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Abstract—The robust border identification of atheroscle-

rotic carotid plaque, the corresponding degree of stenosis of 

the common carotid artery (CCA), and also the characteristics 

of the arterial wall, including plaque size, composition, and 

elasticity, have significant clinical relevance for the assessment 

of future cardiovascular events. To facilitate the follow-up and 

analysis of the carotid stenosis in serial clinical investigations, 

we propose and evaluate an integrated system for the segmen-

tation of atherosclerotic carotid plaque in ultrasound videos of 

the CCA based on video frame normalization, speckle reduc-

tion filtering, M-mode state-based identification, parametric 

active contours, and snake segmentation. Initially, the cardiac 

cycle in each video is identified and the video M–mode is gen-

erated, thus identifying systolic and diastolic states. The video 

is then segmented for a time period of at least one full cardiac 

cycle. The algorithm is initialized in the first video frame of the 

cardiac cycle, with human assistance if needed, and the mov-

ing atherosclerotic plaque borders are tracked and segmented 

in the subsequent frames. Two different initialization methods 

are investigated in which initial contours are estimated every 

20 video frames. In the first initialization method, the initial 

snake contour is estimated using morphology operators; in the 

second initialization method, the Chan–Vese active contour 

model is used. The performance of the algorithm is evaluated 

on 43 real CCA digitized videos from B-mode longitudinal 

ultrasound segments and is compared with the manual segmen-

tations of an expert, available every 20 frames in a time span of 

3 to 5 s, covering, in general, 2 cardiac cycles. The segmenta-

tion results were very satisfactory, according to the expert ob-

jective evaluation, for the two different methods investigated, 

with true-negative fractions (TNF-specificity) of 83.7 ± 7.6% 

and 84.3 ± 7.5%; true-positive fractions (TPF-sensitivity) of 

85.42 ± 8.1% and 86.1 ± 8.0%; and between the ground truth 

and the proposed segmentation method, kappa indices (KI) of 

84.6% and 85.3% and overlap indices of 74.7% and 75.4%. The 

segmentation contours were also used to compute the cardiac 

state identification and radial, longitudinal, and shear strain 

indices for the CCA wall and plaque between the asymptom-

atic and symptomatic groups were investigated. The results 

of this study show that the integrated system investigated in 

this study can be successfully used for the automated video 

segmentation of the CCA plaque in ultrasound videos.

I. I

T size and composition of carotid atherosclerotic 
plaque have been shown to be independent predictors 

of future cardiovascular events [1], with vulnerable plaques 
described as containing a large lipid core, a thin fibrous 
cap, and dense macrophage inflammation in or beneath its 
surface, whereas stable plaques are characterized by larger 
quantities of calcium and collagen and less lipids and in-
flammatory cells [2]. Accurate and precise segmentation of 
the atherosclerotic carotid plaque in ultrasound B-mode 
video [see Fig. 1(a)] allows for the extraction of different 
anatomical properties of the artery wall, and plaque that 
can be most useful to the physicians for the evaluation of 
plaque development and the process of atherosclerosis in 
modeling and evaluating the risks for future cardiovas-
cular events. Ultrasound, elastography, and other imag-
ing methods such as spectroscopic photoacoustic imaging 
can be integrated to advance the characterization of the 
plaques and corresponding vulnerability [3] because the 
variation in the mechanical properties of the different tis-
sue types is huge [4]. For example, the elasticity modulus 
of calcified plaque material is 50 times higher than the 
modulus of cellular plaque tissue [1]. Over the past few 
years, different quantitative methods have been developed 
for the common carotid artery (CCA) segmentation [5], 
[6], as well as plaque heterogeneity and plaque echogenici-
ty characterization [2]– [5].

The availability and evaluation of different characteris-
tics of carotid plaque is of outmost importance especially 
because it is widely accepted that the experts are only 
moderately confident that there is adequate evidence to 
determine which interventions to use for different patient 
populations [3]. However the manual segmentation of the 
plaque in the CCA in ultrasound video [see also Fig. 1(h)], 
or over large sequences of images is not only a tedious and 
time consuming task, but also suffers from large inter- and 
intra-observer variability and it is difficult to trace bound-
aries for each time frame of the cardiac cycle and for large 
volume of data sets [6], [7]. Polak et al. [8] demonstrated 
that when expert operators manually delineate the intima 
and adventitia borders of the CCA, errors can be consid-
erable and are different for the intima and the adventitia 
borders. The errors are further amplified when experts 
manually delineate atherosclerotic carotid plaques. Thus, 
the need exists for the development of new automated or 
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Fig. 1. Plaque contour initialization procedure and final snake contour: (a) First frame of the original ultrasound CCA video, (b) normalized despeck-
led frame image with the DsFlsmv filter (2 iterations, window 3 × 3), (c) binary image frame after dilation with a square window shape of size 9 × 
9 after removing edges, (d) edge image frame after removal of erroneous edges, (e) ROI manual positioning and interpolating spline and detected 
initial contour with contour selection, (f) initial snake contour mapped on the first video frame, (g) final snake contour after snake deformation, and 

(h) manual delineation of plaque. 
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semi-automated tools and techniques for the assessment 
of the risk of stroke from ultrasound videos of the CCA 
incorporating plaque segmentation.

The predictive ability to identify which patients will 
have a stroke is poor, where the current practice of as-
sessing the risk of stroke relies on measuring the thick-
ness of the CCA wall [intima-media-thickness (IMT)] [9], 
[10] or the artery lumen stenosis by identifying the plaque 
borders in the carotid artery [6]. Although the IMT and 
the degree of stenosis can reliably be delineated in still 
B-mode ultrasound images [1], [6], [9], [10], the moving 
borders of the atherosclerotic carotid plaque and the iden-
tification of the systolic and diastolic video states [7] may 
provide additional information of an individual’s stroke 
risk, and treatment of asymptomatic patients may be im-
proved [11].

We propose in this study an integrated system for the 
video segmentation of the CCA based on our previous 
work [6], [10], to further facilitate the quantitative as-
sessment of atherosclerosis disease. The main extension 
to our previous work in [6], which was based on still im-
age segmentation, is the consideration of moving frames, 
the identification of the states diagram of the video, the 
extraction of systolic and diastolic states [7], and the au-
tomated re-initialization of the snake contour every 20 
frames based on recent work presented in [10]. Preliminary 
results of this study were also published in [12], where we 
proposed an improved initialization method for the po-
sitioning of the initial snake contour. The snake contour 
was repositioned using the level-set formulation of Chan 
and Vese [13], using random initialization, which provided 
a segmentation of the CCA ultrasound image sequences 
into different distinct regions, one of which corresponds 
to the carotid wall region above the lumen, and another 
which corresponds to the carotid wall region below the 
lumen, including the plaque borders. The key point of the 
proposed framework is the accuracy of the initialization.

To the best of the authors’ knowledge there is only one 
published study for the segmentation of atherosclerotic ca-
rotid plaque in ultrasound CCA videos [7]. The method by 

Destrempes et al. [7] is based on a Bayesian segmentation 
model and is evaluated on 33 video sequences. Still, several 
other studies investigated the segmentation of atheroscle-
rotic carotid plaque in ultrasound images. An overview of 
these techniques is given in Table I. Hamou and El-Sakka 
[14] proposed a method based on the Canny edge detector 
to detect the plaque in longitudinal CCA ultrasound im-
ages. A morphological-based approach for the carotid con-
tour extraction was proposed in [15] for longitudinal ultra-
sound images of the CCA, incorporating speckle reduction 
filtering, contour quantization, morphological contour de-
tection, and a contour enhancement stage. Mao et al. [16] 
proposed a discrete dynamic contour model for extracting 
the carotid artery lumen in 2-D transversal ultrasound 
images, whereas Abolmaesumi et al. [17] introduced a 
method, based on the star algorithm improved by Kalman 
filtering, for plaque segmentation in transversal carotid 
ultrasound images. A semi-automatic method for plaque 
segmentation in 3-D images of the CCA using the balloon 
model introduced in [18] was proposed by Gill et al. [19]. 
Loizou et al. [6] proposed a plaque segmentation method, 
based on the Williams and Shah snake [20], for the extrac-
tion of the CCA using an automated contour estimation 
and applied on 80 ultrasound images of the CCA. The 
atherosclerotic carotid plaque in [21], was segmented in 56 
2-D longitudinal ultrasound images using a gradient-based 
snake segmentation method and fuzzy K-means algorithm 
with an initialization based on pixel intensity. In [22], the 
Hough transform was applied to perform segmentation of 
plaque in four 2-D cross-sectional ultrasound images of 
the CCA. In [23], an automated segmentation method for 
3-D ultrasound carotid plaque based on a geometrically 
deformable model, taking advantage of both the local and 
regional detectors, was proposed. More recently, in [24], 
a 3-D semi-automated segmentation method using sparse 
field level sets, where the users choose anchor points on 
each boundary, was proposed for the segmentation of 3-D 
CCA images. All of these methods, with the exception 
of [7] (in which ultrasound video segmentation of the 
plaque in the CCA was proposed), have investigated and 

TABLE I. A O  A C P S T. 

Study Segmentation Method AIC N

Ultrasound imaging 2-D
 Hamou [14] Canny edge detection No —
 Abdel-Dayen [15] Morphological based No —
 Mao [16] Discrete dynamic contour No 7
 Abolmaesumi [17] Kalman filtering No 1
 Gill [19] Balloon No 2
 Loizou [6] Active contour model Yes 80
 Delsanto [21] Gradient based snake with fuzzy k-means Yes 56
 Golemati [22] Hough transform No 4
Ultrasound video
 Destrempes [7] Bayesian model No 33
Ultrasound imaging 3-D
 Zahalka [23] Geometrically deformable model Yes 1
 Ukwatta [24] Level sets No 21

AIC = automatic initial contour; N = number of cases investigated.
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proposed different solutions for the segmentation of the 
atherosclerotic carotid plaque in ultrasound images of the 
CCA.

As shown in Table I, different methods were investi-
gated for the segmentation of the atherosclerotic carotid 
plaque in ultrasound images, yet these studies were evalu-
ated on a limited number of subjects. Therefore, the need 
still exists for the development, implementation, and eval-
uation of an integrated system enabling the automated 
segmentation of ultrasound imaging carotid plaque.

In this paper, an integrated system for the segmenta-
tion of the atherosclerotic carotid plaque in 2-D ultra-
sound video of the common carotid artery (CCA) is pre-
sented and evaluated. The system builds on some of the 
authors’ previous work [6], and incorporates image frame 
normalization, speckle reduction filtering, initial contour 
estimation, M-mode generation, and snake segmentation 
for the advancement of evaluation and treatment of the 
carotid atherosclerosis.

II. M  M

A. Recording of Ultrasound Videos

A total of 43 B-mode longitudinal ultrasound videos 
(from 38 asymptomatic subjects, aged 56 ± 12, and 5 
symptomatic subjects, aged 53 ± 16; there were 17 fe-
male and 26 male subjects) of the CCA bifurcation of 
subjects were recorded representing different types of 
atherosclerotic plaque formation with irregular geometry 
typically found in this blood vessel. Almost all subjects 
demonstrated a left or a right CCA stenosis of 30% or 
larger. The videos were acquired by the ATL HDI-5000 
ultrasound scanner (Advanced Technology Laboratories, 
Seattle, WA) and were recorded digitally on a magneto 
optical drive, with a size of 576 × 768 pixels with 256 gray 
levels, a pixel size of 59 µm (17 pixels/mm) and having 
a frame rate of 100 frames per second. This frame rate 
is high; however, it was used because these videos will 
also be analyzed for plaque motion estimation. The ATL 
HDI-5000 ultrasound scanner is equipped with a 256-ele-
ment fine-pitch high-resolution 50-mm linear array and 
a multi-element ultrasound scan head with an extended 
operating frequency range of 5 to 12 MHz, and it offers 
real spatial compound imaging. The video segmentations 
were performed for 3 to 5 s intervals, covering, in general, 
2 to 3 cardiac cycles.

B. Manual Plaque Segmentation

An expert neurologist with more than 20 years of clini-
cal experience (coauthor Dr. M. Pantziaris) manually de-
lineated the plaque borders between plaque and artery 
wall, and the borders between plaque and blood, every 20 
frames on 43 longitudinal B-mode ultrasound videos of the 
CCA, after image normalization and speckle reduction fil-

tering (see Sections II-C and II-D), using Matlab software 
developed by our group [see Fig. 1(h)]. The manual seg-
mentations traced in the first frame could be transferred 
to the second frame and then could be readjusted by the 
expert accordingly. In total, 538 (10 750 frames/20 = 538) 
ultrasound frames of the CCA were delineated. On aver-
age, 13 frames per video were manually delineated by the 
expert. The procedure used for carrying out the manual 
delineation was the one established and documented in 
the asymptomatic carotid stenosis and risk of stroke (AC-
SRS) project protocol [25] for still images of the CCA. 
The correctness of the work carried out by a single ex-
pert was monitored and verified by at least one other ex-
pert. In cases in which several plaques were located in the 
CCA, comprising multiple components, each plaque was 
segmented independently so that each contour initializa-
tion represents a different plaque.

C. Video Normalization of Ultrasound Videos

Brightness adjustments of ultrasound videos were car-
ried out based on the method introduced in [26]. This 
improves image compatibility by reducing the variability 
introduced by different gain settings, different operators, 
different equipment, and facilitates ultrasound tissue com-
parability [26]. Algebraic (linear) scaling of the first video 
frame was manually performed by linearly adjusting the 
image so that the median gray level value of the blood was 
0 to 5 and the median gray level of the adventitia (artery 
wall) was 180 to 190 [26]. The intensity of the gray level 
values on the video frames ranged from 0 to 255. Thus, 
the brightness of all pixels in the video frame was read-
justed according to the linear scale defined by selecting 
the two reference regions [see also Fig. 1(b)]. The subse-
quent frames of the video were then normalized based on 
the selection of the first frame. It is noted that a key point 
to maintaining a high reproducibility was to ensure that 
the ultrasound beam was at right angles to the adventi-
tia, adventitia was visible adjacent to the plaque and that 
for image normalization, a standard sample consisting of 
half of the width of the brightest area of adventitia was 
obtained.

D. Speckle Reduction Filtering (DsFlsmv)

For speckle reduction, the filter DsFlsmv, introduced 
in [27], was applied to each consecutive frame prior to the 
plaque segmentation. The filters of this type utilize first-
order statistics such as the variance and the mean of a 
pixel neighborhood and may be described with a multipli-
cative noise model [27], [28]. The moving window size for 
the despeckle filter DsFlsmv was 5 × 5 and the number of 
iterations applied to each video frame was two; a complete 
description of the filter and its parameters can be found in 
[27]– [30]. An example of the application of the DsFlsmv 
filter is shown in Fig. 1(b) after image normalization.
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E. Plaque Contour Initialization

Before running the video plaque snake segmentation 
algorithm, two different plaque initialization procedures 
(see also Figs. 1 and 2) were investigated for positioning 
the initial snake contour in the first frame of the video, as 
close to the area of interest (plaque borders) as possible. 
The two different initialization methods are explained in 
detail in the Appendix. Prior to both initialization meth-
ods, all the video frames were normalized (see Section 
II-B) and despeckled (see Section II-C). The normalized 
despeckled first video frame of a CCA video is shown in 

Fig. 1(b). It is also assumed that the carotid artery is 
properly imaged in the video according to the standard 
clinical guidelines.

F. Snake Segmentation

The Williams and Shah snake segmentation method 
[20] was used to deform the snake and segment the plaque 
borders in each video frame. The snake contour, v(s), 
adapts itself by a dynamic process that minimizes an en-
ergy function [Esnake(v, s)] defined as [20]

Fig. 2. (a) Original first frame of the video after normalization and despeckle filtering, (b) the Chan–Vese model initialization contour using simple 
thresholding and morphological closing, (c) and (d) the Chan–Vese model segmentation showing only initialization at the far and near wall of the 
CCA, respectively, (e) result of the Chan–Vese model (some morphological processing has been applied to the Chan–Vese result), and (f) final snake 
segmentation of plaque and lumen of the CCA.
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where Eint(v(s)), Eimage(v(s)), Eexternal(v(s)), Econt(v(s)), 
and Ecurv(v(s)) are the internal, image, external, conti-
nuity, and curvature energies of the snake, and αs, βs, 
and γs are the strength, tension, and stiffness parameters, 
respectively. The method was proposed and evaluated in 
[6] on 80 ultrasound images of the CCA and more details 
about the model can be found there. For the Williams and 
Shah snake, the strength, tension, and stiffness param-
eters were equal to αs = 0.6, βs =0.4, and γs = 2, respec-
tively. This procedure was applied in cases where there 
was only one plaque present in the CCA video. In cases in 
which multiple plaques were located at the near or far wall 
of the CCA (22 out of 43 videos), thus forming multiple 
connected regions (see Fig. 3, left column), the proposed 
segmentation method was applied independently on each 
plaque component. The sampled contour points resulting 
from the previous step are used for the active contour ini-
tialization. The first and last points on the contour result-
ing from the initialization procedure presented in the pre-
vious section are connected to form a closed initial snake 
contour [see Figs. 1(g) and 2(f)]. The final plaque contour 
resulting from the snake deformation is mapped from the 
first video frame to the second and is sampled to provide 
the initialization for the snake deformation. The segmen-
tation is carried out for a full cardiac cycle, which is iden-
tified using the procedure in Section II-G. Every 20 video 
frames, the entire initialization procedure is repeated to 
detect the plaque borders again, reposition the snake and 
reassure that the snake contour will not converge away 
from the area of interest. If there were multiple plaques in 
the CCA video, then the entire methodology is repeated 
for each plaque. Two more examples of video plaque seg-
mentation are shown in Fig. 3.

G. M-Mode Image Generation, Boundary Extraction, 
State Identification, and Manual Delineation

The M-mode image [see Fig. 4(d)] can be generated in 
such a way that it crosses all plaque borders having maxi-
mum motion in opposite directions [31]. The procedure 
of the M-mode generation is illustrated in Fig. 4 and also 
described in [32].

Fig. 4(a) presents the first video frame of the cardiac 
cycle from a B-mode ultrasound video of the left CCA, 
after normalization and despeckle filtering acquired from a 
male symptomatic subject at the age of 64 (having a stent 
on the right CCA and a stenosis of 40% to 50%). Fig. 4(b) 
presents the automated snake segmentations of the plaque 
boundaries at the far wall of the CCA and the lumen seg-
mentation at the near wall. The segmented atherosclerotic 

plaque is shown in Fig. 4(c), whereas Fig. 4(d) presents 
the despeckled M-mode image generated from the CCA 
video for the first 1200 frames (12 s).

Perpendicular lines that cross the major axis of the 
plaque [from Fig. 4(c)], were placed automatically at the 
major axis quintiles (20%, 40%, 60%, and 80%). By scan-
ning the intensity values along the straight perpendicular 
line selected by the user, the M-mode image is generated, 
by taking this line as the y-axis, and each frame of the vid-
eo as the x-axis [see Fig. 4(d)]. Four M-mode images were 
generated for each of the corresponding four perpendicu-
lar lines. The manual delineations and all other measure-
ments were performed (by M. Pantziaris) using a system 
implemented in Matlab from our group. The M-mode im-
ages were converted to binary images and morphological 
operators were applied to smooth the edges. Then, edge 
detection was applied on each M-mode image to derive 
the initial near and far wall boundaries and the rate of 
change [32]. The snake segmentation system [6] was also 
used to refine the derived snake contours [see Fig. 4(e)] 
found on the M-mode image. From the derived contours 
at the far and near wall boundaries of the M-mode image, 
the diastolic and systolic diameters (plaque–lumen) of the 
carotid artery were calculated by finding corresponding 
maxima and minima (and vice versa) at the near and far 
wall boundaries of the M-mode image and then estimating 
their difference, which is the diameter rate of change [see 
Fig. 4(f)]. The extracted contours for the rate of change 
were averaged to form the final state diagram of the video 
[see Fig. 4(f), showing final states of the video], where dia-
stolic and systolic frames were estimated at the maxima 
and minima of the curve.

From the final state diagram of the video in Fig. 4(f), a 
full cardiac cycle was selected by identifying the starting 
and ending frames of the cycle. The frames of the video 
corresponding to the identified cardiac cycle were then 
extracted. The segmentation algorithm (see Section II-F) 
was then applied on the frames representing a full cardiac 
cycle.

H. Evaluation of the Segmentation Method,  
and State and Strain Metrics

The video segmentation methods were evaluated us-
ing the true-positive fraction (TPF) and the true-negative 
fraction (TNF), corresponding to sensitivity and specific-
ity, respectively [33]. Ratios of overlapping areas, can also 
be assessed by applying the similarity kappa index, KI, 
and the overlap index as used in [6]. These indices were 
computed at each video frame as

 

TPF
AS GT

GT
TNF

GT

GT

KI
GT AS

GT AS
overlap

GT AS

GT AS

AS
= =

=
+

=

∩ ∩

∩ ∩

∪

, ,

, ,2

 (2)



IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, . 61, . 1, JANUARY 201492

where | | denotes the total number of pixels within the 
enclosed boundary (or cardinality, which is the number of 
elements in the set),  ∩ denotes the intersection (the num-
ber of common pixels in the manual and snake-segmented 
areas), and ∪ the union (the number of all pixels defined 

by the manual and snake-segmented areas, where the com-
mon pixels are considered only once). GT denotes the 
number of pixels defined by the segmented area, repre-
senting ground truth delineated by the expert, and GT its 
complement. AS denotes the number of pixels belonging 

Fig. 3. Two different examples of plaque segmentation of plaques appearing at the CCA in the left and right column, respectively, at the (a) 50th, 
(b) 60th, (c) 70th, and (d) 150th video frames of the videos.
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in the area obtained by the snake segmentation method, 
and AS its complement. The intersection gives the prob-
ability that both AS and GT occur and the union is the 
probability that either AS or GT occurs.

To further evaluate the state-based identification algo-
rithm, the following metrics between the automated and 
the manual state diagram timings were computed for each 
subject (video).

Fig. 4. Illustration of the M-mode generation (see Section II-G for the implementation details), (a) first normalized and despeckled (with DsFlsmv) 
frame of a B-mode ultrasound video of the CA, (b) segmentation of the plaque boundaries and the near wall of the CA by snakes, (c) extracted 
plaque, (d) despeckled M-mode image generated from the CA video for a selected B-mode line, (e) initial M-mode states superimposed on the original 
M-mode image at the far and near walls respectively, (f) diameter change (averaged across the major plaque axis quintiles, with step diagram and 
systolic and diastolic frames of the video with maximum carotid diameter during distension (*) and maximum carotid diameter during contraction. 
Diastolic and systolic frames (from 0–1200) (100 frames per second = 12 seconds). Contraction frames: 1, 36, 168, 240, 372, 464, 543, 629, 728, 803, 
896, 993; Distension frames: 49, 106, 208, 306, 400, 483, 592, 680, 747, 844, 931; Minimum carotid diameter: 2mm at frame 543; Maximum carotid 
diameter: 2.67 mm at frame 844. In (a), we illustrate the points adventitia wall (AW), plaque wall (PW), media-adventitia wall (MAW), plaque at 
maximum point (Pmax), and plaque at minimum point (Pmin) (see [34] for definition). 
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The root mean square error (RMSE):

 RMSE /= −∑ A M Ni ii

2
, (3)

where i represents the frame number, A and M represent 
the automated and manual state diagrams, and N is the 
number of states (2× the heart rhythm).

The normalized mean square error (NMSE):

 NMSE N= ∗100 RMSE/std , (4)

where stdN is the standard deviation over one subject (or 
video), which can be calculated as the root of the mean 
variance.

The mean average error (MAE) is

 MAE /= −∑ A M Ni i

i

. (5)

The mean average relative error is

 MARE /=
−

∑
A M

M
N

i i

i
i

. (6)

The carotid diameter during contraction (CDC) and 
the carotid diameter during distension (CDD), and the 
percentage of the carotid wall distension (%CWD):

 %CWD
CDD CDC

CDC
=

−

∗ 100. (7)

The radial and longitudinal movements in these vid-
eos have been also investigated, where regions of interest 
(ROIs) were selected for each CCA video [see Fig. 4(a)] on 
the first normalized despeckled frame [34]. More specifi-
cally, three ROIs, namely, the adventitia wall (AW) at the 
near wall, the plaque wall (PW), and the media-adventitia 
wall (MAW), were selected at the far wall of the CCA, and 
two ROIs, namely, the maximum plaque border (Pmax) 
and the minimum plaque border (Pmin) were selected. The 
following equations were used to calculate the radial (RS), 
longitudinal (LS), and shear strains (SS) from the radial 
and longitudinal displacement indices as documented in 
[34]:

 RS
RP RP RP RP

RP RP
1(ed) 2(ed)

1(ed) 2(ed)
=

− − −

−

1 2  (8)

 LS
LP LP LP LP

LP LP
1(ed) 2(ed)

1(ed) 2(ed)
=

− − −

−

1 2  (9)

 SS
LP LP LP LP

RP RP
1(ed) 2(ed)

1(ed) 2(ed)
=

− − −

−






arctan
( ) ( )

( )
1 2 


, (10)

where RP and LP denote radial and longitudinal dis-
placements, respectively, for a pair of ROIs, and (ed) cor-
responds to end diastole. Based on (8)–(10), the radial 
strain at wall (RS), the longitudinal strain (LS), and the 
shear strain (SS) were calculated.

III. R

A. Examples of Plaque Video Segmentation

Fig. 3 presents two different examples of video plaque 
segmentation with atherosclerotic plaques appearing at 
the CCA in the left and right column. The segmentations 
were performed for the first and second cardiac cycle, for 
the 50th, 60th, 70th, and 150th video frames of the vid-
eo. In the left column, a case from a 61-year-old female 
asymptomatic subject is presented with three different 
plaques at the near and far wall of the CCA, with a left 
CCA stenosis of 35% to 40%. In the right column, one can 
see a case from a 64-year-old male symptomatic subject 
with a stent on the right CCA and with a stenosis of 40% 
to 50%. It is observed that the proposed segmentation 
algorithm is able to follow the plaque borders consistently 
as a result of the initialization procedures followed.

B. Evaluation of the Plaque Segmentation Method

Table II tabulates the quantitative results of the statis-
tical analysis based on TNF, TPF, KI, and overlap index 
for the proposed video segmentation method performed 
for 1 to 2 cardiac cycles, on 43 ultrasound videos of the 
CCA for the two different initialization methods (see two 
last rows in Table II). The results of the automated seg-
mentation method are compared with the manual tracings 
of the expert, which are considered to be the ground truth. 
The results show that the proposed method using the two 
different initialization methods (mean ± std method 1 and 
mean ± std method 2) agrees with the expert by correctly 
detecting no plaque (TNF) in (83.7 ± 7.6% and 84.3 ± 
7.5%) of the cases and by correctly detecting a plaque 
(TPF) in (85.42 ± 8.1% and 86.1 ± 8.0%) of the cases. 
The similarity kappa index, KI, and the overlap index 
for the proposed video snake segmentation method were 
equal to 84.6% and 85.3% and 74.7% and 75.4% using the 
two different initialization techniques, respectively. There 
was no significant difference between the two methods for 
all metrics investigated using a pair t-test at p < 0.05. 
However, a small improvement was observed in almost 
all evaluation metrics when the segmentations were per-
formed with the second initialization method. It should 
further be noted that the snake contour may be attracted 
occasionally to local minima and converge to a wrong lo-
cation. This occurred in less than 10% of the cases (i.e., 
in 4 videos).

C. M-Mode Generation and State Identification

Fig. 4(e) presents the M-mode image of the video, 
where the video states are superimposed at the far and 
near wall, respectively. The insert on the left upper side 
of the images in Figs. 4(d) and 4(e) indicates the straight 
perpendicular line that can also be selected by the user 
of the proposed system to generate the M-mode image. 
Finally, in Fig. 4(f), the diameter change is presented 
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with the help of a step diagram showing systolic (1, 36, 
168, 240, 372, 464, 543, 629, 728, 803, 896, and 993) and 
diastolic frames (49, 106, 208, 306, 400, 483, 592, 680, 
747, 844, and 931) of the video. The maximum carotid 
diameter during distension (2 mm at frame 543 indicated 
with an asterisk) and maximum carotid diameter during 
contraction (2.67 mm at frame 844 indicated with an as-
terisk) are also shown.

Table III presents the results of the evaluation metrics 
between the manual and the automated state diagrams 
(mean ± std) in microseconds for the asymptomatic and 
the symptomatic subjects. The RMSE, NRMSE, MAE, 
and the MARE were for all videos 125.41 ± 11.77 µs, 
121.16 ± 10.38 µs, 119.06 ± 11.96 µs, and 5.43 ± 0.95 µs, 
respectively. The t-test test gave statistically significant 
differences between the asymptomatic and symptomatic 
cases for all evaluation metrics tabulated in Table III.

Table IV illustrates the results of the CDC, CDD, and 
the %CWD for the asymptomatic and the symptomatic 
subjects (mean ± std). The CDC, CDD, and the %CWD 
for the asymptomatic and the symptomatic groups were 
5.13 ± 0.34 and 5.48 ± 0.29 mm, 5.89 ± 0.31 and 6.27 ± 
0.35 mm, and 10.2 ± 1.03 and 16.09 ± 0.83%, respectively. 
The t-test, shown in the last row of Table IV, performed 
between the values obtained for the asymptomatic and 
symptomatic cases at p < 0.05 gave no statistically signifi-
cant differences between them.

D. Strain Metrics

Table V presents the strain indices (mean ± std) over 
two consecutive cardiac cycles for the asymptomatic and 
symptomatic groups. More specifically, the following mea-
sures were evaluated, a radial strain at wall (RSW) of 5.13 
± 0.34%, a longitudinal strain of 2.84 ± 0.65%, a shear 
strain at wall (SSW) of 0.42 ± 0.12 rad, a shear strain at 
plaque (SSP) of 0.06 ± 0.01 rad, and a radial strain at 

plaque (RSP) of 3.13 ± 1.21 rad. All strain indices be-
tween the asymptomatic and symptomatic subjects were 
found to be not significantly different.

IV. D

The results of the proposed integrated video segmenta-
tion method can be favorably compared with the results of 
the segmentation of the carotid plaque in ultrasound im-
ages presented in [6], and also with the results presented 
in [7] and [22] (see also Table II). Comparing the proposed 
video segmentation method with the one presented in [6], 
one may observe that the TNF, TPF, KI, and overlap in-
dex are larger in this study. This may be attributed to the 
fact that the videos used here were of better quality than 
the images used in [6]. The results reported in [22] are 
better than the ones reported in [6] and in this study, but 
it should also be taken into consideration that the number 
of images used in [22] was very small (only 4 ultrasound 
images of the CCA) when compared with the study in 
[6] and [7], in which 80 and 33 videos were used, respec-
tively. Furthermore, in [7], where video segmentation of 
atherosclerotic carotid plaque in 33 video sequences was 
proposed, similar results were obtained for the KI and 
overlap index (see also Table II). Also, the specificity was 
94.1 ± 4.2% in [7] versus 84.3 ± 7.5% here. It should also 
be noted that the standard deviations obtained for the 
presented work are larger than the ones obtained in [7].

The results of Table III show that all error measure-
ments (RMSE, NRMSE, MAE, and MARE) calculated in 
this study are much smaller, with much smaller standard 
deviations, than the ones obtained in a recent study [32] 
in which M-mode state based identification in 10 CCA 
videos was investigated. The smaller deviations obtained 
in this study could be attributed to the fact that a hetero-
geneous group of videos was investigated in [32].

TABLE II. P M  S (T-P F, TPF), S (T-N F, TNF), 
K I (KI),  O I   V S M P  43 U V  

  CCA   T D I M. 

Segmentation method
Ultrasound 
data

Sensitivity 
(TPF)

Specificity 
(TNF) KI

Overlap 
index

Loizou [6] Images (N = 80) 82.7% 80.9% 80.7% 69.3%
Golemati [22] Images (N = 4) 97.5 ± 1.0% 96 ± 10% — —
Destrempes [7] Videos (N = 33) 83.7 ± 8.3% 94.1 ± 4.2% 0.85 ± 0.75 0.75 ± 0.1
Present study (intensity based initialization) Videos (N = 43) 85.4 ± 8.1% 83.7 ± 7.6% 84.6% 74.7%
Present study (initial contour based initialization) Videos (N = 43) 86.1 ± 8.0% 84.3 ± 7.5% 85.3% 75.4%

Manual segmentations performed by an expert were used.

TABLE III. M ± S E M B  M   A S  M. 

Video RMSE NRMSE MAE MARE

Asymptomatic (N = 38) 191.25 ± 13.31 212.79 ± 12.42 182.63 ± 19.76 7.12 ± 1.01
Symptomatic (N = 5) 59.56 ± 10.23 43.53 ± 8.34 55.50 ± 4.20 3.74 ± 0.89
t-test between asymptomatic and symptomatic1 S (p = 0.04) S (p = 0.002) S (p = 0.031) S (p = 0.029)

RMSE = relative mean square error; NRMSE = normalized mean square error; MAE = mean absolute error; MARE = mean absolute relative 
error.
1Test carried out at p < 0.05; S = significantly different.
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The results of Table IV are also consistent with [32] 
(CDC = 5.26 ± 0.52 mm, CDD = 5.81 ± 0.59 mm, 
%CWD = 10.32 ± 4.71%), in which M-mode state-based 
identification in 10 ultrasound videos of the CCA was per-
formed.

Strain indices, similar to the ones reported in Table 
V, were also estimated for asymptomatic and symptom-
atic subjects in [34] (RSW = 5.50 ± 2.90%, LS = 2.15 ± 
1.36%, SSW = 0.37 ± 0.20 rad, SSP = 0.10 ± 0.07 rad, 
and RSR = 4.32 ± 2.34 rad for the asymptomatic and 
RSW = 5.09 ± 1.73%, LS = 2.79 ± 1.71%, SSW = 0.39 
± 0.18 rad, SSP = 0.07 ± 0.04 rad, and RSR = 3.33 ± 
1.82 rad for the symptomatic subjects) to quantify the 
mechanical behavior of the CCA artery in the radial and 
longitudinal directions. More specifically, four different 
motion estimation techniques of the CCA in ultrasound 
videos were investigated and applied on synthetic videos 
with known properties. It was also shown in [34], as can be 
seen by the presented results, that the errors were higher 
in the longitudinal direction than in the radial. No sta-
tistically significant differences were found for all indices 
between the asymptomatic and symptomatic subjects in 
[34] or in the present study.

In [21] and [22], in which image segmentation of the 
atherosclerotic carotid plaque was performed, images were 
neither normalized nor despeckled, nor was an automatic 
contour estimation used as in this study. The video nor-
malization method presented in this study ensures that 
the segmentation method and the results are not depen-
dent on the equipment used. This is not the case for the 
video segmentation method proposed in [7], in which the 
region-based segmentation was established using the sta-
tistical distribution of the gray level of the frames and 
speckle noise was not taken into consideration. Further-
more, the results of this study showed that the proposed 
video segmentation method performs very closely to the 
method for atherosclerotic plaque segmentation presented 
in [6]. The presented work can also be favorably compared 

with the recent video segmentation study in [7], performed 
on 33 subjects (see also Table II).

A. Plaque Contour Initialization

The key point of the proposed framework is the ac-
curacy of the initialization. Two different methods were 
investigated in this work for initial contour estimation. 
However, both methods gave similar segmentation evalu-
ation performance. There was no significant difference for 
all evaluation metrics investigated. In [7], the method for 
video segmentation proposed was also semiautomatic, in 
the sense that it required an initial manual segmentation 
of the plaque in the first frame, and then proceeded to 
the segmentation of the entire sequence without further 
user interaction. In [21] and [22], the initialization of the 
segmentation algorithm was performed automatically 
based on the echogenicity of the lumen and the plaque, 
or the Hough transform, respectively. These methods were 
tested on image sequences, but were processed individu-
ally. In the presented methodology it was assumed that 
if the method performed satisfactorily for an individual 
image, it might also perform well for a whole sequence of 
images, with each image processed individually. However, 
a more sophisticated tracking procedure, taking into con-
sideration the interrelations between neighboring frames 
by utilization of motion estimation, could be taken into 
consideration in future work. Such a method could achieve 
automated video segmentation with even less manual in-
tervention.

Initial contour estimation for segmenting ultrasound 
images was also proposed in [35], derived from the polar 
image by combining information extracted from the prob-
ability function of the contour position, and more specifi-
cally from the function maximum location and the first 
zero crossing of its derivative. Then, starting from the 
initial contour, a region of interest was automatically se-
lected and the process iterated until the snake contour 

TABLE V. M ± S V  S I   C A  A (N = 38) 
 S (N = 5) S O T C C C. 

Strain indices Asymptomatic (n = 38) Symptomatic (n = 5) t-test1

RSW (%) 5.13 ± 0.34 5.37 ± 0.26 NS (0.31)
LS (%) 2.84 ± 0.65 2.97 ± 0.42 NS (0.72)
SSW (rad) 0.42 ± 0.12 0.49 ± 0.17 NS (0.43)
SSP (rad) 0.06 ± 0.01 0.12 ± 0.03 NS (0.096)
RSP (rad) 3.13 ± 1.21 3.9 ± 0.98 NS (0.59)

RSW = radial strain at wall; LS = longitudinal strain at wall; SSW = shear strain at wall; SSP = shear strain 
at plaque; RSP = radial strain at plaque.
1Test carried out at p < 0.05, NS = not significantly different.

TABLE IV. M ± S C D D C (CDC)  M, C D D D 
(CDD)  M,  P  C W D (%CWD)   A S. 

Video CDC (mm) CDD (mm) %CWD

Asymptomatic (N = 38) 5.13 ± 0.34 5.89 ± 0.31 10.2 ± 1.03
Symptomatic (N = 5) 5.48 ± 0.29 6.27 ± 0.35 16.09 ± 0.83
t-test between asymptomatic and symptomatic1 NS (p = 0.59) NS (p = 0.11) NS (p = 0.38)

1Test carried out at p < 0.05. NS = not significantly different.
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evolution could be ignored. In [36], a cost function was 
calculated and used as an input to the image plaque seg-
mentation algorithm. In [19], a dynamic balloon model 
[18] represented by a triangular mesh was applied for de-
tecting the plaque borders on two 3-D ultrasound carotid 
images for which the initial contour was placed manually. 
In all of these studies and in the present study, the sig-
nificance of the initial contour placement was not exhaus-
tively investigated to estimate how this influences the final 
segmentation result.

B. Video States Identification

By identifying the states of the CCA, the normal and 
abnormal plaque motion can be investigated. It was shown 
in [7] and [31], and in the present study, that M-mode 
state-based modeling derived from B-mode videos can be 
used successfully to derive the carotid states and assess 
the corresponding wall changes. This work also shows that 
state-based video modeling can be used to identify video 
segments’ dynamic behavior in ultrasound videos of the 
CCA. However, further work is needed for validating the 
proposed method and for differentiation between normal 
and abnormal state-based plaque motion analysis.

There are several studies reported in the literature, 
in which state-based identification of the CCA was per-
formed. More specifically, Golemati et al. [22], used block-
matching-based techniques to estimate arterial motion 
from B-mode CCA ultrasound images. They found that 
arterial wall distensibility in the radial direction was sig-
nificantly higher than distensibility in the longitudinal 
direction (10.2 ± 4.5% versus 2.5 ± 0.89%). In another 
study [34], the same group performed a comparison of 
block-matching differential methods for motion analysis 
of the CCA in ultrasound videos. Their results were very 
similar with the ones presented here (see Table V), but 
a slightly different distensibility of 13.15 ± 0.93% in the 
radial direction (see Table IV). Differences could be easily 
attributed to the nature of the different video data sets 
investigated.

In [37], it was shown that M-mode ultrasound analysis 
can be a sensitive tool for measurements of strain decrease 
with increasing age and male sex and strain increase with 
smoking and obesity when evaluated on the right CCA. 
Therefore, it might be used for screening of unsuccessful 
vascular aging and still potentially reversible subclinical 
carotid atherosclerosis, thereby lowering the cut-off value 
of vascular damage toward the values of unaffected popu-
lation. It provides opportunities for introduction of differ-
ent therapeutic or life-style change strategies for reduction 
or retardation of overt clinical manifestation of cerebro-
vascular disease.

In [31], the states of echocardiogram videos were identi-
fied based on a state classifier detector, which first detects 
the view boundaries using histogram-based comparison 
and edge change ratio. The accuracy of the classifier was 
97.19%, which was higher than two existing approaches 

[38], [39]. Misclassification error of state detection was less 
than 13%, which is reasonably low.

Future research perspectives may be orientated toward 
to the development of new M-mode identification algo-
rithms, and motion field of the arterial wall. Further, the 
separation between healthy and diseased arterial wall re-
mains to be studied in detail.

C. Limitations of the Video Segmentation Method

There are some limitations in the proposed method-
ology that are summarized below. Cases of plaque type 
I and type V [6], [25], [26] (see Section II-B) were not 
considered for segmentation. If the plaque is of type I, 
borders are not clearly visible. Plaques of type V produce 
acoustic shadowing and the plaque is also not clearly vis-
ible [25]. However, there are also inherent difficulties for 
segmentation of the carotid videos and the corresponding 
plaques that arise not only from the use of different pro-
tocols but also because of differences in anatomy as well 
as the extent of the atherosclerosis and plaque presence. 
The presence of extensive and severe carotid stenosis may 
cause the initialization to completely fail because there 
will be difficulty in establishing the lumen. In addition, 
the presence of extensive plaques in the near wall may 
cause inaccurate segmentation of the far-wall adventitia. 
It should be noted that the parameters for each processing 
step (for example, the size of the moving pixel window, 
the number of iterations, the number of frames for which 
the contour was reinitialized) were selected for maximum 
performance. However, there were about 10% of the cases 
where the final snake contour did not converge properly.

The average computation time for the snake contour 
was about 9 s per frame, using a Pentium III (Intel Corp., 
Santa Clara, CA) desktop computer with 3.2 GHz of 
RAM memory, whereas in [7] it was 30 s per frame. It is 
noted that the expert clinician required more than 25 s 
per frame for the manual delineation. An average process-
ing time of 20 s per image in case of the segmentation of 
the CCA images is reported in [21, p. 1267, end of Section 
II], whereas in [7], the average processing time per image 
was 30 s. It should also be noted that the accuracy of the 
proposed method has been further improved (see last two 
rows of Table II) when the first frame of the video was 
initialized with the second initialization method proposed 
in this study (see Section II-E).

Further efficiency can be achieved in a commercial ver-
sion, in which the proposed algorithm may be designed 
to perform in parallel with the clinician’s evaluation, so 
the clinician might carry on with the patient examina-
tion while the segmentation of the whole sequence is per-
formed. Thus, there is a reasonable expectation that a 
clinically applicable version will be created in the future. 
Further improvement could be achieved to enable the use 
of the proposed video segmentation technique in the real 
clinical practice if the initialization of the snake contours 
(see Section II-E) is applied every 30 or 40 frames so that 



IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, . 61, . 1, JANUARY 201498

the snake contour is repositioned closer to the plaque bor-
ders.

In everyday clinical practice, the ultrasonographer ma-
nipulates the transducer and mentally transforms the 2-D 
images into anatomical volume, or structure, or lesion, to 
make a diagnosis. Three-dimensional ultrasound attempts 
to provide the ultrasonographer with a more realistic re-
construction and visualization of the 3-D structure under 
investigation, thus overcoming the limitations of 2-D im-
aging, reducing the variability of assessment and aiding in 
improved diagnosis. The additional information may also 
enable evaluation of changes in the volume but also in the 
surface morphology, providing additional information for 
stroke risk analysis [23]. The use of 3-D techniques has 
primarily focused on measuring volume changes through 
time to monitor disease progression [40]– [42]. Landry et 
al. [40] demonstrated that plaque volume change can be 
reliably measured using 3-D ultrasound. They showed 
that a 20% to 35% change can be measured with 95% 
confidence for plaques of volume <100 mm3. For larger 
plaques (volume >100 mm3), with 95% confidence, they 
showed that we can measure finer changes of the order of 
10% to 20%, respectively. Chiu et al. [41] developed a 3-D 
segmentation method for measuring the combined thick-
ness of the plaque, the intima, and media (vessel wall plus 
plaque thickness or VWT). The authors proposed the use 
of 3-D VWT and VWT-change maps for identifying dis-
ease progression in relations to disturbances of flow. The 
authors extended their work in [42], in which they mea-
sured VWT volume changes for assessing and monitoring 
carotid artery disease.

V. C R

The method presented in this study proposes an in-
tegrated system for the segmentation of atherosclerotic 
carotid plaque in longitudinal ultrasound image sequenc-
es. The method integrates video frame normalization, 
despeckling, and accurate segmentation using active con-
tours. Such a system can reduce the time required for the 
video analysis, and also the subjectivity that accompanies 
manual delineations and measurements. The method will 
be further evaluated on a larger number of ultrasound vid-
eos and with ground truth from multiple experts. Future 
work will focus on improving the segmentation procedure, 
such that it can satisfactorily process special plaque cases 
and difficult-to-segment videos, taking into consideration, 
for example, a statistical approach to initialize and teach 
the snake about the blood flow and plaque area [37], as 
was also investigated in [6]. Furthermore, the segmenta-
tion system proposed in this study will be incorporated 
into a computer-aided diagnostic system that supports the 
texture analysis of the segmented plaque, as documented 
in [43] and [44], providing an automated system for the 
early diagnosis and the assessment of the risk of stroke. It 
will also be of great interest to measure the transversal as 
well the longitudinal movements at the two arterial sides of 

the CCA (left and right CCA) to find differences between 
the two sides. Another interesting application would be to 
investigate the longitudinal movement of the arterial wall, 
as in [45], but also apply the aforementioned technique at 
different arterial sides that are known to be susceptible to 
the atherosclerosis disease, such as the carotid bifurcation 
and proximal internal carotid artery. Furthermore, the in-
tegrated plaque video segmentation method proposed will 
greatly facilitate the automated plaque motion analysis 
[34], [46]. Finally, it can be seen that an optimized imple-
mentation based on parallelization could provide close to 
real-time video processing.

A A 
S M   T 
S I M

The first initialization method for establishing the po-
sitioning of the initial snake contour uses intensity infor-
mation, morphological operations, and edge detection to 
find the initial outline of the plaque. The steps of the first 
initialization procedure are described in what follows and 
can also be seen in Fig. 1. To begin, the normalized and 
despeckled first video frame of the cardiac cycle is thres-
holded—the threshold is calculated from the despeckled 
grayscale image frame according to Otsu’s method and 
the corresponding normalization [26]. Pixels that have 
smaller intensity values than this threshold are set to zero, 
whereas pixels with larger intensity values are set to one, 
resulting in a binary image [see Fig. 1(c)]. The binary im-
age is dilated [see Fig. 1(c)]. Here, a square window shape 
structuring element with a size of 9 × 9 pixels (0.53 × 
0.53 mm) was applied to the binary image frame. This 
morphological operation is performed to close small gaps 
and form a continuous boundary. On the dilated area, 
erroneous small edges that might trap the snake must be 
removed. This is carried out by labeling connecting com-
ponents in the image, where the number of connecting 
components was chosen to be eight. Small segments that 
have an area less than 20 pixels (1.2 mm), and do not 
belong in the boundary are therefore removed [see Fig. 
1(c)]. It should be noted that the choice of the square 
window structuring element and the number of connected 
components was chosen after several experiments made 
using the guidance of the expert neurologist (coauthor M. 
Pantziaris). Next, the contour matrix of the remaining 
objects is extracted [see Fig. 1(d)], which should represent 
the lumen and the near and far carotid wall boundaries. 
The areas of interest in the image, where the plaque will 
be detected are manually selected [via the positioning of 
an ROI in the first video frame, see Fig. 1(e)], and the 
contour matrix of the corresponding regions is extracted 
by locating points and their coordinates on the plaque 
borders (plaque–lumen boundary, contour). To form the 
initial plaque–adventitia boundary contour, the two far 
ends of the contour matrix are connected together. Inter-
polating B-splines are used to smooth the corresponding 
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boundaries [see Fig. 1(f)] and these smoothed boundar-
ies are sampled in 30 equal segments. The 30 sampled 
points are the ones used to initialize the active contours 
plaque segmentation. In a case in which there are multiple 
plaques in the CCA [see Figs. 3(a)–3(d)] the selection of 
the plaque could be repeated manually by placing a differ-
ent area of interest, and the procedure could be performed 
for each plaque independently.

The second initialization method for establishing the 
positioning of the initial snake contour is based on the use 
of active contours without edges [13] by Chan and Vese 
and can be seen in Fig. 2. We use in Fig. 2 the same im-
age as in Fig. 1(a) so that direct comparisons can be made 
between the two initialization methods. Level-set methods 
[47] work in several spatial dimensions, but more impor-
tantly they can handle topological changes naturally. Us-
ing the level-set formulation of the active contours with-
out edges by Chan and Vese [13] (Chan–Vese model), the 
regions corresponding to the lumen and the carotid wall 
(including the plaque) can be automatically segmented. It 
is also noted that the Chan–Vese formulation can use the 
corresponding energy terms used in the snake formulation.

The Chan–Vese model [13] corresponds to a region-
based level-set method which uses the Mumford–Shah 
functional in the level-set framework for a piecewise con-
stant representation of an image. The evolution of the 
curve is governed by properties of the region of the image 
u0(x, y) enclosed by the curve. The model tries to separate 
the image into regions based on pixel intensities and intro-
duces the following energy functional:
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where µ ≥ 0, ν ≥ 0, and λ1, λ2 > 0 are fixed parameters.
Without loss of generality, the initialization contour is 

a disk with radius of 2.1 mm randomly placed in the im-
age background (segmented from simple thresholding with 
a threshold close to zero). For the evaluation of the level-
set segmentation, in addition to downsampling the origi-
nal ultrasound image frame by a factor of 4 to accelerate 
the segmentation, the values of the different parameters 
used are µ = 0.2; h, the space step, is set to 1; and ∆t, the 
time step, is set to 0.25. For computation of the regular-
ized versions of H and δ0, ε = 1, as used in [13]. The val-
ues for the different parameters for the Chan–Vese model 
were empirically verified. The empirical verification also 
showed that slight variation in the value of the parameters 
would not have a significant effect on the final segmenta-
tion. The first two terms in (A.1) control the regularity 
by penalizing the length and the enclosed area of C. The 
choice of µ = 0.2 allows the segmentation to accurately 
match the data, while still resulting in a relatively smooth 

curve. The term ν provides a penalty on the foreground 
area resulting from the segmentation, and here is set to 0. 
For segmenting the lumen and the adventitia, the energy 
contributed by the intensity variance of the two regions is 
equally weighted to λ1 = λ2 = 1. In a large number of ap-
plications [13], including this implementation, λ1 = λ2 = 
1 and ν = 0; however, parameters of the energy functional 
may need to be modified if new smoothness constraints 
are needed or if data sets with different visual quality are 
used [49].

The Chan–Vese model is first applied to the normal-
ized, despeckled first video frame. To initialize the active 
contours without edges, a rough outline of the lumen is 
used, resulting in faster convergence. This outline is found 
by incorporating clinical and image intensity information. 
According to the clinical guidelines, the lumen should be 
imaged longitudinally around the middle of the frame, and 
following normalization it has a limited range of intensity 
values. Thus, after thresholding the despekcled, normal-
ized first video frame, for intensities less than 4 (which 
is below the maximum of the lumen intensity value af-
ter normalization [25]) and morphological opening with a 
circular element of 0.3 × 0.3 mm to close any holes, the 
largest region in the middle of the frame corresponds to 
a roughly segmented lumen [see Fig. 2(b)]. The outline of 
this rough segmentation is used to initialize the Chan–
Vese model. Figs. 2(c) and 2(d) present the Chan–Vese 
model segmentation, showing only the outline at the far 
and near wall including the plaque of the CCA, respec-
tively. The final result of the Chan–Vese model is shown in 
Fig. 2(e). Next, the region corresponding to the lumen is 
eroded using a circular element of 0.82 × 0.82 mm to en-
sure that the boundaries that will be used for initialising 
the final segmentation will be in the lumen but outside the 
carotid wall. This segmentation provides initialization of 
boundaries of the near and far wall of the carotid. These 
boundaries are sampled and 30 equally spaced sampled 
points are used to initialize the active contours for athero-
sclerotic carotid plaque segmentation [see Fig. 2(e)]. The 
boundaries area across the entire length of the wall will 
include all plaques present.
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