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Abstract

Background: The neglected zoonotic diseases (NZD) are an understudied group that are a major cause of illness

throughout the developing world. In general, little is known about the prevalence and burden of NZDs in affected

communities, particularly in relation to other infectious diseases with which they are often co-endemic. We describe

the design and descriptive epidemiological outputs from an integrated study of human and animal zoonotic and

non-zoonotic disease in a rural farming community in western Kenya.

Methods: This cross-sectional survey involved 2113 people, their cattle (n = 983) and pigs (n = 91). People and

animals were tested for infection or exposure to a wide range of zoonotic and non-zoonotic pathogens. Prevalence

estimates, with adjustment for the complex study design, were derived. Evidence for spatial clustering in exposure

or infection was identified using the spatial scan statistic.

Results: There was a high prevalence of human parasitism in the community, particularly with hookworm (Ancylostoma

duodenale or Necator americanus) (36.3% (95% CI 32.8–39.9)), Entamoeba histolytica/dispar (30.1% (95% CI 27.5–32.8)), and

Plasmodium falciparum (29.4% (95% CI 26.8–32.0)). Human infection with Taenia spp. was also prevalent (19.7% (95% CI 16.

7–22.7)), while exposure to other zoonotic pathogens was comparatively rarer (Brucella spp., 0.6% (95% CI 0.2–0.9); Coxiella

burnetii, 2.2% (95% CI 1.5–2.9); Rift Valley fever, 0.5% (95% CI 0.2–0.8)). A low prevalence of exposure to Brucella spp. was

observed in cattle (0.26% (95% CI 0–0.56). This was higher for Rift Valley fever virus (1.4% (95% CI 0.5–2.22)) and C. burnetii

(10.0% (95% CI 7.7–12.2)). The prevalence of Taenia spp. cysticercosis was 53.5% (95% CI 48.7–58.3) in cattle and 17.2%

(95% CI 9.1–25.3) in pigs. Mycobacterium bovis infection was found in 2.2% of cattle (95% CI 1.3–3.2), while the prevalence

of infection with Mycobacterium spp. was 8.2% (95% CI 6.8–9.6) in people.

Conclusion: Zoonotic infections in people and animals occur in the context of a wide range of co-endemic

pathogens in a rural community in western Kenya. The wide diversity of pathogens under study provides a unique

opportunity to explore the distribution and determinants of infection in a multi-pathogen, multi-host system.
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Background

Zoonotic diseases are caused by a diverse group of patho-

gens that are transmissible from animals to humans. Sev-

eral of these diseases, such as avian influenza and bovine

spongiform encephalopathy, are extensively studied and

are the focus of large scale and successful control efforts.

Another group, the so-called neglected zoonotic diseases

(NZDs), are under-researched and under-funded at several

levels, and tend to be poorly understood [1]. For these

diseases, key biological and epidemiological data on occur-

rence, burden and risk, in both animals and humans, are

lacking, particularly in low and middle income countries.

In addition, reliable, cheap and easy-to-use tools for

diagnosis and control are either not available or are

poorly applied [2].

The World Health Organization (WHO) has highlighted

the inadequacy of the evidence base for decision making re-

lating to zoonoses in resource poor settings [2]. Identified

as being particularly important in addressing the informa-

tion gap were: field epidemiological studies in humans and

livestock; estimates of under-reporting; multi-disease

studies in communities; development of field-level diag-

nostics; intervention cost-effectiveness studies; and im-

proved understanding of pathogen and host ecology [2, 3].

We present here the outputs from a novel epidemio-

logical investigation that sought to address some of

these information gaps in the Lake Victoria Crescent

zone of western Kenya. Disease-specific data on a number

of neglected zoonotic infections were collected concur-

rently from domestic animals and people living in the same

households. The “People, Animals and their Zoonoses”

(PAZ) project is a collaborative venture between universities

and research institutes in Europe and Kenya, and subscribes

to the ‘One Health’ [4] framework of interdisciplinary

research by considering disease in livestock and humans

concurrently.

We selected a number of zoonotic diseases that were

expected to cause a significant burden to livestock-keeping

communities in the region [5]. These were brucellosis, Q-

fever, bovine tuberculosis, human African trypanosomiasis

(HAT), Rift Valley fever (RVF), and cysticercosis/taeniasis.

Contact with livestock or their products is a risk factor for

human infection with the aetiological agent of each disease,

with positive associations reported for prevalence of infec-

tion [6–9], although the precise nature of the relationship is

not always clear [10]. Many of the chosen zoonoses are also

significantly under-reported in livestock and humans in

endemic areas [11, 12]. As individual diseases, they are typ-

ically not priorities for medical or veterinary services, or in-

deed the research community [2], even if the diseases and

their sequelae [13, 14] result in a high burden [15–17]. This

study aimed to establish estimates of exposure to infection

at the population level with a range of pathogens in a small-

holder, mixed crop and livestock production system. As

such, and unlike many previous studies, it does not focus

on known at-risk groups (e.g. specifically on slaughterhouse

workers or people attending hospital), but on capturing

data from otherwise healthy people and their livestock at

the household level.

Co-infection with zoonotic and other pathogens is likely

to be a frequent occurrence in poor communities in tropical

and sub-tropical Africa, imposing a combined but typically

unquantified burden. Such communities may be coping with

a wide range of endemic infectious diseases in both people

(e.g. malaria, soil transmitted helminthiasis, schistosomiasis,

tuberculosis, HIV) and their animals (e.g. East Coast fever

(ECF), helminthiasis, trypanosomiasis, bovine tuberculosis).

These ‘co-factors” may exacerbate susceptibility to zoonotic

agents in individuals or result in enhanced spread at a com-

munity level [18]. To further explore this dual burden, we

also quantified the prevalence of a wide range of endemic,

non-zoonotic infectious agents in both people and animals

within the study population. The PAZ project therefore

represents a holistic, multi-pathogen, multi-host study of

infectious disease within a single community that seeks to

simultaneously understand zoonotic and other disease

burdens, the distribution of infection, and determinants

of infection in both people and their livestock.

Here we describe the design of this integrated study of

human and animal health. We report on the descriptive

epidemiology of infection with a range of endemic diseases

in people and animals, as well as on the demographic char-

acteristics of the population under study that may influence

its zoonotic disease risk.

Methods

Study area

The study population was a mixed-farming community

in western Kenya in an area broadly representative of

the wider Lake Victoria Crescent ecosystem which spans

Kenya, Uganda and Tanzania (Fig. 1). This region is

characterised by rainfall and temperatures that are typically

sufficient for two cropping seasons per year, and in which a

range of subsistence and cash-crops are grown by the major-

ity of rural households. Livestock, specifically local breeds of

cattle, sheep and goats, and smaller numbers of pigs, are in-

tegrated with crop production in a mixed farming system

through the use of manure as fertiliser, cattle as draft power,

and crop surplus and residues as animal feed [19].

The study area was an approximately 3200 km2 zone

defined by a semi-circle with a 45 km radius emanating

from the county town of Busia (in which the study field

station was situated) on the Kenyan border with Uganda

(Fig. 1). This area comprises a human population of 1.4

million people (OpenData, http://www.opendata.go.ke/)

a cattle population of around 340,000 head and a domestic

pig population of around 55,000 (Divisional Livestock

Production Office data (DPLO)).
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Study design

The study was cross-sectional, in which the primary

sampling unit was the household (locally called a home-

stead), within which all eligible and consenting members

and their livestock were recruited. The study sample size

was powered to estimate the prevalence of zoonotic

disease in cattle, with the human sample incidental to

that for cattle, but expected to be larger. We used a

standard error of 2% for the lowest expected prevalence

of a bovine infection or exposure of 5%, and a design

Fig. 1 Study area shown in the context of human population density in eastern Africa [60]
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effect of 3 to inflate sample size estimates to account for

expected clustering at the household level. The resulting

cattle sample size of 1365 head were expected to be

found in a random sample of 412 households, based on

local estimates of herd size and the frequency of cattle

ownership. Field data collection took place continually

between August 2010 and July 2012.

Household selection

Random sampling of households was stratified by sub-

location, the smallest administrative unit in Kenya. There

were 143 sublocations in the study area at the time of the

study, and the number of households to select per sublo-

cation was proportional to the expected number of cattle

in the sublocation, with a minimum of 1 and a maximum

of 8. Sampling proportional to number of cattle in a sublo-

cation ensured cattle (and cattle keeping households) had

an equal probability of being selected across the whole

study area. Cattle population data were available at the

division level (the third administrative unit in Kenya at the

time of design) from local Divisional Livestock Production

Offices (DPLO) and, in the absence of any other informa-

tion, were considered to be equally proportioned in each

sub-location falling within each division’s boundary.

A number of random points, ranging between 1 and 8,

were generated in each sub-location using ArcMap 9.2

(ESRI, Oakland, California) and the x and y co-ordinates

entered into a Garmin eTrex hand-held geographical

positioning system (GPS) via the DNR Garmin 5.4.1 ex-

tension for ArcView (Minnesota Department for Natural

Resources, 2008). The GPS device was used to locate the

physical location of each generated random point whilst

in the field, and the nearest human habitation within

300 m was selected for recruitment. Distance between

the point and habitations was assessed using the path

distance function on the GPS. Where two or more habi-

tations were within the same distance from the random

point, the household that was closest to a north bearing

was selected. In the absence of a household within 300 m,

or following the household head’s refusal to participate, a

‘back-up’ point was randomly generated and recruitment

followed in the same manner. Households were recruited

regardless of livestock ownership status.

A household was defined as all people identified by

the household head as being occupant at the time of

recruitment and typically occupant (to the extent that

food is regularly shared from the household pot(s)) within

the past 4 weeks.

Data collection within the household

On the sampling day, a detailed questionnaire was per-

formed with the household head and covered data relat-

ing to household demography, access to services, known

household level risk factors for infectious disease, and

durable asset ownership. Each household occupant meeting

the study inclusion criteria (5 years of age or older and not

in the last trimester of pregnancy) was invited to participate

and then interviewed on their education, occupation, food

consumption history, contact with livestock and other

animals, disease history and current state of health. When

participants were less than 12 years of age, a guardian (pref-

erably the mother) was asked to sit with them during ques-

tioning to assist with recall. Questionnaires were written in

English and translated into the vernacular (Kiswahili,

Dholuo or Kiluhya) during administration.

Following the questionnaire, a physical exam was per-

formed on all participants by a study clinician (one of

two medical officers) who also collected samples for

diagnostic testing. A maximum of 25 ml of venous blood

was collected from the forearm into plain, heparin, EDTA

and Quantiferon-TB Gold (Cellestis Limited, Australia)

tubes. Thin and thick blood smears were made using

blood remaining in the butterfly apparatus following ven-

ous sampling. Participants were asked to provide a single

faecal sample, collected from the first motion of the day

into a collection pot left during recruitment.

At the same time, a veterinary team undertook a ~ 100

item questionnaire on livestock owned by the household

with the main animal keeper. Individual level risk factor

and other data were collected for all bovine and porcine

animals within a household that met the inclusion criteria

(3 months or older and not in the latter stages of preg-

nancy). We also recorded data from a physical examin-

ation of each animal, including age based on dentition,

sex, temperature, anaemia as assessed by FAMACHA

scoring [20] and body condition score [21]. In cattle, a

total of 24 ml of blood was then collected through jugular

venous puncture. Ear vein blood was collected using a

sterile lancet and microhaematocrit tube from each animal,

and used to prepare thick and thin blood smears. Faecal

samples were collected per rectum from each animal. In

pigs, 14mls of blood was sampled from the cranial vena

cava. Ear vein blood was collected for preparation of thick

and thin smears and per rectum faecal samples were col-

lected where possible.

All data were recorded on a Personal Digital Assistant

(PDA) data entry system (Aceeca MEZ1000 running the

‘Pendragon Forms’ software) and stored and managed in

Microsoft Access databases. A barcode-based system

was used to link biological samples to anonymised indi-

viduals and homesteads.

The geographic co-ordinates and altitude were collected

at a central point within the homestead using the GPS.

Laboratory processing: Human

Blood and faecal samples were tested for a wide range of

infectious agents that were expected to be endemic in

the study area.
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Faecal samples were prepared using standard protocols

for the Kato-Katz and Formal Ether techniques [22, 23]

and examined under light microscopy. The presence or

absence of helminth and protozoal gastrointestinal parasites

was recorded and a quantitative estimate of the number of

eggs per gram of faeces calculated where appropriate. Sam-

ples were additionally prepared using Ziehl-Nielsen staining

to enable the identification of Cryptosporidium species [24].

Remaining material was stored in 5% saline with 0.3%

Tween-20 at room temperature for subsequent analysis by

copro-antigen ELISA for Taenia spp. [25].

Thick and thin blood smears were stained using 10%

Giemsa and examined under 100× magnification with an oil

immersion objective lens. Haemoparasites observed were re-

corded qualitatively (present/absent) and semi-quantitatively

on the basis of standard intensity scales [24].

The buffy coat and the red blood cell/buffy coat interface

from centrifuged haematocrit tubes containing heparinised

blood were examined under 100× oil immersion and at the

10× power for the presence of Trypanosomes and Ricketsiae

(the Haematocrit centrifugation technique, or the “Woo

Method”) [26]. The buffy coat was transferred to a micro-

scope slide and 100 fields examined at ×10 power for the

presence of motile organisms.

Blood collected in serum tubes was spun at 3000 rpm

for 20 min, and aliquoted into 2 ml barcoded cryovials

before serological testing, or storage at −40 °C for later

analysis. Serological assays included a rapid immuno-

chromatographic flow assay (IgG, IgM) for exposure to

Brucella spp. (Royal Tropical Institute, Netherlands); a

commercial ELISA (IgG) (Serion-Virion GmbH, Germany)

for Coxiella burnetii (Q-fever); an in-house indirect ELISA

for Rift Valley fever (RVF) (IgG) [27] performed at Stanford

University, USA; and a HP10-Ag ELISA for Taenia solium

(cysticercosis) [28] supplied by Leslie Harrison, University

of Edinburgh, UK. Heparinised human whole blood was

tested for HIV infection using a rapid strip test (SD Bioline

HIV 1/2 3.0) (Standard Diagnostics Inc., South Korea) and

infection with Mycobacterium spp. was assessed using a

gamma–interferon assay (QuantiFERON-TB test, Cellestis

Limited, Australia).

Laboratory processing: Animal

Blood and faecal samples were tested for a range of path-

ogens expected to be endemic in cattle and pigs in the study

area including, where appropriate, the zoonotic pathogens

tested for in people. A rapid immuno-chromatographic flow

assay (IgG, IgM) was used for exposure to Brucella in cattle

(Royal Tropical Institute, Netherlands). Cattle samples were

tested for the presence of IgG antibodies to Coxiella burnetii

using the Checkit Q fever ELISA (IDEXX). Rift Valley fever

testing in cattle was performed using the ID Screen com-

petitive ELISA (ID Vet, France). Cattle and pigs were tested

for cysticercosis using the HP10-Ag ELISA. Heparinised

blood from cattle was tested forM. bovis using the Bovigam®

(Prionics, Switzerland) in vitro gamma-interferon assay.

Faeces were processed using the McMaster technique,

Baermans technique and qualitative sedimentation

technique [29] as well as the Kato Katz technique [30]

and examined by light microscopy. Blood smears were

stained with Giemsa and examined for haemoparasites.

The buffy coat and red blood cell/buffy coat interface was

also examined for the presence of motile haemoparasites.

Data analysis

Survey adjustment

We used design-based inference to adjust individual infec-

tion prevalence estimates and their standard errors on the

basis of the complex study design in which individuals were

nested in households and households nested in subloca-

tions. Adjustment was implemented using the svydesign

procedure in the survey package [31] in R statistical envir-

onment, version 3.1.1. (http://cran.r-project.org/). There

were a large number of ‘singleton’ primary sampling units

at the sublocation level (i.e. sublocations in which a single

household was sampled), hence sublocations (n = 143) were

aggregated by division (n = 17), which was used as a strati-

fying variable. A unique identifier was used for each house-

hold to account for clustering. Survey-adjusted prevalence

and confidence intervals by age-group were derived for

animals (cattle and pigs) and people.

Sampling weights were calculated as 1/π, where π is the

sampling probability for each individual in each division,

estimated as the fraction of the number of individuals

sampled and the total number of people/animals per div-

ision. The total population size per division was derived

from the 2009 census for people (https://opendata.go.ke/)

and from DPLO data for cattle. In the absence of reliable

pig population data at the division level, sampling weights

were not included in the estimation of porcine prevalence

data, which was only adjusted on the basis of household-

level clustering.

The relationship between the prevalence of each human

and animal infection and sex was assessed using the Wald

statistic, as proposed by Koch et al. [32] for complex sur-

vey designs, and also implemented in the survey package

in R.

Spatial analysis

Human and cattle exposure or infection risk was tested

for evidence of spatial clustering using the spatial scan

statistic [33] in SatScan version 9.0 (www.satscan.org). We

used household-level infection (i.e. the presence or ab-

sence of at least one infected individual) as the outcome

of interest. A Bernoulli model was used with 999 iterations

(allowing estimation of p-values down to 0.001) and a

cluster size up to a maximum of 20% of observations.
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Only those pathogens for which 10 or more households

had at least one infected animal or human were included.

The spatial distribution of household livestock (cattle,

pig, goat and sheep) ownership and household tribal affili-

ation was examined using a kernel smoothing approach

[34]. For this, the kernel intensity of ‘positive’ households

(e.g. households keeping cattle; membership of a particu-

lar tribal group etc) was divided by the kernel intensity of

all sampled households in the study area. Hence, the

numerator was number of ‘positive’ households per unit

area for all parts of the study area while the denominator

was the number of all households per unit area. The

resulting ratio was considered to represent the probability

of that outcome in a randomly selected household over

the whole geographic dimensions of the study area.

Household tribal affiliation was defined on the basis of the

ethnicity reported by 50% or more of adults in each

household, since household head ethnicity could not be

ascertained from anonymised data. Kernel density surfaces

were derived using the sparr package [35] in R, using a

fixed bandwidth of 5 km and correction for edge effects.

Results

A total of 416 households were recruited, with a total

sample size of 2113 people. The average reported house-

hold size was 7.6 (range 1 to 30) people (including all age

groups), from which our average household sample size

was 5.1 (range 1 to 21). Of all eligible individuals present

in households (2917), we were able to recruit 72.4%. Cattle

were kept in 55.3% of households, from which we sampled

983 animals. The average herd size per household was 4.9,

and we were able to sample 87.8% out of all animals in

sampled households. Pig keeping was less common (16.9%

of households), with an average herd size of 2.6. The total

pig sample size was 91.

Human infection

The survey adjusted individual human prevalence of

infection with the range of pathogens under study is pre-

sented in Table 1. We did not observe (but considered

possible) infection with Isospora spp., Cyclospora spp.,

Dientamoeba fraglis, Trichostrongylus spp., Schistosoma

bovis and Wucheria bancroti. Several infectious agents

were highly prevalent, particularly hookworm (due to either

Ancylostoma duodenale or Necator americanus) (36.3%),

Plasmodium falciparum (the only malarial agent identified)

(29.4%) and Entamoeba histolytica/dispar (30.1%). Males

were at significantly elevated risk of infection with Strongy-

loides stercoralis, Schistosoma mansoni, hookworm, and P.

falciparum. Females were at significantly elevated risk of

infection with Taenia solium, Trichuris trichiura, E. histoly-

tica/dispar and HIV (Table 1).

The risk of human exposure to zoonotic pathogens

was relatively lower, with a very low prevalence of

seropositivity to Brucella spp. (0.6%) and a moderately

low prevalence of seropositivity to Rift Valley fever virus

(1.5%) and C. burnetii (2.2%). No cases of human African

trypanosomiasis (HAT) were identified using microscopy.

A higher prevalence of Mycobacterium spp. (due to

zoonotic or non-zoonotic species) was observed (8.2%).

Zoonotic or potentially zoonotic protozoal agents, in-

cluding Cryptosporidium spp. and Balantidium coli and

zoonotic trematodes, such as Fasciola spp., were also

rare (0.6, 0.02 and 0.04%, respectively). Infection with

Giardia spp., which may be transmitted from livestock,

was also found at moderately low prevalence (3.2%).

Infection with Taenia spp. was more common, with a

prevalence of 19.7% for taeniasis (the presence of either

a T. solium or T. saginata worm in the gastrointestinal

tract) based on a copro-antigen (Copro-Ag) test, and a

prevalence of 5.8% for cysticercosis (the presence of cir-

culating antigens from a T. solium cysticerci).

There was evidence of some age structure to the

prevalence of infection for the common pathogens of

people (Fig. 2). This was most notable for P. falciparum,

where the prevalence in the youngest age group was

53.2% (95% CI 47.3–59.1) compared to 9.9% (95% CI 5.7–

14.1) in those people more than 40 years. Hookworm

showed the reverse relationship, with a prevalence in

children 5–9 years of 26.8% (95% CI 21.1–32.5),

whilst this was 45.3% (95% CI 39.3–51.2) in people

more than 40 years.

HIV and TB infection showed similar age profiles to

each other (Fig. 3), with risk being relatively low in

children aged 5 to 9 (0.7% (95% CI 0.01–1.4) and

1.6% (95% CI 0.2–3.0), respectively), increasing to a

peak in adults aged 25–39 (11.3% (95% CI 7.4–15.3)

and 15.9% (95% CI 10.6–21.2)). Detectable antibodies

for C. burnetii declined with age: children in the 5–9

age group had a prevalence of seropositivity of 3.2%

(95% CI 1.6–4.8) whilst this was 0.6% (95% CI 0–1.3)

in adults 40 years and above.

Out of a total of 22 possible infections (Table 2), and

using combined data from Copro-ELISA and HP10-ELISA

to represent all stages of Taenia spp. infection, 1544 indi-

viduals with complete data for all pathogens were infected

with or had exposure to an average of 1.94 infectious

agents, with a range of 0 to 6 and a median of 2. Two

hundred and twenty two individuals (14.4%) had an in-

fection/exposure count of zero while 196 (12.7%) had 4

or more, 57 (3.7%) 5 or more and 13 (0.8%) had 6 con-

current infections/exposures.

Household infection with A. lumbricoides, Brucella spp.

Taenia spp., Cryptosporidium spp., C. burnetii, Entamoeba

spp., HIV, hookworm, I. butschlii, P. falciparum, S. mansoni,

S. stercoralis, Mycobacterium spp., T trichiura, and Giardia

spp. was examined for spatial clustering using the spatial

scan statistic. Significant spatial clusters were detected for
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Table 1 Survey adjusted individual and gender stratified prevalence estimates for the human infections under study

Infection Adjusted prevalence
(%, 95% CI)

Male (%) Female (%) p valuea

Gastrointestinal parasites

Balantidium coli 0.02 (0–0. 1) - - -

Fasciola spp. 0.04 (0–0. 1) - - -

Entamoeba hartmanni 0.1 (0–0.2) - - -

Endolimax nana 0.1 (0–0.2) - - -

Hymenolepis spp. 0.2 (0–0.3) - - -

Taenia spp. (eggs) 0.3 (0–0.5) - - -

Blastocystis hominis 0.6 (0.1–1.1) - - -

Cryptosporidium spp. 0.6 (0.2–1.0) - - -

Strongyloides stercoralis 2.9 (2.1–3.8) 3.9 2.1 0.023

Giardia spp. 3.2 (2.3–4.0) 4.0 2.5 0.09

Taenia solium (HP10-ELISA) 5.8 (4.4–7.2) 4.6 7.0 0.04

Schistosoma mansoni 5.9 (3.7–8.1) 7.2 4.8 0.009

Trichuris trichiura 10.0 (8.2–11.7) 7.6 12.0 0.002

Ascaris lumbricoides 10.4 (8.1–12.7) 9.7 11.1 0.33

Iodamoeba butschlii 14.2 (12.4–16.0) 13.4 15.0 0.42

Taenia spp. (Copro-ELISA) 19.7 (16.7–22.7) 20.7 18.8 0.29

Entamoeba histolytica/dispar 30.1 (27.5–32.8) 27.5 32.5 0.046

Hookworm 36.3 (32.8–39.9) 39.4 33.6 0.01

Haemoparasites

Plasmodium falciparum 29.4 (26.8–32.0 32.1 27.0 0.02

Bacterial infections

Brucella spp. 0.6 (0.2–0.9) - - -

Coxiella burnetii 2.2 (1.5–2.9) 2.5 1.9 0.32

Mycobacterium spp. 8.2 (6.8–9.6) 7.8 8.5 0.64

Viral infections

Rift Valley fever virus 0.5 (0.2–0.8) - - -

HIV 5.3 (4.2–6.3) 2.9 7.3 <0.001

aBased on Wald Test with adjustment for survey design. Very rare outcomes not assessed

Fig. 2 Age prevalence profiles for the common infections of people.

Error bars represent 95% confidence intervals

Fig. 3 Age prevalence profiles for the rarer infections of people.

Error bars represent 95% confidence intervals
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several of these infections (Fig. 4), specifically T. trichiura

(Relative risk (RR) comparing households inside and outside

identified cluster = 2.4, p-value = <0.001; RR = 2.1, p-

value = 0.003), A. lumbricoides (RR = 2.4, p-value = 0.011),

Iodamoeba butschlii (RR = 1.7, p-value = 0.004), HIV

(RR = 2.6, p-value = 0.003), S. mansoni (RR = 5.7, p-

value = <0.001), hookworm (RR = 1.4, p-value = 0.04), T.

solium (RR = 5.3, p = 0.03) and P. falciparum (RR = 1.5,

p-value = 0.002).

Cattle infection

The survey adjusted prevalence of individual animal

infection is presented for cattle in Table 2. Over half of

all animals were infected with Strongyle spp. (58.4%) and

Theileria spp. (53.4%). Infection with Coccidia spp. (37.2%)

and Fasciola gigantica (32.5%) was also very common. Male

animals were more likely to be infected with Coccidia and

Strongyle spp., while females were more likely to be infected

with Calicophoron daubneyi. There was weaker evidence

for an effect of sex on F. gigantica. Although infection

with Dictyocaulus viviparous (lungworm) was relatively

rare (2.1%), there was some evidence that males were at

elevated risk (Table 2).

The prevalence of seropositivity to Brucella species

was very low (0.26%). The prevalence of seropositivity to

Rift Valley fever virus and Mycobacterium bovis were

both moderately low (1.4 and 2.2%, respectively). Ten

per cent of animals were seropositive for Coxiella burnetii

while over 50% of animals showed evidence of cysticercosis

due to T saginata. Trypanosoma spp. infections were found

in nearly 6% of animals. Of these 73.2% were considered to

be non-zoonotic T. vivax, 12.5% T. theileri and 14.3% T.

congo based on morphology.

Infections with Strongyle, Coccidia and Trichuris spp.

were most common in younger animals (75.5% (67.3–

83.6), 57.3% (49.2–65.3), 14.6% (9.8–19.3) in animals less

than 15 months, compared to 43.1% (36.1–50.1), 19.5%

(14.4–24.5), 2.4% (0.4–4.4) in animals more than 42 months,

respectively), whilst a reverse trend was seen for F. gigantica

(11.5% (6.4–16.6) versus 42.6% (35.1–50.0)) (Fig. 5). Detect-

able antibodies to C. burnetii increased with animal age,

with animals aged less than 15 months having a prevalence

of 5.4% (2.4–8.4) compared to 13.7% (9.5–18.0) in animals

aged more than 42 months. This was also the case for T.

saginata, where the youngest age group had a prevalence of

33.6% (26.1–41.1) compared to 68.4% (62.4–74.3) in

the oldest (Fig. 6).

Out of the 21 pathogens listed in Table 2, the 601 cattle

with complete data for all pathogens were infected with (or

had exposure to) an average of 2.8 pathogens, with a range

of 0 to 7 and median of 3. Most animals had at least one

exposure/infection (97.3%), with 84.2% having 2 or more,

57.9% 3 or more, 28.0% 4 or more, 10.1% 5 or more, 2.3%

with 6 or more and 0.3% (2 animals) with 7 exposures/

infections.

Household-level animal infection with Theileria parva,

Trypanosome spp., C. daubneyi, F. gigantica, Coccidia

spp., Trichuris spp., Nematodirus spp., Moniezia spp.,

Strongyle spp., S. papillosus, Mycobacterium bovis, T.

saginata and C. burnetii was examined for spatial clus-

tering using the spatial scan statistic. Only C. daubneyi

(RR = 3.8, p-value = 0.03) and Trypansoma spp. (RR = 5.8,

p-value = 0.01) showed significant spatial clustering. Both

clusters overlapped to a large extent, and were found on

the border of Lake Victoria in the south west of the study

area (Fig. 7).

Pig infection

The limited number of pigs sampled were heavily parasi-

tised, with almost all (91.7%) having Strongyle infections

and around half having Strongyloides, Coccidia or Ascaris

Table 2 Individual and gender stratified prevalence estimates

for the cattle infections under study

Infection Adjusted prevalence
(%, 95% CI)

Male Female p-valuea

Gastrointestinal parasites

Schistosoma bovis 0.26 (0–0.55) - - -

Giardia spp. 0.28 (0–0.66) - - -

Fasciola hepatica 0.37 (0–0.94) - - -

Toxocara vitulorum 0.98 (0.092–1.9) - - -

Nematodirus spp. 1.4 (0.62–2.2) - - -

Dictyocaulus viviparus 2.1 (1.2–3.0) 3.7 1.2 0.03

Moniezia spp. 3.1 (1.9–4.2) 3.0 3.1 0.96

Strongoloides spp. 4.0 (2.7–5.3) 5.9 3.0 0.07

Trichuris spp. 6.7 (4.8–8.6) 8.6 5.7 0.19

Calicophoron daubneyi 9.2 (6.7–11.5) 5.9 11.0 0.01

Fasciola gigantica 32.5 (27.6–37.3) 28.1 34.8 0.07

Coccidia spp. 37.2 (32.7–41.7) 44.3 33.3 0.002

Strongyle spp. 58.4 (53.8–63.0) 69.4 52.4 <0.001

Bacterial infections

Brucella spp. 0.26 (0–0.56) - - -

Mycobacterium bovis 2.2 (1.3–3.2) 3.3 1.7 0.16

Coxiella burnetii 10.0 (7.7–12.2) 8.2 10.9 0.20

Haemoparasites

Anaplasma spp. 0.62 (0.05–0.28) - - -

Trypanosoma spp. 5.8 (4.1–7.4) 4.3 6.6 0.12

Theileria spp. 53.4 (48.6–58.3) 53.2 53.6 0.94

Other parasites

Taenia saginata 53.5 (48.7–58.3) 53.7 53.2 0.92

Viruses

Rift Valley fever virus 1.4 (0.55–2.22) - - -

aBased on Wald Test with adjustment for survey design. Very rare outcomes

not assessed
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spp. infection (Table 3). 17.2% of animals also appeared to

be infected with potentially zoonotic T. solium cysts. There

was no evidence of differences between the sexes in risk for

any infection.

Out of the 9 infectious agents listed in Table 3, pigs had

an average of 2.9 unique infections, with a range of 1 to 6

and a median of 3. All pigs had at least one infection.

Study area demography

The majority (69.4%) of study participants reported

attaining at least primary level education. The main tribe

was Luhya (50.2%) followed by Luo (21.9%), Teso (14.5%)

and Samia (12.6%), with a small number of participants

(0.7%) belonging to the Kikuyu, Saboat, Turkana, Kuria,

Kalenjin, Pokot or Muganda tribes. The main tribal groups

were highly spatially aggregated (Fig. 8). The majority (96%)

of participants were Christians (of Roman Catholic,

Pentacostal, Protestant or Baptist denominations) with

1.9% of participants being Muslim, and less than 1% of

participants reporting to practise a tribal religion or to

belong to no religion.

Livestock keeping

Most households kept livestock (92.5%), with the most

common species being chickens (87.2%). Goats were

kept in 27.4% of households, sheep in 15.6% and ducks

in 11.1%. Cats and dogs were also kept by many of the

households (48.9 and 35.9%, respectively). The spatial

distribution of large and small ruminant and pig keeping

households is shown in Fig. 9 and suggests some spatial

structuring, particularly for pigs, sheep and goats.

Fig. 5 Age prevalence profiles for the common infections of cattle.

Error bars represent 95% confidence intervals

Fig. 6 Age prevalence profiles for the rarer infections of cattle: Error

bars represent 95% confidence intervals

Fig. 4 Clusters of elevated relative risk for household level infection with human pathogens: a Ascaris lumbricoides; b HIV; c Hookworm (Ancylostoma

duodenale or Necator americanus); d Iodamoeba butschlii; e Plasmodium falciparum; f Schistosoma mansoni; g Taenia solium; h Trichuris trichiura
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In addition to high rates of household livestock own-

ership, potentially important exposures for zoonotic

transmission were common in this community. Almost

half of the study participants reported taking animals

out for grazing at least weekly (47.2%); 14.2% reported

milking cattle at least weekly; 6.7% of households re-

ported having direct involvement in animal parturition

in the past year; 15% reported having direct involve-

ment in the slaughter of animals in the past year; and

5% reported hunting in the past year. Most individuals

(85.3%) reported regularly seeing rats around the

household.

Food preferences

Meat consumption was common in the community,

with 86.2% of participants reporting eating meat (65.5%

pork, 84.6% beef). Reported sources included butcheries

(89.6%), neighbours (13.4%), and more rarely from own

animals (3.2%). Approximately 75% of respondents ate

meat outside the home. Most study participants reported

consuming cows milk (95%), with 87.4% reporting that

they boil it before consumption. 4% of participants reported

consuming goats milk. Animal blood was consumed by

20% of participants.

Awareness of Zoonoses

Only 15.1% of respondents were aware that infectious

diseases can be acquired from animals. Of these, 5.6%

named anthrax as a zoonotic disease that could be ac-

quired from cattle; 22.9% named brucellosis from cattle,

but only 8.3% from sheep and goats; 12.3% reported that

cattle were involved in sleeping sickness transmission;

10.6% that TB could be acquired from cattle; 18.3% that

tapeworm could be acquired from meat; and 33.1% that

rabies was transmitted from dogs.

Discussion

The “People, Animals and their Zoonoses” study uses a

novel human and animal co-sampling approach, which

moves away from the ‘one-host, one-pathogen, one-

outcome’ paradigm. We report here on the prevalence

of infection with a very wide range of pathogens of both

people and livestock within a single community. We intend

that this integrated survey of human and animal health will

allow the development of evidence-based recommendations

for the control of zoonotic and other diseases within this

mixed farming area of Kenya. The methodology applied is

one that can be repeated elsewhere in different communi-

ties and environments. Indeed, doing so would provide

valuable multi-site data for comparative analysis.

A number of infectious agents were highly prevalent

within this community, and polyparasitism is common.

We therefore repeat the findings from studies from a

number of other communities in low income settings

[36–38], and provide further evidence of the utility of

considering multiple pathogens within single systems.

Significant co-infections between particular pathogens

may suggest commonalities in exposure, which may pro-

vide targets for integrated control [39, 40]. Alternatively,

it may point to important biological interactions in the

establishment, replication, and persistence of infection

[41]. The wide range of pathogens considered here pro-

vides a rich data set for exploration of such relation-

ships. In particular, by considering infection with the ‘big

3’ infectious diseases (HIV, TB and malaria), in addition

to a number of neglected zoonotic and tropical diseases,

these data can potentially contribute to the growing evi-

dence base on the effects of immunological interactions

between these pathogens on within community trans-

mission dynamics [18, 42, 43].

We show that infection risk is not homogeneous

across the study area, and that spatial heterogeneities in

the probability of household infection exist for several of

the human and animal pathogens studied. Exploratory

spatial analysis can provide a powerful means with which

Fig. 7 Clusters of elevated relative risk for household level infection

with cattle pathogens: a Calicophoron daubneyi; b Trypanosoma spp.

Table 3 Individual and gender stratified prevalence estimates

for the pig infections under study

Infection Adjusted prevalence
(%, 95% CI)

Male Female p-valuea

Babesia spp. 1.2 (0–3.4) - - -

Theileria spp. 1.1 (0–3.4) - - -

Trypanosome spp. 3.2 (0–9.3) - - -

Taenia solium. 17.2 (9.1–25.3) 14.6 19.2 0.62

Trichuris spp. 25.0 (13.7–36.3) 26.9 23.5 0.74

Ascaris spp. 46.7 (33.7–59.6) 38.5 52.9 0.29

Strongyloides spp. 50.0 (34.7–65.3) 50 50 1

Coccidia spp. 55.0 (40.4–69.6) 61.5 50 0.36

Strongyle spp. 91.7 (83.3–1) 88.5 94.1 0.38

aBased on Wald Test with adjustment for survey design. Very rare outcomes

not assessed
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to identify spatially heterogeneous contextual effects. Such

effects might explain why disease risk varies in individuals

with the same individual characteristics, but living in dif-

ferent social or biophysical environments [44, 45]. Alter-

natively, clustering of adverse health outcomes may occur

as a result of compositional effects, or aggregations of

individual risk factors within certain regions [46]. Future

work will involve analytical studies that seek to disentan-

gle some of these contextual and compositional effects on

individual infection risk [47]. Given the substantial spatial

structuring of household ethnicity, it seems likely that

tribe may be an important compositional effect for several

human infectious diseases in the study area.

Despite widespread livestock ownership, and regular

reported contact with livestock, the prevalence of bru-

cellosis, Q-fever and Rift Valley fever were all low in

people. The prevalence of brucellosis was also extremely

low in cattle. Bovine brucellosis is known to occur in

Kenya, but is likely to have a highly heterogeneous dis-

tribution: a seroprevalence survey of cattle in three areas

of Kenya revealed highest prevalence in pastoral areas of

Samburu (15%), lowest in a tropical highland climate in

Kiambu district (2%), adjacent to Nairobi in the central

highlands of Kenya and intermediate prevalence in Kilifi

district (10%), a lowland area on Kenya’s coast [48].

Rates of human brucellosis are also likely to be highest

in pastoral areas of the country [49, 50]. It may be the case

that herd sizes are currently too small, or there is insuffi-

cient mixing between herds to facilitate Brucella spp.

transmission within this small holder farming community.

Much less work has been done on Q-fever in Kenya

than on brucellosis, although a recent study indicated it

was an important, but typically undiagnosed, cause of

febrile illness in western Kenya [51]. The prevalence of

exposure was considerably higher than to Brucella spp.

in cattle, and further work to explore the importance of

cattle ownership and contact on human risk of infection

will be enlightening. RVF virus has not previously been

reported in western Kenya, although epidemics have

occurred in neighboring regions [52]. Further work is

underway to examine whether the low prevalence ob-

served in this study suggests inter-epidemic transmission

occurs in western Kenya, including a cross-sectional sur-

vey of RVF prevalence in high risk slaughterhouse workers

in the same area [53].

Taenia spp. are highly prevalent in the study area, with

the high levels of human taeniasis and bovine and porcine

cysticercosis observed being an important public health

concern [54]. It should be noted that the HP10 Antigen

ELISA cross-reacts with Taenia hydategena [55] which

may lead to an over-estimation of T. solium prevalence in

the pig population. The prevalence of T. hydategena in

Fig. 8 Probability that household belongs to tribal group (a Teso; b Samia; c Luhya; d Luo)

Fig. 9 Probability that household owns livestock species (a Cattle; b Pigs; c Goats; d Sheep)
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African pigs has historically been presumed to be low,

although a recent study in Tanzania suggested a preva-

lence of 6.6% [56]. The prevalence of human taeniasis in

this community is nearly 20%. A similarly high prevalence

of almost 30% was previously identified in hyper-endemic

foci in South-East Asia [57]. The copro-Ag ELISA for

the identification of human taeniasis is not species-

specific, detecting both Taenia saginata and solium

[58]. Household-level human taeniasis was found to be

spatially clustered in the study area, and whilst we did

not find evidence of clustering in household-level bo-

vine cysticercosis, further work is underway to explore

the spatial distribution of human taeniasis and bovine

and porcine cysticercosis at the individual and household

level (http://journals.plos.org/plosntds/article?id=10.1371/

journal.pntd.0004223). Three adult Taenia spp. worms

collected from individuals found to be tapeworm carriers

based on microscopy in this study were identified as T.

saginata by PCR at the Institute for Tropical Medicine in

Antwerp, Belgium. An additional important output of this

work is the identification of widespread lack of awareness

of zoonotic disease; a series of health education messages

about these diseases, particularly the risks associated with

Taenia spp. and messages around food safety are likely to

be valuable.

Kenya is undergoing rapid changes in livestock produc-

tion in order to meet the demands of a growing, increas-

ingly urban, population. This is leading to a trend towards

the intensification of livestock production and wider

marketisation of livestock products in many parts of the

country, including in western Kenya [59]. This compre-

hensive study provides a baseline for the prevalence of

zoonotic infection in both people and animals in a farming

community that can contribute to the monitoring of how

changing agricultural systems may impact on the dynam-

ics of zoonotic disease transmission.

Conclusion

This large, multi-disciplinary study provides a compre-

hensive overview of the prevalence of a wide range of

pathogens of people and animals in a smallholder farm-

ing community in rural western Kenya. This integrated

study fits very much within the one health paradigm,

and will allow a range of hypotheses about human and

animal disease in these linked populations to be tested.

A major aim of future work will be to explore the

determinants of individual and household infection with

single and multiple pathogens in the context of a range

of social, environmental and physical parameters. Our

rich dataset will also allow exploration of conditions

such as polyparasitism and parasite co-occurrence, and

in particular how zoonotic pathogens fit into the broader

ecology of endemic infectious disease in the study area.
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