large-grain uncertainty. A number of stochastic models have been developed to 

investigate the uncertainty in the crack propagation process. One way to randomize the process is 

to hypothesize that the parameters in Paris’ law are random variables, which are responsible for 

the scatter in failure times among identical units. Simulation methods are commonly used to 

quantify uncertainties in the prediction [10], [11], [14], [23]. To improve the computational 

efficiency, the authors’ earlier work [32] discussed the application of polynomial chaos 

expansion (PCE) in health prognostics of a cracked gear tooth. The results showed that PCE 

could account for different uncertainty sources in the degradation model effectively and 

efficiently. The readers can refer to [24]-[31] for more details about other applications of PCE, 

e.g., chemical system, and fluid dynamics. In particular, PCE has its merit in dealing with the 

inverse problem, in which the observed measurements are used to infer system parameters. 

Marzouk et al. [30] proposed an efficient stochastic spectral method for the inverse problem. The 

idea was further developed in [33], incorporating a stochastic collocation method to tackle the 
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inverse problem, and a convergence proof was also given. Because the integrated prognostics 

process involves parameter identification in Bayesian inference, the method proposed in [33] is 

investigated in this present paper for a prognostics purpose.   

By noticing the limitations of the existing data-driven prognostics methods, the present paper 

developed an integrated prognostics approach to deal with time-varying operating conditions. 

The degradation model is built on the physics of damage progression, which takes the form of a 

function of environmental parameters. Any changes of these environmental parameters, such as 

load, temperature, and speed, can be manifested immediately in the physical model. Hence, a key 

advantage of using the integrated prognostics method to deal with time-varying operating 

conditions is its capability to directly relate the environmental parameters to the degradation 

model. The proposed framework can apply to different mechanical components, given the 

corresponding physical models. In this study, we focus on the prognostics of a spur gear with a 

crack at a tooth root. The gear is a critical component in power transmission systems, and a crack 

is a key failure mode for gears. The well-known Paris’ law [22] is applied as the damage 

propagation model in the theory of linear elastic fracture mechanics. A FE model for a spur gear 

tooth is built to calculate the stress intensity factor (SIF) at the crack tip needed in Paris’ law.  

Considering the uncertainty in the two correlated parameters of Paris’ law, this study applies 

the PCE technique to improve the efficiency of the Markov Chain Monte Carlo (MCMC) 

algorithm when updating these uncertainties via Bayesian inference. A specific PCE formulation 

is given for the uncertainty quantification. By identifying the likelihood as an explicit expression 

of material parameters, this formulation allows a large amount of samples to ensure MCMC 

convergence, and enables a fast update of a joint PDF of the two correlated material parameters. 

Because the updated joint PDF of material parameters can better characterize the degradation 

process, the failure time distribution based on this joint PDF is expected to be more accurate.  

The structure of the proposed approach is shown in Fig. 1. It illustrates the update process of 

the failure time distribution between two consecutive inspection times. This update is achieved 

through the update of input parameters (material parameters) in the degradation model described 

by Paris’ law. Bayesian inference is applied to update these input parameters by taking in the 

condition monitoring data as observations. As this paper considers the effects of operating 

condition on prognostics, the loading profile is extracted to be an additional module as an input 



 

7 

 

to the FE model. The SIF is the output of the FE model, and expressed as a function with respect 

to crack size and load. Because this function is obtained offline by running the FE model at a 

baseline load and a series of selected crack sizes, there is no line connecting the data to the FE 

model. In this structure, Bayesian inference integrates physics models (Degradation model and 

FE model) and condition monitoring data (Data in Fig. 1) so that the parameters of the 

degradation model will become more accurate. PCE is used for two purposes: one is to calculate 

the likelihood function in Bayesian inference to accelerate the MCMC implementation, and the 

other one is to compute a failure time distribution based on the updated input parameters of a 

degradation model. Although a gearbox with spur gears is focused on in this paper, the proposed 

prognostics approach can be applied to other types of gears by using the corresponding methods 

and models in the SIF computation.  

 

 

Fig. 1. Structure of the proposed prognostics approach. 

 

This paper is organized as follows. The physical models are presented in Section II. The 

time-varying operating condition considered in this paper is introduced in Section III. 

Fundamentals of PCE for uncertainty quantification are given in Section IV. A method is 

proposed for material uncertainty quantification in prognostics in Section V, including a 

Bayesian inference framework, a specific PCE formulation to update uncertainty in two 

correlated material parameters, RUL prediction based on PCE, and the way to obtain the prior 

distributions using historical data. In Section VI, examples are given to demonstrate the 

effectiveness of the method. Section VII concludes the work. 

II. PHYSICAL MODELS 
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Compared to the existing data-driven and physics-based prognostics, the major advantages of 

integrated prognostics rely on the effective integration of data and degradation physics. In the 

case of a time-varying loading condition, the role of the physical model is particularly important 

because it can describe the damage propagation as a function of load. Without knowing the 

physics mechanism of failure, the data-driven method must train or fit to a large amount of 

observation data to identify a certain pattern or relationship between component health, load, and 

RUL, to predict the future system behavior. Obviously, data-driven prognostics need additional 

data sets as load condition changes over time, as any change will change the relationship already 

obtained during model training. In contrast, a physics-based model is established based on the 

physics law, which governs the material fracture under loading as well as the dynamics of the 

equipment. The effect of loading changes on the degradation model can be determined by stress 

analysis, so that the degradation model is able to adjust itself immediately after load change. In 

this section, two physical models needed in the present study will be introduced. 

A. FE model 

FE models are widely used for the stress analysis of mechanical components with 

complicated geometries and loading conditions. That said, analytic solutions are difficult to 

obtain or do not exist at all [6], [7], [9], [12], [13], [14], [23], [32]. Especially in terms of fracture 

problems, a discontinuity of the geometry can give rise to a singularity of the strain near the 

crack tip in linear elastic fracture theory. Computational fracture mechanics provides an effective 

way to obtain the approximate solution of the fracture problem by using the FE method and the 

boundary element method. SIF is an important parameter in fracture mechanics because it 

describes the stress filed in the region near the crack tip. Pertinent to different loading conditions 

that a crack can experience, as Fig. 2 illustrates, there are three types of SIF: opening mode 𝐾𝐼, 
sliding mode 𝐾𝐼𝐼, and tearing mode 𝐾𝐼𝐼𝐼. In the opening mode, the cracked body is loaded by 

tensile forces tending to open the crack; the sliding mode refers to in-plane shear loading, and the 

tearing mode corresponds to out-of-plane shear [34]. This study considers a two-dimensional 

problem with in-plane loading, so only 𝐾𝐼 and 𝐾𝐼𝐼 are of interest.   
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Fig. 2. Three types of loading on a cracked body:  

(a) Mode I (b) Mode II (c) Mode III [34]. 

 

FE software packages facilitate the applications of the FE method in various areas, e.g., civil 

construction, machine design, system simulation, etc. The software FRANC2D is designed 

specifically for the simulation of a two-dimensional fracture process, and has been verified and 

used to do the analysis in many applications. FRANC2D has an appealing feature to alter the 

structure body geometry, and re-mesh near the crack tip automatically after the crack increments. 

Opening mode and sliding mode SIFs 𝐾𝐼  and 𝐾𝐼𝐼  are readily calculated using the built-in 

functions. In this study, FRANC2D is used to build a two-dimensional FE model for a single 

spur gear tooth with a crack at the root, as shown in Fig. 3. A history of SIF at different crack 

sizes is obtained using FRANC2D at a baseline load. Section III presents how to obtain the 

surface of SIF with respect to crack size and load. Because the opening mode SIF 𝐾𝐼 dominates 

the crack propagation in a spur gear tooth, the SIF mentioned in the sequel refers to the opening 

mode SIF.  
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Fig. 3. A 2D FE model for a spur gear tooth [44]. 

 

 

B. The degradation model 

The degradation model is used for describing the damage propagation in the component over 

time. A failure is usually defined by the first time at which the damage indicator crosses a 

threshold. Most of the existing damage propagation models are built on Paris’ law. Through 

experimental data regression, parameters in Paris’ law are identified to give a fit to the 

degradation process. Paris’ law can represent the stable stage of crack propagation after the 

initiation stage, and before the fast rupture stage. With the linear relationship of crack growth 

rate 𝑑𝑎/𝑑𝑁, and SIF range ∆𝐾 within one loading cycle in the log-log scale, Paris’ law can be 

used for predicting crack propagation. For different applications, other factors apart from the 

range of SIF are considered in Paris’ law, leading to many variants such as the Collipriest model 

[35], the Inoue model [36], and the Wheeler model [37]. The basic Paris’ law is given by d𝑎d𝑁 = 𝐶(∆𝐾)𝑚.                                                               (1) 

From (1), Paris’ law expresses crack growth rate d𝑎/d𝑁  as a function of SIF range ∆𝐾 . 
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Parameters 𝐶  and 𝑚  are material dependent parameters, experimentally estimated by fitting 

fatigue test data. 

Fatigue crack experimental data display a large scatter in the crack size at a given cycle, as 

well as the number of cycles to reach a given crack size. This large scatter occurs even under a 

carefully controlled environment. The two material parameters 𝐶  and 𝑚  in Paris’ law were 

considered as statistically correlated random variables to account for the randomness of a crack 

propagation process. Following the literature [11], [38], [45]-[47], in this paper, (𝑚, log 𝐶) is 

assumed to obey a bivariate normal distribution. This assumption is based on fatigue experiments 

[38], [46], and supported by the central limit theorem [11]. Section V will include the procedure 

to identify the joint distribution of (𝑚, log 𝐶) through a set of crack growth data. When a specific 

component with a crack comes into consideration, these material parameters should have a 

narrow distribution, or even a deterministic value. In this paper, the condition monitoring data on 

crack sizes at scheduled inspection times are used for the Bayesian inference to update the 

distribution of the material parameters. The distributions are expected to be narrowed down to 

small deviations, leading to a more accurate prediction of the RUL. 

By noticing the irregularity in an individual test, the authors in [38] claimed a high frequency 

randomness in crack propagation. A model error 𝜀, which is a lognormal random variable, is 

multiplied by the growth rate in Paris’ law to account for this high frequency randomness [32]. 

The model error describes the quasi-random behavior of the growth law. Due to this added 

irregularity in the crack growth rate, the integrated crack growth curve is not a smooth function. 

This outcome is also shown in the Virkler data set [39]. By considering the model error 𝜀 [32], 

Paris’ law is modified as  d𝑎d𝑁 = 𝐶(∆𝐾)𝑚𝜀.                                                               (2) 

The distribution of 𝜀 can be determined by a least-square regression in a log-log scale of Paris’ 

law using the information of crack lengths and associated cycles obtained in fatigue crack 

propagation experiments [40]. The residual in the regression 𝜁 = log 𝜀 is a zero mean Gaussian 

random variable. Its variance is obtained using a standard statistical method for linear regression. 

When a component is subject to a time-varying loading condition, the degradation process 

given in (2) will depend on the load, denoted by 𝑙𝑜 . To be specific, the SIF range ∆𝐾 =
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∆𝐾(𝑎, 𝑙𝑜) , suggesting that the model degradation rate is a function of crack size and 

environmental conditions. To capture the degradation pattern of a cracked component using (2), 

a response surface of ∆𝐾 with respect to crack size and load is needed. The following section 

will elaborate on how to obtain this response surface.  

 

III. LOAD CHANGE 

A piece of equipment under operation may be exposed to a series of varying loads according 

to the user’s needs. The work logs should record two facts: the time when a loading change 

occurs, and the amplitude of such a change. The general case may be described as follows. 

Assume that totally 𝑛 loading changes happen, respectively, at time 𝑡1, 𝑡2 ⋯ , 𝑡𝑛, and that the load 

amplitude during [𝑡𝑖, 𝑡𝑗) is 𝐹𝑖,𝑗, as shown in Fig. 4. 

 
Fig. 4. General load changes history. 

As discussed in the previous section, the key value that needs to be determined in the 

degradation model is the SIF (which determines ∆𝐾 in Paris' law), which is primarily a function 

of crack size, structure geometry, and loading condition. The inputs of crack size and structure 

geometry have already been taken into account in the FEM, while the input of loading condition 

is provided by the load history recorded in the work log. For complex situations, such as non-

linearity and non-elasticity in the materials, the relation between ∆𝐾 and loading change needs to 

be obtained by running the FE analysis each time the new load is applied. In this paper, the stress 

analysis is constrained in the framework of linear elastic mechanics. As a result, ∆𝐾 has a linear 

relation with the load. By following this convention, the baseline relation of ∆𝐾 and load may be 

derived by running the FE model once for a baseline load only. The remaining work is merely to 

multiply the derived ∆𝐾 by the ratio between the new and the baseline loads. Subsequently, a 

surface of ∆𝐾  with respect to different crack sizes and different loads can be obtained. For 
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transmission systems, such as a gearbox, the load is determined by the input torque. Such an 

observation can significantly improve the efficiency of the proposed prognostics approach.  

 

IV. FUNDAMENTALS OF PCE FOR UNCERTAINTY QUANTIFICATION 

Fatigue crack experimental data show a large amount of statistical scatter on the crack size at 

a given load, and the cycles needed to reach a given crack size. To account for the randomness in 

the crack propagation, the parameters in the degradation model (Paris’ law in this paper) are 

considered as random variables so that the crack propagation process is stochastic in nature. 

Quantifying the uncertainty in the crack propagation process is of essential importance for 

equipment failure time prediction and condition based maintenance. A commonly used method 

to quantify the effects of input uncertainty on the output is Monte Carlo simulation. However, 

due to the limitations of its low convergence rate and heavy computation requirements, a more 

efficient, effective stochastic collocation method based on the PCE technique is applied through 

Bayesian inference in this paper. In this section, the fundamentals of PCE and the stochastic 

collocation method for uncertainty quantification are briefly presented. 

Consider a model 𝐻: 𝒁 = 𝐻(𝒀), mapping input vector 𝒀 ∈  ℝ𝑑  into the output  𝑍 ∈  ℝ  , 

which is the quantity of interest. Here, for the sake of simplicity, 𝑍 is considered to be a scalar. 

When 𝑍 is a vector, the derived formula holds component-wise. Considering the uncertainty in 

the input, a probability space (Ω, ℱ, 𝒫) needs now to be introduced, where Ω is the event space 

equipped with the 𝜎-field ℱ and probability measure 𝒫. In this space, 𝒀 and 𝑍 become random 

variables, which are functions of random event 𝜔 ∈ Ω. The purpose of uncertainty quantification 

is to study the effects of uncertainty in 𝒀(𝜔) on the statistical property of 𝑍(𝜔). Assume that 𝒀 

is a 𝑑-variate continuous random vector having s-independent and identically distributed (i.i.d.) 

components: 𝒀 = (𝑌1,⋯ , 𝑌𝑑). The joint PDF of 𝒀 with respect to the support Γ𝒀 is denoted as 𝑝𝒀(𝐲) = ∏ 𝑝𝑌𝑖(𝑦𝑖)𝑑𝑖=1 , where 𝑝𝑌𝑖(𝑦𝑖) is the marginal PDF of 𝑌𝑖. 
PCE is essentially a spectral method in a probabilistic context. It relies on the fact that the 

unknown random response of a computational model can be approximated by the polynomials 

coordinated in a suitable finite orthogonal basis. Let 𝒊 = (𝑖1,⋯ , 𝑖𝑑)  be a multi-index with 
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|𝒊| = 𝑖1+⋯+ 𝑖𝑑. By using PCE, the model 𝐻 can be approximated by a projection operator, 𝑃𝑁: 𝐿2 → ℙ𝑁𝑑 , defined as 

𝑃𝑁𝐻(𝒀) = ∑ 𝑓𝒊|𝒊|≤𝑁 𝜙𝒊(𝒀) ,                                                          (3) 

with the Fourier coefficients   

𝑓𝒊 = ∫ 𝐻(𝐲)𝜙𝒊(𝐲) 𝑝𝒀(𝐲)𝑑𝐲
Γ𝒀  .                                                     (4) 

{𝜙𝒊(𝒀)}|𝒊|≤𝑁 are the basis orthogonal polynomial functions in 𝑑-variate 𝑁th-degree polynomial 

space ℙ𝑁𝑑 , satisfying the orthogonality  

𝔼[𝜙𝒊(𝒀)𝜙𝒋(𝒀)] ≜ ∫𝜙𝒊(𝒚)𝜙𝒋(𝒚)𝑝𝒀(𝐲)𝑑𝒚 = 𝛿𝒊𝒋    , 0 ≤ |𝒊|, |𝒋| ≤ 𝑁,                     (5) 

where 𝛿𝒊𝒋  is d-variate Kronecker delta function. The expectation operator 𝔼 defines an inner 

product in 𝐿2 space. The series converge in the sense of the 𝐿2-norm given that both 𝒀 and 𝑍 

have finite variances is  ‖𝐻 − 𝑃𝑁𝐻‖𝐿2 → 0,     𝑁 → ∞.                                                  (6) 

The readers can refer to [31] for rigorous mathematical details of the functional space 

summarized above.  

The selection of the basis polynomial function depends on the type of distribution of input 

random variables. There exists a correspondence between the basis function type and the 

distribution type [31]. For example, if the input random variable follows a Gaussian distribution, 

Hermite polynomials are selected as the basis. When the components in the input multivariable 

are s-independent, the multivariate basis functions can be generated in the form of products of 

univariate basis functions. For general cases, when s-dependence exists among the components, 

Soize and Ghanem did a theoretical study to clarify the associated mathematical structure of the 

functional space in [42]. But it may be difficult to find the orthogonal basis because of the 

unavailability of the joint probability density function (PDF). However, for the statistical 
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dependence structure in the multivariate Gaussian distribution, the correlated Gaussian random 

variables can be transformed into uncorrelated standard Gaussian random variables using 

Cholesky decomposition for the variance matrix. This method is also the approach adopted in the 

present paper to tackle the uncertainty in the Gaussian distributed material parameters. 

With the basis functions and joint PDF available, to obtain the approximation 𝑃𝑁𝐻(𝒀) is 

equivalent to calculating the coefficients 𝑓𝒊  in it. The Galerkin method, and the stochastic 

collocation method are two ways to obtain these coefficients. To save the effort of complex 

model reformulation as required by the Galerkin method, the stochastic collocation method is 

introduced here briefly, and used for uncertainty quantification in this paper.    

The stochastic collocation method aims at estimating the coefficients in (4) by numerical 

integration [31]-[33], [41]. The integral in (4) is intractable when high dimensional random space 

is involved. In practice, the numerical integration rules provide the approximation by a weighted 

sum using pre-selected points 𝒑(𝑗) ∈ ℝ𝑑 , and the associated weights 𝛼(𝑗) ∈  ℝ, 𝑗 = 1,⋯ , 𝑄, such 

that 

𝑓𝒊 = ∑𝐻(𝒑(𝑗))𝛼(𝑗)𝑄
𝑗=1 → 𝑓𝒊, 𝑄 → ∞ .                                          (7) 

Various schemes can be used, which differ in the selections of the integration rules. High 

dimensional integration suffers from significant computation burden if employing tensor 

products based on a one-dimensional rule. To mitigate the computational burden, this paper 

utilizes a sparse grid constructed on a Smolyak algorithm [43] as the integration rule in (7). 

With 𝑓𝒊 available, define the another operator, 𝐼𝑁: 𝐿2 → ℙ𝑁𝑑 , such that  𝐼𝑁𝐻 = ∑ 𝑓𝒊|𝒊|≤𝑁 𝜙𝒊(𝒀).                                                           (8) 

The difference between 𝑃𝑁𝐻  and 𝐼𝑁𝐻  is caused by the approximation of the coefficients 𝑓𝒊 → 𝑓𝒊 , and the consequent error ‖𝑃𝑁𝐻 − 𝐼𝑁𝐻‖𝐿2  is called the aliasing error. When the 

numerical integration rule converges, the aliasing error tends to zero, which means 𝐼𝑁𝐻 becomes 

a good approximation to 𝐻.  
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V. UNCERTAINTY QUANTIFICATION IN MATERIAL PARAMETERS 

Manufacturing process variability may result in a difference in material at micro-structural 

level, such as different grain orientations. Thus, even physically identical components made of 

the same type of material could demonstrate different fatigue behaviors. Experimental data on 

crack propagation showed that, even under carefully controlled conditions, both the number of 

cycles taken to reach a given size, and the crack size given a number of cycles, displayed a large 

amount of scatter [38].  

Due to its stochastic nature, the crack propagation process should be investigated from a 

probabilistic point of view. Paris’ law is used to describe fatigue crack growth undergoing cyclic 

loading during its stable growth period, in which the material parameters 𝑚 and 𝐶 are obtained 

by fitting the experimental fatigue data. The variability of the crack propagation process should 

be reflected in the 𝑚 and 𝐶 statistics. It was reported in [45] that a strong correlation between 𝑚 

and 𝐶 must be taken into consideration to achieve acceptable prediction accuracy. In practice, 

assume a set of experimental trajectories of stochastic crack growth is available, i.e., a set of 

curves representing crack growth rate 𝑑𝑎 𝑑𝑁⁄  vs ∆𝐾. By linear regression using Paris’ law in a 

log-log scale, for each trajectory, we can determine a pair of (𝑚, log𝐶) which minimizes the 

discrepancy between the measurement and the prediction. A standard statistical analysis can be 

applied to the sample set of (𝑚, log𝐶) to infer the best joint probabilistic distribution of (𝑚, log𝐶). 

It is found that the bivariate normal distribution is usually a valid hypothesis for the joint density 

of (𝑚, log𝐶 ) [38], [45]-[47]. The density obtained in this way can be considered as prior 

information; however, the values of 𝑚 and 𝐶 for a specific unit have very narrow distributions, 

or should be treated deterministically. From the perspective of condition monitoring, CBM is 

more concerned with fault propagation of an individual component instead of treating crack 

growth as a statistical property of the population. Thus, more accurate estimates of 𝑚 and 𝐶 for a 

specific unit will result in more accurate fatigue life prediction.  

As discussed, precise values are often unknown for these material parameters for a specific 

unit. Sometimes only the prior distribution is available based on the population failure histories. 

In this section, considering the uncertainties in material parameters, the joint distribution of 𝑚 

and log 𝐶  will be updated via MCMC in Bayesian inference, by taking advantage of the 
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condition monitoring data on crack size. As more condition data come in, the uncertainty in 

material parameters will be reduced, and the mean values may approach the real values.  

A. Updates of the joint distribution of material parameters 𝑚 and 𝑙𝑜𝑔 𝐶 

Considering the model error, the non-linear statistical dependence of crack growth on the 

loading cycle is embedded in Paris’ law: 𝑑𝑎𝑑𝑁 = 𝐶(∆𝐾(𝑎, 𝑙𝑜))𝑚𝜀.                                                           (9) 

For the general case, the analytical closed-form of ∆𝐾, as a function of crack length, loading 

condition, as well as structure geometry, is not available. Static FE analysis provides the discrete 

solution at discrete crack sizes. In this paper, a continuous form of ∆𝐾(𝑎) for baseline load is 

obtained through polynomial fitting. A surface of ∆𝐾(𝑎, 𝑙𝑜) is derived by multiplying the ratio of 

load 𝑙𝑜  and baseline load to ∆𝐾(𝑎) . Paris’ law is a differential equation, which in nature 

represents a stochastic process where the material parameters behave as random processes. It is 

assumed that the set of material parameters (𝑚, log 𝐶) is a random vector. Also, it was reported 

in [45], [46] that there exists obvious correlation between 𝑚 and 𝐶. This assumption requires the 

joint distribution of (𝑚, log 𝐶)  to be updated given the crack sizes estimated at any given 

inspection time.  

To solve (9), it is discretized using a first-order Euler method [48]. Let the initial crack length 

be 𝑎0, and the incremental loading cycles be ∆𝑁; then the discretized Paris’ law is 

{𝑎((𝑖 + 1)∆𝑁) = 𝑎(𝑖∆𝑁) + (∆𝑁)𝐶[∆𝐾(𝑎(𝑖∆𝑁), 𝑙𝑜(𝑖∆𝑁))]𝑚𝜀  𝑎(0) = 𝑎0 ,    𝑖 = 0,1,2⋯.  (10) 

The iteration sequentially proceeds until the current inspection time is reached. The crack length 

simulated through this discretization is denoted as 𝑎𝑠𝑖𝑚 . In the simulation, model error is 

sampled from its assumed known distribution randomly at each iteration step.  

In this study, Bayesian inference is used to update the joint distribution of 𝑚 and log 𝐶 at a 

given inspection time, given the estimated crack size at the inspection time. The real crack length 

is never known, but it can be estimated by using in-situ condition monitoring and diagnostics 

techniques. There is uncertainty in the crack length estimation, and the error between the real 

crack length and the estimated one is assumed to be a zero-mean Gaussian white noise with a 
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standard deviation of 𝜎. The real crack size is denoted as 𝑎𝑟𝑒𝑎𝑙, and the estimated one is 𝑎𝑒𝑠𝑡𝑖, so 

the measurement error is defined as 𝑒 = 𝑎𝑒𝑠 ฀฀ − 𝑎𝑟𝑒𝑎𝑙 . Thus, 𝑒 ~ 𝑁(0, 𝜎2), or equivalently, 𝑎𝑒𝑠𝑡𝑖 ~ 𝑁(𝑎𝑟𝑒𝑎𝑙, 𝜎2). For a given value of (𝑚, log 𝐶) , the real crack length 𝑎𝑟𝑒𝑎𝑙  at certain 

loading cycles is simulated by 𝑎𝑠𝑖𝑚.  

Assume that during the whole crack propagation process, from the initial detected crack 𝑎0 to 

the critical crack length 𝑎𝐶  where the failure occurs, there are totally 𝑈 updates at inspection 

times 𝑇1, 𝑇2, ⋯ , 𝑇𝑈 . At each update time 𝑇𝑗 , suppose that the material parameters 𝝃⃗ 𝑗 =(𝑚𝑗 , log𝐶𝑗)T  follow a bivariate normal distribution 𝑁(𝝁⃗⃗ 𝒋, 𝚺𝒋), where 𝝁⃗⃗ 𝒋 = (𝜇𝑚𝑗 , 𝜇𝐶𝑗)T  is the 

mean vector, and 𝚺𝒋 is the covariance matrix with the covariance coefficient 𝜌𝑗, where 

𝚺𝒋 = [ 𝜎𝑚𝑗2 𝜌𝑗𝜎𝑚𝑗𝜎𝐶𝑗𝜌𝑗𝜎𝑚𝑗𝜎𝐶𝑗 𝜎𝐶𝑗2 ].                                                   (11) 

 The crack sizes 𝒂⃗⃗ 1:𝑗 = (𝑎1𝑒𝑠𝑡𝑖, 𝑎2𝑒𝑠𝑡𝑖, ⋯ , 𝑎𝑗𝑒𝑠𝑡𝑖) at the inspection times 𝑇1, 𝑇2, ⋯up to 𝑇𝑗  are 

estimated through diagnostic methods. Then, denote the PDF of 𝑁(𝝁⃗⃗ 𝒋, 𝚺𝒋) as Π(𝝃⃗ 𝑗), 

Π(𝝃⃗ 𝑗) = 1(√2𝜋)2 1√det (𝚺𝒋) exp [− 12 (𝝃⃗ 𝑗 − 𝝁⃗⃗ 𝒋)𝑇𝜮𝒋−1(𝝃⃗ 𝑗 − 𝝁⃗⃗ 𝒋)] .                       (12) 

At the next update time 𝑇𝑗+1, the crack size 𝑎𝑗+1𝑒𝑠𝑡𝑖 is estimated from sensor data. The posterior 

distribution of 𝝃⃗ 𝑗+1 is obtained using the Bayesian inference formula   

𝑓𝑝𝑜𝑠𝑡(𝝃⃗ 𝑗+1|𝒂⃗⃗ 1:𝑗+1) = 𝑙(𝒂⃗⃗ 1:𝑗+1|𝝃⃗ 𝑗)𝑓𝑝𝑟𝑖𝑜𝑟(𝝃⃗ 𝑗)∫ 𝑙(𝒂⃗⃗ 1:𝑗+1|𝝃⃗ 𝑗)𝑓𝑝𝑟𝑖𝑜𝑟(𝝃⃗ 𝑗) 𝑑𝝃⃗ 𝑗  .                              (13) 

Given the assumption that the measurement error 𝑒𝑘 = 𝑎𝑘𝑒𝑠𝑡𝑖 − 𝑎𝑘𝑠𝑖𝑚, 𝑘 = 1,⋯ , 𝑗 + 1  are 

statistically i.i.d. random variables, then the likelihood 𝑙(𝒂⃗⃗ 1:𝑗+1|𝝃⃗ 𝑗) is calculated as 

𝑙(𝒂⃗⃗ 1:𝑗+1|𝝃⃗ 𝑗) = ∏Φ𝑘(𝑎𝑘𝑒𝑠𝑡𝑖|𝝃⃗ 𝑗)𝑗+1
𝑘=1 ,                                               (14) 

where 

Φ𝑘(𝑎𝑘𝑒𝑠𝑡𝑖|𝝃⃗ 𝑗) = 1√2𝜋𝜎 exp [− 12𝜎2 (𝑎𝑘𝑒𝑠𝑡𝑖 − 𝑎𝑘𝑠𝑖𝑚)2] .                               (15) 



 

19 

 

As time passes, new samples are collected. Accordingly, the posterior distribution of 𝝃⃗ 𝑗 = (𝑚𝑗, log𝐶𝑗)T  is obtained via (12) sequentially as 𝑗  increases. In this way, the joint 

distribution of material parameters is updated to be more accurate for this specific unit under 

monitoring. Thus, the failure time predictions based on these parameters will be more accurate 

and reliable.  

In the implementation of MCMC in Bayesian inference, the time-consuming part is the 

calculation of the likelihood function 𝑙(𝒂⃗⃗ 1:𝑗+1|𝝃⃗ 𝑗) = ∏ Φ𝑘(𝑎𝑘𝑒𝑠𝑡𝑖|𝝃⃗ 𝑗)𝑗+1𝑘=1 .  The Metropolis-

Hastings algorithm is applied to sample the posterior distribution. For any sample 𝝃⃗ 𝑗 generated 

by a random walk, the discretized Paris’ law needs to be executed to obtain the crack lengths up 

to the current inspection time. A large number of samples are required in simulation to ensure the 

posterior distribution to be the stationary state of the Markov chain. This assurance is 

computationally prohibitive for an on-line prognostics mission. To improve the computation 

efficiency, a stochastic collocation method based on a polynomial chaos technique is used, as 

presented in the following.  

B. Polynomial chaos based stochastic collocation in Bayesian inference  

In our previous work in [32], a PCE based prognostics method was proposed for efficient 

computation of the likelihood function in Bayesian inference when various uncertainty sources 

were considered to contribute to the likelihood. The specific PCE formulation was presented for 

updating one material parameter 𝑚  in the example. This subsection presents the specific 

formulation of employing PCE to update two correlated material parameters 𝑚 and 𝐶 in Paris’ 

law through Bayesian inference. By identifying the likelihood as an explicit expression of 𝑚 and 𝐶, this formulation allows a large number of samples to ensure MCMC convergence, and enables 

fast update of the joint distribution of the two material parameters.  

Consider the material parameters 𝝃⃗ = (𝑚, log𝐶) in Paris’ law as a random vector with two 

components. In this paper, 𝝃⃗  is assumed to follow a bivariate normal distribution with joint 

density function Π(𝝃⃗ ), where the mean is 𝝁⃗⃗ , and the covariance matrix is 𝚺 = [ 𝜎𝑚2 𝜌𝜎𝑚𝜎𝑐𝜌𝜎𝑚𝜎𝑐 𝜎𝑐2 ]. 
To take advantage of the orthogonality of the basis polynomial functions to reduce the 
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computational work, 𝝃⃗  needs to be converted into a random vector 𝜻⃗  whose components are 

standard statistically i.i.d. Gaussian variables by Cholesky decomposition, 𝚺 = 𝑳𝑻𝑳,                                                                         (16) 𝜻⃗ = 𝑳−𝟏(𝝃⃗ − 𝝁⃗⃗ ).                                                                 (17) 

Fig. 5, and Fig. 6 show the samples from 𝝃⃗ , and 𝜻⃗ , respectively, where the correlation in 𝝃⃗  as 

well as the uncorrelated structure in 𝜻⃗  are obvious to see.  

 

Fig. 5. Random samples from 𝝃⃗ .                   

 
Fig. 6. Random samples from 𝜻⃗ . 

 

After the change of variable, define the crack length at inspection time 𝑇 obtained by Paris’ 

law as 𝑎𝑠𝑖𝑚(𝝃⃗ ) = 𝑎𝑠𝑖𝑚(𝝁⃗⃗ + 𝑳𝜻⃗ ) = 𝑎𝑠𝑠𝑖𝑚(𝜻⃗ ) . The polynomial approximation to 𝑎𝑠𝑠𝑖𝑚(𝜻⃗ )  is 
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denoted by 𝑎𝑠,𝑁𝑠𝑖𝑚(𝜻⃗ ), which is the projection in 𝑁-th order polynomial space. Following the 

notation in Section IV, 𝑎𝑠,𝑁𝑠𝑖𝑚(𝜻⃗ ) = 𝑃𝑁𝑎𝑠𝑠𝑖𝑚(𝜻⃗ ). Let 𝒊 = (𝑖1, 𝑖2) be an index with |𝒊| = 𝑖1+𝑖2; then, 

𝑎𝑠𝑖𝑚(𝝃⃗ ) = 𝑎𝑠𝑠𝑖𝑚(𝜻⃗ ) ≈ 𝑎𝑠,𝑁𝑠𝑖𝑚(𝜻⃗ ) = ∑ 𝑤̂𝒊𝑁
|𝒊|=0 Ψ𝒊(𝜻⃗ ).                                  (18) 

From (4), the coefficients 𝑤̂𝒊 are calculated as 

𝑤̂𝒊 = 𝔼(𝑎𝑠𝑠𝑖𝑚(𝜻⃗ )Ψ𝒊(𝜻⃗ )) = ∫𝑎𝑠𝑠𝑖𝑚(𝜻⃗ ) Ψ𝒊(𝜻⃗ ) Χ(𝜻⃗ ) d𝜻⃗ ;                              (19) 

and Ψ𝒊(𝜻⃗ )  are the orthogonal basis functions defined as products of a one-dimensional 

orthogonal polynomial, satisfying, after normalization, the equality 𝔼(Ψ𝒉(𝜻⃗ )Ψ𝒔(𝜻⃗ )) = 𝛿𝒉,𝒔 = {1,          𝑤ℎ𝑒𝑛 𝒉 = 𝒔0,            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    ,                           (20) 

and Χ(𝜻⃗ ) = φ(𝜁1)φ(𝜁2), φ(𝑥) = (1 √2𝜋⁄ )exp(−𝑥2 2⁄ ). Because the type of random vector is 

assumed to follow a bivariate normal distribution, a Hermite polynomial is selected as the basis 

function in polynomial space. To reduce computational work, a sparse grid containing 𝑅 pairs of 

integration points and associated weights {(𝜻⃗ (𝑗), 𝛽(𝑗)), 𝑗 = 1,⋯ , 𝑅} is generated in a collocation 

method for computing (19) numerically as 

𝑤̃𝑖 = ∑𝑎𝑠𝑠𝑖𝑚(𝜻⃗ (𝑗))𝑅
𝑗=1 Ψ𝒊(𝜻⃗ (𝑗)) 𝛽(𝑗).                                                 (21) 

As in Section IV, define  

𝐼𝑁𝑎𝑠𝑠𝑖𝑚(𝜻⃗ ) = 𝑎𝑠,𝐼𝑠𝑖𝑚(𝜻⃗ ) ≜ ∑ 𝑤̃𝑖𝑁
|𝒊|=0 Ψ𝒊(𝜻⃗ ) .                                          (22) 

So, according to the PCE stochastic collocation method,  𝑎𝑠,𝐼𝑠𝑖𝑚(𝜻⃗ ) → 𝑎𝑠𝑠𝑖𝑚(𝜻⃗ ) = 𝑎𝑠𝑖𝑚(𝝃⃗ )   𝑎𝑠 𝑁 → ∞,𝑅 → ∞.                            (23) 

Equation (23) is of essential importance in accelerating Bayesian inference implementation 

because it provides an efficient way to calculate the likelihood function 𝑙(𝒂⃗⃗ 1:𝑗+1|𝝃⃗ 𝑗) =∏ Φ𝑘(𝑎𝑘𝑒𝑠𝑡𝑖|𝝃⃗ 𝑗)𝑗+1𝑘=1 . As mentioned previously, to obtain the posterior joint distribution of 
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material parameters, each random walk in MCMC needs the execution of Paris’ law once. A 

large number of MCMC samples could consume a large amount of computational time to 

converge. With the availability of 𝑎𝑠,𝐼𝑠𝑖𝑚(𝜻⃗ ) as an approximation to 𝑎𝑠𝑖𝑚(𝝃⃗ ), the expression of 𝑎𝑠,𝐼𝑠𝑖𝑚(𝜻⃗ )  is simply a combination of polynomials. For each random walk, 𝑎𝑠𝑖𝑚(𝝃⃗ )  is easily 

approximated by 𝑎𝑠,𝐼𝑠𝑖𝑚(𝜻⃗ ). The performance of such an approximation depends on the order of 

polynomial space as well as the number of points in the collocation set. The convergence proof 

can be referred to in [33]. 

C. Remaining useful life prediction 

By using the crack size estimation as the observation, Bayesian inference is able to update 

the joint distribution of the material parameters. The RUL or failure time prediction is conducted 

after the updated distribution is available. The operation time from the current inspection cycles 

to the failure time is the RUL of the cracked component. Paris’ law can be written in its 

reciprocal form as  d𝑁d𝑎 = 1𝐶(∆𝐾(𝑎, 𝑙𝑜))𝑚𝜀 .                                                         (24) 

Let the current inspection cycle be 𝑁𝑡, and the crack increment be ∆𝑎. The RUL is calculated by 

discretizing (20) as  ∆𝑁𝑖 = 𝑁𝑖+1 − 𝑁𝑖 = ∆𝑎[𝐶∆𝐾(𝑎𝑖, 𝑙𝑜𝑖)𝑚𝜀]−1, 𝑖 = 𝑡, 𝑡 + 1,⋯                       (25) 

The summation ∑ ∆𝑁𝑖𝑖=𝑡  from the current inspection cycle to the cycle where failure occurs is 

the RUL. Accordingly, the total failure time is expressed as 𝑁𝑡 + ∑ ∆𝑁𝑖𝑖=𝑡 . 

PCE is used to quantify the uncertainty of material parameters 𝑚 and 𝐶 in the RUL or failure 

time. The procedures were detailed in [32] for the case when they were considered statistically 

independent of each other. Here, in the presence of statistical correlation between the two 

material parameters, the first step is to transform these material parameters into i.i.d. random 

variables by using the change of variable (16) so that PCE can be applied. After this step, the 

remaining procedures are similar to those in [32]. The procedures are summarized here in the rest 

of this subsection.  
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Assume that an updated distribution for 𝝃⃗ = (𝑚, log 𝐶) is obtained from Bayesian inference 

using the method in Section V, parts A and B. After the change of variable, 𝜻⃗ = (𝜁1, 𝜁2) is a 

random vector with i.i.d. components, following a standard bivariate normal distribution. The 

density function is denoted by Χ(𝜻⃗ ), and the corresponding orthogonal basis function is {Ψ𝒊(𝜻⃗ ) ∈ℙ𝑁𝑑 , 0 ≤ |𝒊| ≤ 𝑁}. The RUL obtained through (25) is a function of 𝜻⃗ , which is denoted by   𝑇𝑅𝑈𝐿 = 𝑆 (𝑎(𝝃⃗ )) = 𝑇𝑅𝑈𝐿(𝜻⃗ ).                                                    (26) 

First, the nodal set is selected using the Smolyak algorithm, which is  {𝜻⃗ (𝑗),   𝑗 = 1,⋯ , 𝑄}. 
Based on the proper integration rule, the associated weights 𝛼(𝑗), 𝑗 = 1,⋯ , 𝑄 are also available. 

Second, the failure times at these nodes are obtained by propagating the crack through Paris’ law 

in a deterministic way. Denote them as 𝑇̃𝑗 = 𝑇𝑅𝑈𝐿(𝜻⃗ (𝑗)), 𝑗 = 1,⋯ , 𝑄 . After that, we use the 

truncated 𝑁-th degree polynomial chaos orthogonal projection, 𝑇𝑁 = 𝑃𝑁𝑇𝑅𝑈𝐿 , to approximate 𝑇𝑅𝑈𝐿, 𝑇𝑁 = ∑ 𝜔̂𝑙𝑀𝑙=1 Ψ𝒍(𝜻⃗ ),                                                          (27) 

where 𝜔̂𝑙 = ∫ 𝑇𝑅𝑈𝐿(𝜻⃗ )Γ Ψ𝒍(𝜻⃗ ) Χ(𝜻⃗ ) d𝜻⃗ . Hence, (28) is valid because of (6). 𝑇𝑁 → 𝑇𝑅𝑈𝐿 as  𝑀 → ∞.                                                 (28) 

Furthermore, based on (7), the coefficients 𝜔̂𝑙 can be approximated by 𝜔̃𝑙𝑁 using the numerical 

integration rule,  𝜔̃𝑙𝑁 = ∑ 𝑇̃𝑗𝑄𝑙=1 Ψ𝒍(𝜻⃗ (𝑗)) 𝛼(𝑗),                                             (29) 𝜔̃𝑙𝑁 → 𝜔̂𝑙  as  𝑄 → ∞.                                                   (30) 

Finally, replace 𝜔̂𝑙 in (27) by 𝜔̃𝑙𝑁, and we obtain 𝐼𝑁𝑇𝑅𝑈𝐿 = 𝑇̅𝑁 = ∑ 𝜔̃𝑙𝑁𝑀𝑙=1 Ψ𝒍(𝜻⃗ ),                                           (31) 𝑇̅𝑁 → 𝑇𝑁  as  𝑄 → ∞.                                                   (32) 𝑇̅𝑁 will converge to 𝑇𝑅𝑈𝐿, which is guaranteed by (28) and (32) according to the triangular 

inequality ‖𝑇̅𝑁 − 𝑇𝑅𝑈𝐿‖𝐿2 ≤ ‖𝑇̅𝑁 − 𝑇𝑁‖𝐿2 + ‖𝑇𝑁 − 𝑇𝑅𝑈𝐿‖𝐿2 . By increasing the number of 

integration nodes and the order of the polynomial space, the approximation can reach any 
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required accuracy. By noticing the trivial computational work needed for polynomial evaluation, 

and the ease of the post-processing task, PCE is an effective, efficient method to quantify the 

uncertainty in RUL prediction.   

D. Prior distribution in Bayesian inference 

To initiate the Bayesian inference, the information of the prior distribution of the material 

parameters is needed. Because an individual component is the focus, the population can be 

naturally considered as a candidate for the prior. Hence, to get the prior distribution of (𝑚, log 𝐶), 

one assumes 𝐹  failure histories are available for identical gear sets under identical constant 

loading conditions. Each history serves as a degradation path, with loading cycles and the 

associated crack sizes. Following the standard crack fatigue test procedure [40], the linear 

regression of (𝑚𝑖, log 𝐶𝑖), 𝑖 = 1,2,⋯ , 𝐹, can be obtained for each failure history. Let 

𝑚̅ = 1𝐹 ∑𝑚𝑖𝐹
𝑖=1 , 𝑠𝑚𝑚 = 1𝐹 − 1  ∑(𝑚𝑖 − 𝑚̅)2𝐹

𝑖=1  ,                                                (33) 

log 𝐶̅̅ ̅̅ ̅̅ = 1𝐹 ∑log 𝐶𝑖𝐹
𝑖=1 ,    𝑠𝑐𝑐 = 1𝐹 − 1  ∑  (log 𝐶𝑖 − log 𝐶̅̅ ̅̅ ̅̅ )2𝐹

𝑖=1  ,                        (34) 

𝑠𝑚𝑐 = 1𝐹 − 1  ∑(𝑚𝑖 − 𝑚̅)(log 𝐶𝑖 − log 𝐶̅̅ ̅̅ ̅̅ )𝐹
𝑖=1 ,                                                   (35) 

𝑺𝑚𝑐 = [𝑠𝑚𝑚 𝑠𝑚𝑐𝑠𝑚𝑐 𝑠𝑐𝑐 ].                                                                                                (36) 

Then the prior distribution is selected to be 𝑁 ([𝑚̅, log 𝐶̅̅ ̅̅ ̅̅ ]𝑇 ,  𝑺𝑚𝑐). The regression process can 

also be implemented by simulation based optimization. The readers can refer to [44] for details. 

The objective is to find the optimal value (𝑚𝑖𝑜𝑝, log 𝐶𝑖𝑜𝑝), 𝑖 = 1, 2,⋯ , 𝐹, which generates the 

degradation path that has the minimum difference from the real degradation path in a least-

square sense.  

  

VI. EXAMPLES 
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The crack propagation at the root of a spur gear is taken as an example to demonstrate the 

proposed method. Due to cyclic loading, the gear tooth is subject to periodic bending stress at 

one side, and the crack is prone to be initiated at the root where the maximum bending stress 

occurs. The FE model of a single tooth is built using the FE software package FRANC2D, as 

shown in Fig. 3. The geometry parameters and material properties are listed in Table I. The crack 

at the gear tooth root starts at an initial length of 0.1 mm, and the tooth is considered to be failed 

when the crack size reaches 5.2 mm, which is about 80% of the circular thickness of the tooth. 

Opening mode SIF (𝐾𝐼) dominates the fracture behaviour. The baseline load for calculating ∆𝐾 

is selected to be 40 N-m. The response surface of SIF as a function of crack size and load is 

shown in Fig. 7. According to the linear elastic model, this surface is linear in terms of load, and 

nonlinear with respective to crack size. Here, a cubic polynomial is used to statistically fit this 

nonlinearity in a least-square sense. With this surface function available, the SIF at any 

combination of load and crack size is obtained by simply looking up the corresponding value in 

this surface. Hence, it is unnecessary to run the FE analysis for every case during online 

prognosis, which saves considerable computational time.  

Ten degradation paths are generated using the parameters 𝜇𝑚 = 1.4354, 𝜇𝐶 = −23.118 ,  𝜎𝑚 = 0.2, 𝜎𝑐 = 0.5, 𝜌 = −0.99 . Two examples are conducted in this section. The loading 

change pattern in Example 1 is a two-step stress change, where the stress is held constant during 

two consecutive load change points. The purpose is to demonstrate that, as more crack 

estimations are incorporated into Bayesian inference, the mean of the joint distribution of (𝑚, log 𝐶) will approach their real values, and the shape of the distribution will get narrower. As 

a result, the uncertainty is reduced significantly. As uncertain parameters become more accurate, 

the predicted failure time will converge to the real failure time. Furthermore, in Example 2, we 

will show that the proposed method is effective even when the loading profile changes. A 

loading profile with a three-step stress change is used. It demonstrates that two different loading 

histories will result in similar narrow posterior distributions for (𝑚, log 𝐶). 
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Fig. 7. Surface of SIF as function of load and crack size. 

 

 

Table I 

Material properties, and main geometry parameters [44] 

Young’s 
modulus 

(Pa) 

Poisson’s  
ratio 

Module 

(mm) 

Diametral 

pitch (in-1) 

Base circle 

radius 

(mm) 

Outer 

circle 

(mm) 

Pressure 

angle 

(degree) 

Teeth No. 

2.07e11 0.30 3.20 8.00 28.34 33.30 20.00 19 

 

A. Example 1  

The simulated degradation paths with measurement error 𝜎 = 0.15 mm are shown in Fig.8. 

Suppose that the torque is increased from 40 N-m to 120 N-m at 0.5 × 107 cycles, and returns to 

40 N-m at 2 × 107 cycles. Under this two-step load change condition, a distinct change on the 

slope of the crack size as a function of loading cycles is observed in Fig. 8 during the period 

from 0.5 × 107cycles to 2 × 107 cycles, because the crack growth rate is increased as the torque 

doubles itself. The prior distribution is obtained based on the first 8 paths among these ten paths 

as   

(𝑚, log 𝐶)~ 𝑁 ([1.4472 −23.12] , [0.0229 −0.052−0.052 0.1203]). 
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Fig. 8. Ten degradation paths generated under two-step stress changes. 

 

To test the proposed method, two extreme paths, Path #9, and Path #10, are selected, which 

have the shortest failure time, and the longest, respectively. The Bayesian updating is performed 

at each inspection time, which is equally spaced. Some of the intermediate update steps will be 

tabulated in the table to show the trend of distribution adjustment as more data on crack length 

become available.  

The real material parameters used to generate Path #9 is (𝑚, log 𝐶) = (1.1495,−22.4311), 

and the real failure time is 2.43 × 107 cycles. The inspection time interval is 4 × 106 cycles. 

The updating results are shown in Table II, from which it can be observed that the statistical 

mean values of the material parameters are approaching their real values as more observations 

are available. Fig. 9 displays the contours of the prior and posterior distributions of the last 

update. The update of the failure time distribution obtained using the updated material 

parameters distribution is displayed in Fig. 10. The failure time distribution gets narrower, and 

approximates the real failure time as expected. The uncertainty in the predicted failure time is 

also reduced during the model parameter updating process.  

 

Table II 

Test results for path #9  

Inspection cycle Crack length (mm) 𝜇𝑚 𝜇𝐶 

0 0.1000 1.4472 -23.1200 8 × 106 0.6373 1.4590 -23.1479 
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12 × 106 2.2764 1.1871 -22.4771 16 × 106
 2.8742 1.1637 -22.4067 

 

r  

Fig. 9. Contours of prior and posterior distributions of (𝑚, log 𝐶) of path #9. 

 

Fig. 10. Updated failure time distribution for path #9. 

 

Similarly, the updating results for Path #10, which has the longest failure time, are shown in 

Table III. The real material parameters used to generate Path #10 are (𝑚, log 𝐶) = (1.6336,−23.6258) , and the real failure time is at 6.43 × 107  cycles. The 

inspection time interval is 10 × 106 cycles. The contours of the prior and posterior distributions 

of the last update are shown in Fig. 11. The predicted failure time distributions are presented in 

Fig. 12. The parameters adjust themselves to get close to their real values. Accordingly, the 

uncertainty in the failure time distribution is reduced gradually, the mean of which approaches 

the true failure time.   
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Table III 

Test for path #10 to validate proposed approach  

Inspection cycle Crack length (mm) 𝜇𝑚 𝜇𝐶 

0 0.1000 1.4472 -23.1200 10 × 106 0.7293 1.5670 -23.4063 20 × 106 2.4450 1.6515 -23.6117 60 × 106 4.3758 1.6510 -23.6457 

 

 
Fig. 11. Contours of prior and posterior distributions of (𝑚, log 𝐶) of path #10. 

 
Fig. 12. Updated failure time distribution for path #10. 

 

B. Example 2 

For a specific gear, the values of (𝑚, log 𝐶) are material dependent, and are not supposed 
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to change with different loading profiles. In this example, path #11 is subject to a loading 

profile different from that in Example 1, and a three-step stress change is used. At 0.5 × 107 

cycles, the torque increases from 40 N-m to 160 N-m; at 1.5 × 107cycles, the torque returns 

to 40 N-m; and at 3 × 107 cycles, the torque goes up to 120 N-m until the component failed. 

The degradation path is shown in Fig. 13. The true value of this component is (𝑚, log 𝐶) =(1.6336,−23.6258), the same as that in path #10 in Example 1. The real failure time is 3.44 × 107 cycles. The inspection time interval is 4 × 106 cycles. The statistical properties 

of the updated distributions as well as the crack size observations are listed in Table IV. Even 

though the last update of the parameters (𝑚, log 𝐶) deviate a small amount from their real 

values, the failure time distribution gets closer to the real failure time at each update, shown 

in Fig. 14. This example demonstrates that the proposed method is effective, even when the 

current loading profile is different from the loading profile under which historical data were 

collected.  

It may be worth noticing that, in Paris’ law, different combinations of  𝑚 and 𝐶 could 

lead to the same crack length at a given number of loading cycles. Because the crack length 

is taken as the observation to update the material parameters, the Bayesian inference tries to 

generate distributions that maximize the occurrence of crack observations. The failure is 

defined by a critical crack length. When the measurement error is too large for the Bayesian 

inference to discriminate the real values of (𝑚, log 𝐶) from the noise, there is a possibility 

that the updated (𝑚, log 𝐶)  deviates from the true value. However, the failure time still 

approaches the real failure time. A similar conclusion was made in [11]. 
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Fig. 13. Degradation path of #11 under three-step stress changes. 

 

Table IV 

Test for path #11 to validate proposed approach  

Inspection cycle Crack length (mm) 𝜇𝑚 𝜇𝐶 

0 0.1000 1.4472 -23.1200 12 × 106 1.6192 1.6036 -23.5285 20 × 106 2.5303 1.6547 -23.6579 32 × 106
 3.5021 1.6972 -23.7521 

 

 
Fig. 14. Updated failure time distribution for path #11. 

 

VII. CONCLUSIONS 

An integrated prognostics method considering time-varying operating conditions is 

developed, which integrates physical models and sensor data from gearboxes. By taking 

advantage of stress analysis in finite element modeling, the degradation process governed by 

Paris’ law can adjust itself immediately to respond to the changes of the operating condition. In 

the proposed method, uncertainties in material parameters are considered as sources responsible 

for randomness in the predicted failure life. The joint distribution of material parameters is 

updated as the sensor data are available. The updated distribution characterizes the material 

parameters, and reduces the uncertainty for the specific individual unit under monitoring. The 

update process is realized via Bayesian inference. To reduce the computational effort, a PCE 

collocation method is applied to computing the likelihood function in the Bayesian inference, 

and the predicted failure time distribution. An example of crack propagation at a spur gear tooth 
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root is given to demonstrate the effectiveness of the proposed method. Even though the gearbox 

is considered in this paper, the proposed method is also applicable to various other components 

and structures subject to the similar fatigue loading after the appropriate adjustment of physical 

models. 

The capability to directly relate the load to the damage propagation is a key advantage of the 

proposed integrated prognostics approach over the existing data-driven methods for dealing with 

time-varying operating conditions. The proposed approach is effective even when the current 

loading profile is different from the load profile under which historical data were collected. 

Future efforts will be invested to validate the proposed approach in a lab environment.   
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