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Abstract: Incorporating hand gesture recognition in human–robot interaction has the potential to
provide a natural way of communication, thus contributing to a more fluid collaboration toward
optimizing the efficiency of the application at hand and overcoming possible challenges. A very
promising field of interest is agriculture, owing to its complex and dynamic environments. The
aim of this study was twofold: (a) to develop a real-time skeleton-based recognition system for five
hand gestures using a depth camera and machine learning, and (b) to enable a real-time human–
robot interaction framework and test it in different scenarios. For this purpose, six machine learning
classifiers were tested, while the Robot Operating System (ROS) software was utilized for “translating”
the gestures into five commands to be executed by the robot. Furthermore, the developed system
was successfully tested in outdoor experimental sessions that included either one or two persons. In
the last case, the robot, based on the recognized gesture, could distinguish which of the two workers
required help, follow the “locked” person, stop, return to a target location, or “unlock” them. For the
sake of safety, the robot navigated with a preset socially accepted speed while keeping a safe distance
in all interactions.

Keywords: skeleton-based recognition; machine learning; nonverbal communication; human–
robot interaction

1. Introduction

Toward rendering agricultural practices more targeted, efficient, profitable, and safe,
robotic systems seem to be a game changer, contributing also to meet the challenges of
lack of qualified labor [1,2]. To achieve the aforementioned goals, agri-robotic applications
are taking advantage of the remarkable technological advancement of information and
communications technology (ICT), including artificial intelligence, sensors, and computer
vision [3,4]. Robotic solutions have found fertile ground in a number of agricultural ap-
plications, such as harvesting, spraying, disease detection, and weeding [5,6]. Usually,
robots can carry out programmed actions driven by restricted, task-specific, and nonin-
teractive commands [7]. These prearranged actions can work sufficiently for structured
environments, such as industrial stable settings. However, agriculture involves dynamic
ill-defined ecosystems, which are vulnerable to heterogeneity and unforeseeable situations,
as well as involve sensitive live produce [8]. As a means of addressing these challenges, the
collaboration of humans and robots constitutes a promising solution through combining
the cognitive human capabilities with the repeatable accuracy and strength of robots. The
so-called human–robot interaction (HRI) in the agricultural sector is anticipated to provide
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(a) more flexibility in system reconfiguration, (b) workspace minimization, (c) optimization
of both service quality and production, and (d) rapid capital depreciation [9–11].

HRI can be briefly defined as “the process that conveys the human operators’ intention
and interprets the task descriptions into a sequence of robot motions complying with the robot
capabilities and the working requirements” [12]. The interaction of humans with computers,
in general, which relies on conventional devices such as keyboards, computer mice, and
remote controls, tends not to serve any more. This is mainly due to the lack of flexibility
and neutrality [13,14]. In the direction of optimizing the emerging synergistic ecosystems,
more natural ways of communication are needed such as vocal interaction and body
language. The former approach is particularly restricted by noisy environments and the
different ways in which someone may pronounce the same command [15]. In contrast,
nonverbal communication is regarded as more reliable. Body language is a concise term for
summarizing body poses, facial emotions, and hand gestures. The most efficient means of
natural expression that everyone is familiar with is the hand gesture interaction. A wide
range of applications have taken place in HRI systems, including virtual mouse control [16],
gaming technology for enhancing motor skills [17], sign language recognition [18], and
human–vehicle interaction [19].

The main approaches of hand gesture recognition include the acquirement of data
from either gloves equipped with sensors [20,21] or vision sensors [15,22]. Moreover,
surface electromyography sensors have been proposed, which record the electric potential
of muscles produced during their contractions [23,24]. Summarizing the main drawbacks of
the above methodologies, (a) gloves tend to limit the natural movements and may provoke
adverse skin reactions in people having sensitive skins, while the variable sizes among
users can cause discomfort, as stressed in [13], (b) vision sensors face difficulties in case of
complex backgrounds, multiple people, and changes of illumination [15], and (c) surface
electromyography usually creates massive and noisy datasets [23], which can influence the
intrinsic features of classification problems [25].

Focusing on vision sensors, different algorithms and methodologies have been de-
veloped for the purpose of detecting different hand features, such as skin color [26], mo-
tion [27], skeleton [28], and depth [29], as well as their combinations. The main problem
that the skin color approach involves is that the background can present elements which
may match the color of the skin; therefore, different techniques have been suggested to
meet this challenge [30,31]. Concerning motion-based recognition, dynamic backgrounds
or possible occlusion in front of the tracked hand can cause some issues [27,32].

In order to meet the above challenges, depth cameras are utilized that can additionally
acquire higher-resolution depth measurements, unlike RGB (red–green–blue) cameras that
show only a projection. Consequently, more detailed information can be provided, since
every pixel of the image consists of both color and distance values [33]. In combination with
depth measurements, and in the direction of improving complex feature detection, skeleton
features of the hand can be exploited. In essence, skeleton-based recognition makes use
of geometric points and statistic features, including space between the joints, along with
joint location, orientation, curvature, and angle [13]. A representative study is that of De
Smedt et al. [34], who classified hand gestures with the support vector machine (SVM)
algorithm using a skeletal and depth dataset. Furthermore, Chen et al. [35], using data
from a Kinect sensor for acquisition and segmentation and the skeleton-based methodology,
implemented an SVM algorithm and also a hidden Markov model (HMM) for classifying
hand gestures. Xi et al. [36] suggested a recursive connected component algorithm and a
three-dimensional (3D) geodesic distance of the hand skeleton pixels for real-time hand
gesture tracking. Lastly, deep neural networks (DNNs) were used by Tang et al. [37],
Mujahid et al. [38], Agrawal et al. [39], Niloy et al. [40], and Devineau et al. [41] to learn
features from hand gesture images. More information about hand gesture recognition
based on machine learning (ML) and computer vision can be seen in recent review studies
such as [13,42–45].
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As far as the incorporation of hand gesture recognition in agricultural human–robot
collaborative systems is concerned, the literature is still scarce. A part of the study pre-
sented by Vasconez et al. [46,47] investigated this nonverbal means of communication in
conjunction with a faster region-based convolutional neural network (R-CNN) intended
for improving the process of avocado harvesting in a simulated workspace. In particular,
in [46], a robot could detect the workers and judge if they required assistance in one of the
following ways; detection of hand gestures, flag detection, and human activity recognition.
Moreover, Zhang et al. [48] studied a virtual assembly system regarding a harvester that
was able to recognize dynamic hand gestures relying on a CNN/LSTM (long short-term
memory) network.

Taking into account the great potential of using hand gesture recognition for enhancing
the efficiency of agricultural collaborative systems [9,10,49], as well as for achieving fluid
and safe interaction [50], the scope of the present study was to create a robust innovative
paradigm. More specifically, it was aimed at developing an integrated automated com-
munication framework between an unmanned ground vehicle (UGV) and the worker via
hand gesture recognition such that the former “collaborator” assists humans when they
require its help. Moreover, it focused on testing this synergistic ecosystem in different
scenarios in an orchard. This study is an extension of the papers recently published on HRI
that included a worker and a UGV for optimizing crop harvesting [51–53]. In particular,
this application is based on the synchronization of the actions of the UGV and workers,
with the UGV following the workers while harvesting and undertaking the transport of
crates from the harvesting site to a cargo vehicle. In [51], the height of the robot deposit
height was evaluated in the framework of occupational health prolepsis, while, in [52,53],
wearable sensors were used for the identification of human activity signatures. We now
add real-time hand gesture recognition to this syllabus for the sake of optimizing natural
communication and safety by combining depth videos and skeleton-based recognition. It is
the first time, at least to authors’ knowledge, that such a system is verified in an orchard and
not in a simulated environment [46–48], proving that it is able to face the aforementioned
challenges related to vision sensors and outdoor settings.

The remainder of the present paper is structured as follows: Section 2 is divided into
two main subsections. The first one describes the developed framework for achieving
automatic hand gesture recognition along with the data acquisition process and information
about the ML approach. The second subsection elaborates on the methodology regarding
the “translation” of the automated hand gesture recognition into practical commands to be
executed by a UGV in different outdoor instances. Subsequently, the results are presented
in Section 3 regarding the performance of the examined ML algorithms for capturing the
hand gestures (Section 3.1), as well as the efficiency of the proposed system in different
situations (Section 3.2). Lastly, in Section 4, concluding remarks are drawn in tandem with
a discussion in a broader context along with future research directions.

2. Materials and Methods
2.1. Hand Gesture Recognition
2.1.1. Data Acquisition

The data acquisition process is an essential element in order to properly train an ML
algorithm. In the present study, the data acquisition was performed using a ZED 2 depth
camera (Stereolabs Inc., San Francisco, CA, USA) placed at a fixed height of 88 cm on a
UGV (Thorvald, SAGA Robotics SA, Oslo, Norway). Five participants were involved in the
present acquisition of data on both sunny and cloudy days at different sites of an orchard
with Pistacia vera trees in the region of Thessaly, in central Greece. Additionally, the distance
between the participant and the camera was changed in favor of increasing variability.
Concerning the speed of the tracking, it was set equal to 60 fps, while the focus was on the
left hand. The predefined hand gestures, which are depicted in Figure 1a–e, are commonly
known as “fist”, “okay”, “victory”, “flat”, and “rock”.
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Figure 1. Images of the investigated hand gestures: (a) “fist”, (b) “okay”, (c) “victory”, (d) “flat”, and
(e) “rock”.

For the purpose of identifying the position of hands, the MediaPipe framework was
implemented [54], similarly to recent studies such as [55–57]. MediaPipe is an open-source
framework created by Google that offers various ML solutions for object detection and
tracking. An algorithm was developed using Python that implements this framework for
gesture recognition, by using the holistic solution including the hand detection (for the left
hand) and excluding the face detection. As described in [58], a model regarding the palm
detection works on the entire image and returns an oriented bounding frame of the hand. A
model of hand landmarks then works on the cropped picture and returns 3D keypoints via
a regression process. Each of the identified landmarks has distinct relative x, y coordinates
to the picture frame. Consequently, the requirement for data augmentation, including
translation and rotation, is remarkably reduced, while the previous frame can be used in
case the model cannot identify the hand so as to re-localize it. Moreover, the MediaPipe
model “learns” a consistent hand pose representation and turns out to be robust even to
self-occlusions and partially visible hands. Lastly, the developed algorithm computes the
Euclidian distance between all the identified landmarks along with shoulder and elbow
angles. The aforementioned angles refer to the body side that corresponds to the tracked
hand. In Figure 2, the aforementioned landmarks are depicted pertaining to the examined
hand gestures, with the images taken in the laboratory for the sake of better distinguishing
the landmarks.

The dataset, which was used for training, consisted of 4819 rows created from images
taken from the RGB-D camera in the orchard. Each row of the dataset represents the
generated landmarks from the MediaPipe hand algorithm for each video frame. On the
other hand, each column (except the last three) indicates the Euclidian distance between
two landmarks to the given frame. The last three columns represent the shoulder angle,
the elbow angle, and the class, respectively. As mentioned above, the calculation of the
Euclidian distance and angles was carried out by the developed algorithm, while the
classification of the hand gesture was performed manually for each case.
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Figure 2. Tracked hand landmarks denoted by dots for the gestures: (a) “fist”, (b) “ok”, (c) “victory”,
(d) “flat”, and (e) “rock”.

In general, when using an ML algorithm, it is of central importance to train it by
utilizing a dataset with about the same number of samples for each class. In this analysis,
since the participants carried out the five preset hand gestures in the same time period,
the classes resulted in approximately the same number of instances and, consequently, in
balanced classes, as depicted in Figure 3.

Figure 3. Bar chart showing counts of each class; labels 0–4 correspond to “fist” (0), “flat” (1),
“okay” (2), “rock” (3), and “victory” (4) hand gestures.

2.1.2. Data Preprocessing

Due to the type of the aggregated data, only two preprocessing actions were required.
The first was the oversampling procedure using the SMOTE algorithm [59] for the Scikit-
learn library [60]. It regards a Python module incorporating a variety of ML algorithms for
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both supervised and unsupervised problems. The second preprocessing action dealt with
data normalization in which a min–max scaler was used in the same library.

2.1.3. Machine Learning Algorithms Tested for Classification Predictive Modeling

Classification commonly refers to problems aiming at recognition and grouping of
objects and data into preset categories. The algorithms, which are used as classifiers in ML,
make use of input training data in order to predict the probability that the data fall into one
of the predetermined classes. There are a plethora of classification algorithms available in
the literature [61–63]. In the present analysis, the following algorithms were used:

• Logistic regression (LR): Applied to estimate discrete values from a set of indepen-
dent variables for predicting the likelihood of an event through fitting data to a
logit function;

• Linear discriminant analysis (LDA): A technique whose objective is to project the
features of a higher-dimensional space onto a lower one with the intention of avoiding
dimensional costs;

• K-nearest neighbor (KNN): A pattern recognition algorithm, which utilizes training
datasets so as to find out the closest relatives in future samples;

• Classification and regression trees (CART): A tree-based model relying on a set of
“if-else” conditions;

• Naïve Bayes: A probabilistic classifier, which assumes that the existence of a specific
feature in a class is independent of the existence of any other feature;

• Support vector machine (SVM): A methodology in which raw data are plotted as
points in an n-dimensional space (n represents the number of features). Subsequently,
each feature’s value is tied to a specific coordinate so as to enable data classification.

2.2. Real-Time Human–Robot Interaction Based on Hand Gesture Recognition

In this subsection, the methodology pipeline regarding the implementation of the
automated hand gesture recognition is described as a means of achieving robust HRI
in different cases. In brief, a UGV can detect the worker requiring assistance and lock
onto them (“fist” gesture). Once the person has been locked onto, they are the only
authorized worker who can collaborate with the UGV by using one of the other four
commands/gestures, thus minimizing potential safety concerns [6]. Subsequently, on the
basis of the detected hand gesture, the UGV can (a) unlock the selected worker (“okay”
gesture), (b) follow the authorized worker considering a safe distance (“victory” gesture),
(c) stop the current action (“flat” gesture), or (d) return to a predetermined target location
(“rock” gesture). This location can be a cargo vehicle similarly to [46] or any other site of
the field according to the application at hand. The five available gestures that correspond
to a single class and a unique action to be executed by the UGV are summarized in Table 1.

Table 1. Summary of the examined hand gestures along with the corresponding classes and actions
to be executed by the UGV.

Recognized Hand Gesture Corresponding Class UGV Action

“Fist” 0 Lock
“Flat” 1 Stop

“Okay” 2 Unlock
“Rock” 3 Return to the target location

“Victory” 4 Follow

The implemented UGV was equipped, apart from the RGB-D camera needed for
gesture recognition, with several sensors to facilitate the present agricultural application.
In particular, a 3D laser scanner (Velodyne Lidar Inc., San Jose, CA, USA) was used
in order to scan the surrounding environment and generate a two-dimensional map,
and an RTK GPS (S850 GNSS Receiver, Stonex Inc., Concord, NH, USA) and inertial
measurement units (RSX-UM7 IMU, RedShift Labs, Studfield, Victoria, Australia) were



Appl. Sci. 2022, 12, 8160 7 of 17

used for providing information about velocity, positioning of the UGV (with latitude
and longitude coordinates), and time toward optimal robot localization, navigation, and
obstacle avoidance. To cope with the current requirements in computational power, all
the visual oriented operations were orchestrated by a Jetson TX2 Module [64] with CUDA
support. In Figure 4, the UGV platform used in the present study is depicted equipped
with the necessary sensors.

Figure 4. The robotic system used in the present analysis equipped with the required sensors.

The selection of the above sensors was made on the basis of the capability for Robot
Operating System (ROS) integration [65], which is an open-source framework related to
robotic applications and constitutes an emerging framework in various fields, including
agriculture [66,67]. When reconfiguring a robot, the implemented software should be mod-
ular and capable of being adapted to new configurations without requiring recompilation of
the robot’s code. Toward that direction, ROS was selected to be the software of the present
study. All processes running on UGV are registered to the same master ROS, constituting
nodes within the same network [68]. The ROS framework was also used to navigate the
UGV in the orchard. The accurate position was provided by the onboard RTK-GNSS system.
In Figure 5, the operation flow of the developed system is presented. In brief, as an input,
video frames from the depth camera are used. The image data are then transferred from an
ROS topic to an ROS node that extracts the RGB channels from the frame along with the
depth values from each frame. As a next step, the MediaPipe algorithm node incorporates
the RGB channels for extracting all the essential landmarks to feed into the developed
ML algorithm for gesture recognition. In addition, in conjunction with the previous step,
the RGB image data are imported via a topic to a node associated with human detection.
To that end, the pretrained YOLO v3 model was used with the COCO dataset [69]. To
communicate with the rest of the system, an ROS node was developed that requires as
an input topic the RGB image of the depth camera. The output of this node is a topic
with a custom message that consists of the relative coordinates of the bounding box of the
identified person and the distance between the UGV and the collaborating person.
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Figure 5. Operation flow of the developed system.

In the gesture recognition node, similarly to human recognition, the input topic consists
of the RGB image. The gesture recognition node implements the MediaPipe algorithm
and predicts the hand gestures. The output topic constitutes, in practice, the probability of
the identified gesture. Once a gesture is detected and published, the HRI node relates it
with the identified person and publishes an ROS time frame (tf) between the robot and the
person using a distinct ROS node.

The tf publisher/subscriber is a tool provided by the ROS framework that keeps the
relationship among coordinate frames in a tree structure, allowing the user to transform
vectors, points, and so on. The tree structure enables dynamic changes to this structure
requiring no additional information, apart from the directed graph edge. In case an edge
is published to a node referencing a separate parent node, the tree is going to resolve to
the new parent node. The main purpose of this tool is to create a local coordinate system
from the robot and its surrounding environment. In most cases, the “0, 0” point of each
local coordination system is either the first registered point of the operational environment
during the mapping procedure or the center of the robot. In more complex entities (for
example, the UGVs), the entity consists of multiple tf publishers (one for each district part).
For the scope of this study, the human entities consist of one tf publisher. Further details
about the tf library can be found in [70].

The main scope of the HRI node is to control the UGV behavior. On the basis of
the identified hand gesture (class), summarized in Table 1, the algorithm performs the
following steps:

• Waits until the identified person performs a gesture. When the gesture is registered,
the tf publisher is initialized (class 0). For each identified human, a unique identifier
(ID) is assigned. When one of the identified persons performs the lock gesture, the
HRI node is activated. Finally, the person who performed the lock gesture has the
remit to control the UGV and collaborate with it. In order for a person with a different
ID to be able to control the UGV, the “unlock” command must be detected;

• “Unlocks” the person and removes the tf publisher (class 1);
• Enables a tf following sequence and obstacle avoidance. The UGV moves autonomously

in the field while keeping a predefined safe distance. This must be greater than or
equal to 0.9 m, similarly to [46], in order to be within the so-called social acceptable
zone (class 2);
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• Disables the tf following sequence, but does not “unlock” the person (class 3);
• Navigates the UGV to a specific predefined location (class 4).

In order for the UGV to successfully keep a safe distance and velocity from the identi-
fied people and possible obstacles, the open-source package “ROS Navigation Stack” [71,72]
was used similarly to previous studies [67,73]. An ROS node creates a tf publisher from
the robot for the identified obstacles and locked person and, according to the tfs values,
a velocity controller keeps a safe distance. This package prerequires that the UGV runs
ROS, has a tf transform tree, and publishes sensor data by utilizing the right ROS message
types [71].

3. Results

This section elaborates on the results obtained from the six ML algorithms utilized
for detecting the five different hand gestures. In addition, preliminary results are summa-
rized for testing step by step the efficiency of this nonverbal communication in real field
conditions for three different scenarios.

3.1. Comparison of the Machine Learning Algorithms Performance for Classification of the
Hand Gestures

Confusion matrices constitute a useful and popular measure for evaluating and vi-
sualizing the performance of ML algorithms while solving both binary and multiclass
classification problems by comparing the actual values against those predicted by the
ML model. In particular, a confusion matrix can be an N × N matrix, where N stands
for the number of classes. In the present analysis, N was equal to the examined hand
gestures, i.e., five, as depicted in Figure 6, while the correspondence of the number of
classes with the hand gesture is presented in Table 1. The confusion matrices derived
using the six ML algorithms, namely LR, LDA, KNN, CART, NB, and SVM, are presented
in Figure 6a–f, respectively. The diagonal cells show the number of hand gestures that
were correctly classified, whereas the off-diagonal cells show the number of misclassified
gestures. Higher diagonal values in Figure 6 indicate a better performance of the corre-
sponding algorithm. Overall, the most problematic hand gestures were the “rock” (label 3)
and “victory” (label 4), especially for LR, LDA, CART, and SVM algorithms.

The classification report depicted in Table 2 summarizes the individual performance
metrics for each ML algorithm. In simple terms, these metrics indicate the proportion of,
(a) true results among the entire number of examined cases (accuracy), (b) the predicted
values that turned out to be truly positive (precision), and (c) actual positives that turned
out to be correctly predicted (recall). Lastly, the F1-score combines the precision and recall
by considering their harmonic mean. As can be deduced from Table 2, KNN, LDA, and
SVM seemingly outperformed the other investigated algorithms, while the NB algorithm
gave the worst results.

Lastly, Figure 7 depicts the box plots pertaining to the accuracy of the investigated
classifiers as a means of offering a visual summary of the data regarding the identification
of the mid-point of the data (the orange line), as well as the skewness and dispersion of
the dataset. As an example, if the median is closer to the bottom or to the top of the box,
the distribution tends to be skewed. In contrast, if the median is in the middle of the box,
and the length of the whiskers is approximately the same on both sides, the distribution is
symmetric. Lastly, the interquartile range (IQR), i.e., the range of the box, includes 50% of
the values; thus, a longer box indicates more dispersed data.
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Figure 6. Confusion matrices showing the performance of (a) LR, (b) LDA, (c) KNN, (d) CART,
(e) NB, and (f) SVM algorithms. Labels 0–4 correspond to “fist” (0), “flat” (1), “okay” (2), “rock” (3),
and “victory” (4) hand gestures.

Table 2. Classification report for the performance of the six investigated machine learning algorithms.

Algorithm Accuracy Precision Recall F1-Score

LR 0.831 0.744 0.730 0.737
LDA 0.875 0.811 0.810 0.811
KNN 0.875 0.839 0.821 0.830
CART 0.800 0.703 0.723 0.713

NB 0.753 0.561 0.618 0.588
SVM 0.872 0.829 0.810 0.819

Concerning the present analysis, the NB classifier appeared to be positively skewed,
while outliers were also observed (plotted as circles beyond the whiskers) for this case.
Focusing on the KNN, LDA, and SVM, which demonstrated the best performance, the
obtained accuracy values had about the same median and were not symmetrical, spreading
out more on the upper side. Moreover, KNN and LDA had approximately the same range
of data, larger as compared to the corresponding range of SVM. Lastly, the dispersion of
accuracy values was the same for the aforementioned three algorithms, as can be deduced
from their IQR values.
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Figure 7. (a) Box plot distribution of the accuracy of the examined machine learning algorithms;
(b) illustration of the main set of data in a typical box plot.

3.2. Demonstration of the Proposed System in Differrent Scenarios

For safety purposes, a step-by-step approach was performed. We initially tested the
efficacy of the proposed framework in a case where only one person existed in the same
working environment with the UGV. The latter was still in a specific farm location waiting
to lock its “collaborator”, in case the “fist” gesture was detected. Taking into account the
above results concerning the performance of the investigated ML algorithms in predicting
the five hand gestures, only the KNN algorithm was used for brevity. The UGV was able to
respond to all the commands given via the hand gestures (Table 1), recorded by the RGB-D
camera and recognized by the proposed framework. The fact that the UGV aborted its
current task whenever the “flat” gesture was recognized is very important considering that
a possible failure to comply with this command can provoke harmful consequences [10].
Lastly, a maximum speed of 0.2 m/s and a maximum safe distance of 0.9 m [46], which
were programmed in the developed model, were necessary prerequisites in all occasions.

In the next experimental set, a second person was added in the working region
to investigate how the proposed framework could cope with this challenge. It can be
concluded that, again, the robot was able to accurately “lock” onto the selected participant
in spite of the presence of the second person while also obeying the other four commands.
During this scenario, although the UGV could obey only the authorized person, it was able
to recognize the second person and avoid them similarly to the other existing obstacles of
the orchard. Figure 8 illustrates the case where the UGV was in the “following” mode for
the locked person in the case of a single person (Figure 8a) or when both persons were in
the field of view of the RGB-D camera (Figure 8b). Figure 8 was generated by RVIZ [74],
which is a 3D visualization tool for the ROS software.
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Figure 8. Visualization of the real-time field experiments in ROS RVIZ environment showing the
local orthogonal coordinate system of some parts of the UGV, as well as the “following” mode, in case
of (a) a single person and (b) a second person appearing in the field of view of the RGB-D camera.

Lastly, the proposed synergistic HRI system was tested in a more complex scenario. In
this case study, two persons were present in the same working space with the UGV. The first
person asked to be locked onto by the UGV (“fist” gesture) (Figure 9a), and then requested
to be followed (“victory” gesture) (Figure 9b) before performing a stop command (“flat”
gesture) (Figure 9c). Afterward, the locked person asked to be unlocked (“okay” gesture)
(Figure 9d). A second person in the field of view of the RGB-D camera asked to be locked
onto (Figure 9e). By locking onto the second person, the UGV followed the participant
(Figure 9f), and was then ordered to go to the target site of the farm (Figure 9g), where it
arrived after navigating a few meters (Figure 9h) following the set of gestures presented in
Table 1. Some indicative images taken from the pilot study are shown in Figure 9a–h, while
a video is also provided in the Supplementary Materials (Video S1).

Figure 9. Cont.
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Figure 9. Snapshots from experimental demonstration session in an orchard depicting (a) the lock-
ing onto of the first person by the UGV, as well as the UGV (b) following the locked participant,
(c) stopping, and (d) unlocking this participant. Next, the UGV (e) locked onto the second participant,
(f) followed him, (g) was ordered to go to the target location, and (h) reached this location.

4. Discussion and Main Conclusions

In the present study, a very crucial aspect of HRI was investigated to meet the needs
of enabling natural communication. In this context, we proposed a nonverbal interaction
via real-time hand gesture recognition captured by a depth camera. This combination
has the potential to overcome common problems associated with illumination changes
and complex backgrounds, providing reliable results [13]. In the direction of additionally
facing the challenges of dynamic agricultural environments, a skeleton-based recognition
methodology was designed on the basis of ML. The accuracy of six ML algorithms (LR,
LDA, KNN, CART, NB, and SVM) was tested in this study on five certain hand gestures
representing different actions that the UGV, equipped with an RGB-D camera and other
sensors, could carry out on the basis of the detected commands. Among the examined
classifiers, KNN, LDA, and SVM demonstrated the best performance.

Firstly, the UGV must detect the assigned hand gesture to “lock” onto the person
with whom it is going to collaborate in a relatively crowded environment. To that end, a
distinct hand gesture is used, which represents the first class of the ML implementation.
Once the person is located, the UGV can perform four other actions in order to assist
them, namely, following its collaborator by keeping the preset safe distance and speed,
returning to the destination site, which may be the cargo vehicle zone similarly to [46] or
any other site depending on the application, or stopping its current task at any time, once
the corresponding hand gesture is detected.

In summary, the present integrated hand gesture recognition framework incorporated
and combined several kinds of ICT. In particular, the data acquisition was performed
using a ZED 2 depth camera (Stereolabs Inc., San Francisco, CA, USA) mounted on a UGV
(Thorvald, SAGA Robotics SA, Oslo, Norway). The open-source MediaPipe framework [56]
was used for object detection and tracking in conjunction with an algorithm developed
for the present study. For the preprocessing of the data, the SMOTE algorithm [57] was
implemented. Furthermore, the UGV used in this study was equipped with a variety of
sensors including (i) the depth camera mentioned above, (ii) a 3D laser scanner (Velodyne
Lidar Inc., San Jose, CA, USA), (iii) an RTK GPS (S850 GNSS Receiver, Stonex Inc., Concord,
NH, USA), and (iv) IMUs (UM7 IMU, RedShift Labs, Studfield, Victoria, Australia). To
combine these technologies, an algorithm was developed within the ROS framework
using Python, whose operational flow is described in Figure 5. Moreover, different tf
publishers were developed within the tf ROS package [70], while the ROS navigation stack
package [72] was used for safe navigation. To meet the increased requirements necessary
for the detection ML model, a Jetson TX2 Module [64] with CUDA support was embedded
in the robotic platform.

Overall, the challenge of properly classifying the five hand gestures was successfully
fulfilled, while the preliminary results on real conditions are encouraging enough. In fact,



Appl. Sci. 2022, 12, 8160 14 of 17

three different scenarios took place considering either one or two persons. In all cases,
the KNN classifier was used for the sake of brevity. It was demonstrated that a fluid HRI
in agriculture can be successful in sharing the same working space with the robot being
navigated within a predetermined safe range of speed and distance.

Obviously, toward establishing a viable solution, each aspect of HRI design (e.g., hu-
man factors, interaction roles, user interface, automation level, and information sharing [10])
should be tackled separately, so as to identify and address possible issues. We tried to add
human comfort, naturalness, and the sense of trust to the picture, which are considered
very important in HRI and have received limited attention in agriculture so far. Comfort
and trust can contribute, to a great extent, to the feeling of perceived safety, which is among
the key issues that should be guaranteed in synergistic ecosystems [6,75,76]. In other words,
users must perceive robots as safe to interact with. On the other hand, naturalness refers to
the social navigation of the robot though adjusting its speed and distance from the workers.

To conclude, the present study investigated the possibility of using nonverbal commu-
nication based on hand gesture detection in real conditions in agriculture. Obviously, this
framework can also be implemented in other sectors depending on the specific application
at hand. Possible future work includes the expansion of the present system to incorporate
more hand gestures for the purpose of other practical applications. Toward that direction,
recognition models that can identify a sequence of gestures could also be useful. In addi-
tion, it would be interesting to examine the potential of combing hand gesture recognition
with human activity recognition [52,53] in order to propose a more fluid HRI and test the
framework in more complex applications. More experimental tests should be carried out
in different agricultural environments to identify possible motion problems of the UGV,
which may lead to the application of cellular neural networks [77] to address them, similar
to previous studies [78]. Lastly, future research could involve workers using their own pace
in real conditions and investigation of not only the efficiency of the system, but also their
opinion in order to provide a viable and socially accepted solution [6].

Supplementary Materials: The following supporting information can be downloaded at
https://drive.google.com/file/d/1qHJXW5NFognF3mOVRxV1y09juVIHb4yz/view. Video S1.
Video recording from an experimental demonstration session for testing the efficacy of the pro-
posed synergistic framework.
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