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The Free Energy Principle and Active Inference Framework (FEP-AI) begins with

the understanding that persisting systems must regulate environmental exchanges

and prevent entropic accumulation. In FEP-AI, minds and brains are predictive

controllers for autonomous systems, where action-driven perception is realized as

probabilistic inference. Integrated Information Theory (IIT) begins with considering the

preconditions for a system to intrinsically exist, as well as axioms regarding the

nature of consciousness. IIT has produced controversy because of its surprising

entailments: quasi-panpsychism; subjectivity without referents or dynamics; and the

possibility of fully-intelligent-yet-unconscious brain simulations. Here, I describe how

these controversies might be resolved by integrating IIT with FEP-AI, where integrated

information only entails consciousness for systems with perspectival reference frames

capable of generating models with spatial, temporal, and causal coherence for self

and world. Without that connection with external reality, systems could have arbitrarily

high amounts of integrated information, but nonetheless would not entail subjective

experience. I further describe how an integration of these frameworks may contribute

to their evolution as unified systems theories and models of emergent causation. Then,

inspired by both Global Neuronal Workspace Theory (GNWT) and the Harmonic Brain

Modes framework, I describe how streams of consciousness may emerge as an evolving

generation of sensorimotor predictions, with the precise composition of experiences

depending on the integration abilities of synchronous complexes as self-organizing

harmonic modes (SOHMs). These integrating dynamics may be particularly likely to

occur via richly connected subnetworks affording body-centric sources of phenomenal

binding and executive control. Along these connectivity backbones, SOHMs are

proposed to implement turbo coding via loopy message-passing over predictive
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(autoencoding) networks, thus generating maximum a posteriori estimates as coherent

vectors governing neural evolution, with alpha frequencies generating basic awareness,

and cross-frequency phase-coupling within theta frequencies for access consciousness

and volitional control. These dynamic cores of integrated information also function as

global workspaces, centered on posterior cortices, but capable of being entrained with

frontal cortices and interoceptive hierarchies, thus affording agentic causation. Integrated

World Modeling Theory (IWMT) represents a synthetic approach to understanding minds

that reveals compatibility between leading theories of consciousness, thus enabling

inferential synergy.

Keywords: consciousness, free energy principle, active inference, generative model, autonomy, integrated

information theory, global workspace, autoencoder

INTRODUCTION AND BACKGROUND

Here, I introduce Integrated World Modeling Theory (IWMT) as
a synthetic approach to understanding consciousness, using the
Free Energy Principle and Active Inference Framework (FEP-AI)
(Friston et al., 2006, 2017a; Friston, 2010) to combine multiple
theories into a unified perspective. IWMT focuses on Integrated
Information Theory (IIT) (Tononi, 2004; Tononi et al., 2016)
and Global Neuronal Workspace Theory (GNWT) (Baars, 1993;
Dehaene, 2014) as two of the most well-known theories of
consciousness. Areas of agreement and disagreement between
IIT and GNWT will be explored, as well as the extent to
which points of contention might be productively addressed
by situating these theories within FEP-AI. I then review the
fundamentals of FEP-AI as a general systems theory, including
points of intersection with IIT as an account of causal emergence.
I then go on to discuss mechanistic and computational principles
by which these theories can all be integrated using IWMT. In
brief, IWMT states that consciousness may be what it is like to
be processes capable of generating integrated models of systems
and worlds with spatial, temporal, and causal coherence. IWMT
further suggests that such coherence is only likely to be attainable
for embodied agentic systems with controllers capable of
supporting complexes of high degrees of integrated information,
functioning as global workspaces and arenas for Bayesian model
selection. Finally, I consider potential implications of these
proposals with respect to the enduring problems of consciousness
and artificial intelligence.

Toward Integration
How can physical systems generate subjective experiences? Can
mental states function as causes, or are we mere automata?
These perennial questions may finally be answerable with two
unifying frameworks for understanding complex systems and
minds: FEP-AI and IIT. These two meta-theoretical frameworks
were developed in the context of understanding psychological
and neurobiological phenomena, yet their implications are far
more extensive. FEP-AI may be the first unified formalism
and paradigm for the mind and life sciences, and IIT is one
of the most widely known and technically detailed models of
consciousness and informational synergy. FEP-AI describes what
systems must be like in order to persist, and IIT describes

what it means for systems to intrinsically exist as systems.
Both FEP-AI and IIT constitute general systems theories with
scopes transcending disciplinary boundaries, having relevance
not only for the philosophy and science of mind but also for
understanding all emergent complexity.

Here, I describe how these two frameworks complement
each other as unified systems theories, and also show how
FEP-AI allows IIT and GNWT to be combined into a
synthetic framework for understanding consciousness: IWMT.
This synthesis further attempts to characterize the nature of
mental causation in terms of generalized Darwinism (Campbell,
2016) and thermodynamic work cycles, thus describing how
conscious agency may be essential for understanding how
flexible intelligence may be realized in biological (and potentially
artificial) systems. Toward this end, I attempt to address
consciousness and autonomy on functional, algorithmic, and
implementational levels of analysis (Marr, 1983). Finally, I
discuss implications of theories of consciousness for the enduring
problems of artificial intelligence.

The Enduring Problems of Consciousness
How could there be “something that it is like” to be a physical
system (Nagel, 1974; Lycan, 1996)? In introducing the Hard
problem, Chalmers (1997) contrasted this question with the “easy
problem” of understanding how biological processes contribute
to different psychological phenomena. Proponents of the Hard
problem argue that we could have a complete cognitive science,
and yet still not understand consciousness. Could cognition take
place “in the dark” without generating any subjective experiences,
or qualia? Could such philosophical zombies perform all the
computations enabled by brains, yet lack subjectivity?

Intellectual positions on these matters range from the
more inflationary claim that consciousness is a fundamental
aspect of the universe, to the more deflationary claim that
the Hard problem will be (dis-)solved by answering the
easy problems of cognitive science (Dennett, 2018), with no
“explanatory gap” remaining. Others have suggested that these
metaphysical questions distract from the more productive
endeavor of studying why particular experiences are associated
with particular physical processes: i.e., the “real problem”
of consciousness (Seth, 2016). Even disagreement about the
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generation of the Hard problem has become a topic of
philosophical inquiry and has been named the “meta-problem”
(Chalmers, 2018).

While numerous models have been suggested, none are
generally considered to have solved the enduring problems
of consciousness. Such a solution would require explanation
spanning implementational, algorithmic, and functional levels
of analysis, with rich connections to experience. Here, I suggest
that this multi-level understanding can be obtained by using
FEP-AI to ground and combine leading models of consciousness
into a unified framework centered on integrated world modeling
(IWMT). This article focuses on IIT and GNWT, and in
forthcoming work, I will extend this synthesis to additional
models—e.g., Higher-Order Thought theories (Brown et al.,
2019; Graziano, 2019; Shea and Frith, 2019)—each of which
emphasizes different aspects of the nature(s) of consciousness.

Yet another enduring problem can be found in that there
is no clearly agreed upon definition of consciousness. Some
theories focus on consciousness as phenomenal experience.
Others emphasize consciousness as awareness of knowledge,
or “access” (Block, 2008). IWMT’s primary focus is explaining
means by which biological systems may generate phenomenality,
or experience as a subjective point of view (Williford et al.,
2018; Feiten, 2020). However, IWMT suggests that a variety of
higher-order and meta-cognitive capacities may be required in
order to obtain coherent subjectivity—although not necessarily
involving either access or explicit self-consciousness (Milliere
and Metzinger, 2020)—and thereby an experienced world. More
specifically, IWMT’s primary claims are as follows:

1. Basic phenomenal consciousness is what it is like to be
the functioning of a probabilistic generative model for the
sensorium of an embodied–embedded agent.

2. Higher order and access consciousness are made possible
when this information can be integrated into a world model
with spatial, temporal, and causal coherence. Here, coherence
is broadly understood as sufficient consistency to enable
functional closure and semiotics/sense-making (Joslyn, 2000;
Pattee, 2001; Ziporyn, 2004; Gazzaniga, 2018; Chang et al.,
2019). That is, for there to be the experience of a world, the
things that constitute that world must be able to be situated
and contrasted with other things in some kind of space, with
relative changes constituting time, and with regularities of
change constituting cause. These may also be preconditions
for basic phenomenality (#1), especially if consciousness (as
subjectivity) requires an experiencing subject with a point of
view on the world.

3. Conscious access—and possibly phenomenal consciousness—
likely requires generative processes capable of counterfactual
modeling (Friston, 2018; Pearl and Mackenzie, 2018; Kanai
et al., 2019; Corcoran et al., 2020) with respect to selfhood and
self-generated actions.

In what follows, I attempt to justify these claims by integrating
across leading theories of emergent causation and consciousness.
This approach draws on the explanatory breadth and embodied
cybernetic grounding of the FEP-AI, the focus on irreducible
integrative complexity provided by IIT, and the functional

and mechanistic details provided by GNWT. IWMT tries to
make inroads into the enduring problems of consciousness by
synergistically combining the relative strengths (and diverse
perspectives) of these theories (Table 1).

IWMT: Combining IIT and GNWT With the
FEP-AI
This section provides an introduction to FEP-AI, IIT, andGNWT,
as well as an initial account of how they may be combined
within IWMT. Further details regarding FEP-AI and IIT are
explored in subsequent sections, followed by a further integration
with GNWT.

FEP-AI
The Free Energy Principle states that persisting systems must
entail predictive models to resist entropic mixing (Friston, 2019).
That is, to prevent destruction and maintain their forms, systems
must adaptively respond to a variety of events, and so must
be able to model these events in some capacity (Conant and
Ashby, 1970). Beginning from this fundamental principle of
nature (Hohwy, 2020), the FEP and Active Inference (FEP-AI)
framework (Friston et al., 2017a) proscribes means of satisfying
this imperative through minimizing prediction-error (or “free
energy”) with respect to the models by which systems preserve
themselves. In contrast to views in which experience emerges
from passive sensations, FEP-AI understands perception as
taking place within the context of actions, including foraging
for information and resolving model uncertainty. Within this
framework, both perception and action are understood as
kinds of predictions/inferences regarding the means by which
prediction-error might be minimized (hence, “active inference”).

Hierarchical predictive processing (HPP) offers powerfully
explanatory implementational and algorithmic details for active
inference (Clark, 2016), providing a single mechanism for
both perception and action. FEP-AI further emphasizes the
roles of embodiment, selfhood, and agency in minimizing free
energy via action–perception cycles, thus naturally supporting
bridges to phenomenology onmultiple levels. While probabilistic
modeling may narrow explanatory gaps between brain andmind,
the question remains: how do (seemingly definite) subjective
experiences emerge from probabilities?

IIT: Informational Synergy Through Balanced

Integration and Differentiation; of MICE and MAPs
IIT begins from phenomenology (Tononi, 2004), observing
that consciousness is distinct in its particular details (i.e.,
information), while also being experienced holistically (i.e.,
integration). This observation generated the hypothesis that
consciousness results from the ability of nervous systems
to support diverse state repertoires, while also synergistically
integrating this information into wholes greater than the sum of
their parts. IIT further suggests that this capacity for generating
integrated information can be quantified by analyzing the
degree to which systems are irreducible to the information
contained in their parts considered separately. IIT has developed
through multiple iterations, most recently formalized with
phenomenological axioms and the postulated properties required
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TABLE 1 | Comparisons between four perspectives on aspects of consciousness: FEP-AI, IIT, GNWT, and IWMT.

FEP-AI IIT GNWT IWMT

Levels of analysis

emphasized

Functional, algorithmic, and

implementational

Phenomenological and

implementational

Functional and

implementational

Phenomenological, functional, algorithmic,

and implementational

Emphasizes either

phenomenal or access

consciousness

Both Phenomenal Access Both

Emphasizes either

intrinsic or extrinsic

perspectives

Both Intrinsic Extrinsic Both

Neural substrates of

consciousness

A distributed pattern of

effective connectivity

(entailing Bayesian beliefs)

across a multi-level deep

temporal hierarchy, primarily

generated by L5 pyramidal

neurons and thalamic relays

A maximal nexus of

self-cause–effect power,

likely centered on posterior

cortices

A global workspace realized

by re-entrant connectivity

between frontal and

posterior cortices

Agreement with FEP-AI, except these

distributed patterns are hypothesized to

be integrated via the formation of

self-organizing harmonic modes, so

promoting communication through

coherence

Agreement with IIT with respect to basic

phenomenal consciousness, but with

specific emphasis on posterior-medial

cortices as a basis for egocentric

perspective

Agreement with GNWT with respect to

access consciousness, but with

phenomenality being generated from

posterior loci

Minimally conscious

system

Any generative model with

temporal depth and

counterfactual richness;

e.g., all deep belief

hierarchies capable of

adaptive active inference

Any system capable of

generating irreducible

cause–effect power over

itself; e.g., a single

elementary particle

Any system capable of

implementing a global

workspace; e.g., a

computer program with a

blackboard architecture

Any process capable of generating a world

model with spatial, temporal, and causal

coherence with respect to the system and

its causal inter-relations with its

environment; e.g., all mammals, possibly

all vertebrates, and possibly insects

Can a system without

dynamics be conscious?

No Yes, if it is part of a

configuration capable of

constraining likely past and

future states

No No

Could an artificial

intelligence (AI)

implemented on a von

Neumann architecture be

conscious?

Yes No Yes Probably

Is either physical or a

richly structured virtual

embodiment required for

consciousness?

Yes No No Yes

Associated concepts

from machine learning

and AI

Variational autoencoders

Forney factor graphs with

marginal message passing

Direct implementation on

neuromorphic hardware

capable of recurrent

dynamics

Blackboard architectures Folded variational autoencoders with

recurrent dynamics

Turbo codes

Are human-equivalent

intelligent zombies

feasible?

No comment Yes No comment Theoretically conceivable, but practically

infeasible

FEP-AI, Free Energy Principle and Active Inference framework; IIT, Integrated Information Theory; GNWT, Global Neuronal Workspace Theory; IWMT, Integrated World Modeling Theory.

for realizing these aspects of experience in physical systems
(Tononi et al., 2016). These postulates are stipulated to be
not only necessary, but also, controversially (Bayne, 2018; Lau
and Michel, 2019), jointly sufficient conditions for conscious
experience (Table 2).

IIT is both a theory of consciousness and meta-physical
formalism, attempting to answer the question: what counts as a
system from an intrinsic perspective (Fallon, 2018)? IIT models

systems as networks of causal relations, evaluating compositional
structures for their ability to inform (or constrain) past and future
states. Integrated information (phi) is calculated based on the
degree to which cutting systems along a minimum information
partition (MIP) impact past and future self-information,
evaluated across all relevant spatial and temporal grains for
system evolution. The extent to which MIPs reduce self-
information is used to calculate the degree to which systemsmake
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TABLE 2 | Integrated Information Theory (IIT) axioms and postulates, with corresponding examples of experiences and mechanistic systems.

IIT axioms:

Essential properties of experience

Example experiences IIT postulates:

Properties of physical systems

capable of accounting for experience

Example systems

Intrinsic existence:

Experience exists from its own

intrinsic perspective (i.e., subjectivity),

independent of external observers.

My experience of a red apple has

intrinsic existence in that it is both real

to me and also private.

A system has cause–effect power upon

itself; present states must inform

probabilities of past and future states, so

linking causes and effects.

A brain has internal connectivity that

influences which states are likely to flow

from the past to the future, given its

present state; some parts of brains have

more intrinsic connectivity than others.

Composition:

Experience is structured by the

elementary or higher-order subjective

distinctions out of which it is

composed.

My experience of a red apple is

composed of particular features, such

as redness for color and apple shape

for form.

A system is structured by the more

elementary sub-systems out of which it is

composed, and which have cause–effect

power upon the system.

A brain is composed of neurons, whose

particular configurations influence its past

and future states; different parts of brains

have different compositions.

Information:

Experience is particular in being

composed of a specific set of

subjective distinctions, so being

differentiated from other possible

experiences.

My experience of a red apple is

informative in being perceived in

terms of particular qualities of

subjective redness (as opposed to

greenness) and apple shape (as

opposed to pear shape).

A system specifies a particular

cause–effect structure that informs

particular probabilistic repertoires of past

causes and future effects for the system

and sub-systems, so differentiating

particular states from other possible

states.

A brain can be configured in many

different ways, and so any particular

configuration is highly informative in terms

of being distinguished from other possible

configurations; some parts of brains are

more informative than others in different

contexts.

Integration:

Each experience is unified in being

irreducible to independent subsets of

subjective distinctions.

My experience of a red apple is

integrated in that redness and apple

shape are not independently

perceived, but are instead combined

into a unified whole.

A system specifies a unified cause–effect

structure that is irreducible to independent

sub-systems (phi > 0), including its

minimally interdependent component.

A brain has properties that do not exist in

its individual neurons considered

separately; some parts of brains are more

integrated than others in different contexts.

Exclusion:

Each experience is definite in content

and spatiotemporal grain, specifying

a particular set of subjective

distinctions unfolding on particular

spatiotemporal scales.

My experience of a red apple has

particular contents with respect to

space and time, with particular

redness and apple shape being

perceived at some spatiotemporal

scales and not others.

A system specifies particular cause-effect

repertoires over particular sets of elements

at particular spatial and temporal grains.

The boundaries of a system are defined by

a complex entailing a maximally irreducible

conceptual structure (MICS) existing at

particular spatial and temporal grains,

whose total integrated information is

quantified as Phi-max.

A brain and its sub-systems have

particular boundaries that determine the

extent to which they function as integrative

wholes in space and time; some parts of

brains have clearer boundaries than others

in different contexts (e.g., modularity).

irreducible (i.e., integrated) causal differences to themselves,
thus defining their integrated information (quantified as phi).
Intuitively, if something can be decomposed into parts without
consequence, then it is not an integrated system. According
to the exclusion axiom, systems are only real (and potentially
conscious) if they represent maxima of integrated information.
The self-directed causal relation of a maximal complex is referred
to as a maximally irreducible conceptual structure (MICS)—
corresponding to mappings onto an abstract metric space (i.e.,
“qualia space”) (Balduzzi and Tononi, 2009), whose particular
geometries correspond to particular experiences. Further, sub-
mechanisms contributing given MICS will be associated with
a variety of phenomenal distinctions, specified as maximally
irreducible cause-effect (MICE) repertories.

While IIT’s experience-first approach provides compelling
bridges between phenomenology and mechanistic
implementations, the question remains: why should there

be “anything that it is like” to be a maximally irreducible
cause-effect structure? As described below, IWMT proposes
that a maximal complex (entailing a MICS) could also entail
subjective experience, if (and only if) these complexes also
entail probabilistic mappings—or maximal a posteriori (MAP)
estimates derived thereof—entailed by generative models for
the sensoriums of embodied–embedded goal-seeking agents.
As described in further detail below, IWMT further proposes
that phi parameterizes the ability of systems to minimize free
energy and maximize self-model evidence. While the most
valid means of defining integrated information for conscious
(or unconscious) systems remains contested (Barrett and
Mediano, 2019), one potential advance from IWMT’s proposed
synthesis could be identifying the appropriate uses for various
formulations of integrative complexity.

The putative sufficiency of IIT’s phenomenological postulates
for consciousness results in a surprising implication: the degree
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to which systems exist is also the degree to which they
generate conscious experience (Tononi and Koch, 2015). As
will be described in greater detail below, IWMT accepts a
modified version of this proposition with fewer protopansychist
implications: systems exist to the degree they generate model
evidence for themselves, which may entail consciousness if
models have spatial, temporal, and causal coherence for systems
and world. Below, I describe how systems might be configured
if they are to generate complexes of integrated information with
these coherence-enabling properties.

[Note: A more detailed discussion of IIT’s postulates and axioms
can be found in IWMTRevisited (Safron, 2019a), in the section: “A
review of IIT terminology.”]

GNWT: Functional Synergy Through Balancing

Integrated and Segregated Processing; Critical

Modes of Consciousness as Bayesian Model

Selection
Originally introduced by Baars (1993), Global Workspace
Theory considers computational requirements for intelligent
functioning, drawing analogies between consciousness
and computing architectures in which “blackboards” share
information among multiple specialist processes. According
to Baars, consciousness is hypothesized to correspond to a
“global workspace” that allows unconscious segregated processes
to communicate with informational synergy. Information
becomes conscious when it enters workspaces, and so can be
effectively broadcast throughout entire systems. Because of
workspaces’ limited capacities, specialist processes compete
and cooperate for selection based on abilities to satisfy context-
specific computational objectives. Workspace architectures have
been used in artificial intelligence (Hofstadter and Mitchell,
1994; Shanahan and Baars, 2005; Madl et al., 2011) because
of their capacity for integrative functioning with competition-
enhanced efficiency. These systems have also been configured
in ways that recapitulate notable psychological phenomena,
including cognitive cycles involving separable phases of sensing,
interpreting, and acting.

The ability of workspaces to “select” value-enhancing
information was interpreted as instantiating a quasi-
Darwinian process by Edelman et al. (2011). According to
neural Darwinism, the functionality of global workspaces
provides a computational-level description of a mechanistic
“dynamic core,” which promotes activity for particular neuronal
ensembles through re-entrant connectivity. In line with
theories emphasizing binding via synchronous dynamics
(Singer, 2001; Varela et al., 2001; Crick and Koch, 2003),
the thalamocortical system has been suggested to play key
roles in this value-dependent selection and broadcasting of
neuronal information.

In terms of neuronal architecture, van den Heuvel and
Sporns (2011) have identified connectomic “rich club” networks,
whose high centrality and interconnectivity may allow systems
with mostly local connections to achieve both integrated and
differentiated processing (Sporns, 2013). Shanahan (2012) has
further noted that these core networks may be related to
intelligence—and presumably consciousness—in non-human
animals. Intriguingly, with respect to global workspaces,

varying degrees of functional connectivity between richly
connected networks have been found to be accompanied
by periods of either high or low modularity (Betzel et al.,
2016), consistent with a potential functional significance
of integrating information across otherwise isolated sub-
systems. More recent work (Esfahlani et al., 2020) has
demonstrated that transient periods of strong co-activation
within these networks explains much of the overall variance
and modularity with respect to network structures, consistent
with alternating periods of integration and segregation via
workspace dynamics.

Within this paradigm of consciousness as enabling the
integration and broadcasting of information, Dehaene (2014)
has made invaluable contributions in describing how biological
implementations of workspace dynamics may help to explain
otherwise mysterious aspects of cognition (e.g., psychological
refractory periods, attentional blinks). Dehaene et al. have
also characterized time courses for unconscious and conscious
information processing, showing how transitions to conscious
awareness correspond to non-linear increases in large-scale
brain activity. These “ignition” events are stipulated to indicate
the accumulation of a critical mass of mutually consistent
information—implemented by converging excitatory neural
activity—so selecting one interpretation out of multiple
possibilities. This neurobiological account in which neuronal
systems dynamically move between more integrated and
segregated processing is referred to by Dehaene and Changeux
(2005) as GNWT. From an FEP-AI (and IWMT) perspective,
these phase transitions may correspond to discrete updating and
Bayesian model selection with respect to perception and action
(Friston et al., 2012a; Hohwy, 2012; Parr and Friston, 2018b).
GNWT has been increasingly described in terms of Bayesian
inference (Dehaene, 2020; Mashour et al., 2020), including in a
recently proposed Predictive Global Neuronal Workspace model
(Whyte and Smith, 2020).

If neural dynamics can select particular interpretations of
events, formally understood as Bayesian inference, then we
seem even closer to closing explanatory gaps between mind and
brain. Yet, the enduring problems of consciousness remain: Why
should it be (or “feel”) like something to be a probabilistic model,
and which biophysical processes specifically enable workspace-
like dynamics?

FEP-AI + IIT + GNWT = IWMT
IIT focuses on consciousness as emerging from systems that
are both unified and differentiated through their internal cause–
effect relations. GNWT focuses on consciousness as emerging
from systems that allow both global and local processing
to be balanced through cycles of selecting, amplifying, and
broadcasting information. In these ways, IIT and GNWT have
identified highly similar preconditions for subjective experience.

While there are extensive similarities between GNWT and IIT,
there are also notable differences (Table 1). GNWT focuses on
systems engaging in cognitive cycles of acting and perceiving.
This focus on integrative agentic functioning is highly compatible
with the enactive bases of FEP-AI, where action–perception
cycles are driven by rounds of Bayesian model selection. IIT
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has a broader scope, ascribing consciousness to all systems self-
governed by emergent causes. As discussed below, this suggestion
is partially compatible with FEP-AI, albeit with a restricted
interpretation of the meanings of integrated information as
potentially being necessary, but not sufficient for consciousness
(Lau and Michel, 2019).

With respect to the neural substrates of consciousness, IIT
identifies a “posterior hot zone” (Boly et al., 2017), which has been
stipulated to represent a maximum of phi in the brain (Boly et al.,
2017), and potentially also a source of spatial phenomenology,
due to its organization as a hierarchy of 2D grids (Haun
and Tononi, 2019). [Note: This stipulation is currently purely
theoretical, as the computations required to formally identify
maximal complexes are intractable for biological systems, and
it remains contested which estimation methods are most valid
in which contexts (Mediano et al., 2019b).] GNWT, in contrast,
suggests that consciousness and global availability are made
possible by connectivity between posterior and frontal regions.
IWMT considers both positions to be accurate, but with respect
to basic phenomenal and access consciousness, respectively.

Some of this dispute regarding the neural substrates of
consciousness could potentially be resolved by identifying
multiple types of workspace (and integrating) dynamics. One
way of achieving widespread availability may be via synchronous
stabilization (Humphrey, 2017) of representations, or as I suggest
below, via self-organizing harmonic modes (SOHMs). These
processes may center on posterior hot zones, with information
taking the form of a distributed causal nexus with both intrinsic
integrated information and extrinsic functional significance.
Alternatively, availability may also be achieved via the re-
representation and accessing of information. These processes
may also center on posterior (particularly medial) cortices as
substrates for abstract (low-dimensional) features, potentially
providing the kinds of representations adduced by symbolic
cognitive science. Global availability and meta-awareness for this
information would depend on coupling with the frontal lobes—
which would also provide goal-oriented shaping of dynamics—
although phi maxima and experience itself might still be
generated in posterior hot zones as loci for embodied simulation
(Barsalou, 2008, 2009, 2010; Prinz, 2017).

[Note: More details regarding neural substrates of consciousness
are described below, as well as in IWMT Revisited (Safron, 2019a)
in the sections: “Neural systems for coherent world modeling” and
“Future directions for IIT and GWT.”]

Selfhood, Autonomy, and Consciousness
By grounding IIT and GNWT within the body-centered
perspective of FEP-AI, IWMT suggests that complexes of
integrated information and global workspaces can entail
conscious experiences if (and only if) they are capable of
generating integrative world models with spatial, temporal,
and causal coherence. These ways of categorizing experience
are increasingly recognized as constituting essential “core
knowledge” at the foundation of cognitive development (Spelke
and Kinzler, 2007). In addition to space, time, and cause, IWMT
adds embodied autonomous selfhood as a precondition for
integrated world modeling. As suggested by Kant (1781) (cf.

transcendental unity of apperception), Helmholtz (1878), Friston
(2017), and others—e.g., von Uexküll (1957), Damasio (2012),
and Humphrey (2017)—IWMT argues that integrated selfhood
and autonomy are required for coherent sense-making. For there
to be “something that it is like”—and even more so, “something
it feels like”—workspace dynamics must be grounded in models
of autonomous embodiment (Safron, 2019a,c).

With respect to autonomy, IWMT further suggests that
driving of cognitive cycles by “ignition” events may be an
apt description. That is, if workspace dynamics implement
Bayesian model selection—driven by the minimization of free
energy—then cognitive cycles may be fully isomorphic with
both thermodynamic work cycles (Kauffman and Clayton,
2006; Deacon, 2011) and selective pressures in the context of
generalized Darwinism (Kaila and Annila, 2008; Campbell, 2016;
Safron, 2019b). That is, if ignition corresponds to large-scale
updating and communication of Bayesian beliefs, then formally
speaking, these events may be sources of cause–effect power in
precisely the same ways that controlled explosions drive engines
to generate work. If these beliefs entail intentions for acting and
the phenomenology of willing, then will power may be a systemic
cause and source of force in every meaningful sense of the words
“power,” “cause,” and “force” (Carroll, 2016; Sengupta et al., 2016;
Pearl and Mackenzie, 2018; Safron, 2019c; Friston et al., 2020b).

As described below, this connection to autonomy is yet
another way in which IIT and GNWT may be synergistically
combined: the ability of workspaces to support cognitive cycles
may depend on maintaining coherent internal dynamics, which
may also depend on exerting cause–effect power over themselves.
With respect to IIT, maximally irreducible cause-effect structures
(MICS) may correspond to maximally probable inferences over
sensorimotor states for integrated systems, as well as sources
of maximal control energy governing system evolution. Thus,
IWMT’s cybernetic (Seth, 2015; Safron, 2019c) grounding of
IIT and GNWT within FEP-AI may not only help explain
why there may be “something that it is like” to be a maximal
complex (entailing a MICS and MICE repertoires), but also
provide causal connections between consciousness and action,
thus providing foundations for the emergence of agency (Tononi,
2013).

The default mode network (DMN) and functional networks
with which it interacts (Huang et al., 2020) may be particularly
important for understanding the emergence of both phenomenal
and higher-order consciousness, and also agency. In predictive
processing, intentional action selection requires an ability to
maintain counterfactual predictions in the face of otherwise
inconsistent sense data (Safron, 2019c). However, driving systems
into otherwise uncharted territories of inference-space will
involve temporary local increases in prediction-error (i.e., “free
energy”) for portions of generative models that recognize
discrepancies between imagined goal states and current sensory
observations. In order for goal-oriented behavior to proceed, this
free energy must be buffered by other systems capable of acting
as temporary thermodynamic reservoirs (Carhart-Harris and
Friston, 2010). The DMN and its imaginative capacities (Beaty
et al., 2014, 2015, 2018; Hassabis et al., 2014) may instantiate this
kind of (informational) creative dynamo, constituting sources
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of strongly internally coherent predictions, thus being capable
of temporarily absorbing and then releasing free energy via
the shaping of perception and driving of action. The network
properties of the DMN are ideally suited to serve these
functions, having both high centrality—and so high potential
for integrating information and exerting control (Kenett et al.,
2018)—while also being located distally from primary modalities,
and so being capable of supporting dynamics that are more
decoupled from immediate sensorimotor engagements (Sormaz
et al., 2018; Corcoran et al., 2020). Further, the DMN is likely
to support some of the most stable inferences available to
embodied–embedded persons, with major nodes allowing for
egocentric perspective—i.e., providing a subjective point of view
in generating world models with spatial, temporal, and causal
coherence—integrated memory, and even the foundations of
selfhood (Dennett, 1992; Hassabis and Maguire, 2009; Northoff,
2012; Brewer et al., 2013; Davey and Harrison, 2018). Indeed,
the DMN and the networks with which it couples may be well-
modeled as a complex of effective connectivity with high degrees
of integrated information, functioning as a dynamic core and
global workspace for conscious imaginings (Wens et al., 2019).
In these ways, and as will be described in greater detail below,
IWMT suggests that a multi-level account of the nature of
embodied experience and its connections to phenomenologymay
contribute to the quest for obtaining satisfying solutions to the
Hard problem.

FEP-AI AND IIT: UNIFIED SYSTEMS
THEORIES

The following sections discuss FEP-AI and why it is increasingly
recognized as a unified systems theory. I will also suggest ways
that IIT can be integrated with FEP-AI, thereby illuminating the
nature of consciousness and causal emergence more generally.
Readers specifically interested in the neurocomputational bases
of consciousness may want to skip to “Mechanisms of Integrated
World Modeling.” However, this is not recommended, as earlier
sections help to show how FEP-AI provides a multi-level
grounding for other theories in fundamental biophysics, thus
linking mind and life. These sections also help to clarify what is
and is not implied by these frameworks (i.e., which systems are
likely to have or lack consciousness), as well as the implications
of their integration for understanding emergent complexity in
multiple domains.

Resisting the 2nd Law With Generative
Modeling (and Integrated Information)
According to the 2nd law, systems should exhibit increasing
disorder until they cease to exist. Yet some things do
manage to (temporarily) persist, and so something about
their configurations must organize environmental exchanges
to avoid entropic accumulation (Schrodinger, 1944; Brillouin,
1951; Deacon, 2011; Ramstead et al., 2018). Persisting systems
somehow generate dynamics that steer away from the maximally
probable outcome of maximal disorder. In cybernetics and

control theory, the requirements for such governing processes
are expressed as the good regulator theorem and law of requisite
variety: any effective controller must be able to (at least
implicitly) model that system, and regulating models require
sufficient complexity to represent the variety of states likely to be
encountered (Conant and Ashby, 1970).

FEP-AI (Friston, 2019) views persisting systems as entailing
generative models for the preconditions by which they persist.
For a system to constitute a model, its composition must
be able to either compress or predict information for that
which is modeled. Persisting systems specifically generate mutual
(probabilistic) information between past and future states
based on their present compositions. These mappings between
particular configurations and ensuing dynamics constitute
likelihoods (as particular action tendencies), thus characterizing
system compositions as generative models, which generate
dynamics that maximize the probability of those particular
compositions. If it were not the case that system configurations
generate dynamics that maintain those configurations, then no
persisting systems would exist. Thus, persisting systems can
be viewed as generative models that generate evidence for
themselves through their dynamics, and so engage in “self-
evidencing” (Hohwy, 2016).

In this way, FEP-AI provides a formalization and
generalization of autopoietic self-making as described by
Maturana and Varela (1980):

“An autopoietic machine is a machine organized (defined as a
unity) as a network of processes of production (transformation and
destruction) of components which: (i) through their interactions
and transformations continuously regenerate and realize the
network of processes (relations) that produced them; and (ii)
constitute it (the machine) as a concrete unity in space in which
they (the components) exist by specifying the topological domain of
its realization as such a network.”

To the degree systems persist, they possess attracting sets
that define them as particular phase space densities—whose
action constitutes trajectories through state space—with varying
probabilities of occurrence. In autopoiesis, attractor dynamics
produce the very mechanisms out of which they are generated.
FEP-AI views these autopoietic attractor configurations and
ensuing trajectories as self-predicting generative models
(Palacios et al., 2020), where that which is generated is
the very probabilistic densities that define the existence of
particular systems.

FEP-AI goes on to quantify self-model evidence according
to an information-theoretic functional of variational (or
approximate) free energy (Dayan et al., 1995). Derived from
statistical physics, this singular objective function is optimized
by minimizing discrepancies between probabilistic beliefs and
observations (i.e., prediction-error, or “surprisal”), penalized by
model complexity. To the extent systems persist, they constitute
existence proofs (Friston, 2018) that they were able to bound
surprise (i.e., high-entropy configurations) relative to predictive
models by which they perpetuate themselves. Systems must
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respond adaptively to a variety of situations in order to avoid
entropy-increasing events, and so must entail models with
sufficient complexity to predict likely outcomes, thus minimizing
discrepancies between expectations and observations. However,
these models must not have so much complexity that they
waste energy or over-fit observations and fail to generalize their
predictions (also, more complex models are more energetically
costly to implement). Variational free energy provides an
objective function that optimally balances these requirements for
accuracy and simplicity.

The extreme generality of FEP-AI requires emphasis. Not
only do nervous systems entail predictive models, but so do
entire populations of organisms and their extended phenotypes
(Dawkins, 1999) as teleonomical (Deacon, 2011; Dennett, 2017)
predictions with respect to evolutionary fitness (Friston, 2018;
Ramstead et al., 2018). By this account, nervous systems are
merely a (very) special case of generative modeling, where
all systems are models in their very existence, but where
some systems also have sub-models that function as cybernetic
controllers (Stepp and Turvey, 2010; Seth, 2015; Seth and
Tsakiris, 2018). In these ways, FEP-AI provides a formalism
where persisting dynamical systems can be understood as self-
generating models, grounded in first principles regarding the
necessary preconditions for existence in a world governed by the
2nd law.

This view of systems as self-predicting generative models has
clear correspondences with IIT, since self-evidencing depends
on capacity for generating self-cause–effect power. I suggest we
should further expect model-evidence for system preservation
to be related to a system’s ability to function as a unified
whole, and so integrated information maximization ought
to accompany free energy minimization. Notably, IIT-based
models of metabolic cycles and gene-regulatory networks—core
processes for homeostasis and autopoiesis—suggest that adaptive
capacities of biotic systems may require high-phi configurations
(Marshall et al., 2017; Abrego and Zaikin, 2019). Systems with
lower phi may be qualitatively different from systems with
higher phi (Albantakis, 2017; Albantakis and Tononi, 2019),
being less capable of state-dependent adaptation—and thereby
learning—which may drastically limit their intelligence and
agency. These IIT-informed studies are fully consistent with FEP-
AI, wherein all persisting systems minimize free energy, but only
evolved systems minimize expected free energy via generative
models where causes can be modeled with temporal depth and
counterfactual richness (Kirchhoff et al., 2018).

An Ontology of Markov Blankets:
Estimating Boundaries (and
Intelligence-Potential) for
Processes/Things as Self-Predicting
Models and Complexes of Integrated
Information
This formalization of autopoietic systems can also be derived
with graphical modeling concepts, providing further bridges
between FEP-AI and IIT. Graphical models represent systems
as structured relationships among component variables and

their connections. If these connected variables are associated
with probabilities—whether due to uncertain observations or
inherent stochasticity—then that representation is a probabilistic
graphical model (PGM) (Koller and Friedman, 2009). PGMs
specify probability distributions over variables, thus entailing
probabilistic models of that which is represented. This mapping
from connected graphs to probabilities allows PGMs to
synergistically combine information from multiple sources.
Integration into joint probability distributions affords inference
of both likely beliefs from observations (i.e., discriminative
models) and likely observations from beliefs (i.e., generative
models). With importance for subsequent discussions of
consciousness, these graphs not only enable the generation of
probabilistic world models (i.e., inference) and refinements of
these models with observations (i.e., learning), but PGMs also
afford discrete estimates of the most likely values for variable
combinations, as in maximum a posteriori (MAP) estimation.

For any PGM component, the set of surrounding nodes
is referred to as a Markov blanket (MB) (Pearl, 1988), which
establishes conditional independence between internal and
external variables. All paths connecting internal and external
states are mediated by MBs; thus, conditioning upon this
blanketing set integrates all mutual information across this
partition (i.e., marginalization). System MBs define epistemic
relationships with the external world in providing the only
source of information that internal states ever receive (Hohwy,
2017). Everything beyond MB boundaries is not directly
observable, and so latent values of external states must
be inferred.

Described as PGMs, the functional boundaries of systems are
MBs (Kirchhoff et al., 2018), mediating all that can ever be known
about or done to the outside world. Some examples: single-celled
organism MBs are largely co-extensive with cellular membranes;
nervous system MBs are composed of sensor and effector
neurons by which they receive information from sensors and
drive change with actuators; niche-constructing organism MBs
constitute the boundaries of extended phenotypes, including
bodies and external structures that regulate environmental
interaction. Such functional boundaries are an essential source
of adaptive constraints for biological systems (Rudrauf et al.,
2003; Hordijk and Steel, 2015; Lane, 2016), both internally
concentrating system-promoting complexity and limiting
system-threatening exchanges with external environments.
Thus, MBs are both epistemic and system-defining boundaries.
With respect to IIT, the boundaries of maximal complexes
(entailing maximally irreducible cause-effect structures) would
also constitute MBs. Although each MICS represents a kind of
world unto itself (Leibniz, 1714), FEP-AI’s formalism of internal
states as modeling external states (and vice versa) may provide a
means of understanding how such inwardly directed phenomena
can nonetheless come to “encode” meaningful information
about the external world with which they co-evolve, potentially
providing linkages between IIT’s intrinsic integrated information
and information theory more generally.

The dual epistemic and ontological roles of MBs help justify
the extremely broad scope of both FEP-AI (and possibly IIT
as well). Identifiable systems must have boundaries defining
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their extents relative to other systems. Persisting systems further
require predictive models to maintain themselves and their MB
boundaries as they interact with environments. Yet, because
blanket states informationally shield internal states from the
rest of the world, modeling external states and MB boundaries
necessitates inference (Friston, 2017, 2018, 2019). In this way,
the epistemic boundaries created by system-defining MBs
require persisting dynamical systems to entail self-evidencing
generative models.

Generative Modeling, Integrated
Information, and Consciousness: Here,
There, but Not Everywhere?
The extreme generality of PGMs and the implicit modeling
relationships prescribed by FEP-AI may be of an extremely
simple variety, particularly if systems have limited dynamic
character and restricted thermodynamic openness. To provide
an intuition-stretching example, by virtue of persisting (and so
generating model evidence for their existence), the configuration
of rocks and resultant causal interactions could be viewed
as instantiating an implicit “prediction” that intramolecular
forces and limited exchanges will be sufficient to maintain
their forms. On short timescales, rocks will be able to
(non-adaptively) generate rock-like dynamics, which restrict
thermodynamic exchanges, thus allowing rocks to temporarily
avoid disintegration. However, in contrast to living systems, rocks
lack functional closure (Joslyn, 2000; Pattee, 2001; Deacon, 2011;
Gazzaniga, 2018) with the geological processes generating their
forms. Without multi-level evolutionary optimization (Safron,
2019b), generative models will be of such simple varieties that
they are incapable of predicting and responding to particular
events (i.e., adaptation). In this way, rocks are “surprised” by
every exchange with their environments capable of altering their
structures, and so will steadily disintegrate as such exchanges
accumulate over time. [Note: FEP-AI focuses on weakly mixing
ergodic systems, and as such, this conceptual analysis of
rocks lacks the kinds of formal treatments that have been—
controversially (Biehl et al., 2020; Friston et al., 2020a)—applied
to complex adaptive systems.]

This consideration of rocks as (very) impoverished generative
models provides a limit case for understanding what is and is not
implied by FEP-AI: every ‘thing’ can be viewed as having a basic
kind of intelligence by virtue of existing at all, but neither rocks
nor other similar inanimate objects are conscious (Friston, 2018,
2019). This limit case also shows major points of intersection
between FEP-AI and IIT (Table 1), as both frameworks provide
universal ontologies, and so must be applicable to every system,
including rocks, and potentially even the processes giving rise to
physical forces and their associated particles (Tegmark, 2014).
However, according to IIT’s exclusion axiom, rocks would
not represent actual systems, in that maxima of integrated
information would likely be found among separate components,
and so neither (intrinsic) existence nor quasi-sentience would
be ascribed. While the exclusion axiom may be essential for
consciousness, relaxing this postulate in some cases may allow
IIT to both (a) be fully compatible with FEP-AI and (b) better
function as a general model of emergent causation. That is, for

something to be said to exist, it may not be necessary for it to be a
maximum of integrated information as irreducible cause–effect
power. Rocks do indeed exist—while lacking consciousness—
in that they possess emergent properties that are not present
in their constituent elements (e.g., the intrinsic property of
a boulder being able to maintain its form as it rolls (Bejan,
2016), or its extrinsic properties with respect to anything in the
path of a large quickly moving object). Large-scale compositions
may not represent maximal complexes, but may nonetheless
play important roles with respect to internal functioning and
interactions with other systems.

With respect to the exclusion principle, IIT theorists
have suggested that advanced artificial intelligences could
be unconscious “zombies” if deployed on von Neumann
architectures (Tononi and Koch, 2015), which lack irreducible
integration due to serial operation. However, alternative
interpretations of IIT could extend phi analyses into temporally
extended virtual processes, rather than solely focusing on “direct”
realization by physical mechanisms. From an FEP-AI perspective,
maximally explanatory models for computer programs may
correspond to (MB-bounded) functional cycles on the software
level. This proposal for updating IIT aligns with a recently-
suggested theory of consciousness focusing on spatiotemporal
scales at which functional closure is achieved (Chang et al., 2019),
thus instantiating emergence and affording coarse-graining over
lower levels of analysis. However, both Information Closure
Theory and IIT purport that consciousness corresponds to any
instance of emergent causation. IWMT, in contrast, argues that
consciousness may be “what physics feels like from the inside”
(Koch, 2012; Tegmark, 2014), if (and only if) physical processes
support the generation of integrated system–world models with
spatial, temporal, and causal coherence.

Consciousness, Emergence, Integrative
Synergy
IWMT suggests that leading theories of consciousness can
be synergistically combined within FEP-AI. FEP-AI and IIT
both play dual roles in this synthesis, serving as both general
systems theories and descriptions of the processes underlying
subjective experience. FEP-AI and IIT intersect on multiple
levels, with potential for understanding causal emergence on
multiple scales. However, the nature of these explanations
may vary across domains, including with respect to analytic
assumptions. Integrated information may potentially be modeled
in different (and differently valuable) ways in different contexts
(Tegmark, 2016; Mediano et al., 2019a,b), which may range
from the identification of natural kinds, to the nature of life, to
perception, and even consciousness (Figure 1). Based on these
considerations, I propose it may be productive to factorize IIT
into two complementary versions:

1. IIT-Consciousness: the original version of the theory.
2. IIT-Emergence: an alternative version of the theory where the

exclusion axiom is relaxed.

In both cases, IIT would still correspond to an analysis
of systems in terms of their irreducible cause–effect power.
However, the relaxation of the exclusion axiom in IIT-Emergence
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FIGURE 1 | Intersections between FEP-AI, IIT, GNWT, and IWMT.

The Free Energy Principle (FEP) constitutes a general means of analyzing systems based on the preconditions for their continued existence via implicit models.

Integrated Information Theory (IIT) provides another general systems theory, focused on what it means for a system to exist from an intrinsic perspective. The

extremely broad scope of FEP-AI and IIT suggests (and requires for the sake of conceptual consistency) substantial opportunities for their integration as models of

systems and their emergent properties. Within the FEP (and potentially within the scope of IIT), a normative functional-computational account of these modeling

processes is suggested in Active Inference (AI). Hierarchical predictive processing (HPP) provides an algorithmic and implementational description of means by which

systems may minimize prediction error (i.e., free energy) via Bayesian model selection in accordance with FEP-AI. Particular (potentially consciousness-entailing)

implementations of HPP have been suggested that involve multi-level modeling via the kinds of architectures suggested by Global Neuronal Workspace Theory

(GNWT). The concentric circles depicted above are intended to express increasingly specific modeling approaches with increasingly restricted scopes. (Note: These

nesting relations ought not be over-interpreted, as it could be argued that HPP does not require accepting the claims of FEP-AI.) This kind of generative synthesis may

potentially be facilitated by developing an additional version of IIT, specifically optimized for analyzing systems without concern for their conscious status, possibly with

modified axioms and postulates: IIT-Consciousness (i.e., current theory) and IIT-Emergence (e.g., alternative formulations that utilize semi-overlapping

conceptual-analytic methods). Integrated World Modeling Theory (IWMT) distinguishes between phenomenal consciousness (i.e., subjective experience) and

conscious access (i.e., higher-order awareness of the contents of consciousness). Non-overlap between the circle containing GNWT and the circle containing

IIT-Consciousness is meant to indicate the conceivability of subjectivity-lacking systems that are nonetheless capable of realizing the functional properties of conscious

access via workspace architectures. IWMT is agnostic as to whether such systems are actually realizable, either in principle or in practice.

could afford a more flexible handling of different kinds of
emergent causation (e.g., relative cause–effect power from
various coupling systems), as well as more thorough integration
with FEP-AI. This broader version of IIT could also sidestep
issues such as quasi-panpsychism, as integrated information
would not necessarily represent a sufficient condition for
generating conscious experiences. While this proposal may not
resolve all debates between IIT and GNWT, it may provide
further opportunities for integration and synergy between these
two theories (e.g., applying—not necessarily consciousness-
entailing—phi analyses to posterior and frontal cortices during
different stages of cognitive cycles).

The Bayesian Brain and Hierarchical
Predictive Processing (HPP)
Broadly speaking, nervous systems can be straightforwardly
understood as generative probabilistic graphical models (PGMs).

The directed structure of neurons and their organization into
networks of weighted connections generate patterns of effective
connectivity (Friston, 1994), where flows of influence are physical
instantiations of conditional probabilities. From this perspective,
nervous systems can be viewed as modeling the world to
the extent neural dynamics reflect patterns in the world. The
Bayesian brain hypothesis (Friston, 2010) proposes this mutual
information takes the form of probabilistic mappings from
observations to likely causes, and that these inferences may
approach bounded optimality with respect to ecological decision-
theoretic objectives (Russell and Subramanian, 1995; Mark
et al., 2010; Hoffman and Singh, 2012) over phylogenetic and
ontogenetic timescales.

The Bayesian brain hypothesis is supported by evidence for a
common cortical algorithm of hierarchical predictive processing
(HPP)—a potential Rosetta stone for neuroscience (Mumford,
1991; Rao and Ballard, 1999; Hawkins and Blakeslee, 2004).
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In HPP, neuronal processes constitute hierarchically organized
generative models, which attempt to predict likely (hierarchically
organized) world states that could have caused actual sensory
observations (Friston and Kiebel, 2009; Clark, 2013). Bottom-up
sensory information is simultaneously predicted across levels by
sending predictions—as Bayesian beliefs, or prior expectations—
downwards in anticipation of sensory observations. Prediction-
errors (i.e., discrepancies with predictions) are passed upwards
toward higher levels, whose modifications update beliefs into
posterior expectations, which then become new (empirical)
predictions to be passed downwards. This coding scheme
is Bayesian in implementing the kind of model selection
involved in hierarchical hidden Markov models (George and
Hawkins, 2009), or hierarchical Kalman filtering. HPP is also
Bayesian in that hierarchical updates combine predictions and
prediction-errors according to the relative (estimated) precision
of these entailed probability distributions, with this precision-
weighting constituting an inverse-temperature parameter by
which attention is modulated (Friston et al., 2012b). Notably with
respect to the present discussion—and as a source of empirical
support for HPP—specific functional roles have been proposed
for different frequency bands and cell types, with beta and gamma
corresponding to respective predictions and prediction-errors
from deep and superficial pyramidal neurons (Bastos et al., 2012;
Chao et al., 2018; Scheeringa and Fries, 2019). To summarize,
in HPP, each level models the level below it, extending down
to sensor and effector systems, with all these models being
integrated when they are combined into larger (MB-bounded)
generative models (e.g., brains and organisms).

Generalized HPP and Universal
Bayesianism/Darwinism
Although evidence for HPP is strongest with respect to cortex,
efficiency considerations (Harrison, 1952) provide reason to
believe that this may be a more general phenomenon. Some
evidence for extending HPP to non-cortical systems includes
decoding of predictive information from retinal cells (Palmer
et al., 2015), and also models of motor control involving
spinal reflex arcs as predictions (Adams et al., 2013). HPP
may further extend beyond nervous system functioning and
into processes such as morphogenesis (Friston et al., 2015)—
observed to exhibit near-optimal utilization of information
(Krotov et al., 2014; Petkova et al., 2019)—and even phylogeny
(Ramstead et al., 2018).

This leads to another surprising implication of FEP-AI:
the broad applicability of the MB formalism suggests that
any persisting adaptive system will enact some kind of HPP.
More specifically, MB-bound systems contain MB-bound sub-
systems, with nesting relations reflecting levels of hierarchical
organization. More encompassing (hierarchically higher) models
accumulate information from the sub-models they contain,
with relative dynamics unfolding on either longer or shorter
timescales, depending on relationships among nested MB-
bounded systems. The epistemic boundaries instantiated by
MBs mean that internal and external states are latent with
respect to one another, and so must be inferred. Therefore, the

communication of information regarding sub-system internal
states (via MBs, definitionally) to the larger systems of which they
are part is the propagation of a probabilistic belief—e.g., marginal
message passing (Parr et al., 2019)—and so overall hierarchical
organization of systems and sub-systems must instantiate HPP.

This generalized HPP may be supported by the near-
ubiquitous phenomenon whereby coupling systems minimize
free energy more effectively through forming larger systems
via mutual entrainment (Jafri et al., 2016). From an FEP-AI
perspective, this coupling relationship is one of mutual modeling
and collaborative inference (Friston and Frith, 2015; Friston,
2017; Kirchhoff et al., 2018; Palacios et al., 2019). This generalized
synchrony (Strogatz, 2012) has also been characterized in
thermodynamic terms (Kachman et al., 2017; Friston, 2019),
where systems spontaneously self-organize into resonant modes
with the environments with which they couple—i.e., absorb work
and minimize free energy according to Hamilton’s principle of
least action—where coordinated dynamics have been observed
to contain mutually predictive information (Friston, 2013).
Notably, coupled attractors have recently been found to adjust
their dynamics beginning at sparsely frequented areas of phase
space (Lahav et al., 2018). If these synchronizing manifolds begin
to nucleate from improbable (and so surprising) alignments,
this flow of (mutual-information maximizing) influence might
be functionally understood as updating via “prediction-errors.”
While admittedly speculative, these considerations suggest that
generalized HPP (and selection for integrated information) could
represent a universality class whose potential extensions are
nearly as widespread as generalized synchrony itself. Generalized
predictive synchrony may also have implications for IIT,
potentially helping to explain how internally directed complexes
of integrated information can come to resonate with the
external world. Further, synchronization dynamics may provide
a mechanistic basis for bridging FEP-AI, IIT, and GNWT, as
described below with respect to integration via self-organizing
harmonic modes (SOHMs).

Free energy may be most effectively minimized—and
integrated information maximized (Marshall et al., 2016)—
if synchronized couplings take the form of hierarchically
organized modules, thus affording robustness, separable
optimization, balanced integration and differentiation,
evolvability via degeneracy, efficient communication via
small-world connectivity, and flexible multi-scale responsivity
via critical dynamics (Meunier et al., 2010; Wang et al., 2011;
Ódor et al., 2015; Lin and Tegmark, 2017; Lin et al., 2017;
Gazzaniga, 2018; Takagi, 2018; Badcock et al., 2019). Hierarchical
organization, modularity, and self-organized criticality (SOC)
may promote both integrated information maximization and
free energy minimization (Friston et al., 2012a, 2014; Vázquez-
Rodríguez et al., 2017; Hoffmann and Payton, 2018; Salehipour
et al., 2018; Khajehabdollahi et al., 2019), potentially suggesting
major points of intersection between FEP-AI and IIT across a
wide range of systems.

For biological systems, cells integrate information unfolding
at cellular scales, with tissues and organs integrating this
information at organismic scales, with organisms and groups of
organisms integrating this information at even broader scales.
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It is important to remember that FEP-AI can be viewed as
a Bayesian interpretation of generalized Darwinism (Kaila and
Annila, 2008; Harper, 2011; Frank, 2012; Campbell, 2016),
and so these nested couplings can also be viewed in terms
of natural selection and niche construction unfolding over
multiple hierarchical scales (Constant et al., 2018; Ramstead
et al., 2018; Badcock et al., 2019). More specifically, a hierarchy
of MBs constitute a hierarchy of selective pressures (Safron,
2019b), with dynamics on one level being selected by the next
level of organization. These informational shielding properties
of MBs connect with debates regarding units of selection in
evolutionary theory, in that only organismic phenotypes—and
sometimes groups of organisms (Laland et al., 2015; Richerson
et al., 2016)—are “visible” to natural selection with respect to
phylogeny. However, specific phenotypes are determined by
interactions between internal intrinsic dynamics (i.e., intra-
system evolution) as well as external systems with which these
dynamics couple via niche construction and phenotypic plasticity
(Constant et al., 2018). To the (necessarily limited) extent
these adaptively coupled nested scales are shaped by stable
selective pressures, then the transmission of information across
levels could approach Bayes-optimal (Kaila and Annila, 2008;
Payne and Wagner, 2019) active inference by combining all
relevant probabilistic influences via gradient ascent/descent over
fitness/energy landscapes. That is, what is actively inferred by
systems (as generative models) in FEP-AI is the inclusive fitness
of the sum-total of all quasi-replicative (i.e., self-evidencing)
dynamics capable of interacting on the spatial and temporal
scales over which evolution (as inference) occurs.

While this discussion of Bayesian generalized Darwinismmay
seem needlessly abstract, this multi-level account is essential
for understanding what we ought to expect to be generated
by competing and cooperating quasi-replicative processes (i.e.,
evolution). It also provides another potential point of intersection
with IIT, in that some dynamics will be more influential than
others on the timescales at which interactions occur. Specifically,
when considered as networks of relations, some sub-graphs
will have more integrated information (i.e., intrinsic cause–
effect power, or phi) than others, and phi associated with these
subgraphs may parameterize capacity to shape overall directions
of evolution.

Importantly, if evolution (as inference) applies not just on
the level of phylogeny, but also to intra-organism dynamics,
then this provides a means of understanding mental processes
as both Bayesian model selection and a kind of (generalized)
natural selection (Edelman, 1987). With respect to IIT,
the irreducible internal cause-effect power for a particular
subnetwork of effective connectivity may correlate with its
degree of external cause-effect power in influencing the overall
direction of evolution within a mind. If a subnetwork of
effective connectivity entails a generative model for enacting
particular (adaptive) system–world configurations, then a
maximal complex of integrated information would also be a
maximally explanatorymodel for overall system evolution, which
may entail consciousness under certain conditions.

In this way, FEP-AI shows how mental causation may
be isomorphic with evolutionary causation (i.e., action

selection as generalized natural selection), where selective
pressures constitute free energy gradients, thus providing
formal connections with thermodynamic pressures and power-
generation abilities. Power is force integrated over time,
which may be more likely to be generated by systems capable
of exerting cause–effect power over themselves, suggesting
a potentially important role for integrated information in
modeling evolutionary dynamics. In this way, by describing
mental processes in terms of degrees of self-directed cause–effect
power, IIT may help explain how particular processes—including
those entailing beliefs and desires—possess varying capacities for
contributing to informational and thermodynamic work cycles
(Kauffman and Clayton, 2006; Deacon, 2011). Taken together,
FEP-AI and IIT show how consciousness may not only represent
a system’s best guess of what is happening at any given moment,
but a source of maximal control energy for system evolution,
thus providing a means by which conscious intentions can have
causal powers.

While HPP is an extremely broad framework, the difference
between basic active inference and adaptive active inference is
important to remember (Kirchhoff et al., 2018): while FEP-AI
views all systems as models, only some of these models afford
adaptivity, and only some systems also have models (Seth and
Tsakiris, 2018). Living organisms possess specific sub-systems
capable of supporting generative models with temporal depth
and counterfactual richness (Friston et al., 2017c). These sub-
systems are called brains, and they allow organisms to navigate
exchanges with their environments by modeling not just present
world configurations, but also possible world configurations
predicted based on future (counterfactual) actions (i.e., expected
free energy).

Brains acquire especially powerful predictive modeling
abilities when they are organized according to multiple layers
of hierarchical depth. This deep organization allows these
systems to model not only transient events at lower levels,
but also their organization into more temporally extended
sequences at higher levels (Hawkins and Blakeslee, 2004;
Baldassano et al., 2017; Friston et al., 2017c). Further, deep
internal dynamics create a potential for functional decoupling
between modeling and the unfolding of particular sensorimotor
engagements (Tani, 2016; Sormaz et al., 2018; Corcoran et al.,
2020), thus enabling counterfactual simulations (Kanai et al.,
2019) with temporal “thickness”/“depth” (Humphrey, 2017;
Friston, 2018), which when conscious enable imagination and
explicit planning. These capacities afford the possibility of
constructing rich causal world models (Hassabis and Maguire,
2009; Buchsbaum et al., 2012; Pearl and Mackenzie, 2018;
MacKay, 2019), and as discussed below, preconditions for
coherent conscious experience. In this way, while all brains
may expand autonomous capacity by engaging in HPP, only
some architectures may be capable of supporting flexible
cognition. Thus, FEP-AI implies a near universality for
generative modeling, but not necessarily for consciousness.
We will now explore properties of nervous systems that
may be particularly important for enabling conscious
experiences via complexes of integrated information and
global workspaces.
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MECHANISMS OF INTEGRATED WORLD
MODELING

Self-Organizing Harmonic Modes
IWMT proposes a mechanism by which complexes of integrated
information and global workspaces may emerge as metastable
synchronous complexes of effective connectivity, or self-
organizing harmonic modes (SOHMs). SOHMs are proposed to
be attractors and eigenmodes (Friston et al., 2014)—or, solutions
to harmonic functions—for phase space descriptions of system
dynamics, with particular boundaries depending on network
topologies over which synchronization occurs. This view of
dynamical systems in terms of SOHMs can be understood as an
extension of Atasoy et al.’s (2018) analytical framework wherein
spectral decomposition is used to characterize brain activity as
mixtures of “connectome harmonics.” When this method was
first introduced, Atasoy et al. (2016) compellingly demonstrated
how reaction-diffusion simulations of spreading activation
could generate resting state networks as stable modes—
or standing waves—so recapitulating well-known patterns of
neuronal organization with minimal assumptions. Intriguingly,
hallucinogenic compounds expanded the repertoire of these
harmonic modes (Atasoy et al., 2017), increasing spectral
diversity and shifting the distribution of modes toward power-
law distributions, a putative—albeit controversial (Touboul and
Destexhe, 2017)—hallmark of criticality (Fontenele et al., 2019).
This finding is consistent with other studies of psychedelic
compounds (Tagliazucchi et al., 2014; Schartner et al., 2017;
Viol et al., 2017), supporting the hypothesis that brains may
enhance dynamical reconfigurability by being “tuned” toward
near-critical regimes (Pletzer et al., 2010; Haimovici et al., 2013;
Carhart-Harris, 2018).

Atasoy et al. (2016) describe this modeling approach of
identifying eigenfunctions (over a system’s Laplacian) as
having an extremely broad scope, with applications ranging
from Turing’s (1952) account of morphogenesis, to acoustic
phenomena and other patterns observed with vibrating
media (Ullmann, 2007), to solutions for electron orbitals in
quantum mechanics (Schrödinger, 1926). Based on our previous
discussion of probabilistic graphical models as a near-universal
representational framework, the term “connectome harmonics”
could be reasonably generalized to apply to all systems. However,
IWMT introduces the new term of “SOHMs” to prevent
confusion and to emphasize the dynamic self-organizing
processes by which synchronous complexes may emerge,
even when constituting local standing wave descriptions over
dynamics (rather than constituting a Fourier basis for an entire
connected system). That is, Atasoy’s connectome harmonics
constitute a more specific—and important for the sake of
understanding consciousness—variety of SOHM.

SOHMs may act as systemic causes in selecting specific
dynamics through synchronous signal amplification, with micro-
dynamics having greater contributions to synchronizing macro-
dynamics when phase-aligned. SOHMs could be viewed as either
standing or traveling waves, depending on the level of granularity
with which they are modeled (Friston et al., 2014; Mišić et al.,
2015; Atasoy et al., 2018; Muller et al., 2018; Zhang et al., 2018).

However, when viewed as harmonic modes, SOHMs would
have specific boundaries and timescales of formation. In this
way, resonant signal amplification within SOHMs could select
patterns of effective connectivity based on the timescales at which
maximal coherence is achieved. IWMT specifically proposes
that these synchronous complexes promote “communication
through coherence” (Hebb, 1949; Dehaene, 2014; Fries, 2015;
Deco and Kringelbach, 2016; Hahn et al., 2019). From an FEP-
AI perspective, this synchrony-enhanced communication would
facilitate information sharing among (and marginalization over)
coupled dynamics, thereby organizing message passing (or belief
propagation) for inference (Parr and Friston, 2018a; Parr et al.,
2019).

With respect to emergent causation, circular causal processes
by which SOHMs form would constitute organization into
renormalization groups and attracting flow paths along center
manifolds (Haken, 1977, 1992; Bogolyubov and Shirkov, 1980;
Li and Wang, 2018; Shine et al., 2019). This synchronization
of micro-scale phenomena into larger groupings on meso- and
macro-scales could be viewed as a kind of informational closure
and coarse-graining (Hoel et al., 2016; Chang et al., 2019).
Further, for self-evidencing generative models (Hohwy, 2016;
Yufik and Friston, 2016; Kirchhoff et al., 2018), integrating
processes underlying SOHM formation would calculate marginal
joint posteriors based on specific (Bayesian) beliefs entailed by
particular patterns of effective connectivity within and between
various synchronous complexes.

[Note: More details on potential mechanisms for SOHM
formation and functional consequences can be found in IWMT
Revisited (Safron, 2019a) in the sections: “Phenomenal binding via
ESMs (Embodied Self-Models)” and “Mechanisms for integration
and workspace dynamics.”]

SOHMs as Dynamic Cores of Integrated
Information and Workspaces
With respect to conscious perception, the resonant signal
amplification by which SOHMs emerge could potentially
contribute to the calculation of highly precise—albeit not
necessarily accurate (Hohwy, 2012; Vul et al., 2014)—joint
distributions (or maximal a posteriori (MAP) estimates derived
thereof). The ability of synchronous complexes to select phase-
aligned patterns has clear correspondences with theories of
consciousness emphasizing re-entrant signaling (Singer, 2001;
Varela et al., 2001; Crick and Koch, 2003; Edelman et al.,
2011; Shanahan, 2012; Dehaene, 2014; Grossberg, 2017) and
in terms of Bayesian model selection (Hohwy, 2012, 2013),
could be understood as promoting winner-take-all dynamics
among competing and cooperating inferential flows. SOHMs
may also help provide mechanistic bases for “ignition” events
accompanying phase transitions in which perception becomes
conscious (Dehaene and Changeux, 2011; Friston et al., 2012a;
Arese Lucini et al., 2019). IWMT specifically proposes that
conscious ignition corresponds to surpassing critical thresholds
for SOHM formation via self-synchronized neural activity, thus
forming meta-stable complexes as dynamic cores of integrated
information, functioning as neuronal global workspaces.
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TABLE 3 | Neural frequency bands, their potential roles in predictive processing, and possible experiential consequences.

Frequency band Role in predictive processing Potential experiential consequences

Gamma (∼30–120Hz) Ascending prediction-errors Sensory sensitivity and detail

Beta (∼13–30Hz) Descending predictions Perceptual vividness

Alpha (∼8–12Hz) Predictions integrated into coherent (egocentric) spatial,

temporal, and causal reference frames

Basic phenomenal consciousness

Theta (∼3–7Hz) Predictions integrated with internally-generated actions

and comparisons among recent (and counterfactual)

experiences

Access consciousness, agency, and shaping of phenomenal consciousness via

actions

Delta (∼0.5–2Hz) Higher-level predictions for active inference unfolding at

slower and more inclusive temporal and spatial scales

Unclear; possibly autonoetic consciousness and complex cognition; emotions and

feelings, broadly construed as global alterations of states of consciousness and

means of aligning spatiotemporal dynamics between mind and world (Northoff and

Huang, 2017)

The ability of SOHMs to select aligned patterns may help
explain how seemingly definite experiences could emerge from
probabilistic world models (Wiese, 2017; Block, 2018; Clark,
2018; Gross, 2018), as opposed to generating a “Bayesian blur,”
or superposition of possibilities. This hypothesis is consistent
with Clark’s (2018) suggestion that coherent and precise inference
stems from requirements for engaging with environments via
sensorimotor couplings (Clark, 2016). Along these lines, by
enabling the generation of inferences with rapidity and reliability,
SOHMs could afford approximate models capable of guiding
action–perception cycles and decision-making (von Uexküll,
1957; Fuster, 2009; Madl et al., 2011; Vul et al., 2014; Linson
et al., 2018; Parr and Friston, 2018b). Further, these sensorimotor
engagements may promote SOHM formation by providing
coherent sources of correlated information, thus affording the
possibility of learning even more sophisticated models (Pfeifer
and Bongard, 2006; Safron, 2019a,c). IWMT proposes that this
continual shaping of behavior based on rich causal world models
may be both a major adaptive function of consciousness and
a precondition for developing coherent conscious experience.
[Note: If consciousness requires semiotic closure Chang et al.,
2019 via action–perception cycles, then this cybernetic grounding
suggests that systems like plants and insect colonies are unlikely
to be conscious, even if capable of sophisticated (but limited)
levels of intelligence.]

SOHM dynamics may help to explain many kinds of rhythmic
phenomena, such as the fact that oscillations tend to occur
at faster rates in organisms with smaller brains (Buzsáki
and Watson, 2012); all else being equal, smaller systems are
likely to arrive at synchronous equilibria more quickly, with
larger systems requiring relatively more time for synchronizing
their micro-dynamics. SOHMs may also help to explain why
different rhythms (Table 3) would be associated with different
processes in hierarchical predictive processing (HPP) (Bastos
et al., 2015; Sedley et al., 2016; Chao et al., 2018), where
faster gamma oscillations communicate bottom-up prediction-
errors ‘calculated’ by local microcircuits, and where slower
beta oscillations generate top-down predictions via integrating
information (i.e., accumulating model evidence) from more
spatially-extended sources. These beta complexes may potentially
be organized via nesting within even larger and slower-forming

SOHMs, such as those generated at alpha, theta, and delta
frequencies. This cross-frequency phase coupling (Canolty and
Knight, 2010) could allow for the stabilization of multi-scale
dynamics within HPP, with increasing levels of hierarchical depth
affording modeling of complex and temporally extended causes
(Friston et al., 2017c). Hierarchical nesting of SOHMs could
allow modeling to simultaneously (and synergistically) occur at
multiple levels of granularity, thus affording both global stability
(Humphrey, 2017) and fine-grained adaptive control as overall
systems couple with their environments.

If SOHMs integrate information in the ways suggested
here—marginalizing over synchronized components—then the
largest SOHM of a system would generate a joint posterior (or
estimate derived thereof) over all smaller SOHMs contained
within its scope. These encompassing SOHMs would integrate
information across heterogeneous processes, as well as affording
unified sources of control energy for system evolution. These
maximal SOHMs could generate estimates of overall organismic
states, thus forming dynamic cores of integration for perception
and action, potentially enabling autonomous control by
integrated self-processes. Further, privileged positions of
maximal SOHMs with respect to network centrality (Aadithya
et al., 2010) and modeling capacity could promote directional
entrainment of smaller complexes, thus promoting coherent
agentic action selection.

For biological systems, the dynamics within maximal
SOHMs may have the clearest correspondences with events
unfolding at organismic scales. For organisms such as C.
elegans, these dynamics might unfold at the frequencies of
locomotory eigenmodes, potentially concentrated in a core
of richly connected nodes (Towlson et al., 2013), thus
allowing enslavement of a worm’s peripheral pattern generators
by predictive models coordinating the enaction of coherent
movement vectors. For organisms such as Homo sapiens, these
dynamics might unfold at the frequencies of real and imagined
sensorimotor contingencies (Elton, 2000; O’Regan and Noë,
2001; Tani, 2016; Chen et al., 2017; Prinz, 2017; Zadbood et al.,
2017; Baldassano et al., 2018; Chang et al., 2019), potentially
concentrated along deep portions of cortical generative models,
thus allowing enslavement of an individual’s sensorium and
effectors by rich causal models of self and world. Whether
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in worms or humans, SOHMs would entail joint posteriors
(or associated maximal estimates) from probabilistic models
for embodied agents and the environments with which they
couple. In these ways, Maximal SOHMs may be coextensive
with both maxima of integrated information (i.e., MICS)
and global workspaces. However, while SOHMs with the
greatest amount of irreducible integrated information may
correspond to basic phenomenal consciousness (e.g., complexes
centered on posterior cortices), organization into an even
larger (albeit possibly less irreducibly integrated) synchronous
complex involving the frontal lobes may be required for access
consciousness and agentic control.

A multi-level understanding of SOHMs in terms of neuronal
dynamics and probabilistic inference suggests that we should
expect these complexes to form over subnetworks with
coherent mutual information, which is more likely if patterns
of effective connectivity entail coherent and well-evidenced
world models. With respect to loopy message passing for
approximate inference (Koller and Friedman, 2009; Friston
et al., 2017b), these coherent models may have a (circular)
causal significance in that they would be more likely to provide
consistent inferential flows, and so be more likely to first
converge upon stable posteriors, and so be more likely to
dominate rounds of Bayesian model selection. Notably, this
kind of convergence is more likely for Bayesian networks
that balance integration and differentiation—associated with
high phi (Marshall et al., 2016)—and this is precisely what is
observed for “rich club” connectivity cores (Sporns, 2013; Mišić
et al., 2015; Cohen and D’Esposito, 2016; Mohr et al., 2016).
Further, high degrees of re-entrant connectivity and potential
for recurrent dynamics suggests that these richly connected
networks are particularly likely to serve as loci of “ignition”
events in global workspace models (Dehaene and Changeux,
2011; Shanahan, 2012). Finally, considering that integrated
information reflects a system’s ability to exert cause–effect power
over itself, SOHMs may be particularly likely to form along high
phi networks.

IWMT and Maximizing SOHMs: Bringing
Forth Worlds of Experience
A maximal SOHM—as a MICS and MICE repertoires—within
a brain may center on posterior cortices, and in particular the
temporoparietal junction (Graziano, 2019) and posteromedial
cortices (PMCs) (O’Reilly et al., 2017), with synchronizing
complexes forming at alpha frequencies generating basic
phenomenal consciousness. Nesting of these alpha rhythms
within theta frequencies may further allow for coupling with
the frontal lobes and hippocampal complex, thus affording
goal-directed and access consciousness from global workspace
dynamics. IWMT’s focus on PMCs and alpha frequencies
(as synchronizing manifolds) is based on both the types of
information available to these systems/processes (Papez, 1937;
Jann et al., 2009; Gramann et al., 2010; Knyazev et al., 2011;
Damasio, 2012), as well as empirical associations with attention
and working memory (Palva and Palva, 2011; Kerr et al., 2013;

Michalareas et al., 2016; Sato et al., 2018; Bagherzadeh et al.,
2019). PMCs receive information from upper levels of each
sensory hierarchy, as well as the position of an organism in
space, including head-direction information. This information
is likely a prerequisite for organizing perception into egocentric
reference frames (Brewer et al., 2011, 2013; Guterstam et al., 2015;
Li et al., 2018; Smigielski et al., 2019). In line with models in
which consciousness depends on projective geometry (Rudrauf
et al., 2017; Williford et al., 2018), a stable source of egocentric
perspective may represent a practically necessary precondition
for there to be “something that it is like:” i.e., the ability to
generate models with spatial, temporal, and causal coherence for
system and world.

IWMT focuses on space, time (i.e., relative dynamics
in space), and cause (i.e., predictable regularities in these
dynamics), but wholistic self-processes (Damasio, 2012;
Humphrey, 2017) may also be essential for developing world
models capable of generating coherent subjectivity. Self-
processes may be practically necessary for consciousness
because the integration of large-scale brain activity may be
required for the coherent regulation of action–perception
cycles, and thereby cybernetic sense-making. Self-processes
could allow for selection of specific models on the basis of
relevance (Shanahan and Baars, 2005; Davey and Harrison,
2018; Linson et al., 2018; Hattori et al., 2019), with stable
self-models extending this organization across time (Dennett,
1992; Hirsh et al., 2013; Buonomano, 2017), thereby enabling the
learning required to construct experienceable world models. In
brief, IWMT proposes that Kant’s preconditions for judgment
are also necessary preconditions for consciousness (Northoff,
2012; De Kock, 2016). While PMCs may be sufficient for
basic phenomenal consciousness, larger complexes may be
required for certain kinds of higher-order cognition, including
access and autonoetic consciousness (Brown et al., 2019;
LeDoux, 2019; Shea and Frith, 2019). This integration of
action with perception is likely crucial for agentic planning
and the counterfactual simulations upon which it is based
(Hassabis and Maguire, 2009; MacKay, 2019), without
which the development of coherent world models may be
impossible (De Kock, 2016; Friston, 2017).

To summarize (Table 4), in systems where synchrony both
emerges from and facilitates coherent message passing, SOHMs
enable both workspace dynamics and high degrees of meaningful
informational integration, where meaning is a difference that
makes a difference to the ability of a system to survive and achieve
its goals. However, integrated information and workspaces only
entail consciousness when applied to systems that can also
be understood as Bayesian belief networks, where beliefs have
coherence because they have actual semantic content by virtue of
evolving through interactions with a coherently structured (and
so semi-predictable) world. Without those meaningful external
connections, systems could have arbitrarily large amounts of
integrative potential, but there still may be nothing that it is like
to be such systems.

[Note: For some testable hypotheses related to these ideas, please
refer to Supplementary Material.]
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TABLE 4 | Integrating IIT with the FEP-AI framework and IWMT’s model of communication through coherence via SOHM dynamics.

Integrated Information Theory

(IIT) axioms and postulates

Integration with the Free Energy Principle and Active

Inference (FEP-AI) Framework

Integration via Self-Organizing Harmonic Modes (SOHMs):

Eigenmodes of effective connectivity and synchronization

manifolds

Intrinsic existence:

Systems exert C–E power on

themselves and the sub-systems of

which they are composed.

Sub-systems exert C–E power on

themselves and the larger systems of

which they are a part. C–E power

exists at particular spatial and

temporal grains.

Systems are describable as PGMs, where graphs express

conditional dependence structure between sub-components.

All systems and sub-systems possess defining MBs, the

boundaries of which establish conditional independence

between internal and external states. MB internal states can

only interact with themselves, or with external states via MBs.

Persisting systems preserve their MBs by exerting C–E power

both on themselves and other systems.

SOHMs (and their MB boundaries) form as systems and

sub-systems interact with both themselves and other systems at

particular spatial and temporal grains. SOHMs influence how

systems as wholes are likely to interact with both themselves and

other systems at varying levels of granularity. SOHMs are both

consequences and causes of the processes that generate them,

both emerging from and determining the C–E power that systems

exert on themselves and other systems.

Composition:

Systems are composed of

sub-systems with particular

inter-relations. Structured

inter-relations determine the specific

C–E power of systems on

sub-systems, which exert C–E power

on each other.

PGMs are composed of connected elements with particular

components differentially contributing to joint probability

distributions.

Graph structures define relations of conditional dependence

and independence, so determining inferential flows within and

between MBs (i.e., marginalization and message passing).

Persisting MB compositions are generative models for those

particular compositions.

Particular system compositions influence the dynamics of SOHM

formation, which, in turn, influence patterns of effective

connectivity between and within system sub-components.

Subnetworks along which SOHMs form determine how C–E

power flows on different timescales, including with respect to

SOHM formation processes. SOHMs have specific spatial and

temporal extents, so defining systems and sub-systems in terms

of particular inter-relations.

Information:

Systems have specific compositions

that are differentiated from other

possible compositions. C–E

repertoire: probability distribution over

all permutations of possible causes

and effects that a system could exert

on itself.

MB-defined dependency relations specify inferential

properties of PGMs, including probability distributions and

estimates for likely causes of present observations, given past

observations.

Mappings from observations to likely causes define systems

as generative models.

Specific combinations of SOHMs and their particular compositions

influence (and are influenced by) effective connectivity within and

between systems, so specifying the particular information content

of those systems. By promoting communication through

coherence, MB-bounded SOHMs can implement marginalization

over sub-networks and organize message passing and/or belief

propagation.

Conceptual structure:

Mapping of C–E repertoires onto an

abstract metric space, specifying

particular causal properties.

Persisting systems generate themselves as particular

densities, so providing mutual information between past and

future states, and between internal and external states of

MB-bound systems.

Different systems will have different SOHMs, so generating

inferences that are differentiated from other systems in which

different groups of elements would be included within

synchronizing manifolds.

Integration:

Systems are unified in terms of being

irreducible to independent

subcomponents. This irreducibility

can be quantified (phi) by comparing

C–E repertoires before and after

systems are divided by a minimally

disruptive partitioning, known as a

“minimal information partition” (MIP).

All components of MB-bounded sub-graphs from PGMs

(differentially) contribute to integrating—literally, calculating

integrals for—associated marginal joint probability

distributions.

Persisting systems are unified (to varying degrees); all

components contribute to self-evidencing (to varying extents).

By quantifying the integrated complexity of system-internal

C–E power, the phi of an MB-bound set will correlate with the

marginal likelihood (or negative free energy) associated with

particular self-evidencing systems.

SOHMs are unified (to varying degrees); all components of

self-interacting systems contribute (to varying extents) to the

emergence of its particular eigenmodes.

If SOHMs influence and are influenced by the particular

configuration of a system, then any alteration will result in different

patterns of effective connectivity.

If SOHMs promote information transmission, then any SOHM

modification will change inferences, where the least of these

alterations would constitute a MIP.

Exclusion:

Systems have definite boundaries

with respect to their ability to exert

C–E power over particular spatial and

temporal grains.

IIT identifies intrinsically existing

systems as complexes, specifying

maximally irreducible conceptual

structures (MICS) and associated

maximally irreducible cause-effect

(MICE) repertoires.

PGMs represent multiple possibilities, but they can also

generate precise posterior distributions and discrete

estimates of likely parameter values.

Larger systems can integrate marginal probabilities from

MB-bounded sub-systems, so integrating more information

into models.

If phi promotes self-generation, then boundaries for maximal

complexes would correspond to boundaries for

(free-energy-minimizing) systems generating maximal

self-model evidence, with maximal potential influences on

overall system evolution.

The specific temporal and spatial scales governing SOHM

formation will constrain opportunities for influencing the evolution

of these self-synchronizing attracting manifolds. The MB

boundaries of SOHMs will define which dynamics are capable of

contributing to joint inference to which degrees.

Theoretically, rapidly forming and strongly synchronizing SOHMs

could entail precise joint probabilities, or maximum a posteriori

(MAP) estimates derived thereof.

C-E, Cause-effect; PGM, Probabilistic graphical model; MB, Markov blanket.
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DISCUSSION: TOWARD SOLVING THE
ENDURING PROBLEMS OF
CONSCIOUSNESS (AND AI?)

[Note: More details on computational principles and systems
likely to be associated with consciousness can be found in IWMT
Revisited (Safron, 2019a) in the sections, “Machine learning
architectures and predictive processing models of brain and mind”
and “Consciousness: Here, There, but Not Everywhere.”]

Autoencoders, Predictive Processing, and
the Conscious Turbo Code
Helmholtz (1878) is often viewed as providing the first clear
description of perception as inference:

“Objects are always imagined as being present in the field of vision
as would have to be there in order to produce the same impression
on the nervous mechanism.”

Dayan, Hinton, Neal, and Zemel (Dayan et al., 1995) constructed
machine learning systems based on these principles, trained
using cost functions based on Helmholtz free energy. These
kinds of architectures can be trained to handle noisy inputs
or infer missing data, with more recent versions being able to
generate completely novel combinations of features. These are
all aspects of conscious (and unconscious) perception and have
many commonalities with HPP within FEP-AI.

Variational autoencoders (Kingma and Welling, 2014) are
composed of encoders and generative decoders connected by
low-dimensional bottlenecks, where encoders learn to compress
input data into reduced-dimensionality feature spaces, and
where decoders learn to use these latent features to infer likely
details of higher-dimensional data. HPP models of sensory
cortices (Figure 2;Table 5) may be approximated as disentangled
variational autoencoders, where encoders and decoders are
constituted by respective hierarchies of superficial and deep
pyramidal neurons (Kanai et al., 2019). However, rather than
training solely based on divergences between respective input
and output layers of encoder and decoder networks, prediction-
error is minimized at all levels simultaneously based on
comparisons between time-varying sensory observations and
internally-generated predictions. HPP in brains further involves
multiple interacting autoencoding hierarchies, with connections
being particularly strong in deeper association cortices—
corresponding to reduced dimensionality latent spaces—thus
affording synergistic inferential power with shared priors from
multi-modal sensory integration and world modeling.

IWMT proposes that connections between the low-
dimensionality bottlenecks from various modalities may form an
auto-associative network supporting loopy belief propagation—
or message passing—thus constituting a turbo code (Berrou and
Glavieux, 1996), and hence approaching the Shannon limit with
respect to optimality in communicating information over noisy
channels (Figure 3; Table 6). [Note: While any instantiation
of loopy belief propagation may be understood as realizing a
turbo code, IWMT specifically suggests that a broad network

of cross-modal effective connectivity is required for coherent
integrated world modeling.] This framing of HPP in terms of
autoencoders and turbo codes could provide a computational
analog for neural systems underlying consciousness: a reduced-
dimensionality representational bottleneck that extracts the
most important details from sensory data, and which affords
inferential synergy by providing a workspace where specialist
models can be combined, integrated, and then rebroadcast.
[Note: HPP dimensionality-reduction may have relevance to the
sketch-like nature of awareness proposed in Graziano’s Attention
Schema Theory (Graziano, 2013, 2019).] According to IWMT,
coherent self-world modeling likely also requires organizing
this information into spatiotemporal trajectories, as afforded
by the hippocampal system and machine learning architectures
that attempt to reproduce its functioning (Fraccaro et al., 2017;
Ha and Schmidhuber, 2018; Whittington et al., 2018; Wu et al.,
2018), and as suggested by impaired counterfactual modeling
with medial temporal lobe damage (Hassabis and Maguire, 2009;
MacKay, 2019).

As Bengio (2017) has suggested with his work on the
“consciousness prior,” the reduced dimensionality of these
(disentangled) features may be well-suited for identifying major
axes of meaningful variations in the world, such as those involved
in the kinds of causal processes we can manipulate and perceive,
and which can also be mapped onto linguistic systems. This
later affordance has relevance to Higher-Order Theories of
consciousness, including those emphasizing agentic modeling
and social communication (Metzinger, 2010; Graziano, 2013;
Rudrauf et al., 2017; Brown et al., 2019; Shea and Frith, 2019).

The thalamocortical system enabling dynamic cores of
integration and conscious workspaces first evolved hundreds
of millions of years before these higher-order processes existed
(Edelman, 2004). These richly connected subnetworks enable
high-bandwidth message passing—as likely required for realizing
turbo codes in biological systems—but are also metabolically
expensive, consuming nearly 50% of cortical metabolism in
humans (Heuvel et al., 2012). However, part of the way these
energetic costs may be justified is by (a) reducing the number
of (noisy) neuronal signal transactions required to achieve
adequately reliable perceptual inference, (b) enhancing the speed
of model selection for the sake of fine-grained control, and (c)
allowing for imagination-based planning and causal reasoning
(Pearl and Mackenzie, 2018). Rich-club connected subnetworks
can even be found in C. elegans with their 302 neurons (Towlson
et al., 2013). This could be taken to imply that consciousness is
nearly a billion years old, but IWMT suggests that this is likely
a mistaken inference, as deep hierarchies may be required for
generating coherent experience.

Conscious AI?
IWMT does not suggest that consciousness corresponds to either
the output layers of generative models as currently used in
machine learning or the processes calculating those outputs.
Although architectures with self-attention mechanisms have
been implemented with great success (Kovaleva et al., 2019), the
outputs of such systems tend to be functionally disconnected
from each other, as well as the processes by which they are
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FIGURE 2 | Sparse folded variational autoencoders with recurrent dynamics via self-organizing harmonic modes (SOHMs).

(i) Autoencoder.

An autoencoder is a type of artificial neural network that learns efficient representations of data, potentially including a capacity for generating more complete data

from less complete sources. The encoder compresses input data over stages of hierarchical feature extraction, passes it through a dimensionality-reducing bottleneck

and into a decoder. The decoder attempts to generate a representation of the input data from these reduced-dimensionality latent representations. Through

backpropagation of error signals, connections contributing to a more inaccurate representation are less heavily weighted. With training, the decoder learns how to

generate increasingly high-fidelity data by utilizing the compressed (and potentially interpretable) feature representations encoded in the latent space of the bottleneck

portion of the network. In the more detailed view on the left, black arrows on the encoder side represent connections contributing to relatively high marginal likelihoods

for particular latent feature space representations, given connection weights and data. Red arrows on the decoder side represent connections with relatively high

marginal likelihoods for those reconstructed features, given connection weights and latent space feature hypotheses. While these autoencoders are fully connected

dense networks, particular connections are depicted (and associated probabilities discussed) because of their relevance for predictive processing. Note: Although the

language of probability theory is being used here to connect with neurobiologically-inspired implementations, this probabilistic interpretation—and links to brain

functioning—is more commonly associated with variational autoencoders, which divide latent spaces into mean and variance distributions parameterized by

stochastic sampling operations in generating likely patterns of data, given experience.

(ii) Folded autoencoder implementing predictive processing.

In this implementation of predictive processing, autoencoders are ‘folded’ at their low-dimensionality bottlenecks—such that corresponding encoding and decoding

layers are aligned—with decoding hierarchies (purple circles) depicted as positioned underneath encoding hierarchies (gray circles). Within a brain, these decoding

and encoding hierarchies may correspond to respective populations of deep and superficial pyramidal neurons (Bastos et al., 2012). In the figure, individual nodes

represent either units in an artificial network—or groups of units; e.g., capsule networks (Kosiorek et al., 2019)—or neurons (or neuronal groups; e.g., cortical

minicolumns) in a brain. Predictions (red arrows) suppress input signals when successfully predicted, and are depicted as traveling downwards from representational

bottlenecks (corresponding to latent spaces) along which autoencoding networks are folded. Prediction errors, or observations for a given level (black arrows)

continue to travel upwards through encoders unless they are successfully predicted, and so “explained away.” Data observations (i.e., prediction errors) are depicted

as being sparser relative to high-weight connections in the (non-folded) encoding network presented above, where sparsity is induced via predictive suppression of

ascending signals. This information flow may also be viewed as Bayesian belief propagation or (marginal) message passing (Friston et al., 2017b; Parr et al., 2019). In

contrast to variational autoencoders in which training proceeds via backpropagation with separable forward and backward passes—where cost functions both

minimize reconstruction loss and deviations between posterior latent distributions and priors (usually taking the form of a unit Gaussian)—training is suggested to

occur (largely) continuously in predictive processing (via folded autoencoders), similarly to recent proposals of target propagation (Hinton, 2017; Lillicrap et al., 2020).

Note: Folded autoencoders could potentially be elaborated to include attention mechanisms, wherein higher-level nodes may increase the information gain on

ascending prediction-errors, corresponding to precision-weighting (i.e., inverse variance over implicit Bayesian beliefs) over selected feature representations.

(Continued)
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FIGURE 2 | (iii) Folded autoencoder with information flows orchestrated via recurrent dynamics.

This row shows a folded autoencoder model of a cortical hierarchy, wherein neuronal oscillations mediate predictions—potentially orchestrated by deep pyramidal

neurons and thalamic (and striatal) relays—here characterized as self-organizing harmonic modes (SOHMs). This paper introduces SOHMs as mechanisms

realizingsynchronization manifolds for coupling neural systems (Palacios et al., 2019), and sources of coherent neuronal oscillations and evidence accumulation for

predictive processing. Depending on the level of granularity being considered, these predictive oscillations could either be viewed as traveling or standing waves (i.e.,

harmonics). SOHM-based predictions are shown as beta oscillations forming multiple spatial and temporal scales. These predictive waves may be particularly likely to

originate from hierarchically higher levels—corresponding to latent spaces of representational bottlenecks—potentially due to a relatively greater amount of internal

reciprocal connectivity, consistent information due to information aggregation, or both. SOHMs may also occur at hierarchically lower levels due to a critical mass of

model evidence accumulation allowing for the generation of coherent local predictions, or potentially on account of semi-stochastic synchronization. Faster and

smaller beta complexes are depicted as nested within a larger and slower beta complex, all of which are nested within a relatively larger and slower alpha complex.

Note: In contrast to standard machine learning implementations, for this proposal of predictive processing via folded autoencoders (and SOHMs), latent space is

depicted as having unclear boundaries due to its realization via recurrent dynamics. Further, inverse relationships between the spatial extent and speed of formation

for SOHMs are suggested due to the relative difficulties of converging on synchronous dynamics within systems of various sizes; theoretically, this mechanism could

allow for hierarchical modeling of events in the world for which smaller dynamics would be expected to change more quickly, and where larger dynamics would be

expected to change more slowly.

TABLE 5 | Proposed correspondences between features of variational autoencoders and predictive processing.

Variational autoencoder features Proposed correspondences in predictive processing

Encoder network Ascending hierarchy of superficial pyramidal neurons;

Message-passing at gamma frequencies

Generative decoder network Descending hierarchy of deep pyramidal neurons;

Beliefs propagated at beta frequencies

Reduced dimensionality bottleneck Association cortices and deeper portions of generative models;

Estimates calculated at beta, alpha, and theta frequencies

Mean vectors Activity levels for neuronal populations at different parts of hierarchy

Variance vectors Neuronal population activity variability

Sampling from latent feature space Large-scale synchronous complexes at beta, alpha, and theta frequencies; “ignition” events

Training: minimizing reconstruction loss between input

layer of encoder and output layer of generative decoder;

also minimizing divergence from unit Gaussian,

parameterized by disentangling parameter

Training: minimizing precision-weighted prediction-errors at all layers simultaneously; precision-weighting

as analogous to disentanglement hyperparameter; many mechanisms including synchronous gain

control and diffuse neuromodulatory systems

Potential for sequential organization via recurrent

network controllers (Ha and Schmidhuber, 2018)

Organization of state transitions by hippocampal system and frontal cortices (Koster et al., 2018)

generated. This is not the case for brains, for which IWMT
proposes that joint posteriors and estimates (and samples derived
thereof) are calculated via spreading neuronal activity, where
message-passing/belief-propagation is promoted (or scheduled)
via synchronous dynamics (i.e., SOHMs). As opposed to current
generations of generative models, the functioning of these
synchronized subnetworks (and the calculations they entail) span
multiple levels of hierarchical depth, with bidirectional linkages
to generative processes involving models with spatial, temporal,
and causal coherence for system and world.

Further, the anatomical and functional directedness of
neuronal connections at any point in time contain information
that will bias future dynamics, so influencing likelihoods with
which meta-stable regimes are subsequently produced. If these
networks are altered according to principles of spike-timing
dependent plasticity, and if systems develop in the context
of embodied agents interacting with their environments, then
these state transitions are likely to contain coherent information
reflecting causal world structures (Hayek, 1952; Markram et al.,
2011; Lakoff, 2014). In these ways and more (e.g. recurrent
dynamics persisting across SOHM-formation events), each quale
state would functionally connect and constrain future quale states
based on past quale states. Further, biological neural networks

do not generate feature maps as isolated vectors over stimulus
dimensions, but as vectors coupled over multiple levels of
hierarchical depth, via neuronal dynamics. Thus, consciousness
may be entailed by the functioning of a probabilistic model
that generates tensors in neuronal (and representational) phase
space, specifying joint posteriors (or estimates derived thereof),
where that which is being modeled/estimated is the causes
of sensation. If this is the type of mathematical object that
corresponds to subjective experience, then substantial progress
may have been made toward solving the Hard problem
of consciousness.

Conclusion: Toward (Dis-) Solving the
Meta-Problem by Solving the Hard Problem
How could there be “something that it is like” to be a physical
system or entailed mathematical object? IWMT suggests that
this question may be satisfyingly answered if such a system can
calculate—or probabilistically infer—sequences of sensorimotor
states. Perhaps intuitively, such a sequential unfolding would
have more of a resemblance to the flowing of the stream
of consciousness for the kinds of embodied–embedded agents
that we are. If models can generate particular combinations of
information present within and between sensory modalities, then
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FIGURE 3 | Cortical turbo codes.

(i) Turbo coding between autoencoders.

Turbo coding allows signals to be transmitted over noisy channels with high fidelity, approaching the theoretical optimum of the Shannon limit. Data bits are distributed

across two encoders, which compress signals as they are passed through a dimensionality reducing bottleneck—constituting a noisy channel—and are then passed

through decoders to be reconstructed. To represent the original data source from compressed signals, bottlenecks communicate information about their respective

(noisy) bits via loopy message passing. Bottleneck z1 calculates a posterior over its input data, which is now passed to Bottleneck z2 as a prior for inferring a likely

reconstruction (or posterior) over its data. This posterior is then passed back in the other direction (Bottleneck z2 to Bottleneck z1) as a new prior over its input data,

which will then be used to infer a new posterior distribution. This iterative Bayesian updating repeats multiple times until bottlenecks converge on stable joint posteriors

over their respective (now less noisy) bits. IWMT proposes that this operation corresponds to the formation of synchronous complexes as self-organizing harmonic

modes (SOHMs), entailing marginalization over synchronized subnetworks—and/or precision-weighting of effectively connected representations—with some

SOHM-formation events corresponding to conscious “ignition” as described in Global Neuronal Workspace Theory (Dehaene, 2014). However, this process is

proposed to provide a means of efficiently realizing (discretely updated) multi-modal sensory integration, regardless of whether “global availability” is involved.

Theoretically, this setup could allow for greater data efficiency with respect to achieving inferential synergy and minimizing reconstruction loss during training in both

biological and artificial systems. In terms of concepts from variational autoencoders, this loopy message passing over bottlenecks is proposed to entail discrete

updating and maximal a posteriori (MAP) estimates, which are used to parameterize semi-stochastic sampling operations by decoders, so enabling the iterative

generation of likely patterns of data, given past experience (i.e., training) and present context (i.e., recent data preceding turbo coding). Note: In turbo coding as used

in industrial applications such as enhanced telecommunications, loopy message passing usually proceeds between interlaced decoder networks; within cortex, turbo

coding could potentially occur with multiple (potentially nested) intermediate stages in deep cortical hierarchies.

(Continued)

Frontiers in Artificial Intelligence | www.frontiersin.org 21 June 2020 | Volume 3 | Article 30

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Safron Integrated World Modeling Theory (IWMT)

FIGURE 3 | (ii) Turbo coding between folded autoencoders.

This panel shows turbo coding between two folded autoencoders connected by a shared latent space. Each folded autoencoder sends predictions downwards from

its bottleneck (entailing reduced-dimensionality latent spaces), and sends prediction errors upwards from its inputs. These coupled folded autoencoders constitute a

turbo code by engaging in loopy message passing, which when realized via coupled representational bottlenecks is depicted as instantiating a shared latent space via

high-bandwidth effective connectivity. Latent spaces are depicted as having unclear boundaries—indicated by shaded gradients—due to their semi-stochastic

realization via the recurrent dynamics. A synchronous beta complex is depicted as centered on the bottleneck latent space—along which encoding and decoding

networks are folded—and spreading into autoencoding hierarchies. In neural systems, this spreading belief propagation (or message-passing) may take the form of

traveling waves of predictions, which are here understood as self-organizing harmonic modes (SOHMs) when coarse-grained as standing waves and synchronization

manifolds for coupling neural systems. Relatively smaller and faster beta complexes are depicted as nested within—and potentially cross-frequency phase coupled

by—this larger and slower beta complex. This kind of nesting may potentially afford multi-scale representational hierarchies of varying degrees of spatial and temporal

granularity for modeling multi-scale world dynamics. An isolated (small and fast) beta complex is depicted as emerging outside of the larger (and slower) beta complex

originating from hierarchically higher subnetworks (hosting shared latent space). All SOHMs may be understood as instances of turbo coding, parameterizing

generative hierarchies via marginal maximum a posteriori (MAP) estimates from the subnetworks within their scope. However, unless these smaller SOHMs are

functionally nested within larger SOHMs, they will be limited in their ability to both inform and be informed by larger zones of integration (as probabilistic inference).

(iii) Multiplexed multi-scale turbo coding between folded autoencoders.

This panel shows turbo coding between four folded autoencoders. These folded autoencoders are depicted as engaging in turbo coding via loopy message passing,

instantiated by self-organizing harmonic modes (SOHMs) (as beta complexes, in pink), so forming shared latent spaces. Turbo coding is further depicted as taking

place between all four folded autoencoders (via an alpha complex, in blue), so instantiating further (hierarchical) turbo coding and thereby a larger shared latent space,

so enabling predictive modeling of causes that achieve coherence via larger (and more slowly forming) modes of informational integration. This shared latent space is

illustrated as containing an embedded graph neural network (GNN) (Liu et al., 2019; Steppa and Holch, 2019), depicted as a hexagonal grid, as a means of

integrating information via structured representations, where resulting predictions can then be propagated downward to individual folded autoencoders. Variable

shading within the hexagonal grid-space of the GNN is meant to indicate degrees of recurrent activity—potentially implementing further turbo coding—and red arrows

over this grid are meant to indicate sequences of activation, and potentially representations of trajectories through feature spaces. These graph-grid structured

representational spaces may also afford reference frames at various levels of abstraction; e.g., space proper, degrees of locality with respect to semantic distance,

abductive connections between symbols, causal relations, etc. If these (alpha- and beta-synchronized) structured representational dynamics and associated

predictions afford world models with spatial, temporal, and causal coherence, these processes may entail phenomenal consciousness. Even larger integrative SOHMs

may tend to center on long-distance white matter bundles establishing a core subnetwork of neuronal hubs with rich-club connectivity (van den Heuvel and Sporns,

2011). If hippocampal-parietal synchronization is established (typically at theta frequencies), then bidirectional pointers between neocortex and the entorhinal system

may allow decoders to generate likely patterns of data according to trajectories of the overall system through space and time, potentially enabling episodic memory

and imagination. If frontal-parietal synchronization is established (potentially involving theta-, alpha-, and beta- synchrony), these larger SOHMs may also correspond

to “ignition” events as normally understood in Global Neuronal Workspace Theory, potentially entailing access consciousness and volitional control.

TABLE 6 | Proposed correspondences between turbo coding in artificial neural networks and biological neural dynamics.

Turbo codes in artificial neural networks Proposed correspondences in brains

Take data and distribute bits over two encoder–decoder networks. Each sensory modality can be modeled as a noisy channel.

Generate a posterior probability estimate of the signal in one of the networks. Within modalities, bottom-up updated states of deeper hierarchical levels calculate

local posteriors (possibly taking the form of locally synchronized fast beta complexes).

Take the posterior from this network and propagate that belief as a prior to

inform the calculation of a joint posterior for the other network.

Between modalities, auto-associative linkages across deeper hierarchical levels allow

posteriors to be shared as empirical priors (possibly taking the form of larger and

slower beta complexes).

Pass this message back to the original network as priors to inform the

calculation of a new posterior.

Modalities are likely to be reciprocally connected, particularly in proximity to

association cortices.

Repeat steps 3 and 4 until loopy belief propagation converges. The formation of cross-modal synchronized complexes (at slower beta, alpha, and

theta) frequencies may entail loopy message passing across modalities via

self-organizing harmonic modes (SOHMs).

Result: Highly reliable data transmission even under highly noisy circumstances. Result: Highly reliable perceptual inferences from noisy and ambiguous sensory

information.

we may finally begin to have prima facie reasons to believe that
such processes could generate subjective experience.

Global workspaces have been analogized as functioning as
(non-Cartesian) theaters (Dehaene, 2014) in which information
is rendered visible to otherwise isolated modules, with attention
acting as a “spotlight” prioritizing some contents over others.
Similar metaphors for awareness have been used by Crick and
Koch (2003) with their neuronal coalitions model and also
by Hobson and Friston (2016) in suggesting that frontal lobe
ensembles produce awareness when they “look” at posterior
sensory information. While the implication of some sort of
little person in the brain, or homunculus, is nearly universally

reviled, this dismissal may be a significant part of the Hard
problem’s intractability. That is, in attempting to do away
with homunculi, cognitive science may have lost track of
the importance of both embodiment and centralized control
structures. If “cognition” is primarily discussed in the abstract,
apart from its embodied–embedded character, then it is only
natural that explanatory gaps between brain and mind should
seem unbridgeable. IWMT, in contrast, suggests that many quasi-
Cartesian intuitions may be partially justified. As discussed
in Safron (2019a,c), brains may not only infer mental spaces,
but they may further populate these spaces with body-centric
representations of sensations and actions at various degrees of
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detail and abstraction. From this view, not only are experiences
re-presented to inner experiencers, but these experiencers may
take the form of a variety of embodied self-models with degrees
of agency. In these ways, IWMT situates embodiment at the core
of both consciousness and agency, so vindicating many (but not
all) folk psychological intuitions.

With respect to the meta-problem, one could imagine
postulating a “Hard problem” of generative models in machine
learning, for which an unbridgeable explanatory gap may be
perceived between the remarkable ability of these architectures
to generate rich and novel stimuli (e.g., an “imagined”
face), contrasted with the determinism of their underlying
computations. Yet this seemingly intractable problem could then
be solved via deeper technical understanding. IWMT proposes
that this epistemic situation may be analogous to the one we
face with consciousness. Rather than the “Hard problem” being
reduced to many “easy problems”—and so being (dis-)solved as
we discover we were asking the wrong question—it may be the
case of this most challenging and profound problem actually
being solved through the discovery of sufficiently powerful
bridging principles. IWMT suggests such principles may be
finally available by using FEP-AI to integrate leading theories
of consciousness.
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