
An integrated system for real-time Model Predictive Control of
humanoid robots

Tom Erez, Kendall Lowrey, Yuval Tassa, Vikash Kumar, Svetoslav Kolev and Emanuel Todorov
University of Washington

Abstract— Generating diverse behaviors with a humanoid
robot requires a mix of human supervision and automatic
control. Ideally, the user’s input is restricted to high-level
instruction and guidance, and the controller is intelligent
enough to accomplish the tasks autonomously. Here we describe
an integrated system that achieves this goal. The automatic
controller is based on real-time model-predictive control (MPC)
applied to the full dynamics of the robot. This is possible
due to the speed of our new physics engine (MuJoCo), the
efficiency of our trajectory optimization algorithm, and the
contact smoothing methods we have developed for the purpose
of control optimization. In our system, the operator specifies
subtasks by selecting from a menu of predefined cost functions,
and optionally adjusting the mixing weights of the different cost
terms in runtime. The resulting composite cost is sent to the
MPC machinery which constructs a new locally-optimal time-
varying linear feedback control law once every 30 msec, while
planning 500 msec into the future. This control law is evaluated
at 1 kHz to generate control signals for the robot, until the next
control law becomes available. Performance is illustrated on a
subset of the tasks from the DARPA Virtual Robotics Challenge.

I. INTRODUCTION

Designing motor controllers for articulated robot platforms
is difficult and time-consuming, often requiring control en-
gineers to explicitly specify the motions for every task. The
framework of Optimal Control seeks to automate the job
of the control engineer through numerical optimization: the
system designer specifies a simple high-level description of
the required task (e.g., move forward, remain upright, bring
an object) in terms of a cost function, and the low-level
details of the movement that minimizes the cost emerge
autonomously from the optimization process.

In model-based optimal control we provide a model of
the robot’s dynamics in addition to the cost function, and
the optimization algorithm uses this model to predict the
outcome of possible actions and find an optimal future plan.
One realization of model-based optimal control is called
Model-Predictive Control (MPC), an approach that relies
on real-time trajectory optimization (section III). Applying
optimization in an online fashion allows the robot to deal
with deviations from the plan and generate robust behavior
that reacts to changes in its environment. Focusing on the
optimization of a single trajectory allows us to side-step
the curse of dimensionality that constrains the search for
globally-optimal policies via dynamic programming.

MPC is most commonly used in the chemical process
control community [1]. In such domains the natural dynamics
of the plant (e.g., distillation columns) is slow (in the order

of minutes), and therefore online re-optimization is not a
computational challenge. Similarly, online optimization is
computationally straightforward when the system is low-
dimensional; this enabled many previous applications of
MPC in robotics, for example in the control of autonomous
vehicles [2].

In contrast, humanoid robots are high-dimensional sys-
tems, and the timescale of the dynamics of such articulated
robots is on the order of milliseconds. Therefore, online
trajectory optimization for a humanoid is a significant com-
putational challenge. This can be side-stepped by creating a
reduced model, but the price is a loss of generality, since the
model reduction process is manual and must be tailored to
a specific domain. One successful example of such model
reduction is the Spring-Loaded Inverted Pendulum (SLIP)
model [3], which approximates the dynamics of a biped
robot as a single point mass and the multi-joint leg as an
inverted pendulum with a spring. However, while SLIP has
been serving the legged robots community well, in general
it is difficult and labor-intensive to craft model reductions
for every task, and such reduced models can only be applied
within a limited range of states and is unusable in a more
general context (e.g., when the robot has to get up, leap, or
push a heavy object).

In order to enable MPC to control a full-body humanoid
without crafting special-purpose simplifications, the com-
putational challenge must be tackled head-on. Our initial
explorations of this domain [4] suggested that evaluating
the dynamics, and in particular computing its derivatives,
is the most significant computational bottleneck. Therefore,
in the past few years we have focused on building a new
physics engine that is specifically tailored for control and
optimization of articulated robots, titled MuJoCo (Multi-
Joint dynamics with Contacts) [5].

In previous work, we used MuJoCo in several specific
applications of simulated humanoid control (operating slower
than real-time), including full-body stabilization [6] and hand
manipulation [7]. However, the power of MPC lies in its
versatility — its capacity to offer a common framework that
can effectively control many different tasks. Here we present
a framework for real-time control of a humanoid robot in
a diverse set of tasks. The immediate motivation for this
project was the DARPA Virtual Robotics Challenge (VRC),
where teams competed in controlling a simulated humanoid
robot. The robot and its environment are simulated using

Fig. 1. An overview of the MPC control system. In the case of the VRC, the support tasks and MPC tasks ran on separate computers with a simulated
robot, but this framework can be readily modified to perform on different system configurations. Timing characteristics, performance guarantees, and user
experience are dependent on application and design of the robot, but data flow can remain unchanged for many use cases.

Gazebo/ODE1 and controlled via Robot Operating System
(ROS)2 nodes. The challenge includes three different tasks:
driving, diverse-terrain locomotion and manipulation. Since
the VRC rules state that the simulated robot has no self-
collisions (so the hand, for example, can penetrate the chest),
we had to replicate that stipulation in our system. However,
our system is perfectly capable of handling self-collisions.

The system we present here served as common platform
to control the robot through all tasks, with a human operator
in the loop providing high-level guidance to the system (sec-
tion II) by manipulating the cost function being optimized,
leaving all low-level control details to MPC.

To the best of our knowledge, this is the first paper to
present a full integrated system for real-time application
of MPC to a humanoid robot performing multiple tasks.
Several contributions were made in order to achieve this goal:
first, we employ our custom-build physics engine, MuJoCo
[5], in the context of a computationally-efficient trajectory
optimization framework that can run in real time (section
III). Second, we developed a general-purpose machinery for
specification of cost functions using residuals and norms
(section IV). We developed a GUI system for operating the
robot in real time, reflecting to the user the most updated state
and receiving user inputs. Finally, in section V we describe
the specifics of the cost functions we used to generate the
behaviors of the VRC challenge, illustrated in the attached
movie.

II. SYSTEM DESIGN

The system has three main components: the MPC opti-
mization core (described in detail in section III), a suite
of ROS nodes that interface to the robot system, and an
operator interface. Integration of our MPC software with
any robotic system requires a number of complementary

1Available at http://gazebosim.org/.
2Available at http://ros.org/.

processes, as illustrated in figure 1. For the VRC we based
our suite in ROS, handling vision data, robot manipulator
control, and most importantly, an interface to the MPC core
which ran asynchronously on a dedicated computer.3 Parallel
to this control loop was a process that communicated with
our software presented to a human operator outside of this
network through event driven commands.

In this specific application, we were given a particular
configuration with the simulated ATLAS robot (“the robot”)
streaming sensor data across a 10Gbps network to our
software suite, which ran across two “field” computers —
one running MPC, and the other doing estimation and
communication. This second field computer uses callbacks
in the ROS framework to handle all tasks not integral to the
calculation of trajectories through MPC: caching of vision
data and state estimation (section II-A). It is also through
this framework that the operator requests data (such as a
stereo pair of images) or makes parameter changes (such as
commanding the MPC engine to switch between costs). Each
ROS node had service routines that the operator interface
process would call when commanded by the human user on
a remote machine.

The separation of tasks between machines allows the MPC
machinery to take full advantage of all resources to calculate
trajectories. After state estimation is performed on the first
machine, a state vector is sent to our MPC machinery, which
consists of two main threads. First, a policy lookup thread
that uses the state vector to interpolate a control signal
from the current optimal trajectory. Second, the trajectory
optimization thread that is described in more detail in section
III. The first thread is meant to quickly provide a control
signal, and in fact does so in under 200 microseconds,
including state estimation and communication across the
machines. After the control signal is returned to the first

3Yet our MPC system is independent of ROS — it has no dependencies
on any external libraries, and can run on both Linux, Windows and OSX.

machine, it is relayed back to the robot, thus closing our
control loop.

The human operator can request visual information from
the robot’s cameras, dictate robot manipulator actions, and
modify our MPC engine’s behavior. While MPC offers pow-
erful capabilities, it should always be possible to interject and
guide the optimizer towards specific behaviors. The operator
control computer presented a GUI to display the images,
render the robot’s state in a 3D window, and allow for
cost function switching or weight changes. This combination
of leveraging human knowledge and capability, along with
MPC managing high frequency motor control, endows our
humanoid robot with impressive capabilities.

A. State estimation

Our MPC machinery assumes that the current state of
the dynamical system is either known exactly, or is being
estimated by a separate process. The iLQG algorithm [6],
which is the core of the MPC optimization (section III), treats
the estimate as if it were the true state, and plans accordingly.
Note that iLQG uses a linear-quadratic-Gaussian approxima-
tion to the optimal control problem, and is therefore blind to
noise and uncertainty – in the sense that the control laws for
a deterministic and a stochastic system with the same mean
are identical. Thus estimation is really a separate process
from MPC, and can be modified without affecting the rest
of the system.

In the context of the VRC we designed a simple state
estimator combining IMU data with a no-slip prior. The
(simulated) IMUs provided drift-free orientation and angular
velocity, and linear acceleration polluted with Gaussian noise
with non-zero mean (i.e. bias). We first used a period without
movement to calibrate the accelerometer bias. Then we
integrated the accelerometer readings to obtain translational
velocity and position. This resulted in some drift, which we
corrected using a prior that the bodies contacting the ground
are not slipping. This was done by applying forward kinemat-
ics and collision detection in the MuJoCo model, computing
the contact-space velocities with the current estimate of the
root velocity (and known joint velocities given by noise-free
potentiometers), and correcting the estimated root velocity
so that the contact-space velocities are reduced.

The resulting estimator was not perfect because
Gazebo/ODE introduced unnatural spikes in the simulated
accelerometer data, which were many standard deviations
outside the specified accelerometer noise characteristics. At
the same time, the simulated contacts did not fully stick
even when they were supposed to (for the specified friction
coefficient), thus our no-slip prior did not hold exactly. As
a result, MPC was trying to correct imagined disturbances,
and the corresponding corrections were themselves a
disturbace – significantly degrading the overall performance
of the system. These difficulties however are due to ODE
simulation inaccuracies, and we do not expect them to occur
when controlling a physical robot.

III. MODEL-PREDICTIVE CONTROL

Model Predictive Control (MPC), also known as online
trajectory optimization or receding-horizon control, is a
model-based control scheme. At every iteration, the current
state of the robot is measured, and a trajectory optimization
algorithm is applied to obtain a locally-optimal state-control
trajectory emanating from the current state. The initial part of
this trajectory is then used as a policy while the optimization
is repeated. The trajectory optimizer is warm-started with the
solution from the previous iteration, which greatly speeds
up the method and often yields convergence after a single
optimization step.

More formally, the discrete-time dynamics

xi+1 = f(xi,ui) (1)

describe the evolution from time i to i+1 of the state x∈Rn,
given the control u∈Rm. A trajectory is a sequence of states
X ≡ {x0,x1 . . . ,xN} and controls U ≡ {u0,u1 . . . ,uN−1}.
The total cost J0 is the sum of running costs ` and final cost
`N , incurred when starting from x0 and applying U until the
horizon N is reached:

J0(x0,U) =
N−1

∑
i=0

`(xi,ui) + `N(xN),

where the xi for i > 0 are given by (1). The solution of the
optimal control problem is the minimizing control sequence

U∗ ≡ argmin
U

J0(x0,U).

Note that in other contexts, trajectory optimization is often
posed as the minimization

min
X,U

J(X,U) s.t. xi+1 = f(xi,ui)

in other words, the entire state-control trajectory is subject
to minimization. This type of trajectory optimization, called
direct optimization is popular since it can be formulated as
a generic sequential quadratic programming (SQP) problem
and solved with off-the-shelf software. However in the MPC
context, where the initial state constantly changes, it is not
obvious how to warm-start the optimizer.

Letting Ui ≡ {ui,ui+1 . . . ,uN−1} be the tail of the control
sequence, the cost-to-go Ji is the partial sum of costs from
i to N :

Ji(xi,Ui) =
N−1

∑
j=i

`(xj ,uj) + `N(xN).

The Value at time i is the optimal cost-to-go starting at x:

V (x, i) ≡min
Ui

Ji(x,Ui).

Setting V (x,N) ≡ `N(xN), the Dynamic Programming
Principle reduces the minimization over a sequence of con-
trols Ui, to a sequence of minimizations over a single
control, proceeding backwards in time:

V (x, i) =min
u

[`(x,u) + V (f(x,u), i+1)]. (2)

0.01

0.1

1

10

100

Minimum Policy Lags

Stand (1100 Samples)

All Lags (2370 Samples)

Policy Lag (ms)

N
o

rm
a

liz
e

d
 F

re
q

u
e

n
cy

 (
%

)

11 13 15 17 20 25 30 36

Fig. 2. Policy lag in MPC. This histogram demonstrates that policy lag
can change depending on cost function, but still remains highly predictable
and is a good measure of performance. No sample had a lag smaller than
11ms or bigger than 36ms. The “Stand” behavior induces a smaller and
more reliable lag because the number of contacts never changes.

The trajectory optimizer which we used for this project is
called iterative-LQG, which has been described in detail
elsewhere [8] [6]. The algorithm proceeds by iterating a
forward pass or rollout which integrates (1), followed by
a backward pass which approximates a local solution to (2).
Algorithm I provides a high-level overview of the iLQG
module in our setup.

Algorithm I Trajectory optimization
Inputs: The dynamics f , the running and final costs `i, `N ,
the current state x0 and the warm-start sequence U.
Outputs: A locally-optimal control sequence U∗.
1) Rollout: Integrate U to get the initial (xi,ui) trajectory.

2) Derivatives: Compute the derivatives of ` and f .

3) Backward Pass: Approximate a local 2nd-order solution
to (2), obtain a U∗ candidate.

4) Forward Pass: Integrate αU∗ with several line search
parameters 0 < α < 1 and pick the best one.

A. Timing

If a particular optimization iteration takes τi ms, a trajec-
tory that emanates from the state at time t becomes available
at time t + τi. This trajectory is used for control in the next
τi+1 milliseconds, while a new trajectory (emanating from
the state at time t + τi) is being optimized. Therefore, the
control signal along the first τi ms of the trajectory is never
used to control the robot. Similarly, after τi + τi+1 ms this
policy is replaced with a fresh one. Therefore, the controller
only looks at the control values between time τi and τi+1
along the trajectory. In general small value for the policy lag
τ allows the optimizer to become aware sooner of unexpected
changes to the state, and is critical for successful behavior
of MPC.

The optimizer relies on the dynamical model to predict the
future state of the system. In most cases this model is imper-
fect, and these modeling errors cause a mismatch between the

optimizer’s predictions and the system’s real-world behavior.
This mismatch grows as the integration time extends farther
into the future. Yet, since every optimization iteration starts
by querying the estimator for the robot’s current state, the
mismatch between prediction and reality at the initial part
of the trajectory is expected to be small. Therefore, a small
policy lag (smaller values of τ) is important for effective use
of MPC.

In MuJoCo, the most intensive part of computing a single
step is the handling of contacts. This was a source of timing
variability — when more contacts are present (e.g., during
manipulation or crawling tasks), the computation time (and
therefore policy lag) grows. See figure 2 for a summary of
our timing results.

The most time-consuming part of this algorithm is the
finite-differencing of the dynamics at every integration time-
step, but this part is simple to parallelize by sending every
time step to a different processor core. Given that in this
particular instance we had a 16-core machine available, all
our trajectories had 16 time-steps, and the length of the
planning horizon was adjusted by changing the length of
the time step along the trajectory.

B. Design trade-offs

When choosing the parameters for the dynamics model,
we had to balance several contradicting design goals: on
the one hand, computing the dynamics should be fast, so
as to provide low policy lags; on the other hand, the model
should be accurate, so as to provide high-fidelity predictions
of the system’s dynamics; finally, the dynamics should be
continuous and smooth, so as to provide useful gradients to
the optimizer.

In order to achieve smooth dynamics we introduced a
smoothing coefficient to the contact dynamics, which didn’t
predict accurately the robot’s stiff collisions. This unrealistic
dynamics was mitigated by the low policy lag that kept the
plan synchronized with the robot’s true state in the first part
of the trajectory.

Another issue was the choice of the planning horizon.
On the one hand, a small time-step provides more accurate
predictions and a higher temporal resolution. On the other
hand, a short planning horizon yields greedy, myopic be-
havior, and makes it difficult for the optimizer to discover
more elaborate maneuvres (such as an autonomous getting-
up sequence). In order to resolve this tension, we used a
non-uniform time-step along the horizon: the first few time-
steps were shorter (so as to provide high-resolution trajectory
to the controller), while the rest were longer (since the low
policy lag guaranteed that the latter part of the trajectory was
never acted upon). See section V.

IV. COST FUNCTION DESIGN

The power of optimal control lies in the autonomous
discovery of the detailed control policy given a high-level
description of the task, formulated as a scalar cost function.
However, not all cost functions are born equal. At one
extreme is the sparse cost, where all states but a select few

incur a large penalty. In this case a long horizon and an
exhaustive global search would be required to find the correct
policy. On the other end of the spectrum, if we had access
to the true value function, the optimal behavior can be found
with a one-step greedy optimization.

When seeking the middle ground between these two
extreme examples, we face a trade-off between the planning
horizon and the level of detail of the cost function: in some
cases we can computationally afford a long planning horizon
(compared with the natural dynamics of the plant and the
scope of the desired behavior) while still maintaining a small
policy lag. In such a situation, the optimizer can discover
effective behavior with simple, abstract cost functions, since
the long-term effects of immediate actions are available.
However, if the available computational power constrains
us to a short planning horizon, we must design a more
detailed cost function to help the optimizer discover good
behavior. The danger of such an approach is overfitting –
cost functions that are too specific for dealing with one
scenario (e.g., walking on flat ground) may harm the robot’s
performance in a different scenario (e.g., uneven ground)
since they overdetermine the details of the behavior and leave
less room for creativity.

In summary, the structure of our cost functions must be
flexible enough to allow us to specify both very general
goals (“minimize the robot’s angular momentum”) and very
specific ones (“bring the robot’s hand to this location and
orientation, while performing a grasp”) with equal ease;
letting us quickly find the sweet-spot in the aforementioned
tradeoff. In addition to this design objective, an important
technical restriction is that cost functions must be twice
differentiable for the trajectory optimizer to succeed.

We chose a formulation with two entities: residuals and
norms. A residual is a vector function of the state, and can
be the result of kinematic computation (e.g., the Cartesian
position of the hand) or dynamic ones (e.g., the reaction
force between the foot and the ground). A norm is a scalar
function of a residual vector. The cost function is a sum of
terms, where every cost term is defined as the norm of a
residual.

Formally, our cost structure is:

`(x,u) =
K

∑
k=1

wkfk(rk(x,u))

Here the subscript k denotes one of K cost terms, each
scaled by some weight wk ≥ 0. The functions fk() are
the norms, simple twice differentiable scalar functions. The
vector functions rk() are the residuals. A desirable feature
of this formulation is that it affords a computationally-cheap
approximation for its derivatives, which are required for the
iLQG optimization.

The Jacobians ∂r/∂x and ∂r/∂u can be obtained at a
negligible computational cost. We can compute an analytic
Jacobian for many quantities of interest, and for other resid-
uals the Jacobian can be approximated by finite-differencing.
Since we obtain the derivatives of the dynamics f by finite-
differencing, we simply augment the dynamics with the

residual r of our choosing, and approximate the Jacobians
without any additional dynamics evaluations. The key benefit
of this structure is that the residuals r can be arbitrarily
complex without having to be analytically differentiable.

Given the Jacobians of the residuals and the derivatives
of the norms we can obtain the exact gradient of every cost
term and approximate its Hessians:

∂`k
∂x

= wk
∂fk
∂r

∂r

∂x
and

∂2`k
∂x2

≈ wk
∂r

∂x

T ∂2fk
∂r2

∂r

∂x

and similarly for derivatives w.r.t u. The second expression
involves the Gauss-Newton formulation, allowing us to ap-
proximate the cost derivatives without computing ∂2r/∂x2,
which would be computationally expensive to obtain in the
general case.

As detailed in [6], our most useful norm function was the
“smooth-abs” function f(r) =

√
rTr + α2 − α. Because this

function is linear outside of an α-sized neighborhood, the
units of r (e.g. distance) are conserved, allowing for a more
intuitive selection of the weights w. For torques and and
other regularizing costs (see below), we tended to use the
simple quadratic norm f(r) = rTr.

Algorithm II Model-Predictive Control
Repeat indefinitely:

1) Estimate: Use the most recent sensor data to generate an
estimate of the current state of the robot.

2) Transition: For every transition associated with the current
cost, compute the associated norm and residual. If any such
value goes below its threshold, transition to a new cost. If
multiple thresholds are hit, choose the first transition (in the
order they were defined).

3) [Alterations]: If a transition occurred, apply any associated
alterations to the model.

4) User input: Check for user inputs, apply weight changes
(if no transition occured) or switch to a new cost.

5) Trajectory optimization: [see algorithm I].

6) Update: Send the resulting control sequence U∗ to the
controller, which interpolates the control signal (according
to time) at a high rate.

A. Cost transitions and alterations

In order to allow for more autonomy, we augmented
the cost function system with a state machine that can
switch between costs. For every cost, we may specify several
conditions in terms of a threshold over a norm of some
residual of the current state. If this condition is met, the
system autonomously switches to some other cost. The
general structure of the transitions may give rise to many
interesting behaviors. In particular, we used it to design limit
cycles and pre-defined behavioral sequences. Our walking
behavior was made of a sequence of four behaviors: left leg
swing, left-forward stance, right leg swing, and right-forward
stance (see section V-B.3); our solution to the task of entering

the car involved a transition sequence (V-C.2). As opposed to
other state-machine approaches to locomotion [9], [10], here
we are switching between cost functions and not between
explicit control laws. Note that such an abrupt change to the
optimization target may well result in non-smooth control
signal, but that did not disrupt the overall stability of the
system in this case.

All the costs in the locomotion sequence also had a
transition to standing, in case the robot came close enough to
the target. Another sequence we designed is entering the car
(section V-C.2). Here every transition depends on the success
of the previous sub-task: grasping the car frame, setting a
foot on the car’s floor, etc.

We can also associate an alteration of the model with a
transition event. Since there are many ways in which the
parameters of the model affect the behavior, this feature can
be used to serve different functions, as described in section
V: for example, alterations were used to reposition the foot
placement targets during walking (section V-B.3).

B. Class hierarchy of cost functions

In order to capture the diversity of tasks in the VRC in
a succinct way, we organized the tasks and sub-tasks into
a class hierarchy of cost functions.4 At the most common
level of the hierarchy we have terms that limit the space of
likely behaviors (such as penalties for actuation and extreme
acceleration of the head). At the next level we have the wide
categories of the different task; for example, the different
cost functions that were part of the walking and standing
set of behaviors included the same core set of terms such as
keeping upright, minimizing angular velocity of the pelvis,
and so forth. Further down the hierarchy we had more
specific behaviors: the manipulation-related cost functions
inherited the standing stability terms and had additional terms
for specifying specific desired positions for the end-effectors
as specified in the next section.

V. RESULTS

Once the general MPC framework was built, our effort to
develop robot behavior focused on the construction of the
cost functions that encoded the various tasks of the chal-
lenge. Here we describe the various cost functions used by
specifying the quantity that was minimized by every term in
this function. As explained in section IV-B, the cost functions
are organized in a class hierarchy of increasing specification,
with many terms shared across multiple functions; therefore,
this section is organized according to the different classes of
behavior. Additional movies can be viewed at the project’s
website: homes.cs.washington.edu/˜vikash/P DRC.html

4Note the distinction between ”class hierarchy”, which implies inheritance
of terms and coefficients, and ”hierarchical optimization” (as in [11]), where
multiple behavioral goals are specified with an order of precedence, and the
optimizer must first satisfy the high-priority requirements before attending
to the lower-level ones.

Fig. 3. Typical upright standing position.

A. Common cost terms

These terms form the base of the cost hierarchy and are
common to all behaviors. The quantities minimized by these
terms are:

● Joint torques
● Joint velocities
● Angular velocity of the pelvis
● Head acceleration (in cartesian coordinates)

All four terms use the quadratic norm, since our trajectory
optimizer uses a local quadratic expansion of the cost and
will therefore incur no approximation error w.r.t to these
terms (section IV). Because torques are the control sig-
nals sent to the robot and are the output of the trajectory
optimizer, the quadratic torque cost is the most important
regularizing term. Independently, torques are also subject to
per-actuator control-limits, given by the robot description.

B. Specific behaviors

In order to accomplish the different tasks of the VRC,
we built several sets of cost functions that encoded specific
behaviors: three locomotion modes (Walking, Slow Shuffling
and Crawling), a sequence of costs that concludes in a robust
standing pose, and a sequence of maneuvers that allow the
robot to enter the car. Each behavior includes multiple cost
functions that share certain terms, and all share the common
terms mentioned above.

1) Standing up: Maintaining a stable stance (see figure
3) is critical for manipulation. For every term in this cost
function we specify the quantity being minimized:

● STATIC STABILITY: this term penalizes the distance
between the projection of the center of mass (CoM)
and a line segment drawn between the feet (this line
segment is an approximation to the support polygon).

● FACE FORWARD: penalizing the deviations between the
orientation in XY plane of the pelvis, upper torso,
and the two feet. This is computed by computing the
difference between the relevant terms in the rotation
matrix associated with the global orientation of each
body.

● STAND UPRIGHT: deviations of the Z axis of upper torso
and both feetfrom the global vertical direction.

● STAND HEIGHT: deviation of the global height of the
upper torso from the fixed value of 1.2 m.

2) In-place shuffle: This behavior consists of two sym-
metric single-support states (L-stance and R-stance) that
transition to each other (section IV-A) every 800 ms, causing
the robot to step in place. Figure 4(a) shows the robot
standing on its right leg. This behavior is used for multiple
purposes: as transition between standing upright and walking
behaviors, and as a stable and safe mode of locomotion
in constrained narrow spaces. It inherits all terms of the
standing upright behavior, but replaces the two-leg stability
term with a similar single-leg term, penalizing the distance
between the projection of the CoM and the foot. Additionally,
it has the following terms:

● Single leg stance height: asking the robot to keep the
swing leg’s foot 10 cm over the other (to encourage the
robot to stand on one foot).

● Orientation: penalizing deviations of the orientation of
the pelvis and both feet from the direction of a user-
specified target. This term prevents the swing leg from
moving freely.

3) Walking: Walking is composed of a circular state
machine of four states — right step, right stance, left step
and left stance (see figure 4(b)). These costs inherit the terms
of in-place shuffle, but override the STANCE HEIGHT term
with a term that penalizes the distance of the swing foot
from a foot target position. The position of this subject to
model alterations upon cost transition from stance to step,
repositioning the swing leg foot target at a pre-specified
offset to the previous stance leg in the direction of the body
orientation.

C. Pre-designed sequences

Some behaviors (such as entering the car) were too com-
plicated to be discovered autonomously using the planning
horizon available in the current implementation. In other
cases (such as getting up), achieving the desired behavior
with a short planning horizon led the robot to pursue unsafe
behavior (e.g., springing up straight from laying on the
ground) that had potential to fail and break the robot.
In both cases, our solution is to manually decompose the

(a) Right stance (b) Right step

Fig. 4. Walking

(a) Kneeling, preparing to get
into crouch pose.

(b) Crouching, ready to get
up.

Fig. 5. Getting up sequence

task to a sequence of subtasks, and design a state-machine
with transitions between several costs that guides the robot
through a pre-designed behavior.

1) Getting up: Getting up from a fall consists of the
following sequence:

I All fours: Stabilization with both hands and legs facing
downwards.

II Kneel (figure 5(a)): This position is easy to get to from
All Fours and is a natural transition to Crouch.

III Crouch (figure 5(b)): The last step before getting up.
Note here we use the ZMP cost from Stand-Up.

IV Standing up as described in section V-B.3.
2) Entering the car: The sequence of entering the car

included these sub-steps:
I Stand in front of the passenger door.

II Position the right hand on the car frame.
III Close the right hand and grab the car frame.
IV Send the left hand towards the steering wheel while

raising the left leg onto the car’s floor.
V Close the left hand and grab the steering wheel with the

left hand.
VI Use the three contact points with the car (two grasping

hands and left foot) to lift the body onto the seat.
The cost functions for items I-V were versions of the
standing cost with additional terms for hand positions. Items
IV and V involved switching the two-legged stability term
with a single-leg stability term that allows the left leg to
move freely. Item VI retains only the basic common terms,
adding a term penalizing the distance of the pelvis from a
target position on the seat.

D. Common subtask terms

This set of cost terms is shared among all cost functions,
and allow the user more low-level control on the optimized
behavior. The user selectively turns them on by temporarily
increasing the corresponding weight. For every term, we
specify the quantity that is being minimized:

● FACE LOOK-AT: offset between the face-forward vector
and the unit vector pointing from the pelvis to the look-
at target (offsets between vectors are computed as the
sum of differences of the respective rotation matrices).

● HAND LOOK-AT: offset between the left or right (L/R)
hand camera vector and the unit vector pointing from
L/R palm to the look-at target.

● REACH HEAD-TARGET: distance between the head and
a designated head-target in XY plane. Such targets are
interactively positioned by the user.

● HAND REACH: translation and orientation offset be-
tween the L/R hand and its respective hand-target.

All these terms are initialized with a zero weight, and the
weights are not shared across the cost functions. This allows
us to use these terms only when needed, and are meant to
complement existing behavior (e.g., walking or standing).
Choosing the weight is an empirical process of gradually
increasing the weight through manual tuning while observing
the resulting behavior. Immediate feedback enables very fine
control over the behaviors during the tuning process. Usually
mild weights are enough to induce the appropriate behaviour.
Here are some examples of use cases for these terms beyond
their immediate purpose:

● STANDING UPRIGHT + FACE LOOK-AT: when used with
an initially-wide look-at offset angle, this term induces
in-place turning of the entire body.

● IN-PLACE SHUFFLE + FACE LOOK-AT: Enables gradual
and smooth in-place turning. This was very useful for
fine corrections in body orientation.

● IN-PLACE SHUFFLE + HEAD REACH: Induces slow
walking (∼5mm/sec) in the forward direction of the
body. Useful for fine grained and careful re-localization
in narrow and constrained environments.

● IN-PLACE SHUFFLE + HAND REACH: Induces slow
walking (∼5mm/sec) in the direction of hand target
while maintaining body orientation. Useful for fine
grained and careful re-localization in narrow and con-
strained environments when object of interest is off-
reach.

● STAND + HAND REACH: Forces a step in the target
direction when the object of interest is out of reach.

VI. CONCLUSION

This paper describes an integrated system for controlling
humanoid robots via full-body MPC, augmented with high-
level human guidance in the form of cost function specifi-
cation. While the system was developed in the context of
the DARPA Virtual Robotics Challenge, it is quite universal
and we will soon apply it to physical robots in other
contexts. We have previously used MPC to generate rich
robotic movements, however this was done slower than real-
time and the simulated robots were not as complex as the
Atlas humanoid. Our attempts to develop a real-time MPC
system for a high-degree-of-freedom robot revealed that,
with existing computing speed, the planning horizon cannot
be made long enough to discover complex movements with
the simple and abstract costs we prefer to use. Thus we had to
develop an elaborate machinery for cost function design and
online cost switching, which allowed us to specify subtasks
and sequence them as needed. Nevertheless, designing these

more elaborate costs is still much faster than the labor-
intensive work that goes into designing control laws directly.
Once our machinery was ready, the cost functions generating
all the behaviors illustrated in this paper were designed and
fine-tuned by a team of three people in about three weeks.

As in our previous work, we obseved that MPC is very
robust to model errors – in this case caused by discrepancies
between the MuJoCo model used for planning, and the
Gazebo/ODE model used for simulation. Performance de-
graded significantly in the presence of large state estimation
errors (caused by simulation inaccuracies in ODE), but this
issue is specific to the VRC context and is unlikely to arise
when working with physical robots equipped with modern
sensors, or with more accurate simulations.

ACKNOWLEDGEMENTS

This research was funded by DARPA and NSF.

REFERENCES

[1] F. Allgower, R. Findeisen, and Z. K. Nagy, “Nonlinear model predic-
tive control: from theory to application,” Chinese Institute of Chemical
Engineers, vol. 35, no. 3, pp. 299–316, 2004.

[2] R. González, M. Fiacchini, J. L. Guzmán, T. Álamo, and F. Rodrı́guez,
“Robust tube-based predictive control for mobile robots in off-road
conditions,” Robotics and Autonomous Systems, vol. 59, no. 10, pp.
711–726, 2011.

[3] R. Blickhan, “The spring-mass model for running and hopping,”
Journal of Biomechanics, vol. 22, pp. 1217–1227, 1989.

[4] Y. Tassa, T. Erez, and W. Smart, “Receding horizon differential
dynamic programming,” in Advances in Neural Information Process-
ing Systems 20, J. Platt, D. Koller, Y. Singer, and S. Roweis, Eds.
Cambridge, MA: MIT Press, 2008, p. 1465.

[5] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: a physics engine
for model-based control,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, (IROS), 2012.

[6] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of com-
plex behaviors through online trajectory optimization,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, (IROS),
2012.

[7] ——, “Control-limited differential dynamic programming,” Under
Review.

[8] E. Todorov and W. Li, “A generalized iterative LQG method for
locally-optimal feedback control of constrained nonlinear stochastic
systems,” in Proceedings of the 2005, American Control Conference,
2005., Portland, OR, USA, 2005, pp. 300–306.

[9] M. Raibert, Legged Robots that Balance. MIT Press, 1986.
[10] U. Muico, J. Popović, and Z. Popović, “Composite control of physi-

cally simulated characters,” ACM Transactions on Graphics, vol. 30,
no. 3, 2011.

[11] A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical quadratic
programming,” International Journal of Robotics Research, October
2012, [submitted].

