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We report a novel resource (methylation profiles of DNA, or mPod) for human genome-wide tissue-specific DNA

methylation profiles. mPod consists of three fully integrated parts, genome-wide DNA methylation reference profiles

of 13 normal somatic tissues, placenta, sperm, and an immortalized cell line, a visualization tool that has been

integrated with the Ensembl genome browser and a new algorithm for the analysis of immunoprecipitation-based

DNA methylation profiles. We demonstrate the utility of our resource by identifying the first comprehensive

genome-wide set of tissue-specific differentially methylated regions (tDMRs) that may play a role in cellular identity

and the regulation of tissue-specific genome function. We also discuss the implications of our findings with respect to

the regulatory potential of regions with varied CpG density, gene expression, transcription factor motifs, gene

ontology, and correlation with other epigenetic marks such as histone modifications.

[Supplemental material is available online at www.genome.org. The array data from this study have been submitted

to ArrayExpress under accession no. E-TABM-445.]

DNA methylation is indispensable for genome function in mam-

mals. It is the only known epigenetic modification of mamma-

lian DNA and plays critical roles in transcriptional regulation,

chromosomal stability, genomic imprinting, and X-inactivation

(for review, see Bird 2002). Its importance is further underlined

by observations that various complex diseases such as cancer are

associated with perturbed DNA methylation profiles (Laird

2003). Surprisingly, the role of DNA methylation in regulating

normal tissue-specific genome function is still poorly under-

stood, even though this is one of the functions originally

postulated for this epigenetic modification (Bird 2002). Several

recent genome-wide studies show that DNA methylation pro-

files in mammals are tissue specific (Rakyan et al. 2004; Eckhardt

et al. 2006; Khulan et al. 2006; Kitamura et al. 2007; Illingworth

et al. 2008). However, our understanding of the role of tissue-

specific DNA methylation is still limited, and many questions

remain open, including the genomic distribution of tissue-

specific DNA methylation profiles, the relative impact of tissue-

specific methylation at CpG-island versus non-CpG-island pro-

moters, and the role of tissue-specific methylation in nonpro-

moter regions, including nonpromoter CpG islands.

Comprehensive genome-wide profiles would signficantly im-

prove our ability to address these questions and to better under-

stand the role DNA methylation plays in tissue-specific genome

function.

As a resource for the scientific community, we have per-

formed the most comprehensive genome-wide study of human

tissue-specific differentially methylated regions (tDMRs), repre-

senting the largest available data set for DNA methylation in any

organism. Using a combination of methylated DNA immunopre-

cipitation (MeDIP) (Weber et al. 2005; Keshet et al. 2006), custom

high-density microarrays, and novel bioinformatic analytical

tools, we have generated reference human genome-wide DNA

methylation profiles for 13 normal somatic tissues, placenta,

sperm, and the GM06990 immortalized cell line that was used in

the ENCODE pilot study (The ENCODE Project Consortium

2007). This work represents a valuable resource for researchers

seeking to understand the role of mammalian tissue-specific DNA

methylation. Using a newly developed visualization tool, all of

our data have been integrated into the Ensembl genome browser
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(Flicek et al. 2008), and are the first genome-wide DNA methyl-

ation data to be included in any genome browser. The final part

of our integrated system consists of a novel bioinformatic algo-

rithm we have recently developed, Bayesian tool for methylation

analysis (Batman), that enables the estimation of absolute meth-

ylation levels from immunoprecipitation-based DNA methyla-

tion profiles (Down et al. 2008). Bioinformatic analyses of our

data confirm some conclusions from previous smaller studies and

also suggest several novel roles for DNA methylation. A negative

correlation between DNA methylation and gene expression is

observed at high-, medium-, and contrary to previous notions, at

even some low-CpG density promoters. On the other hand, gene-

body methylation positively correlates with gene expression. Fur-

thermore, in addition to the study by Illingworth et al. (2008),

our study represents one of the first systematic genome-wide ef-

forts to characterize nonpromoter CpG islands, and we propose

that only a fraction of these are likely to be functional regulatory

elements. Overall, this work represents an important contribu-

tion to current efforts in understanding the epigenetic code, and

its role in tissue-specific genome function in mammals.

Results

Genome-wide mapping of human tissue-specific DNA

methylation profiles

We based our DNA methylation profiling strategy on a recently

developed technique—methylated DNA immunoprecipitation

(MeDIP)—which utilizes a monoclonal antibody against 5-meth-

ylcytosine to enrich for the methylated fraction of a genomic

DNA sample (Weber et al. 2005; Keshet et al. 2006). MeDIP com-

bined with microarrays is a powerful approach for DNA methyl-

ation profiling (Weber et al. 2005, 2007; Keshet et al. 2006;

Zhang et al. 2006; Zilberman et al. 2006). We designed a custom

high-density oligonucleotide array that encompassed all known

promoters and CpG islands (both promoter- and nonpromoter-

CpG islands) in the human genome based on the Ensembl ge-

nome browser (Homo sapiens release 45.36g based on NCBI_36).

To cover these regions, we chose regions of interest (ROIs) that

were 500 bp in length, typically containing 5 � 50-mer probes.

Most promoters/CpG islands were represented by multiple

ROIs. Repetitive elements were not represented on the array. The

final array design included ROIs that overlapped 82% of all

known autosomal transcriptional start sites (TSSs) in Ensembl,

which we used as a proxy for promoters, 72% of autosomal

nonpromoter CpG islands (for additional information about the

ROIs and array design, see Table 1 and Methods), and also

some randomly selected CpG-poor nonpromoter regions. For

technical reasons, probes could not be designed against the re-

maining TSSs and nonpromoter CpG islands. Data were obtained

for several biological and technical replicates (dye-swaps) for

each of 13 different normal human somatic tissues, placenta,

sperm, and the GM06990 EBV-transformed lymphoblastoid

cell line, resulting in 51 genome-wide DNA methylation profiles

(Fig. 1; Supplemental Figs. 1, 2; Supplemental Table 1). The sperm

data are from a recent study that we published (Down et al. 2008).

Quantitation of DNA methylation levels and integration

into the Ensembl genome browser

Until now, it has not been possible to transform MeDIP enrich-

ment ratios into absolute methylation values. This is because

MeDIP enrichment depends on the density of methylated cy-

tosines (Weber et al. 2005; Keshet et al. 2006), which varies

greatly within the human genome (DNA methylation in mam-

mals occurs almost exclusively at CpG dinucleotides). Any at-

tempt to correct for this CpG density effect at the level of the

array design or with experimental constraints dramatically low-

ers the amount of the genome that can be assessed. To overcome

this constraint, we used a novel algorithm that we recently de-

veloped—Bayesian tool for methylation analysis (Batman)—

based on a Bayesian deconvolution strategy similar to joint bind-

ing deconvolution (Qi et al. 2006) to assign MeDIP signal to CpG

dinucleotides in the sequence (Down et al. 2008; schematically

shown in Fig. 1A). Briefly, Batman corrects for the observation

that methylated sequences with higher CpG densities will have

stronger MeDIP enrichment, thereby allowing estimation of ab-

solute methylation levels. Comparison of Batman-called meth-

ylation values with bisulfite–PCR sequencing data from the Hu-

man Epigenome Project (Eckhardt et al. 2006) and 29 random

regions represented on the array used here demonstrates that the

Table 1. Description of the genomic regions represented on the arrays

Genomic categorya Descriptionb
No. of
ROIs

No. of genes
representedc

No. of CpG islands
representedd

Modal CpGo/e

in this studye
Modal CpGo/e

in genome

Promoter ROI located within 1.5 kb upstream of or
downstream from the TSS of a protein-
coding genef

44,337 17,271 11,202 Bimodal,
0.2 and 0.8

Bimodal,
0.2 and 0.8

Exon >50% of the ROI overlaps any exon
except 1st or last exons

7,104 3,705 1,831 0.55 0.2

Intron >50% of the ROI overlaps intron
except 1st or last introns

5,132 2,457 1,089 0.65 0.15

Pseudogene ROI located within 1.5 kb upstream of or
downstream from a pseudogene

3,033 2,143 406 0.2 0.15

Intergenic ROI not classified in any of the
above categories

9,904 NA 3,028 0.75 0.15

aCategories are mutually exclusive.
bROI, region of interest. Each ROI was 500 bp, typically containing 5 � 50-mer probes.
cMost genes were represented by multiple ROIs. All genome annotations were from Ensembl genome browser (Homo sapiens release 45.36g based on
NCBI 36). Pseudogene annotations were obtained from www.pseudogene.org.
dROIs in nonpromoter categories were biased toward CpG islands annotated in the Ensembl genome browser.
eCpGo/e was calculated as (no. of CpGs � sequence length)/(no. of Cs � no. of Gs).
f94% of promoter-ROIs are located within 800 bp of the annotated TSS.
NA, Not available.
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Figure 1. (A) Schematic description of Batman. The left panel shows five hypothetical genomic regions of varying CpG densities and number of
methylated CpG sites (filled and empty circles represent methylated and unmethylated CpG sites, respectively). As MeDIP enrichment is proportional
to the number of methylated CpG sites, the normalized enrichment ratios of these five hypothetical regions, shown in the second panel, will not
accurately reflect the absolute methylation levels at the genomic region of interest (ROI). Batman is based on the observation that the log-ratio MeDIP
signal of methylated DNA scales linearly with the number of methylated CpG sites in a sequence. We use a Bayesian deconvolution strategy, taking into
account the estimated distribution of DNA fragment lengths, to find the most likely configurations of methylated and unmethylated CpGs in a sequence
that explains the observed MeDIP signals. This allows estimation of absolute methylation levels at the ROI. Yellow, green, and blue represent unmeth-
ylated, intermediately methylated, and methylated regions, respectively. Batman is described in detail in Down et al. (2008). (B) Integration of
Batman-called methylation values into the Ensembl genome browser—screenshot of the data integrated into the Ensembl genome browser (www.
ensembl.org). The web display uses a color gradient to show the Batman methylation score for each of the probes in the ROI. The color represents the
value of the probe on a sliding scale from 20 (bright yellow) to 80 (dark blue). Probes with Batman values of less than 20 or greater than 80 are colored
with the maximum and minimum shades to increase the contrast in the display. Each tissue-type is configured as a dedicated DAS source, allowing the
user to select any possible subset of tissues for viewing. Users clicking on a probe will see a small pop-up window, which displays the exact chromosome
position of the probe and the Batman score.
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two methods correlate very well (Supplemental Fig. 3; R = 0.84 in

Down et al. 2008).

All of the Batman-analyzed data from this study can be vi-

sualized as a set of extra tracks within the Ensembl genome

browser (Flicek et al. 2008) (Fig 1B). The web display uses a color

gradient to show the Batman methylation score for each of the

probes in the ROI. These data represent the first genome-wide

DNA methylation data to be included in any genome browser,

providing a valuable resource for the scientific community. Fur-

thermore, we have set up another browser (http://td-

blade.gurdon.cam.ac.uk/hepscape/) to allow direct comparison

between the MeDIP-array data from this study and the Human

Epigenome Project (Eckhardt et al. 2006).

Canonical somatic DNA methylation profiles

of human promoters

Consistent with previous findings, we see a bimodal distribution

of observed/expected CpG densities (CpGo/e) in promoter regions

(Fig. 2A) (Takai and Jones 2002; Saxonov et al. 2006; Weber et al.

2007). The CpG-dense population (modal CpGo/e ∼ 0.8) corre-

sponds to CpG islands (CGIs)—regions where the CpGo/e greatly

exceeds the genome average of ∼0.2. CGIs are considered to be

important regulatory elements, as they are generally unmethyl-

ated and ∼60% of all known human genes contain CGIs at their

5�-end. Several methods have been proposed for classifying CGIs,

varying in their use of cut-offs for length, GC%, and CpG density

(Bird et al. 1985; Gardiner-Garden and Frommer 1987; Takai and

Jones 2002; Saxonov et al. 2006; Glass et al. 2007). We used the

CGI definition of the Ensembl genome browser, (length > 400

bases and CpGo/e > 0.6), which results in the exclusion of most

small, CpG-rich repetitive sequences in the human genome. As

expected, in a typical somatic tissue ∼90% of CGI-associated “re-

gions of interest” (ROIs, defined in Table 1) within the promoter

category display low levels of methylation (<40% methylation)

and hereafter are operationally termed “unmethylated”. Valida-

tion by bisulfite sequencing confirmed that use of this threshold

minimizes false positives (Down et al. 2008). In fact, significant

numbers of unmethylated ROIs (Table 2) were observed across

the entire range of CpGo/e, raising the possibility that mainte-

nance of an unmethylated state is also important for the activity

of non-CGI promoters. This is somewhat in contrast to the recent

study by Weber et al. (2007), who concluded that most low CpG

density promoters (LCPs) were methylated. Comparison of our

data with genome-wide expression profiles from a public data-

base (Su et al. 2004) revealed a small but significant negative

correlation between promoter DNA methylation and gene ex-

pression across a broad range of CpGo/e (P < 10�5) (Fig. 2B). We

tested this for eight tissues where suitable data were available from

the GNF expression database, and observed a significant negative

correlation between methylation and expression (P < 0.05)

Figure 2. (Continued on next page)
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Figure 2. Analysis of somatic DNA methylation profiles. (A) Distribution of data with respect to CpGo/e for the different genome feature categories.
The data were operationally categorized into unmethylated (<40%), intermediate (40%–60%), and methylated (>60%). Within the nonpromoter
categories, we focused predominantly on CpG islands as annotated in the Ensembl genome browser (NCBI_36). Therefore, the average CpGo/e within
the nonpromoter categories in our data set was higher than the genome average (refer to Table 1). However, because probes could not be chosen for
all nonpromoter CpG islands, we also randomly selected some CpG-poor nonpromoter regions, and hence, a bimodality of CpGo/e is also observed in
some of the nonpromoter categories. Methylation data used in these plots are from whole blood. (B) Comparison of promoter DNA methylation with
gene expression across a range of promoter CpGo/e. Whole-blood DNA methylation data (only ROIs overlapping the TSS were used) was correlated with
whole-blood genome-wide expression profiles obtained from the GNF SymAtlas database (Su et al. 2004). There were insufficient data for intermediately
methylated promoters in the CpGo/e = 1.2 category, and methylated promoters in the CpGo/e � 1 categories. The color code is the same as in A, and
error bars represent 95% confidence intervals. (C) Gene expression levels for ICAM3 were obtained from a public database (Su et al. 2004). Expression
values represent average difference values computed by Affymetrix software. These values are proportional to mRNA content in the sample. (D)
Correlation of DNA methlyation with H3K4me3, H2A.Z, RNA PolII, and CTCF enrichment. DNA methylation data (500 bp ROIs) from our study were
correlated with genome-wide enrichment profiles for 20 histone lysine and arginine methylations, H2A.Z, RNA PolII, and CTCF generated by Barski et
al. (2007) using Illumina 1G sequencing technology. The remaining 19 comparisons are presented in the Supplementary section. The X-axes represent
CpGo/e (there were insufficient data to stratify by CpGo/e in the nonpromoter categories), the Y-axes DNA methylation levels, and the grayscale
represents the average tag count for the histone modification or protein indicated. The exon and intron categories were combined into a single “genic”

category. Hatched regions indicate that insufficient data were available.
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for every bin between 0.2 and 1.0 CpGo/e, that is, even for CpG-

poor promoter ROIs (CpGo/e < 0.4), which corresponds to a pre-

viously defined “low-CpG” promoter category (Saxonov et al.

2006; Weber et al. 2007). For example, the ROI associated with

the ICAM3 TSS has a CpGo/e of 0.29 and is hypomethylated only

in the tissues in which this gene is expressed (Figs. 1, 2C; Supple-

mental Fig. 4). Additional examples are shown in Supplemental

Figure 5. However, our data also suggest that many promoters

can be silent, irrespective of the DNA methylation status.

Repression of CGI-promoters by DNA methylation is well

documented (Eckhardt et al. 2006; Khulan et al. 2006; Estecio et

al. 2007; Jones and Baylin 2007; Weber et al. 2007). Indeed, we

found 5%–10% of CpG island promoters to be predominantly

methylated in any given tissue, consistent with emerging evi-

dence that methylation of CpG islands in normal cell function is

more common than previously appreciated (Eckhardt et al. 2006;

Shen et al. 2007; Weber et al. 2007; Illingworth et al. 2008). With

regard to CpG-poor promoters, the recent study by Weber et al.

(2007) shows a rather complex correlation between CpG-poor

promoter methylation and gene expression—certain promoters

with few CpGs were shown to be active and methylated, whereas

other promoters of that group can be unmethylated when active.

Overall, our data suggest that DNA methylation is involved in

regulating the activity of a small but significant number of pro-

moters over a broad range of CpGo/e, including CpG-poor pro-

moters. Further studies will be required to determine the exact

number of such promoters, establish causality, and understand

why some promoters use DNA methylation for regulating their

activity, whereas many other promoters do not seem to require

DNA methylation to be silenced.

DNA methylation profiles of nonpromoter CpG islands

There are 8449 autosomal nonpromoter CGIs annotated in the

Ensembl genome browser, but their function remains poorly un-

derstood. In addition to the recent report by Illingworth et al.

(2008), our study represents one of first systematic genome-wide

effort to characterize nonpromoter CGIs. We observed that the

populations of unmethylated nonpromoter CGIs (CpGo/e > 0.6)

in the various nonpromoter categories have a strikingly similar

“bell-shaped” distribution to the unmethylated CGI-promoter

population (modal CpGo/e = 0.8 in all categories) (Fig. 2A). How-

ever, the unmethylated nonpromoter CGIs represent only a

small proportion of currently annotated nonpromoter CGIs: in a

typical somatic tissue, 20% of exonic CGIs, 39% of intronic CGIs,

48% of intergenic CGIs, and 23% of pseudogenic CGIs are un-

methylated. Only 29% of nonpromoter CGIs were found to be

unmethylated in all 16 tissues tested, compared with 67% of

promoter-CGIs that are constitutively unmethylated. Compari-

son of DNA methylation data (from CD4+ cells) of promoter- and

nonpromoter-CGIs with RNA polymerase II binding profiles,

generated by Barski et al. (2007), for human CD4+ T-cells using

the Illumina 1G sequencing (formerly known as Solexa sequenc-

ing technology), revealed RNA polymerase II levels at unmethyl-

ated nonpromoter CGIs to be approximately half of those ob-

served at promoter-CGIs. (Supplemental Fig. 6). Consequently,

we propose that approximately only half of nonpromoter CGIs

(as classified in the Ensembl Genome Browser) are likely to be

functional in the sense that promoter CGIs are thought to be. A

number of definitions for CGIs—based on CpG density and local

GC%—have been proposed over the last 20 yr (Bird et al. 1985;

Gardiner-Garden and Frommer 1987; Takai and Jones 2002; Sax-

onov et al. 2006; Glass et al. 2007). The incorporation of experi-

mental data, such as those presented here, will greatly assist in

refining CGI definition and thereby help in understanding their

function in the context of both promoter and nonpromoter re-

gions of mammalian genomes.

Association between DNA methylation and chromatin

signatures

It is known that active regulatory elements bear distinctive chro-

matin “signatures” (The ENCODE Project Consortium 2007) and

that DNA methylation interacts with the chromatin regulatory

machinery (Bird 2002). To better understand the regulatory

potential of the regions analyzed in our study, we compared our

DNA methylation data from CD4+ T-cells with genome-wide pro-

files for 20 histone lysine and arginine methylations, histone

variant H2A.Z, RNA polymerase II, and the insulator binding

protein CTCF (Barski et al. 2007). These profiles were generated

for human CD4+ T-cells using the Illumina 1G sequencing. We

found that unmethylated promoter-ROIs are strongly associated

(P < 10�5, nonparametric empirical test; refer to the Methods

section) with signatures of active chromatin such as H3K4me3,

H2A.Z, and RNA polymerase II (Fig. 2D; Supplemental Fig. 3).

Although these associations were more pronounced at high

CpGo/e, there was clear enrichment across the entire range of

CpGo/e, including CpG-poor promoter-ROIs. Hypermethylated

promoter-ROIs, across a range of CpG densities, did not show

clear associations with either H3K27me3 or H3K9me3, two well-

established “repressive” histone modifications (Supplemental

Fig. 7). However, even in the original study by Barski et al. (2007)

these modifications showed only a modest correlation with in-

active promoters.

Enrichment for H3K4me3, H2A.Z, and RNA polymerase II

was also observed at unmethylated nonpromoter regions (which

are mostly CpG-rich as a result of our array design), albeit at

relatively lower levels compared with promoter regions (Fig. 2C).

This would suggest that at least a subset of nonpromoter CGIs are

unannotated TSSs, consistent with recent evidence suggesting

that there are many more TSSs in the human genome than has

previously been appreciated (The ENCODE Project Consortium

2007). Alternatively, these unmethylated regions could function

as other types of regulatory elements such as insulators that re-

strict transcriptional enhancers from activating unrelated pro-

moters, i.e., “enhancer blockers” (West and Fraser 2005). All

known vertebrate enhancer blockers interact with the CTCF pro-

tein, and it has been shown that CTCF preferentially binds to

unmethylated sites (Mukhopadhyay et al. 2004). Indeed, we ob-

served a strong correlation (P < 10�5) between unmethylated do-

mains (over a range of CpGo/e) and CTCF binding at promoter

and nonpromoter regions. Overall, this analysis reinforces the

idea that a significant proportion of unmethylated nonpromoter

CGIs identified in our study are functional regulatory elements.

Table 2. Number of unmethylated ROIs in each CpGo/e category

CpGo/e ROIs with <40% methylation

0.0–0.2 1,030 (19.2%)
0.2–0.4 1,139 (16.0%)
0.4–0.6 2,415 (42.9%)
0.6–0.8 9,358 (77.7%)
0.8–1.0 11,639 (84.1%)
1.0–1.0 17,29 (96.8%)
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Tissue-specific differentially methylated regions (tDMRs)

DNA methylation profiles are known to be tissue specific, but the

role of this epigenetic modification in controlling tissue-specific

transcriptional programs remains controversial (Walsh and Be-

stor 1999; Weber et al. 2007). Approximately 18% of the genomic

regions in our study were classified as tissue-specific differentially

methylated regions (tDMRs) (Khulan et al. 2006), i.e., regions of

the genome that display significant differences in DNA methyl-

ation levels among the 16 tissues analyzed (see Methods, for a

detailed description of the tDMR calling strategy). Comparison

with data from the Human Epigenome Project (Eckhardt et al.

2006) revealed that our tDMR classification approach had a posi-

tive predictive value of 78% and sensitivity of 61%. tDMRs were

found across a range of CpG densities in all genomic feature

categories, although in the promoter category, tDMRs were rela-

tively more common at low-to intermediate CpG-density pro-

moters (Fig. 3A). Consistent with results from the Human Epige-

nome Project (Eckhardt et al. 2006), mature sperm, the product

of the male germ line, was significantly hypomethylated relative

to all other tissues in all the genomic categories; in fact, 27% of

all tDMRs are sperm specific (Supplemental Table 3). DNA meth-

ylation patterns for the GM06990 EBV-transformed lymphoblas-

toid cell line were substantially divergent (both hypo- and hy-

permethylated loci) from all the other tissues (Supplemental

Table 3). Although we profiled only a single cell line (three bio-

logical replicates), our results further support the idea that epi-

genetic profiles obtained from transformed cells are not repre-

sentative of primary tissues (Liu et al. 2005), and future studies

aiming to elucidate disease-specific epigenetic variants should

take this into account.

Correlation of promoter tDMRs with gene expression

To investigate the role of DNA methylation in tissue-specific

transcriptional programs, we compared tissue-specific promoter

methylation and gene expression profiles (Fig. 3B, left). The im-

portant aspect of this analysis, compared with that described

above in the section “Comparison of genome-wide DNA meth-

ylation and gene expression profiles” is that, here, we are com-

paring the expression of the same gene in different tissues. A

significant negative correlation (P < 10�5) was observed between

tissue-specific promoter methylation and gene expression across

a broad range of CpGo/e, including CpG-poor promoter-tDMRs.

This is in contrast to the recent proposal by Weber et al. (2007)

that DNA methylation is unlikely to play a significant role in

regulating CpG-poor promoters. They defined low-CpG promot-

ers (LCPs) as being a region that spans 900 bp upstream to 400 bp

downstream relative to the TSS and does not contain any 500-bp

windows with CpGo/e > 0.48. We reanalyzed our data using this

promoter classification system, but using an even bigger pro-

moter region (e.g., LCP was defined as a 2400-bp region, centered

on the TSS, that does not contain any 500-bp windows with a

CpGo/e > 0.48), and again observed a statistically significant

negative correlation (P < 10�5) across the entire range of CpGo/e

(Supplemental Fig. 8). Overall, our analysis suggests that some

promoter-tDMRs, including CpG-poor promoter-tDMRs, are in-

volved in regulating tissue-specific gene expression. There are a

number of possible reasons for the difference between our results

and those of Weber et al. (2007): (1) we analyzed more tissues

and, hence, have increased the power to detect such differences,

and (2) they used RNA Pol II binding as a proxy for gene expres-

sion. However, it has been shown recently that significant RNA

Pol II binding is observed even at promoters associated with non-

expressed genes (Guenther et al. 2007). It is therefore worth con-

sidering the possibility that DNA methylation actually influences

the binding of proteins involved in elongation of transcription,

and not necessarily RNA polymerase II binding.

Correlation of gene-body tDMRs with gene expression

Surprisingly, gene-body tDMRs showed a small, but significant,

positive correlation between DNA methylation and gene expres-

sion (P = 0.024; Fig. 3B, right panel). This is reminiscent of a

recent report of hypomethylation at gene promoters and hyper-

methylation of gene bodies on the active X chromosome in hu-

mans (Hellman and Chess 2007). This type of phenomenon is

exemplified by the ICAM3 gene, which displays promoter hypo-

methylation and gene-body hypermethylation in the tissues in

which it is expressed (Fig. 2C). The functional relevance of tissue-

specific gene-body methylation is unclear. It may be associated

with expression potentiality or act to suppress spurious transcrip-

tional initiation within actively transcribed genes (Zilberman et

al. 2006; Hellman and Chess 2007; Suzuki et al. 2007). Elucidat-

ing the role of gene-body methylation represents an important

area of investigation for the future.

Motif analysis of promoter tDMRs

To further explore the tissue-specific regulatory potential of

tDMRs we used the JASPAR database (http://jaspar.genereg.net;

Vlieghe et al. 2006) to search for over-represented transcription

factor binding sites in tDMRs. Promoter-tDMRs were enriched for

motifs associated with various tissue-specific transcription factors

(Supplemental Fig. 9). Motifs for SP1 and Krüppel-like factor 4

(KLF4) were significantly over-represented in tDMRs associated

with multiple tissues (Fig. 3C). There is extensive evidence that

DNA methylation can modulate SP1 binding, and, consequently,

tissue-specific gene expression (Li et al. 2004). KLF4 is known to

regulate numerous biological processes including differentiation

and development, and recently it has been shown that combined

ectopic expression of KLF4, POU5F1 (formerly known as OCT4),

SOX2, and MYC can induce fibroblasts to revert to a pluripotent

state in vitro (Takahashi and Yamanaka 2006) with concomitant

reprogramming of DNA methylation, gene expression, and chro-

matin states (Wernig et al. 2007). Furthermore, since KLF4 and

SP1 can act synergistically to regulate gene expression (Sze et al.

2007), it is possible that these two transcription factors are re-

quired for tDMR-promoter function in multiple tissues. We saw

much less evidence for over-representation of transcription fac-

tor binding motifs from the JASPAR database in intergenic tDMRs

(data not shown), suggesting that such tDMRs are subject to a

different set of tissue-specific DNA–protein interactions. This is

consistent with observations from the ENCODE pilot project

(The ENCODE Project Consortium 2007) that many sequence-

specific factors show differential occupancy at TSSs compared

with distal DNase I hypersensitivity sites (that are assumed to

contain regulatory information). Motif analysis was not per-

formed for gene-body tDMRs due to the confounding effect of

sequence constraints associated with protein-coding regions.

Gene Ontology analysis of genes associated

with promoter-tDMRs

The functional relevance of promoter-tDMRs was also investi-

gated by an analysis of Gene Ontology (GO) terms (http://

www.geneontology.org/) (Table 3). Previous analyses by others
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(Saxonov et al. 2006) have shown that CGI-promoters are

strongly associated with “house-keeping” genes, and CpG-poor

promoters with tissue-specific genes. Our analysis shows that

constitutively unmethylated CGI-promoters (unmethylated in

all tissues including sperm) can be distinguished from tDMR

CGI-promoters, as the latter show a relative enrichment for tis-

sue-specific functions, in particular, neural processes. CpG-poor

promoters that are either constitutively methylated or associated

with tDMRs were found to be strongly associated with tissue-

specific functions. However, constitutively unmethylated CpG-

poor promoters, although rare (599), are associated with house-

keeping genes. Therefore, promoter-tDMRs, across a broad range

of CpG densities, are associated with genes that are thought to

function in a tissue-specific manner. Furthermore, this analysis

shows that it is constitutively unmethylated promoters, and not

CGI-promoters per se, that are associated with housekeeping

genes.

DNA methylation profiles of mature spermatozoa

Mammalian genomes undergo genome-wide epigenetic repro-

gramming during gametogenesis (Bird 2002), presumably to re-

store totipotency. Consistent with the recent study by Weber et

al. (2007), we found that within the promoter category, 94% of

CGI-associated ROIs and 62% of intermediate CpG-density ROIs

(CpGo/e = 0.4–0.6) are unmethylated in sperm, with the latter

more likely to undergo de novo methylation in one or more

somatic tissues (Fig. 3A). (Note: we first reported our data for

sperm in Down et al. 2008.) Among the CpG-poor ROIs, 13% are

unmethylated in sperm and undergo de novo methylation in

somatic tissues, and 9% are methylated in sperm and undergo de

novo demethylation in one or more somatic tissues. The various

nonpromoter CGI categories also displayed hypomethylation in

sperm (Fig. 3A). However, the major difference in DNA methyl-

ation dynamics between promoter and nonpromoter CGIs is that

the latter are more likely to undergo soma-wide de novo meth-

ylation in somatic tissues.

Discussion

Here we report a novel integrated resource (methylation profiles

of DNA, or mPod) for genome-wide human tissue-specific DNA

methylation profiles. Firstly, the tissue-specific genome-wide

DNA methylation profiles of 16 different human tissues repre-

sent the largest and most comprehensive available data set for

this epigenetic modification. Second, all of our data are displayed

via a novel visualization tool within the Ensembl genome

browser, making the data accessible to the wider scientific com-

munity. Finally, the development of the Batman algorithm al-

lowed us to estimate absolute methylation levels from MeDIP, a

technique that is readily applied to genome-wide DNA methyl-

ation profiling. Batman can also be used to analyze genome-wide

MeDIP data generated from other array platforms and next-

generation sequencing technologies such as the Illumina Ge-

nome Analyzer (Down et al. 2008).

Our study—which includes a range of comparative analyses

with independent genome-wide data-sets of gene expression, his-

tone modifications and other regulatory proteins, transcription

factor binding preferences, and gene-ontology terms—suggests

DNA methylation is involved in regulating at least some promot-

ers over a wide range of CpG densities in the context of cell- and

tissue-specific transcriptional programs. Furthermore, we pro-

pose that only a fraction of the nonpromoter CGIs predicted by

previous bioinformatic approaches are likely to be regulatory el-

ements in the same sense that promoter-CGIs are thought to be.

Obviously, many questions regarding the role of DNA meth-

ylation remain to be answered, including how tDMRs are estab-

lished, maintained, and function. Although it is easy to postulate

how tissue-specific methylation at promoters could influence

gene expression, the role of gene-body tDMRs is less clear. Un-

derstanding the role of tissue-specific differential methylation in

the context of nongenic regions, including repetitive sequences

that we did not study, will also be critical, especially in light of

recent genome-wide association studies of complex diseases that

have revealed many putative causative variants to be located

within nongenic regions. Future studies, such as the recently pro-

posed International Human Epigenome Project (Jones and Mar-

tienssen 2005) will undoubtedly address many of these impor-

tant questions concerning the role of DNA methylation in ge-

nome function.

Methods

Samples

Sixteen different tissue types were analyzed: B-cells, CD8 T-cells,

CD4 T-cells, cervix, colon, liver, lung, rectum, pancreas, prostate,

placenta, skeletal muscle, sperm, uterus, whole blood, and the

EBV-transformed GM06690 cell line. Individual sample infor-

mation is listed in Supplemental Table 1. Tissue samples were

obtained from AMS Biotechnology or Analytical Biological Ser-

vices. The GM06990 cell line was a gift from Dr Ian Dunham

Table 3. Comparison of Gene Ontology (GO) terms
(http://www.geneontology.org/) associated with tDMR
and non-tDMR promoters analyzed in this study

Low CpG High CpG

Constitutively
methylated

Serine-type endopeptidase
activity

Membrane

Somatic tDMR Olfactory receptor activity Multicellular organismal
development

Sensor perception of smell Nucleus
Response to stimulus
G-protein coupled receptor

protein signaling pathway
Receptor activity
Signal transduction
Immune response
Integral to membrane
Extracellular region
Inflammatory response

Constitutively Intracellular Nucleus
unmethylated Mitochondrion Transcription

Nucleic acid binding RNA binding
Nucleotide binding
Protein binding
RNA splicing
DNA binding
mRNA processing
Regulation of

transcription,
DNA-dependent

ATP binding

Promoters were defined as 500 bp upstream of the annotated TSS in the
Ensembl genome browser. Only signficant over-representations
(P < 10�5) are shown.

Rakyan et al.

1526 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on August 9, 2022 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


(Wellcome Trust Sanger Institute). (Note: we first reported our

data for sperm in Down et al. 2008).

Immunoprecipitation of methylated DNA

Methylated DNA Immunoprecipitation (MeDIP) was based on a

previously published protocol, but we also included a ligatin-

mediated PCR (LM-PCR) step (Oberley et al. 2004) to amplify the

material. Array hybridizations performed before and after LM-

PCR showed that the LM-PCR did not introduce significant am-

plification bias (Down et al. 2008). A total of 2.5 µg of genomic

DNA was sheared to a size range of from 300 to 800 bp. The

resulting fragments were blunt-ended by incubation for 20 min

at 12°C in a 120-µL reaction containing the DNA sample, 1�

Buffer 2 (NEB), 10� BSA (NEB), 100 µM dNTP mix, and T4 DNA

polymerase (NEB). The reaction was purified using a Zymo-5 kit

(Genetix) according to the manufacturer’s instructions, but the

final elution was done in 30 µL of TE buffer (pH 8.5). Ligation of

the adaptors was performed by incubating overnight at 16°C in a

final volume of 100 µL containing the DNA sample, 40 µL adap-

tors, T4 DNA ligase 10� buffer, 5 µL of T4 DNA ligase (NEB). The

reactions were purified using a Zymo-5 kit as described above. To

fill in the overhangs, the sample DNA was incubated at 72°C for

10 min in a reaction containing the DNA, 100 µM dNTPs, 1�

AmpliTaq Gold PCR buffer (Applied Biosystems), 1.5 mM MgCl2,

5 U AmpliTaq Polymerase. The DNA was purified using a Zymo-5

kit as described above. A total of 50 ng of the ligated sample was

set aside as the input fraction; 1.2 µg of the ligated DNA sample

was subjected to MeDIP as described previously, after scaling

down the reaction accordingly. The immunoprecipitated (IP)

sample was purified using Zymo-5 kit (using 700 µL of binding

buffer) according to the manufacturer’s instructions. Ten nano-

grams of each IP and input fraction for each sample were sub-

jected to PCR (20 cycles) using the Advantage-GC genomic PCR

kit (Clontech). PCR cycling conditions are available upon re-

quest. After the LM-PCR, the duplicate reactions were combined,

purified using a Qiagen PCR-clean up kit (Qiagen), and eluted

with 50 µL of water. The MeDIP and input fractions were sent to

Nimblegen for hybridization.

Array design

Our microarray consists of 382,178 50-bp probes. Although we

aimed to target all annotated TSSs and nonpromoter CGIs, we

were unable to design enough suitable unique probes for 18% of

the TSSs and 28% of nonpromoter CGIs, largely due to the pres-

ence of repeat elements. In addition to the regions described in

Table 1, the array contained 50-bp probes tiled at ∼100 bp density

across the entire human Major Histocompatibility Complex, and

promoters and nonpromoter CpG islands on the X and Y chro-

mosomes. Analyses of these regions will be presented elsewhere.

The array was originally designed using the NCBI build 35 ver-

sion of the human genome assembly, but then mapped to NCBI

build 36 using Exonerate (Slater and Birney 2005). To be mapped,

probes were required to align full-length and without gaps or

mismatches. Probes that aligned more than once to the NCBI36

sequence were removed from the analysis. Tiled regions were

defined by clustering uniquely mapped probes within 200 bp of

one another. Singleton probes were discarded. The tiled regions

were then divided into 500-bp ROIs. Following hybridization,

arrays were LOESS normalized using custom R-scripts prior to

Batman analysis of the resulting log2 ratios.

Bayesian tool for methylation analysis (Batman)

We model the MeDIP-array experiment by assuming that the

observed array signal is proportional to the density of methylated

CpG dinucleotides. We can then use Bayesian inference to deter-

mine the actual methylation state of CpGs. Batman consists of a

suite of Java programs that implement this inference process us-

ing the Nested Sampling strategy (http://www.inference.phy.

cam.ac.uk/bayesys/). Refer to Down et al. (2008) for a detailed

description of Batman.

Bioinformatic analyses

Methylation data were compared with genomic features ob-

tained from Ensembl genome browser (Homo sapiens release

45.36g based on NCBI_36). Pseudogene annotation is from

http://www.pseudogene.org/. All analyses were performed using

a series of custom Java, Perl, and R scripts, which are available

upon request. All analyses were performed at the level of ROIs

(500-bp intervals) unless otherwise stated.

For the expression analyses, Affymetrix expression data were

downloaded from the Gene Expression Omnibus (accession no.

GSE1133). Assignments of Affymetrix probe-sets to Ensembl

transcripts were extracted from the Ensembl core database ver-

sion homo_sapiens_core_44_36f. When more than one probe-set

was mapped to a given transcript, we used the median expression

score for all available probe-sets. For the expression plots, we used

means of log-expression-scores, or log-expression-ratios for the

tissue-specific expression analyses. The 95% confidence intervals

were calculated by bootstrapped difference-of-means tests.

Data localizing histone modifications, CTCF binding sites,

histone variant H2A.Z, and RNA polymerase II was obtained in

the form of sequencing read alignments from http://

dir.nhlbi.nih.gov/papers/lmi/epigenomes/hgtcell.html, and

originally generated by Barski et al. (2007) For each ROI, the

number of overlapping reads was determined using a custom Perl

script. The over-representation tests were bootstrapped differ-

ence-of-means tests.

Associations of GO terms to Ensembl gene IDs were ex-

tracted from the Ensembl core database version homo_sapiens_

core_44_36f. Core promoter regions for all Ensembl transcripts

were defined as the region 500 bp upstream of the annotated

transcript start site. All promoters with available methylation

data were then classified according to CpG density and

methylation state across this 500-bp window. For each of the five

promoter classes shown in Table 2, we performed a hyper-

geometric test to check for over-representation of each term in

the GO vocabulary for genes with promoters of that class com-

pared with the complete set of genes with available promoter

methylation data. We report significant over-representations

(P < 10�5).

Tissue-specific differentially methylated regions (tDMRs)

were called in 500-bp ROIs. To identify hypermethylated tDMRs

in a given tissue, we looked for ROIs with a mean methylation of

>60% in the target tissues and <40% in at least three somatic

tissues (i.e., not sperm, placenta, or the cell line). Although the

40% and 60% cut-offs are arbitrary, they were chosen in an in-

formed manner after looking at the distribution of scores round

different features. More stringent thresholds did not materially

affect our conclusions (data not shown). To identify hypometh-

ylated tDMRs, we looked for ROIs with methylation <40% in the

target tissue and >60% in at least three somatic tissues. There are

six tissues in common between our study and the Human Epi-

genome Project (HEP): CD4 T-cells, CD8 T-cells, liver, placenta,

skeletal muscle, and sperm, and 850 genomic regions in common

between the two data sets. We called tDMRs in the HEP data set

using the same strategy as for the MeDIP-array data. Only those

genomic regions for which DNA methylation data were available

for all six tissues in both data sets were used to calculate the
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positive predictive values (PPV, i.e., true positives/[true

positives + false positives]) and sensitivity of the tDMR calls for

the MeDIP-array data. The PPV is the fraction of MeDIP-array

tDMRs that were also called as tDMRs in the HEP study—78%.

Sensitivity (true positives/[true positives + false negatives], or the

fraction of HEP tDMRs that are also classified as tDMRs in the

MeDIP-array data), was 61%.

Statistics

All credible intervals were estimated by bootstrapping unless oth-

erwise stated. Statistical testing for the GO analysis was per-

formed with hypergeometric tests. P-values for significant asso-

ciation between methylation state and gene expression or ChIP

data were all calculated using a nonparametric empirical test:

briefly, the data were divided into bins (typically high and low

methylation) and the mean expression was calculated for each

bin. The data were then repeatedly resampled, and an empirical

P-value was calculated by counting the number of times an equal

or greater difference of means was seen in the resampled data

compared with the original data. A similar empirical test was

used for the motif analysis, except that the area under an ROC

curve was used as the test statistic.
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