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Abstract—The Service-Oriented Architecture (SOA) approach to building systems of application and middleware components

promotes the use of reusable services with a core focus of service interactions, obligations, and context. Although services technically

relieve the difficulties of specific technology dependency, the difficulties in building reusable components is still prominent and a

challenge to service engineers. Engineering the behavior of these services means ensuring that the interactions and obligations are

correct and consistent with policies set out to guide partners in building the correct sequences of interactions to support the functions of

one or more services. Hence, checking the suitability of service behavior is complex, particularly when dealing with a composition of

services and concurrent interactions. How can we rigorously check implementations of service compositions? What are the semantics

of service compositions? How does deployment configuration affect service composition behavior safety? To facilitate service

engineers designing and implementing suitable and safe service compositions, we present in this paper an approach to consider

different viewpoints of service composition behavior analysis. The contribution of the paper is threefold. First, we model service

orchestration, choreography behavior, and service orchestration deployment through formal semantics applied to service behavior and

configuration descriptions. Second, we define types of analysis and properties of interest for checking service models of

orchestrations, choreography, and deployment. Third, we describe mechanical support by providing a comprehensive integrated

workbench for the verification and validation of service compositions.

Index Terms—Service-oriented architecture, composite services, services models, Web services modeling, analysis, validation.
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1 INTRODUCTION

AS the adoption of a Service-Oriented Architecture (SOA)
approach and the more general notion of Service-

Oriented Computing (SOC) gains popularity, tool support
for the increasing number of standards and complex
configuration dependencies is expected. While there are
specific tools for certain service aspects, there is currently
little to support the engineer in building complex service
interactions using complementing standards across the
standard spectrum. These standards have been designed to
cover the service data requirements, interface descriptions,
process requirements, and behavior specifications of colla-
borating services yet only together will they provide a
complete environment for the benefits of services to be
realized. Current integrated development environments,
such as Visual Studio.NET (for Microsoft.NET), focus on
the function or code behind a service (illustrated by the focus
of consuming or implementing the service rather than the
scope of how that service is expected to be used and
composed with other services). In other words, there is a gap

between the provision of tools for building a service (the
components and interface of a service) and the interactions
that the service will provide or require in the environment
that it is used.

Service orchestration languages, such as theWeb Services
Business Process Execution Language (WS-BPEL) [1], aim to
fulfill the requirement of a coordinated and collaborative
service invocation specification to support the interactions of
a local process with multiple service partners. However, an
orchestration alone does not fulfill the requirement of an
assured collaboration in cross-enterprise service domains.
Participating services must adhere to policies set out to
support these collaborative roles in a services architecture
with obligations to constrain the interactions between
services. While policies are generally considered to be
resource access based (e.g., security and access control
permissions), obligations are equally important in ensuring
that collaboration is conducted in an appropriate manner
and that the behavior exhibited by participating clients is
suitable for given scenarios. This issue is collectively
wrapped up in the term Service Choreography. Recent
standards efforts have produced choreography languages,
such as the Web Services Choreography Description Lan-
guage (WS-CDL) [2]. In addition, the design and implemen-
tation of service components in this architecture style must
support the original policies as defined by the service owner
and their enterprise. These interacting services can be
constructed using various emerging standards andmanaged
bymultiple parties in their domain of interest and as such the
task of linking these activities across workflows within this
domain is crucial. Therefore, of clear interest is the need to
support such engineering tasks as process verification,
partner service usability, and other properties to verify the
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roles of service users and their actions [3]. There is also high
value in providing a simulated process mechanism to
visually compare expected with simulated results of service
behavior which can increase expectations of a successful
outcome prior to deployment.

To address the issues discussed above, we propose a
holistic approach to engineering service compositions. More
specifically, we abstract formal behavioral models from
interacting service orchestrations, their choreography po-
licies, and deployment architecture scenarios. The formal
models are used as input in model-checking techniques to
determine the safety and correctness of properties from
design, implementation, and collaboration. Our aim is to
provide greater assurance that service requirements are
implemented safely and correctly in terms of service
composition specifications and configuration.

The paper is structured as follows: In Section 2, we
provide a background to the concepts of service orientation,
while highlighting aspects of service behavior in service
orchestrations, choreography, and deployment scenarios. In
Section 3, we provide formal models of service orchestra-
tions, choreography, and deployment through structural
mappings from their design and implementation into a
process model which can be compiled to form finite state
machines of service composition behavior. In Section 4, we
analyze these models for different behavioral properties of
service compositions. In Section 5, we discuss an imple-
mentation of the analysis techniques and our experience
with both industry and academia in using the techniques.
Section 6 provides a discussion on this and related work in
the area, and Section 7 concludes the paper with a summary
and view on future work.

2 BACKGROUND

2.1 Concepts of Service Orientation

The Service-Oriented Model (SOM) [4], illustrated in Fig. 1,
is a relationship model described by the World-Wide Web
(W3C) Services Architecture Group as “to explicate the
relationships between an agent and the services it provides and
requests.” The fundamental elements for service composi-
tion are service, service goal state, task, and role. A service is an
abstract resource that represents a capability of performing
tasks, while its goal state is driven from the requirements of
some person or organization’s point of view. Furthermore, a
service may take a particular role in performing a task. The
model also serves to exhibit the relationships between
service elements, and links these with service choreogra-
phy. While the SOMmodel serves as a useful reference map
in considering the principles of SOAs, there is clearly a gap
between principle and implementation. In this work, we
consider the design and implementations of service
orchestrations and their choreography. This leads us to
structurally map the relationships between elements of the
SOM (with a focus on choreography) to formal models of
behavior. For example, a goal state is achieved by a service
task and is a result of a service task action. In effect, our
approach in this paper is to specifically measure how the
relationships are achieved and to ensure they are specified
correctly to achieve a goal state. To achieve this, however,
we shall see that this also requires mapping of other
relationships (such as service interface, role, and semantics).

2.2 Service Choreography and Orchestration

2.2.1 Choreography and Obligations

Service choreography describes the overall behavior in a
service composition between the services and their partners
for one or more service goals. Choreography in general
terms, and by dictionary definition, explores the wider
aspects of interactions, often referenced by a similarity to
arranging dance or ballet group sequences. The W3C Web
Services Architecture [4] describes choreography as “the
sequence and conditions under which multiple cooperating
independent agents exchange messages in order to perform a task
to achieve a goal state.” Choreography is typically initiated by
an event (trigger) or a request message and is executed by
multiple partner interactions, potentially occurring concur-
rently between different partners. Such interactions during
this choreography pose questions such as: Can messages be
sent and received in any order by differing partners? What
are the rules governing a sequence of choreographies? Can a
global view of the overall exchange of messages between
different partners be sufficiently modeled (e.g., for verifica-
tion and monitoring a coordinated behavior)?

2.2.2 Orchestration and Process

A Service Orchestration is a process within a choreography
that provides the necessary actions to achieve a partners
obligations in that choreography. When used in the context
of SOA, the orchestration part is often related to a role similar
to that of a music orchestra conductor, who sequences and
times the necessary steps to perform a musical act. Each
musician has a role to play and performs a task to contribute
to the overall score. A service orchestration coordinates the
interactions between different services, offered by different
service partners and providing different roles depending on
the context of the orchestration. As a way to describe these
service orchestrations, the WS-BPEL orchestration language
was created. Note that although service choreography is
referred to on the SOM model, service orchestration is not.
Interestingly, one can think of orchestration as a kind of
service (rather than a unique element of themodel) produced
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by a service requester or provider. A service orchestration
can be implemented in any modern programming language;
however, all types of orchestration languages support a
number of common concepts. There is service invocation
with a number of styles such as synchronous (wait for reply)
or asynchronous invocation (to receive a reply at a later
point). Invocations can also be performed concurrently,
repeating or being chosen depending on values within the
orchestration environment (i.e., using variables and condi-
tional transitions).

2.2.3 Abstract View of Choreography and Orchestration

We relate the design of service choreography and orches-
tration as a set of scenarios (illustrated in Fig. 2) with a
mapping between the elements of a basic Message Sequence
Chart (bMSC) and those in building service composition
specifications. Using MSCs has the benefit of building
compositions incrementally. The choreography of the
scenario is shown as the multipartner view of interactions
across the scenario, while orchestration is the view of a
single partner’s interactions with other partners in the
scenario. The example scenario depicts a choreography for
an obtain the best loan rate goal. In this example, the design
has focused on a central orchestration, that of the Loan
Service, which coordinates the service goal and interacts
between a client and two Loan Providers.

2.3 Service Deployment and Constraints

Service Engineers must also carefully consider the use of
resources as part of service orchestration processes and
especially when combining a number of orchestrations in a
single deployment environment. As we have described in
Section 2.2.2, service orchestration languages support a
number of synchronization primitives to invoke other
services. WS-BPEL also includes a primitive to determine
the concurrent execution of a block of statements. In order
to avoid concurrency problems, such as lost updates or
inconsistent analyses, the language supports locking primi-
tives so that variables that maintain state can be accessed in
mutual exclusion. The combination of these primitives
means that service orchestrations that are not written
carefully may deadlock or exhibit other safety or liveness

property violations due to resource issues. Process related
resources are typically defined in one of three groups [5],
that of 1) Processor (thread pools, priority mechanisms, and
intraprocess mutexes), 2) Communication resources (proto-
col properties, connections, etc.), and 3) Memory (buffering
requests in queues and bounding the size of a thread pool).
One such resource that is commonly configured with
multiple process instances and interactions is that of a
shared thread pool.

2.3.1 Abstract View of Deployment

There are a number of Architecture Description Languages
(ADLs) we could use to describe a deployment architecture,
including Darwin [6] and UML [7]. An abstract view,
however, defines a metamodel that can be used in any ADL.
One such metamodel is illustrated as UML2 in Fig. 3,
showing the relationships between service artifacts and
system architecture nodes for service deployment. One or
more service orchestrations (of type ServiceOrchestration)
are modeled as artifacts which are deployed on to servlet
nodes. A service orchestration can only be deployed to one
servlet instance. Servlets are hosted on Web server nodes
(a Web server is a Web container which manages the
creation and deletion of servlet instances). A servlet also has
predefined resource allocations, which are modeled as one
or more objects of type Resource node.

3 MODELING SERVICE COMPOSITIONS

In this section, we describe how to create formal models of
service composition design, implementations, and deploy-
ment configurations. Formal models are constructed using a
process algebra which represents the behavioral and
architectural configuration of service compositions.

3.1 Behavior Semantics in FSP

We define the behavioral and structural semantics of each
service composition artifact in terms of a Labeled Transition
System (LTS) [8]. Labels can represent different things
depending on the context the system is used in. Typical
uses of labels include representing input expected, condi-
tions that must be true to trigger the transition, or actions
performed during the transition. We use LTSs to describe
the formal behavior of service specifications, both in design
and implementation models. LTSs can be modeled using
the Finite State Process (FSP) notation [9] which can be
compiled into LTSs using the Labeled Transition System
Analyzer (LTSA) tool [10]. FSP is a textual notation
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Fig. 2. A scenario of service choreography and orchestration interac-
tions in a (basic) MSC.

Fig. 3. A metamodel for service orchestration deployment.



(technically a process calculus) for concisely describing and
reasoning about concurrent programs. FSP is designed to be
easily machine readable, and thus provides a preferred
language to specify abstract processes. FSP supports a range
of operators to define a process model representation which
is given in an online [11]. Initially, to enable a common
representation for service interactions we define a template
for two partners, a type of interaction and an interaction
operation name. These interaction templates are labeled
p1_p2_primitive_op where p1 is the local process partner
name, p2 is the service partner, primitive is the activity and
op is the name of the operation requested.

The mappings to support our analysis are provided
complete in an Appendix, which can be found on the
Computer Society Digital Library at http://doi.ieee
computersociety.org/10.1109/TSC.2010.19.

3.2 Interaction Design Models

In this section, we discuss the use of MSCs for service
composition modeling and how MSC design models are
synthesized to FSP models to represent service composi-
tion behavior.

3.2.1 Specification

MSCs can provide visual aids to design requirements
specifications for service compositions, yet their combined
behavior is difficult to analyze by human observation. We
have already provided an example of an MSC for service
compositions in Fig. 2. To represent different service
composition scenarios, we base our models on the
International Telecommunications Union Telecommunica-
tion Standardisation Sector (ITU-T) recommendation Z20
[12] which provides two levels of sequence chart composi-
tion. First, there is a basic MSC (bMSC) which defines the
components and message sequences between them. Sec-
ond, there is a high-level MSC (hMSC) which defines the
ordering of the bMSC. In this way, a requirements engineer
can specify the different scenarios for message sequencing
and compose these to a service system architecture model.
Note that the ITU-T Z20 recommendation aligns with that
of the Unified Modeling Language Version 2 (UML2)
Sequence Chart notation (particularly on grouping mes-
sages). The process of synthesizing these MSC scenarios to
LTSs provides a way to computationally and mechanically
analyze these scenarios to determine whether the behavior
specified is desirable given a complete system behavior
model. To aid accessibility in design, we also support the
mapping of UML2 Sequence Charts.

3.2.2 Mappings and Models

The semantics of MSC message names (or labels) is not
constrained. As such, we can apply the template pattern
(described in Section 3.1) to message names in these
specifications to associate the type of message activity for
service interactions, where c1 (component 1) in the MSC
represents p1 (partner 1) and c2 represents p2 (partner 2).
Additionally, a type of interaction represents an invocation
(invoke), receive (receive), or response (reply). This tem-
plate is only necessary if the ITU-T recommendation is
followed, otherwise if it is UML2 then the language of
UML2 Sequence Charts includes a direction indicator of

messages (i.e., invoke, reply, synchronous, or asynchro-
nous, etc.). Thus, we have a set of profiles which can be
applied to MSCs depending on the language used to specify
them. Referring back to Fig. 4, note that the LTS transitions
are labeled with abbreviated partner names for visual
clarity (e.g., c for Client, srva for Service A).

A formal syntax and semantics for MSCs based upon the
ITU-T recommendation and a corresponding algorithm to
synthesize MSCs to LTSs is described in [13]. Once the
MSCs are specified, we use this algorithm to synthesize LTS
models from MSC specifications. The general idea of the
algorithm is to build local FSP processes that correspond to
portions of MSC component behavior and to combine them
in such a way as to provide a complete MSC behavior. The
algorithm identifies beginning and end states of each
component, in each MSC scenario, and then combines their
instance and behavior relationships into a single behavior
architecture model for analysis.

3.3 Service Orchestration

3.3.1 Specification

We use the WS-BPEL specification as an example imple-
mentation of service orchestrations. WS-BPEL defines a
series of constructs to describe a service composition process,
where a local partner in the composition executes a series of
service interactions. A basic structure for aWS-BPEL process
is outlined in Fig. 5.

3.3.2 Behavioral Mapping to FSP

Our behavioral mapping of WS-BPEL to FSP groups
activities by their related areas in specification. Primitive
activities in WS-BPEL are those which define basic interac-
tion activities between the local process and services
defined by partners of the orchestration, such as invoking
a partner service operation or receiving and replying to an
operation request from a service partner. Interaction
primitives are modeled in FSP with labels for partners,
the type of interaction (either invoke, receive, or reply) and the
name of the operation. Additionally, the terminate primitive
takes any labeled transition activity in the orchestration and
immediately transitions to the end state of the process. Our
orchestration model includes an action set (a list of actions
in the process). The terminate activity is represented by a
choice at each action state to either continue or end the
process. Any primitive activity may also have external
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dependencies outside of the scope (specified as a structured
link activity).

Structured activities are those which define ordering or
behavioral constraints in the sequencing of activities, such
as whether activities are executed in sequence, concurrently
or are linked to the successful completion of other activities.
The sequence activity construct is used to scope a sequence
of activities in the order they are given in that scope. We
represent sequence activities as a sequence composition
process in FSP. Alternatively, a flow creates an execution
scope that executes each activity in the scope concurrently.
The flow construct maps directly to a parallel composition
process in FSP. Linked activities, represented by an
attribute of either target or source are pre- and postactivity
execution conditions. They are used to guard when activity
transitions can be made given the requirement that other
activities have successfully completed. Both source and
target links are modeled as synchronized sequence activ-
ities in the FSP model. The while activity provides a
construct to perform a repetitive execution of activities
until a boolean condition is evaluated to true. The while
activity is represented in FSP in two parts. First, using the
variable expression evaluation described at the beginning of
this section. The second part is to represent recursion and
use the FSP if-then-else with alternative process transitions
depending on whether the evaluation is true or false. The
switch construct is also a conditional activity, selecting
either a particular case or an “in all other cases” path of
execution. Each case branch builds an FSP guarded activity,
while the last case activity model includes an otherwise
activity. Finally, the pick activity awaits the occurrence of
one event in a set of events and then performs the activity
associated with the event that occurred. The events can
occur in any order; hence, we represent the available
activities as a choice composition in FSP. Fig. 6 illustrates
some structural activity mappings to LTSs.

Scoping can be used to group activities and declare
handlers for either local or global fault-handling and
compensation recovery actions. Scoping is related event
handling in WS-BPEL, to provide a mechanism to support
concurrently receiving messages while the orchestration
process is executing. To model these activities, a sequence
composition is used tomodel the event activity which is then
composed with a global event manager. The set of global

event actions are collated for the entire orchestration process.
In a similar way to event handling, fault handling provides a
mechanism to capture error events (such as the failure to
invoke a particular service). The difference to the more
generic event handling is that fault handler activities (when
activated) cause the immediate terminate or nonfault
activities in the scope. Thus, we need to model the fault
handler activities as alternative paths in the model. This is
achieved using a guarded sequence composition in FSP. The
events which identify faults are added to the scope
composition and in a similar model to the terminate activity,
a fault event raised causes the nonfault activity processes to
end while execution continues with the relevant fault
sequence process. Finally, compensation handlers are very
similar to fault handlers; however, compensation focuses on
concurrent recovery actions rather than exception handling
and can be executed directly with the compensate activity.

3.3.3 Interaction Models

WS-BPEL, hosted as a Web service, requires an interface
description to advertise its offered services (methods) and
message types. This description is in the form of the Web
Service Description Language (WSDL), which specifies the
service ports, operations, and message data types used. To
link service interactions, we build port connector models for
interacting orchestration processes by use of an interaction
matching process. The process is summarized as follows:
For every orchestration process in a composition, we extract
all the interaction activities (i.e., invoke, receive, and reply).
For each invocation activity, a partner role is selected and a
partner service port referenced. The port is used to
determine which connector model is applicable. Given a
selected interface definition, the operation for invocation is
referenced. Finally, depending on the invocation style (i.e.,
synchronous or asynchronous), a port connector bridge is
built (synchronizing the interaction activities). The sequence
is then repeated for all other invocations in the selected and
other composition processes. In WS-BPEL, invocations
specified with the invoke construct and only an input
variable declare a one-way or asynchronous operation. To
model this, we use an asynchronous port model (Fig. 7a).
Conversely, invocations specified with both input and
output variables define a synchronous request and reply
(“rendezvous”) interaction. To model this, we use a
synchronous port model (Fig. 7b).
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Fig. 6. Example WS-BPEL structure activities as LTSs.



3.3.4 Architecture and Analysis Models

A complete architecture model for a WS-BPEL process and
its interactions is built to represent the composed behavior
of the service orchestration activities. The architecture
model can then be composed as a unique single identifier
when combining different orchestration architecture mod-
els in a single service composition analysis model.

3.4 Service Choreography

3.4.1 Specification

We use theWS-CDL specification as an example language to
describe service choreography and map the constructs of
this language to the semantics of LTSs using FSPmodels. An
example choreography specification of WS-CDL is provided
in Fig. 8. AWS-CDL package consists of choreographies that
specify one or more scenarios of interaction activities
between different partners. At the choreography package
level, general aspects common to all choreographies are
defined, for example, participant roles, types, channels for
communication, and information (data) sets. Within each
choreography scenario are activities which specify interac-
tions, exceptions, workunits, and finalization steps.

3.4.2 Structural Mapping to FSP

Primitive activities in WS-CDL are similar to those for
interactions in WS-BPEL; however, in addition, the perform
construct passes the control flow to a named choreography
in the specification. The perform activity is modeled as a
sequence composition of a choreography process in FSP.
Also, the primitive actions of silentAction and noAction
indicate either a nonobservable action that should take
place or that no action should take place for a particular
partner in the choreography, respectively. Both silentAction
and noAction are transformed to a FSP transition action.
Defined at the beginning of a choreography package are
participant, relationship, and communication types. These
are defined using the participantType, relationshipType,
roleType, and channelType, respectively. All types generate
a mapping list (to build a reference map of participants and
their relationships). These are also referenced later in
analysis. More significant is the use of channelTypes. A
channelType realizes a point of collaboration between
participantTypes (with a specific roleType) by specifying
where and how information is exchanged. A channelType
can declare a channel that is used for one interaction (once),
or used by only one participantType (distinct) or that it can
be used multiple times by different participantTypes
(shared). Additionally, a channelType can also be restricted
to a type of exchange, either both request and respond
(request-respond), requests only (request), or responses

only (respond). The declaration and restrictions on using a
channel are included in the internal mapping built.

An Interaction in WS-CDL is a complex construct to
define an interaction between two partners in the choreo-
graphy. The interaction construct specifies a participate
child element which declares the participation relation-
shipType, and the roleType to and from of the participants.
Additionally, another child element specifies the exchange
of information, naming the operation (service method) and
the informationType. A child of the exchange element
specifies the send and receive variables, along with an
optional exception handler (causeException) to cater for
errors that may occur during an exchange. We build an
action in FSP for each of the interaction elements, creating a
sequential composition of the form p1_p2_type_op (where
type is either request, receive, or respond).

Structured constructs in WS-CDL are also similar to those
found in WS-BPEL, including sequence, parallel which is
identical to theWS-BPEL flow construct and choice. Hence,we
reuse the semantics used for WS-BPEL and apply the same
translation to a FSP. WS-CDL also provides the structure
called workunit. A workunit can be used to scope a set of
activities for execution, having a guarded condition for
execution and also repeating if necessary. Thus, theworkunit
in WS-CDL is represented as a while and if type construct.

Fault handling in WS-CDL is declared using exception-
Blocks. An exceptionBlock is identified by a unique name
and can be referenced in the causeException part of the
exchange activity. An exceptionBlock must define a work-
unit to describe the behavior of actions to take if an
exception is raised. To model this in FSP, we create a new
sequential composition process which includes the transla-
tion of all activities defined in the workunit and alternative
transition path for the exceptionBlock.

3.4.3 Interaction Models

An interaction channelType for a particular partnership-
Type might be defined to be only of action type respond,
while a choreography interaction exchange may attempt a
request on this channel. For interaction models, we declare a
PortModel (again, similar for those defined for WS-BPEL)
which composes the types of exchange actions (request,
receive, or reply) with that of the restrictions specified on a
particular channel. Choreography interaction models allow
us to link orchestration and choreography models, while
also checking constraints on channel usage.
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Fig. 7. Port connector models for asynchronous (a) and synchronous
(b) interactions.

Fig. 8. Example structure of a WS-CDL choreography.



3.4.4 Architecture and System Models

A complete model for WS-CDL choreography specifications
and their interactions is built to represent the architecture of
the service choreography package. This composes the
models produced from translation of each choreography
in the WS-CDL specification to FSP, their channel port
connector models, and the interactions specified on these
channels. As with the WS-BPEL architecture models, we
generate unique behavior models based upon the name of
each choreography, while the overall package specification
provides a system model of the composed choreography
architecture models.

3.5 Service Deployment

3.5.1 Specification

Using the metamodel for service deployment described in
Section 2.3.1, we provide an example deployment diagram
in Fig. 9 showing two service orchestrations (named
“InvokeMolpak” and “GSSubmission”) which are config-
ured to be deployed to a single servlet. The diagram is
related to an analysis case study described later in Section 4.
The servlet has a designated resource of type ThreadPool.
Note that the resources can be stereotyped to define which
resource type is being specified. The servlet is also
associated with a Web server, which acts as a container
for one or many servlets.

3.5.2 Structural Mapping to FSP

First, each service orchestration (as WS-BPEL) is identified
in the deployment design model and mapped to FSP as
described in Section 3.3. The orchestration translations are
stored in a lookup list along with their corresponding
architecture model. The number of orchestrations in the
model is also stored, for reference later in process mapping.
Second, each Servlet element is selected and again a list
generated for reference. Each servlet is then considered for
associated resource elements and identified as a particular
type. The type we currently focus on is of type ThreadPool;
however, other resource types may be introduced in future
work. We model the management of threads in a shared
thread pool as a sequence of processes which “get” or “put”
a resource from a container (Fig. 10). The shared thread pool
(TPOOL) is a container for poolsize number of threads and
represents the service orchestration server technology stack
for allocating and releasing threads as required by the
orchestration processes. When a process is composed with
this thread pool, those interactions which acquire a thread
(represented by the first conditional statement of “ðt > 0Þ
get ! TPOOL½t� 1�”) increase the acquired threads by one
if there exists unallocated threads in the pool. Alternatively,
a completed interaction may free a thread which is

represented by the statement “put ! TPOOL½tþ 1�,” add-
ing a thread back to the available resources. Each servlet, if
associated with a ThreadPool is composed with one or more
TPOOL processes to include resource usage within the
behavior model. Finally, a SERVER process is created which
composes both the service orchestrations and the servlet
composition SERVLETS.

3.5.3 Interaction and Resource Models

To associate the actions of service orchestrations and
resource usage, we map the service orchestration actions
to particular resource model actions. First, we add an
action for the create and terminate service orchestration
instances. In the WS-BPEL specification, a process may be
instantiated by containing at least one “start activity.” This
may either be designated on a “receive” activity or a
“pick” through the use of a “createInstance” attribute.
There is no restriction for the number of activities which
may create an instance of a process, and there are further
semantics for how these correlate on a given process.
Therefore, a createInstance action can occur in multiple
activities, but only one may actually create an instance of a
process. In our current mapping capability, we assume that
one activity will be designated to create an instance of a
process. For behavior modeling purposes, it is only
necessary to include a create and terminate action in the
mapping model (immediately before the first activity and
after the last activity, respectively).

Second, for each orchestration architecture, we scan each
of the orchestration process interactions and gather those
which are resource-operator activities (activities which
cause acquisition or release of resources). In the case of
the WS-BPEL notation, these are invoke, receive, or reply.
Additionally, we add a resource and activity mapping for
the createInstance and terminateInstance activities. These
are added as a resource “get” and “put,” respectively. A
final task is that of generating a pool-resource-map process.
To generate this, we need to define a process stub for each
combination of orchestrations sharing the server resource
pool and represent that a number of instances of these
processes can exist at a given time.

3.5.4 Architecture and System Models

A complete model for deployment, linking the service
compositions and mappings is built to represent an analysis
model of the service composition deployment behavior.
This combines the behavior translated from the service
orchestrations and the behavior mappings between the
orchestration interactions and resource usage associated
with the servlets.

4 ANALYZING SERVICE COMPOSITIONS

4.1 Overview

In this section, we provide service composition analysis
examples from two case studies. In design, interactions,

FOSTER ET AL.: AN INTEGRATED WORKBENCH FOR MODEL-BASED ENGINEERING OF SERVICE COMPOSITIONS 7

Fig. 9. A service orchestration deployment configuration model.

Fig. 10. LTS for a shared ThreadPool Resource model.



and obligations analysis we illustrate the approach using a
case study from the UK Police IT Organisation (PITO). The
case study and approach are fully described in [14]. In one
scenario, a Police Officer performs an enquiry on a suspect
which is composed of concurrent interactions between a
central enquiry service, vehicle registration service, num-
ber plate service, and personal enquiry service. For
deployment analysis, we undertook a case study with the
Software Engineering Group of University College London
(UCL), who had experienced deadlock situations when
executing a service composition (called Molpak) for
predicting polymorphs in organic crystal structures [15].
Although the original deployment configuration (illu-
strated in Fig. 9) appears simple, the nature of the
interactions provided a challenging model-checking sce-
nario. A client invokes a central orchestration which
invokes up to 38 InvokeMolpak orchestrations in parallel.
Each of these orchestrations invokes the GSSubmission
orchestration to submit jobs to a grid resource manager.
The GSSubmission polls a resource manager awaiting
completion of each analysis task.

Common to all types of analysis are a series of steps to
abstract a combined model of specification and implementa-
tion in preparation for analysis. The types of abstraction we
use are: Enumeration—representing the range of the values
of a continuous variable as a set of abstracted terms
(partitioning variables in to value parts), Reduction—the
technique to decrease the size of individual parts of a system
while preserving relevant characteristics needed to verify the
behavior of the system, Grouping—the many-to-one map-
ping of variables or entities (actions) into a single descriptor.

Note that the accuracy of the analysis and algorithms
presented here is based upon the correctness and coverage
of operator mappings detailed in Section 3.

4.2 Design Analysis

Service composition Design Analysis focuses on the verifica-
tion of the implementations of composition interaction
sequences compared with that of a design formed by the
possible scenarios that a service orchestration can fulfill.
The essence of this verification is to prove that trace
equivalence is upheld in the service composition imple-
mentation and the requirements specified of it in the design
models. However, it is also the case that the design model
can be checked against that of the implementation. Switch-
ing properties provide a mechanism to check additional
behaviors observed in both models.

4.2.1 Process

An algorithm for design analysis is illustrated in Fig. 11.
The process takes as input an MSC design specification,
together with a service orchestration implementation or a
choreography policy specification. First, a pair of LTSs is
generated from the design model and the orchestration or
choreography implementations. The translation mapping of
the MSC to LTS uses the technique discussed in Section
3.2.2, while the WS-BPEL to LTS steps are discussed in
Section 3.3.2, and WS-CDL steps in Section 3.4.2.

The abstraction steps are further illustrated as FSP
examples in Fig. 12, initially building a set of interactions
for each source model (lines 2-4). To abstract the orchestra-
tion and choreography models for design analysis, we
enumerate the variables used in control-flow constructs
(e.g., choice, while, etc.). In the case of a choice construct,
the choice alternatives are numbered 0..N (where N is the
number of alternatives). In the case of a while construct, the
enumeration is either true or false on the condition specified
(lines 6-8). Enumerating these variables allow us to reduce
the possible alternative transition paths by a lookup of
previously assigned values and conditions using the vari-
ables. The reduction also hides the FSP variable .read and
.write actions, although optionally these can be selected as
visible to enable interactive animation of the process. This
reduction does not change the behavior of the orchestration
or choreography models, but hides the actions from the
complete activity set used in model analysis, as these are not
normally specified in MSC design specifications.

We then group the interactions in all models which
require us to relabel the interaction actions between the
design specification and implementation models (lines 13-
14). First, we map the MSC activities (e.g., invoke_op (c1c2))
by replacing c1 with p1, and c2 with p2. Furthermore, if c2
invokes c1 but the WS-BPEL interactions represent this as a
receive (i.e., they are equivalent actions) then these must
also be mapped. Similarly, if a WS-CDL interaction requests
from p1 to p2, then these must be mapped to an invoke in
the design specification. Receive and reply interactions are
handled using the same principle.

A final preparation activity to perform analysis is to
produce a model which represents a minimal, deterministic
representation and specify the property model for analysis.
A minimal model means that a trace in the original process
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leads to an END state if and only if the trace leads to an
END state in a deterministic process. The step combines the
grouped BPEL interactions and reduced BPEL activities
(line 16). An architecture model is produced by composing
the property (line 17) and MSC model together (line 19).

4.2.2 Results

In the example illustrated in Fig. 13, we show a verification
and violation of the Police Enquiry orchestration against an
MSC design specification. In this case, the resulting trace
violation is due to an incorrect implementation of con-
current invocations for vehicle and person requests. In the
MSC design specification, it is expected that anpr immedi-
ately follows a vehicle request. The service engineer can
examine the violation and decide whether the corrective
action is to enhance the design specification to accommo-
date the behavior or to modify the orchestration.

4.3 Interactions Analysis

The aim of interactions analysis is to check the composition
of collaborating service orchestrations. Orchestrations that
collaborate will undertake an interaction cycle, whereby one
invokes a service operation on a partner and the partner
must oblige by receiving this request. If the client of the
service expects a reply to be given to this request then the
partner must provide a reply (either by specifically replying
or invoking a response back to the client).

4.3.1 Process

An algorithm for interactions analysis is illustrated in
Fig. 14. First, there is an interface compatibility check which
ensures that the service interface description of the partner
and the definition of the parter by the client are aligned.
Second, the interaction cycles (defined by interaction ports,
as discussed in Section 3.3.3) are checked for any violations.
The inputs required for both these checks are a set of service
orchestrations and their service interfaces. Given these
inputs, a series of model abstractions are carried out as
follows: Enumeration is repeated as for the design analysis
enumeration focusing on the variables used in control-flow
constructs. Reduction is also repeated as for the design
analysis; however, for interactions analysis each port
connector model is analyzed as to whether there exists a
partner orchestration included in the analysis. If a partner
does not exist for an invoke interaction (by an unknown
partner result from the matching algorithm detailed in

Section 3.3.3), the port connector model for the client is
removed to hide this from analysis. Grouping is already
included in the port connector models of the orchestrations;
however, to complete an analysis model, the orchestration
processes and port connector models are composed together
to form a single analysis model.

4.3.2 Results

In the example illustrated in Fig. 15, we show a verification
and violation of the interactions specified between the
Police Enquiry and Vehicle Enquiry orchestrations. In this
case, the resulting violation is due to an incorrect sequen-
cing of reply and receive in the Vehicle Enquiry orchestra-
tion. The service engineer can examine the violation and
decide appropriate corrective actions, in this case, switching
the order of reply with receive.

4.4 Obligations Analysis

The aim of obligations analysis is to compare multipartner
service choreography policies and their obligations with that
of individual partner service implementations. The obliga-
tions analysis considers one partner’s role in the choreo-
graphy and checks their obliged interactions set out in the
choreography policy. Using the same approach, each partner
implementation in the choreography can be checked. In fact,
one of the reported aims of WS-CDL is to be used as a
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specification which can be distributed between partners.
This approach assists partners in checking their own
implementations against the wider multipartner policy.

4.4.1 Process

The obligations analysis algorithm (Fig. 16) takes as input a
WS-CDL choreography policy specification and one or more
service orchestration implementation in WS-BPEL. The
abstractions necessary from the models produced by these
inputs and translation to FSP are as follows: The enumera-
tion is repeated as for the design analysis. Reduction is also
repeated as for the design analysis; however, the interac-
tions of the service choreography policy will initially contain
all actions by all specified roles in the choreography. The
abstraction hides any actions that are not identified as the
selected partner role for analysis. In a similar approach to
the grouping abstraction in the design analysis, the actions
of the choreography and service partner orchestrations must
be mapped. This step of abstraction first groups the related
request and response actions in the choreography specifica-
tion with invoke and reply actions in the service orchestra-
tions. Second, the fault handling in WS-BPEL can be
mapped to catching exceptions in the choreography policy
by mapping the throw construct actions of the orchestration
to the causeException of the choreography.

4.4.2 Results

In the example illustrated in Fig. 17, we show a verification
and violation of the Police Enquiry orchestrations when
checked against an overall Choreography policy. The result-
ing violation is similar to the design check in Section 4.2,
where there exists an incorrect implementation of concurrent
invocations for vehicle and person requests. In the Choreo-
graphy policy specification, it is expected that person
immediately follows a vehicle request; however, the con-
current operation of these invocations in the orchestration
maymean that the order is reversed. The service engineer can
examine the violation and decide whether the corrective
action is to enhance the choreography specification to
accommodate the behavior or to modify the orchestration.

4.5 Deployment Analysis

In more complex orchestrations, or where there are multiple
processes hosted in a single servlet, the assessment of
resources required and the ability of the infrastructure to

support multiple client requests becomes increasingly diffi-
cult to estimate. A process model, however, can provide a
formal specification of the interactions and can be composed
with resourcemodels todetectwherepossibledeadlocksmay
occur given a limited number of resources available. We
outlined this as a composed model of service orchestration
and deployment diagrams in Section 3.5.4. The aim of
deployment analysis is to check whether the behavior
specified in service orchestrations and the available resources
aspart of adeploymentdescriptionare safegivenanumberof
instances and interactions of the service orchestrations.

4.5.1 Process

A deployment analysis algorithm (illustrated in Fig. 18)
takes as input a set of service orchestrations in WS-BPEL
and a deployment diagram. The modeling is as described in
Section 3.5; however, there are a number of preparation
steps to be undertaken prior to the analysis of the model
produced. The enumeration abstraction is repeated as for
the design analysis enumeration, focusing on the variables
used in service orchestration control-flow constructs.
Additionally, a number of instances of the service composi-
tion (number of client requests to start the orchestrations)
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Fig. 18. Algorithm for deployment (resource) analysis.



can be defined. This creates a set of process compositions
with a range of 1..N (where N is the number of clients to
simulate). Reduction is also repeated as for the design
analysis; however, as for the interactions analysis, each port
connector model is analyzed as to whether there exists a
partner orchestration included in the analysis. If a partner
does not exist, the port connector is removed to hide this
from deployment analysis. Finally, the grouping abstraction
specifically constructs a relabeling of actions in the service
orchestrations to either acquire (get) or release (put) a
thread resource instance from the resource model. Addi-
tionally, a createInstance and terminateInstance action is
added to these lists to represent the new creation of a
service orchestration or its termination.

4.5.2 Results

Using the Molpak case study from UCL, we performed the
analysis on the deployment model (Fig. 9) and the set of
interacting service orchestrations. The resulting violation
trace is illustrated in Fig. 19. Note that we show concurrent
interactions for two clients in square brackets. The reason for
this deadlock is an exhausted resource thread pool alloca-
tion, at the point of creating a new instance of the
GSSubmission orchestration. The concurrent allocation of
thread resources for client requests 1 and 2 is the cause for
the shared pool limit to be reached, with each request
waiting for a response which can never be received. The
deadlock situation has occurred whereby neither of the
invocations can be replied to as the GSSubmission orches-
tration would also require further threads to undertake its
activities (invocations of other services). The solution in this
case is architectural, since the behavior is acceptable yet the
deployment configuration is conflicting with server resource
usage. The solution is to split the orchestrations across two
individual thread pools, as illustrated in Fig. 20.

5 IMPLEMENTATION AND EXPERIENCE

The analysis types discussed in Section 4 have been
implemented as an Eclipse IDE plug-in, supporting a
mechanical analysis approach to aid service engineers in
developing service compositions. The plug-in (known as
WS-Engineer [16]) is illustrated in Fig. 21, and is built on
top of the LTSA [10] originally written by Jeffrey N. Magee
of the Department of Computing, Imperial College
London. One of the key principles of the WS-Engineer
tool is to hide the necessary underlying formalisms from

service engineers, allowing them to concentrate on im-
plementing correctly service requirements and not on how
to model them. WS-Engineer provides both a visual view
for engineers to select the different source artifacts and
then simply Verify these under the type of analysis selected
or compose analysis through an open API for integration
into other tools. The WS-Engineer tool is available at
http://www.ws-engineer.net.

We have been fortunate to have some challenging
business and academic service composition scenarios pre-
sented to us, covering a wide ranging domain of service
applications. We have already shown two examples of our
experience, namely that in verifying service orchestrations
and choreography for the UK Police IT Organisation (PITO)
and for deployment analysis in the Molpak example with
the University College London (UCL). More recently, we
have been part of a European Union project called Sensoria
(http://www.sensoria-ist.eu), which aims to provide for-
mal techniques for the software engineering of services.

Our technical experience has focused on closely aligning
the analysis techniques with existing service orchestration
and choreography tools. For example, we carried out a series
of tests using the WS-BPEL examples provided by Interna-
tional Business Machines (IBM) with their BPWS4J Engine.
We have also worked closely with the WS-CDL group of the
World-WideWebConsortium (W3C), carrying out a series of
modeling tests from their WS-CDL exit tests examples and
tools. This has been verified by severalmembers of the group.

6 DISCUSSION AND RELATED WORK

We discuss similar or related work in two areas, namely
service composition specification modeling and formal
service modeling with verification of service compositions.
For service specificationmodeling,PapazoglouandYang [17]
suggested that service specifications should simply describe
all interfaces of a set of operations that are available to the
service client for invocation. Broader requirements have been
specified in [18], [19], [20] where the authors describe an
approach to specifyingbusinessprocesses throughasubset of
the UML profile (driven from a process class with attributes
andmethods). The behavior of the interacting process classes
is given using an activity graph. While these works show
partnered processes working together, it is unclear how
multiple scenarios of eachprocesswould be specified. In [21],
however, the authorsprovide examples of service behavior in
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both UML Sequence and Activity diagrams, yet revoke back
to building requirements in a pi-calculus algebra to represent
the concurrent and alternative paths possible in a composite
Web service specification. More elaborate techniques have
acted as a bridge between model-driven approaches and
those that specify directly in aprocess algebra. For example in
[22], the authors use an extended version of the TROPOS
methodology, featuring a modeling framework proposed in
[23] to capture business requirements and then generate
orchestration (WS-BPEL) source from these requirements. In
[24], [25], [26], Petri-net-based models are used to specify the
semantics of Web service specifications, their compositions,
and the communication between services. A direct mapping
is mentioned between service specification and Petri nets yet
no examples were given for this. For service design
specifications, it appears that these works concentrate on a
single scenariowith the disadvantage thatmultiple scenarios
mean changing a single specification, rather than an incre-
mental or evolutionary approach to add to design specifica-
tions as requirements change.

One of the earlier proposals for formal analysis of
composition implementations was given in [27]. In this
the author suggests that due to the nature of the software
assets (the compositions in this case) being deployed to the
Internet, the risk of a bug in such a composition impacts are
much greater than that of conventional system deploy-
ments. The author of this work has also provided analysis
of compositions in terms of those implemented in the Web
Service Flow Language (WSFL) [28], which is one of a group
of specifications that have been used to create WS-BPEL,
and implements a mapping between WSFL and Promela
(the language of the SPIN tool) [29]. The work provides a
useful reference point on mapping XML schemas (as Web
service specifications are typically defined in XML). In [30],
[31], Web service specifications are described in LOTOS.
The authors extend the common mapping theme between
the algebra and WS-BPEL by providing rules for a two-way

process. They also confirm, however, that due to the
expressive and flexible structure of LOTOS, the mapping
from LOTOS to WS-BPEL clearly does not preserve the
structure of a process. More recently, coverage of WS-BPEL
modeling has increased, and in [32] the authors use the
model checker Bogor (which supports different property
languages using LTL, CTL, etc.).

To the best of our knowledge, little has been published
on combining service specifications, their implementations,
and deployment scenarios with formal models and their
analysis. We believe that providing analysis for these cross-
cutting concerns elevates the effectiveness of analysis and
provides a much richer workbench for integrating with
existing and future service engineering toolsets.

7 CONCLUSION

We have presented a formal rigorous approach to analyzing
service compositions from differing viewpoints and using
varied properties to greatly increase the assurance that
engineered service compositions are safe and correct. To
enable this, we described a series of semantic mappings from
service composition specifications and implementations to
LTSs and used these transition systems as models to analyze
important aspects of service orchestration and choreogra-
phy. We have defined and implemented several analysis
types, including design analysis, orchestration and choreo-
graphy analysis, and also architectural concerns with service
orchestration deployment configurations and limited re-
source usage. One of the key goals of our work has been to
provide a core platform for others to explore other areas of
service composition analysis. Our future work will consider
how dynamic service composition analysis can be combined
with rigorous software engineering principles to provide
safe and correct behavior adaptation of systems in a services
architecture. Toward this, we have already produced some
key work in the self-management and adaptation of service
composition using the concept of Service Modes [33].
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