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Abstract 

Background: Traditional quantitative structure-activity relationship models usually neglect the molecular alterations 
happening in the exposed systems (the mechanism of action, MOA), that mediate between structural properties of 
compounds and phenotypic effects of an exposure.

Results: Here, we propose a computational strategy that integrates molecular descriptors and MOA information 
to better explain the mechanisms underlying biological endpoints of interest. By applying our methodology, we 
obtained a statistically robust and validated model to predict the binding affinity to human serum albumin. Our 
model is also able to provide new venues for the interpretation of the chemical-biological interactions.

Conclusion: Our observations suggest that integrated quantitative models of structural and MOA-activity relation-
ships are promising complementary tools in the arsenal of strategies aiming at developing new safe- and useful-by-
design compounds.
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Introduction

Quantitative structure-activity relationship (QSAR) 

models are increasingly applied in various fields, such 

as toxicity assessment and drug design [1]. QSAR mod-

els developed and validated in line with the Organization 

for Economic Co-Operation and Development (OECD) 

criteria [2] are recognized in silico tools for provid-

ing reliable activity data, bypassing long and laborious 

experimental assays. On the basis that structurally simi-

lar molecules have similar biological activities, classical 

QSAR models attempt to predict activity as a function of 

structural properties numerically defined as molecular 

descriptors (MDs) [1, 3]. MDs provide extensive chemi-

cal information, such as presence and count of different 

sub-structures, functional groups, connectivity between 

atoms, topological and geometrical characteristics, 

which are relevant for predictive studies. Furthermore, 

3D alignment-free molecular descriptors, based on two, 

three and four linear algebraic forms have been intro-

duced to codify novel and orthogonal chemical informa-

tion [4, 5].

Traditional QSAR models usually neglect the primary 

biological fingerprint of the exposure, consisting of the 

ensemble of molecular alterations happening at various 

cellular compartments of the exposed biological system, 

hereafter denoted as the mechanism of action (MOA). 

However, the relationship between structural properties 

and phenotypic effects of an exposure is indirectly medi-

ated by its MOA. Systematically integrating MOA infor-

mation, such as gene expression or external bioassay data, 

into QSAR modelling would expand our understanding 

of the chemical-biological interactions, hence paving the 

way to the development of the next generations of safe- 

and useful-by-design compounds [6, 7].
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In the recent years, the implementation of omics tech-

nologies in toxicology studies has ignited the new field of 

toxicogenomics [8]. In this context, in depth molecular 

profiling opened new possibilities to outline the biosigna-

ture or MOA of exposures at an unprecedented granular-

ity. However, to date, this information has been seldom 

utilized in combination with structural properties of the 

compounds to predict their effects [9–11].

Indeed, Li et  al developed a methodology that jointly 

analyzes the chemical structural information and the 

gene expression profiles of cells treated by drugs. By 

means of a clustering methodology, they identified the 

most structurally similar sets of chemicals and the mini-

mum set of genes related to chemical structural features 

[9]. Low et  al. [10] used a machine learning methodol-

ogy based on multiple nonlinear classifiers that inte-

grates chemical descriptors and toxicogenomic data to 

classify drug molecules based on their hepatotoxicity 

(toxic/or non-toxic) effect in rats. Perualila-Tan et al. [11] 

proposed a statistical methodology that combines tran-

scriptomic data and chemical information to predict a 

biological response by means of gene expression and infer 

if the response is caused by the presence or absence of a 

particular chemical sub-structure. �ese approaches are 

limited to binary classification problems (toxic/non toxic) 

and to the identification of correlations between MDs 

and MOA features. However, when modelling a continu-

ous response variable, integrative regression models are 

a preferred option. Between the wide range of linear and 

nonlinear regression models, Lasso based methods have 

the advantage to generate easy to interpret models, since 

they automatically perform feature selection and have 

less parameter to be estimated as compared to nonlinear 

models, such as random forests, support vector regres-

sors or neural networks.

Here, considering the OECD criteria [2], we propose a 

computational approach that combines MDs and MOA 

information to develop integrated quantitative structure 

and mechanism of action-activity relationship (QSMARt) 

models with the potential to better explain the role of 

specific structural properties in a bio-mechanistic way. 

To the best of our knowledge, the present study is the 

first report on an integrated QSMARt model to predict 

the binding affinity to HSA.

Materials and methods

Dataset preparation 

Curated experimental binding affinity data of drug and 

drug-like molecules to HSA ( logKHSA ; the binding con-

stant obtained from the retention time on an immobi-

lized HSA column using affinity chromatography) were 

obtained from [12]. All structures (as 3D SDF files) 

were retrieved from PubChem [13] and processed by 

the software DRAGON v. 7.0 [14] for the calculation 

of 5,325 MDs. An unsupervised feature reduction was 

applied to filter the constant ( > 80% ) and highly intercor-

related descriptors (pairwise correlation among all pairs 

of descriptors > 95% ) prior to training/test set splitting, 

and variable selection [15]. �us, a data matrix compris-

ing 1,198 MDs was generated (hereafter denoted as A). 

Transcriptomic data for drug treatments were retrieved 

from the Connectivity Map (CMap) build v2.0 repository 

[16]. �ree human cell lines were available in the CMap 

project: prostate cancer (PC3), breast cancer (MCF7), 

and leukemia (HL60), respectively. �e transcriptomic 

datasets were analyzed independently for each cell line. 

Raw data was imported into R v. 3.4 by using the jus-

tRMA function from the Bioconductor utilities [17] to 

annotate probes to Ensembl genes (by using the hth-

gu133ahsensgcdf (v. 22.0.0) annotation file from the 

brainarray website http://brain array .mbni.med.umich 

.edu/), and to quantile normalize the resulting expres-

sion matrix. Next, the experimental batch effect due to 

technical variables was estimated and removed using the 

ComBat algorithm implemented in the sva package [18]. 

Linear models followed by eBayes pairwise comparisons 

[19] were performed to compute the log fold-change of 

each gene in each drug-control pairs. Of the 88 chemi-

cals in the curated dataset [12], 59 were identified with 

reported gene expression data for at least two cell lines 

of the CMap dataset (MCF7 and PC3). �e list of drugs 

used in this analysis is available in Additional file  1. 

Consequently, two data matrices of log-fold changes 

for 11,868 genes in MCF7 (hereafter denoted as B) and 

PC3 cell lines (hereafter denoted as C) were generated, 

respectively. Finally, MDs (A) and gene expression pro-

files (B and C) were collated to create a single dataset 

(hereafter denoted as X) of 59 drugs and 24,934 features 

(1198 MDs and 11,868 genes for each cell line) for mod-

eling the logKHSA.

Modeling and validation

QSMARt modeling was performed based on the lasso 

method [20] and power transformation of the MDs ( α ) 

and genes ( γ ), respectively. 20% of the dataset X was 

kept as the test set and not used in the model selection 

phase. �e remaining 80% of the data (training set) was 

further split 100 times in random training (90%) and 

validation (10%) sets by using a random split validation 

algorithm (RSVA). �e splitting was performed based 

on the y-response variable, which was divided into three 

bins, from which the compounds are randomly assigned 

to train or test sets. Detailed methodology available as 

in Additional file 2. R scripts are available as Additional 

file 3. Next, the lasso method is used to fit a linear model 

to the training set for 100 different values of the lasso 

http://brainarray.mbni.med.umich.edu/
http://brainarray.mbni.med.umich.edu/
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penalty estimated from the training matrix [21]. �e lasso 

penalization value leading to the smallest mean squared 

error (MSE, � = 0.166 ), was considered (Additional file 4: 

Fig. S1). Only the features (MDs and/or genes) with non-

zero coefficients were selected to derive the final model. 

Once the optimal features and parameters were iden-

tified, the entire training set was used to build the final 

model and the test set was only then used for external 

validation.

�e following model was considered to predict the 

logKHSA:

where, X(α, γ ) is the matrix obtained by binding the 

matrices of A(α) , B(γ ) , and C(γ ) , A(α) = (|aij|
α) , 

B(γ ) = (|bij|
γ ) , C(γ ) = (|cij|

γ ) (for α > 0 and γ > 0 ), β 

is the vector of coefficients, and ǫ is the stochastic error, 

respectively.

�e same power transformation ( γ ) was used both for 

the MCF7 (B) and PC3 cell line (C). Considering α and 

γ fixed, and β the only structural/genomic parameter to 

be estimated, is conceptually equivalent to replacing the 

original sample measurements X with X(α, γ ) . For fixed 

α and γ , the following lasso-type estimator is considered:

where || · ||2 is the euclidean norm, || · ||1 is the l1 norm 

and � is the lasso penalty.

�e parameters (α,β , γ ) were tuned to minimize 

the MSE on the training set. �e RSVA was per-

formed for a grid of nine distinct α and γ values 

( α, γ = 0.1, 0.25, 0.50, 0.75, 1, 1.25, 1.50, 1.75, 2 ) for all 

81 possible pairs of (αi, γi) with i = 1, . . . , 81 . For each 

of the 81 combinations, the relevant set of features 

ft = β(αt , γt) (at t = 1, 2, . . . , 81) associated with non-

zero coefficients was identified, validated the 60th per-

centile values of the distributions of the internal metrics 

computed on the multiple splits were considered), and 

used to train models on the whole training set. Next, the 

generated models were used to predict the logKHSA on 

the test set. Following these steps, a population of candi-

date models was generated. Goodness of fit, robustness, 

and predictive performance of the candidate models were 

evaluated based on up-to-date internal and external vali-

dation parameters and criteria (Additional file 1) [22–28].

Comparison with single view models

In order to validate the QSMARt model, the same pro-

cedure was applied to the MDs and MOA features sep-

arately. �e RSVA procedure was performed on nine 

α = 0.1, 0.25, 0.50, 0.75, 1, 1.25, 1.50, 1.75, 2 values for the 

MDs and nine γ = 0.1, 0.25, 0.50, 0.75, 1, 1.25, 1.50, 1.75, 2 

values for the MOA features. Furthermore, these two 

(1)y = X(α, γ )β + ǫ

(2)β̂ = argmin||y − X(α, γ )β||22 + �||β||1

parameters, together with the � penalty, value were opti-

mized independently for the MDs and MOA to identify 

the optimal setup that minimizes the MSE on the train-

ing set. �ese analyses led to 9 models for the MDs and 

9 models for the MOA features. For each model, the rele-

vant set of features, associated with non-zero coefficients, 

was identified and validated with the same approach 

described before. Goodness of fit, robustness, and pre-

dictive performance of the candidate models were evalu-

ated based on up-to-date internal and external validation 

parameters and criteria (Additional file  1) [22–28]. In 

particular, distributions of the internal validation metrics 

computed with the RSVA procedure with 100 random 

splits were compared to identify which model overall give 

the better predictive performances.

Applicability domain

Based on the idea of consensus decision[29], differ-

ent approaches were used to compute the applicability 

domain (AD) of the identified models. In particular, AD 

was computed by means of the leverage method [30], 

the standardization approach [31], the euclidean [32] 

and city block distance methods [33], and the k-nearest 

neighbours method [34].

In the leverage method, the response outliers were 

determined as those with the predicted activity value 

> ±3.0 standardized residuals. �e leverage value (h) 

measures the distance from the centroid of the modeled 

space. A warning leverage (critical hat value, h*) [30] was 

used to identify structural/MOA influential compounds 

( h > h
∗ denoting high-leverage chemicals). In a Williams 

plot [30], the leverage values were mapped against the 

standardized residuals to define the structural/MOA and 

the response spaces visually. Finally, the AD was reported 

as the percentile coverage for the training ( ADTrain ) and 

test ( ADTest ) set, respectively. Moreover, the Insubria 

graph [15] of leverage values against calculated/predicted 

activity values was used to visualize the interpolated 

( h < h
∗ denoting chemicals inside the structural/MOA 

AD of the training set) and extrapolated ( h > h
∗ char-

acterizing chemicals outside the structural/MOA AD) 

predictions for all the datasets considered in this study. 

In this case, the response AD was the prediction range of 

the model.

�e standarization approach [31] is based on the 

assumption that in case of normal distribution, 99.7% of 

the population will remain within the range mean ±3.0 

standard deviation (SD). �us, all molecular descriptors 

are first standardized. Afterwards, any compound out-

side this zone is dissimilar to the rest and majority of the 

compounds. �us, if the standardized value for descrip-

tor i of compound k is more than 3, then the compound 
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should be an X-outlier (if in the training set) or outside 

AD (if in the test set) based on descriptor i.

In the distance based methods [32–34], the distance 

between the chemical and the center of the training data 

set is computed. �e threshold, for both Euclidean and 

City block distances, is the largest distance between the 

training set data points and the center of the training data 

set. Furthermore, the distance between the test samples 

and the center of the dataset is computed. �e test points 

with a distance greater than the computed threshold are 

considered outliers. �e AD was reported as the percen-

tile coverage of the test set ( ADTest).

In the k-nearest neighbours method [34], the distance 

between every train compound and its k-nearest neigh-

bours in the training set is computed. A threshold is cal-

culated as the largest of these distances. Subsequently, 

the distance between every test compounds and its 

k-nearest neighbours in the training set is computed. If 

the calculated distance values of test set compounds is 

within the defined threshold, then the prediction of these 

compounds are considered to be reliable. In this method 

the k value was set to 3. �e AD was reported as the per-

centile coverage of the test set ( ADTest).

�e final consensus value on the training compounds is 

computed as a mean of the leverage and standardization 

methods, while the consensus on the test set is computed 

as the mean of all the different approaches.

Selection of the �nal model

Among the generated candidate models, the one with 

the best compromise between statistical robustness, 

predictive performance, widest AD, and smallest dimen-

sion was selected as the final model. To this end, all 81 

alternative specifications were filtered based on multi-

ple up-to-date statistical acceptance criteria (highlighted 

in Additional file  1). Only the models both satisfying 

the internal and external validation requirements, and 

providing 100% ADTest coverage, with the consensus 

method, were considered eligible. Moreover, the trans-

formation parameters ( α∗,γ ∗ ) achieving the best predic-

tive performance were selected as the set of indices of 

eligible solutions by solving (α∗γ ∗) = argmint(E(αt , γt); 

t ∈ I) with I ⊆ {1, . . . , 81} . Finally, the model satisfying 

all eligibility criteria, consisting of the smallest number 

of structural/MOA features, and with the widest ADTrain 

coverage was selected as the ultimate model.

Application of the �nal model

�e optimal model was applied to a set of external com-

pounds for which the logKHSA is unavailable. To this pur-

pose, an independent set of 799 drugs from the CMap 

dataset [16] with gene expression data available on both 

MCF7 and PC3 cell lines was considered. SDF files for 

these compounds were retrieved from PubChem [13] 

and fed into DRAGON v. 7.0 [14] to generate molecu-

lar descriptors. Gene expression data was preprocessed 

similarly to the dataset of 59 compounds, as described 

above. �e list of drugs in the external dataset is avail-

able in Additional file 1. �e TSNE projection technique 

[35] was used to visualize the distribution of the albumin 

and the external datasets based on the six MDs/MOA 

features of the QSMARt model as well as the three MOA 

features and three MDs.

Results and discussion

QSMARt predictive model for the binding a�nity to HSA

Here, we built an integrated model (QSMARt) comprising 

molecular descriptors and MOA features to predict binding 

affinity to human serum albumin. To this end, we derived 

81 candidate models by applying a Lasso penalty parameter 

optimisation. �e 81 models and their evaluation metrics 

are reported in Additional file  1. �e full lists of selected 

MDs and genes, along with their occurrence frequencies, 

are available in Additional file 1. Upon rigorous evaluation 

based on the OECD validation principles [2], we selected a 

final model of six structural/MOA features: three molecu-

lar descriptors and three gene expression patterns (Eq. 3).

A good concordance between the predicted and experi-

mental data is shown in Fig. 1. Our model fulfils the cri-

teria regarding the goodness of fit and the internal and 

(3)

LogKHSA = −0.372 + 0.012|Mor23i|1.25

− 0.042|N − 072|1.25 + 0.139|ALOGP|1.25

− 2.980|MCF7_ENSG00000112115|1.75

− 0.075|PC3_ENSG00000197646|1.75

− 0.216|PC3_ENSG00000276644|1.75

Fig. 1 Predicted logKHSA versus experimental logKHSA values of 
training set (black) and test set (red) chemicals
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external validation requirements, as shown in Additional 

file  1. Moreover, the final hybrid model statistics passed 

all the recommended thresholds except the CCC metric 

(Additional file 1). Indeed, the QL10−Out , R
2
tr , R

2
te , Q

2

F1
 , Q2

F2
 , 

Q2

F3
 are greater than 0.6, but, the CCCTe value is smaller 

than 0.85. Next, we defined the AD of our model based on 

the consensus strategy. Noteworthily, all chemicals of the 

test set are inside the AD spaces (Additional file  1), sug-

gesting that all the predictions were reliably interpolated. 

For visualization purposes we show the AD computed by 

means of the the leverage approach [30] in Fig. 2.

Impact of the integration approach and comparison 

to sub-models

Next, in order to evaluate the impact of the integration 

strategy, we compared our QSMARt integrated final 

model with the two obtained by applying our approach 

to the MDs and genes separately. We ran the SVA meth-

odology for the same nine α and γ values and we obtained 

9 models for the MDs, while only two models were 

obtained by using the genes alone, since no fitting was 

obtained for 7 γ values. �e best models for the MDs and 

genes respectively are the following:

(4)

LogKHSA = −0.335 + 0.077|Mor23i|0.11 − 0.012|R8s.|0.11

+ 0.007|C .040|0.11 − 0.061|N − 072|0.11

+ 0.062|ALOGP|0.11 − 0.003|CATS3D06AP.|
0.11

+ 0.0006|piPC08|0.11 − 0.010|GATS2i|0.11

+ 0.001|SpMax1Bh.v.|
0.11

As evidenced in Additional file 1, the QSMARt model is 

characterized by overall better values of all the relevant 

diagnostic statistics. �is analysis, hence, highlighted an 

overall better statistical performance of the integrated 

QSMARt model (Eq. 3) over the two competitor models 

(Eq. 4 and Eq. 5). In particular, the QSMARt model con-

sists of less features, since it uses only 3 MDs and 3 genes, 

while the other two models use 9 MDs and 9 genes, 

respectively. Furthermore, the model coming from the 

genes does not show any predictive capability on the test 

set ( R2
test = 0.10 ) although its R2

train
= 0.61 . On the other 

hand the model obtained by using only MDs has good 

predictive capabilities, even thought they are smaller 

than the one obtained by the QSMARt model. Further-

more, when comparing the distributions of the Q2 , Q2F1
,Q2F2 , Q

2F3 and CCC  metrics that are computed with the 

RSVA method, the performances of the QSMARt model 

are better than those of the other two models (Additional 

file 5: Fig. S2).

Mechanistic interpretation of the features included 

in the QSMARt model

Mechanistic interpretation of the molecular descrip-

tors included in a model is an OECD principle of QSAR 

validation [2]. �e hybrid model was built with the fol-

lowing MDs: Mor23i, N-072, and ALOGP. Mor23i is a 

measure of the pair-wise interatomic distance and ioniza-

tion potential [36]. Ionization potential is the amount of 

energy required to extract one electron from a chemical 

system, i.e., a measure of the capability of a molecule to 

give the corresponding cation. Mor23i and logKHSA are 

positively correlated (Eq. 3), implying that the higher the 

ionization potential, the higher the HSA binding affin-

ity. �is further suggests that electron-pair acceptors 

(Lewis-acids) have higher binding affinity to HSA. Given 

the positive coefficient of Mor23i in our model equa-

tion, compounds with more acidic properties have higher 

binding affinity to HSA. On the other hand, due to the 

mathematical background, the distance between two 

influential atoms may majorly define the descriptor [36]. 

(5)

LogKHSA = 0.042 + 3.84|MCF7_ENSG00000185950|0.16

− 11.163|MCF7_ENSG00000112115|0.16

− 0.758|MCF7_ENSG00000135100|0.16

+ 0.193|PC3_ENSG00000128228|0.16

+ 0.0007|PC3_ENSG00000168209|0.16

+ 0.040|PC3_ENSG00000110619|0.16

− 0.755|PC3_ENSG00000064687|0.16

− 1.310|PC3_ENSG00000168875|0.16

− 9.301|PC3_ENSG00000276644|0.16

Fig. 2 Standardized residuals versus leverage values of training 
set (black) and test set (red) chemicals (Williams plot). Dashed lines 
indicate 3.0σ interval. Vertical line set at the warning leverage (critical 
hat value, h∗

= 0.438)
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�erefore, a more detailed interpretation could be useful 

for molecular design purposes.

N-072 is a descriptor counting the nitrogen-centered 

fragments of RCO-N< or > N-X=X in a chemical struc-

ture, where R is any group bound through carbon, X is 

any electronegative atom, such as oxygen, nitrogen, sul-

fur, phosphorus, and halogens, - is single and = is dou-

ble bonds, respectively [3]. �e negative coefficient in 

the final model indicates that chemicals with N-072 frag-

ments show less affinity to HSA binding. Similarly, N-072 

was reported elsewhere as affecting the relative fluores-

cence intensity ratio [37].

ALOGP is a measure of hydrophobicity as the loga-

rithm of n-octanol/water partition coefficient. Based on 

the Ghose-Crippen method [38], it is calculated as the 

summation of atomic contributions to overall molecu-

lar hydrophobicity. Clearly, having a positive coefficient 

in the model equation, ALOGP explains an increased 

affinity to HSA binding. It has been already reported in 

relation to binding affinity to HSA [12, 39]. Furthermore, 

earlier studies on the crystallographic structure of HSA 

and binding affinity evidenced that the binding sites of 

HSA are mainly composed of hydrophobic residues, fur-

ther revealing that hydrophobicity is a major property 

encoding the binding affinity, as reviewed in [40, 41].

�ree genes are included in the final QSMARt model, 

namely Interleukin 17A (IL17A) from the MCF7, Pro-

grammed Cell Death 1 Ligand 2 (PD-L2), and Dachshund 

Family Transcription Factor 1 (DACH1) from the PC-3 

transcriptomic datasets, respectively. �e expression 

of IL17A is documented in the MCF7 cell line, where 

it has been tested as target of chemotherapeutic strate-

gies aiming at altering autophagic ability of breast cancer 

cell lines [42]. Alteration of the expression of PD-L2, a 

ligand of PD-1, has been observed both in prostate can-

cer in response to anti-PD-1 therapy [43]. DACH1 is a 

transcription factor expressed in prostate cancer, where 

its low expression is associated with higher malignant 

potential [44]. Interestingly, all these three genes have 

known immunomodulatory properties, either as pro-

inflammatory (IL17A) or immunosuppressive (PD-L2 

and DACH1). Since their QSMARt model coefficients 

are negative, the impact of drugs to alter their expression 

is inversely proportional to HSA binding affinity. �ese 

results, for instance, suggest that the serum supplemen-

tation in the cell culture medium and the compound 

dosages should be mutually adjusted when testing drugs 

in vitro, such as in the CMap experiments.

Next, we considered the correlation between the three 

gene expression patterns and the three MDs included in 

the QSMARt model (Fig. 3). All the genes in the model 

were negatively correlated with Mor23i and ALOGP, 

and positively correlated with N-072, respectively. �ese 

results imply that potentially less acidic (lower values of 

Mor23i) and less lipophilic compounds (lower values of 

ALOGP) have a higher impact in altering the expression 

of these three genes.

Altogether, according to the QSMARt model, com-

pounds with higher values of ionization potential and 

hydrophobicity, and less nitrogen-centered residuals, as 

well as lower expression alteration of the immunomod-

ulatory genes IL17A, PD-L2 and DACH1, have higher 

binding affinity to HSA.

Fig. 3 Correlation graph of the six MDs/MOA features of the QSMARt 
model. Vertex color represent the sign of the associated beta value 
while edge colors show the sign of the correlation of the features 
across the X dataset

Fig. 4 Predicted logKHSA by Eq. 3 versus leverage values of training 
set (black), test set (red), and external set (green) chemicals (Insubria 
graph). Dashed lines indicate the model prediction range. Vertical line 
set at the warning leverage (critical hat value, h∗

= 0.438)
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Taken together, these results provide an extended 

mechanistic interpretation of the interactions of chemi-

cals and biological systems by providing direct asso-

ciations between specific structural and biological 

properties of the exposure.

Application of the QSMARt model

Finally, we tested the performance of our QSMARt 

model in predicting the logKHSA for an independent set of 

799 compounds extracted from the CMap dataset. With 

741 chemicals in the AD, our model provided a remark-

able prediction coverage of 93% (Fig. 4). It is noteworthy 

to emphasize that no external chemicals falling outside 

the structural/MOA feature domain were identified. 

However, 58 drugs appeared outside the model predic-

tion range and were further investigated. For this, we 

inspected the distribution of the different subsets of 

compounds in a projected space based on the six MDs/

MOA features of the QSMARt model (Fig. 5a) as well as 

the three MOA features (Fig. 5b) and three MDs (Fig. 5c) 

considered separately. �is analysis evidenced that the 

external set chemicals falling outside the model pre-

diction range show less structural commonalities with 

the rest of the compounds (Fig. 5c) but are genomically 

confounded with the others (Fig.  5b). �us, we further 

investigated the value of the MDs for the external dataset 

and, as we can see from Fig. 5d, drugs falling outside the 

prediction range of our model have higher value for the 

ALOGP MD.

a b

c d

Fig. 5 TSNE projection of the drugs in the albumin and external dataset. The projection was performed by using the set of genes and MDs (a), 
only the genes (b) and only the MDs (c) in the optimal hybrid model. The outliers are in the border area of the dataset for the molecular descriptors 
(c), while they are similar to the rest of the external set fort the gene log-fold change (b). Likewise, the outliers still appear on the border for the 
combined two sets of features (a). In panel (d) the values of the three MDs is plotted (y axis) for the drugs in the albumin and external dataset (x 
axis). The drugs are ordered based on their predicted logKHSA value. Drugs from the external set that falls in the model prediction range are marked 
in gray, while the ones that are outside the range are marked in blue. Drugs in the training set are marked in black while drugs in the test set are 
marked in red
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Biological relevance of the QSMARt model

In order to better understand the possible impact of the 

QSMARt model, we investigated its performance on 

drugs grouped by the ATC (Anatomical, �erapeutic, 

Chemical) code system as defined by the World Health 

Organization (WHO) [45]. �e ATC codes classify the 

drugs into different groups in accordance with the organ 

or system on which they act and their chemical, pharma-

cological, and therapeutic properties. We performed our 

analyses by considering the anatomical subgroup (level 1) 

and the therapeutic subgroup (level 2) of the ATC codes. 

We investigated the relationship between the experimen-

tal vs. predicted logKHSA values, of the 59 drugs present 

in our dataset, and their grouping in ATC level 1 and 2 

(Additional file  6: Fig. S3). �is analysis highlights that 

the two drugs cefuroxime and amoxicillin, belonging 

to the ATC class J (any-inflammatory), show the lowest 

range of experimental and predicted logKHSA. Likewise, 

a large group of ATC class C compounds (cardiovascu-

lar system) are in the mid range of the distribution, while 

four ATC class N (nervous system) are grouped in the 

highest range of the experimental/predicted logKHSA. 

Next, we inspected the larger set of 799 drugs used for 

the external validation, for which no experimental value 

of logKHSA was available. In this case, we looked at the 

distribution of the predicted logKHSA values in the level 

1 and level 2 ATC codes (Additional files 7: Fig. S4 and 

8: Fig. S5). Also, this analysis shows that the compounds 

belonging to the ATC class J (anti-inflammatory) have 

the lowest levels of predicted logKHSA. On the opposite, 

drugs of the ATC class A (digestive system), G (genitou-

rinary system) and N (nervous system) have the highest 

predicted logKHSA. �ese results confirm our observa-

tions on the 59 drugs present in our discovery set.

�e genes selected in our model are involved in several 

signalling pathways, especially in cancer and immune 

signalling. �us, we investigated their expression values 

between immunomodulatory and non immunomodu-

latory compounds. We identified the level 2 classes L03 

and L04 to be immunostimulant and immunosuppres-

sant, respectively. Unfortunatelly, none of the compounds 

available in the Connectivity map data set belong to the 

class L03, while four are annotated as L04. To perform the 

comparison, we selected the compound structurally least 

similar to each of the L04 drugs in the Connectivity Map 

dataset, and plotted the respective expression values for 

each of the three genes included in our final model (Addi-

tional file  9: Fig. S6). While MCF7_ENSG00000112115 

And PC3_ENSG00000197646 did not show any differ-

ence, the gene PC3_ENSG00000276644 showed a trend 

with higher expression in L04 drugs as compared to their 

least similar ones.

Conclusion

In this study, we proposed a computational strategy to 

define quantitative models of structural and mechanism 

of action-activity relationships (QSMARt). Moreover, we 

investigated the effectiveness of hybrid QSMARt model 

comprising both MDs and MOA information to better 

explain the biological mechanisms underlying endpoints 

of interest. We applied our methodology to predict 

human serum albumin (HSA) binding, obtaining a sta-

tistically robust and validated model that provides new 

venues for the interpretation of the chemical-biological 

interactions. QSMARt models are promising comple-

mentary tools to develop new safe- and useful-by-design 

compounds.
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Additional �le 2. This file contains the formal descriptions of the method-
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Additional �le 5. Fig. S2. Comparison of the model validation curves.
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