
Machine Learning, 21,235-267 (1995)

@ 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

An Integration of Rule Induction and Exemplar-Based Learning

for Graded Concepts

JIANPING ZHANG
Department of Computer Science, Utah Stare University, Logan, Utah 84322-4205

RYSZARD S. MICHALSKI
Artificial Intelligence Center, George Mason UniversiO; Fai.rfax, VA 22030

jianping@ zhang.cs.usu.edu

michalsld @ aic.gmu.edu

Editor: John Grefenstette

Abstract. This paper presents a method for leaming graded concepts. Our method uses a hybrid concept

representation that integrates numeric weights and thresholds with mies and combines rules with exemplars.

Concepts are learned by constmcting general descripfions to represent common cases. These general descriptions

are in the form of decision mies with weights on conditions, interpreted by a similarity measure and numeric

thresholds. The exceptional cases are represented as exemplars. This method was implemented in the Flexible

Concept Leaming System (FCLS) and tested on a variety of problems. The testing problems included practical
concepts, concepts with graded structures, and concepts that can be defined in the classic view. For comparison,

a decision tree learning system, an instance-based leaming system, and the basic rule learning variant of FCLS
were tested on the same problems. The results have shown a statisfically meaningful advantage of the proposed
method over others both in terms of classification accuracy and description simplicity on several problems.

Keywords: learning from examples, graded concepts, exemplar-based learning, concept leaming

1. Introduction

In real world applications, many concepts are defined in an inherently imprecise manner.

Such concepts are referred to asflexible concepts (Michalski, 1990). The imprecision can

be due to undefined boundaries (as in prototype representations), boundaries defined only

within some range, graded boundaries (as in fuzzy sets), context-dependent boundaries,

or a combination of the above. This paper concentrates on the representation of flexible

concepts with graded boundaries or graded degrees of membership (Smith & Medin, 1981;

Barsalou, 1985). Such concepts are called graded concepts in the rest of this paper. The

basic ideas of our method have a direct link to the original work and existing papers on

flexible concepts (Michalski, 1990; Bergadano, Matwin, Michalski, & Zhang, 1992). This

paper presents a new approach and a significant extension of earlier ideas.

Examples of graded concepts are usually not all equivalent. They may be characterized

by a degree of typicali ty in representing the concepts, which can be viewed as the degree

to which an example shares the common concept properties (Rosch and Mervis, 1975).

Concept representations used in many learning systems, e.g. decision trees (Quinlan, 1986)

and logic-type representations such as decision rules (Michalski, 1983), are not appropriate

for describing these concepts. This is partly because they represent a concept through a

single symbolic description. Using such a single description makes it difficult to capture

the graded nature of a concept. This problem was well recognized by Michalski, Mozetic,

Hong, & Lavrac (1986) and Quinlan (1987). This paper presents a method for learning

236 J. ZHANG AND R.S. MICHALSKI

graded concepts. This method was implemented in the Flexible Concept Learning System

(FELS).

FeLS employs a novel hybrid representation for describing graded concepts. The hy-

brid representation is a simple but powerful form of a two-tiered concept representation

(Michalski, 1987; 1990). This representation integrates weights and thresholds into rules

and combines rules with exemplars. Each rule consists of a conjunction of weighted con-

ditions and a threshold. A rule in FeLS is called a Weighted Threshold Rule, or WTR. The

conditions of a WTR explicitly describe the central tendency of a graded concept, while a

partial matching method and the threshold extend the WTR to describe less typical cases

of the concept. WTRs can be viewed as generalized exemplars that cover common cases of

a concept, whereas specific examples may be stored as exemplars to describe exceptions.

FeLS can estimate a concept member's degree of typicality. In general, our hybrid repre-

sentation consists of three elements: a symbolic element (conditions), a numeric element

(weights and thresholds), and an exemplar element.

The FeLS inductive learning algorithm generates a concept description as a set of WTRs

and/or a set of zero or more exemplars. It learns in batch mode. In the process of learning

it adjusts both the symbolic (conditions) and numeric (weights and thresholds) aspects of

the hybrid representation to achieve the best fit between a concept description and given

concept examples. It also adjusts the distribution between WTRs and exemplars.

The ideas in FeLS were developed from POSEIDON (Bergadano, et al., 1992), a system

that learns flexible concepts, and exemplar-based learning methods (Aha, Kibler, & Albert,

1991; Salzberg, 1991). Both FeLS and POSEIDON utilize two-tiered concept representa-

tions and perform partial matching. FeLS departs from POSEIDON in two aspects. First,

rules in POSEIDON do not have weights and thresholds, and its partial matching procedure

is predefined. In FELS, each rule is associated with a set of weights and a threshold, and the

partial matching procedure is adjustable during learning. Second, learning in POSEIDON

is divided into two steps. The first step applies AQ15 (Michalski, et al., 1986) to generate

a complete and consistent concept description. The second step optimizes the complete

and consistent description generated in the first step by removing some of its components

(disjuncts or conjuncts). Thus, the final concept descriptions generated by POSEIDON

depend on the descriptions generated by AQ15. In FELS, each time a rule is generated,

the rule is optimized by calculating weights of conditions and the threshold. Details and

experimental results of the comparison of these two approaches are discussed in Section 7.

Exemplar-based learning (Smith & Medin, 1980; Bareiss, 1989; Aha, et al., 1991;

Salzberg, 1991; Zhang, 1992) was proposed to learn graded concepts. FeLS can be viewed

as an extension of exemplar-based learning. First, aWTR actually is a generalized exemplar.

Second, specific exemplars may be stored as a part of a concept description.

FeLS was tested on a variety of problems. These problems included learning practical

concepts such as congressional voting and !ymphatic cancer, graded concepts such as n-of-

m concepts, and concepts that are represented as DNF functions. To see how the method

compares with others, the decision tree learning system C4.5 (Quinlan, 1987), an instance-

based approach (Aha, et al., 1991), and an AQ-like rule learning system (Michalski, et

al., 1986; elark & Niblett, 1989) were applied on the same problems. FeLS was also

empirically compared with POSEIDON and NGE, an exemplar-based learning method

(Salzberg, 1991). The results have shown a statistically significant advantage of FeLS

over the other methods both in terms of classification accuracy and description simplicity

in graded concepts. Improvements have also been achieved on real problems.

RULE INDUCTION AND EXEMPLAR-BASED LEARNING 237

2. Concept Representation

The hybrid concept representation used in FCLS consists of a set of decision rules, a set of

exemplars, and a similai'ity measure. Each decision rule is represented as a WTR, which

consists of both a symbolic and a numeric element. The symbolic element is a conjunction

of conditions that explicitly describes the central tendency ofa graded concept. The numeric

element consists of a set of weights and a threshold. The weight of a condition reflects its

degree of necessity, while the threshold defines the boundary of the WTR. Exemplars are

specific examples. The similarity measure determines the similarity between an example

and a WTR (or an exemplar). The following subsections describe each of the components

in depth.

2.1. Weighted Threshold Rule (WTR)

A WTR is composed of a conjunction of conditions called a disjunct, a set of weights and

a threshold. A disjunct is represented as a VL1 complex (Michalski, 1983). Each complex

is a conjunction of selectors (conditions), each of which is a relational expression:

[A = V]

where A is an attribute, and V is a value or a disjunction of values from the domain of A.

Each condition is associated with a weight. Its value ranges from 0 to ~z. A larger

weight means a more necessary condition. A condition with a 0 weight is irrelevant and

can be ignored, while a condition with a ~ weight is a necessary condition. Any value

other than 0 and infinity' reflects the relative necessity of the condition in comparison with

other conditions in the same WTR. For example, if the weights of all conditions of a WTR

are equal, then all conditions are equally important regardless of the value of these weights.

Weights are computed during learning.

In addition to weights, each WTR has a threshold that is a real number between 0 and 1

inclusive. A threshold defines the boundary of a WTR. An example is covered by a WTR

if its similarity to the WTR is larger than or equal to its threshold. When the threshold is

equal to 1, all the conditions of the WTR must be satisfied in order to match the WTR.

Thresholds are adjusted during learning.

2.2. Similarity Measure

The similarity measure determines the similarity between an example and a WTR (of an

exemplar). It maps an example and a WTR to a real value between 0 and 1. The similarity

of an example e and a WTR is defined as the inverse function of their distance normalized

by the largest possible distance between an example in the example space and the WTR.

Specifically, it is calculated as:

Distance(e, WTR)
Similarity(e, WTR) = 1 -

MAXi=I...n {Distance(ei, WTR) }'

238 J. ZHANG AND R.S. MICHALSKI

where el en are allthe examples in the example space. Distance (e, WTR) is a weighted

Manhattan distance between e and WTR:

= ~ weight(WTR_ci) • Distance(e, WTR_ci), Distance(e, WTR)

i

where WTR_ci is a condition of WTR, weight(WTR_ci) is the weight of the condition

WTR_ci, and Distance(e, WTR_ci) is the distance between e and WTR_ci. Conditions with

a cx~ weight are ignored when calculating Distance(e, WTR). Similarity(e, WTR) is set to

0 if there exists some eo weighted condition that is not satisfied by e.

The distance between an example and a condition depends on the type of the attribute

involved in the Condition. An attribute can be either nominal or linear. A nominal condition

relates a nominal attribute to a single or an internal disjunction of values. This distance is

0 when the example's attribute value matches one of these values and is otherwise 1. A

linear condition relates a linear attribute to a range of values or an internal disjunction of

ranges (e.g., [height = 1 . . . 3 v 6 . . . 9]). A satisfied condition returns the value of distance

0. The distance between an example and an unsatisfied condition is the difference between

the example's attribute value and the nearest end-point of the interval of the condition,

normalized by the largest possible distance between the attribute values and the condition.

For example, if the domain of x is [0 . . . 10], the value of x for the example e is 4, and the

condition c is [x = 7 .. .9], then Distance(e, c) = 7-~ -- 7 " 7 - 4 _ _ 3

We use a different similarity measure from the one used in AQ15 (Michalski, et al., 1986)

for two reasons. First, the measure in AQ15 does not calculate distances. Second, selectors

are not weighted in AQ15.

2.3. Exemplars

An exemplar is an example of the concept to be learned, and can be represented as a WTR.

The disjunct of the WTR is the example itself, and the threshold and weights are set to 1.

An exemplar can be partially matched (see Section 3).

2.4. Examples of the Hybrid Representation

To illustrate the idea of the hybrid representation, let us consider a simple imaginary concept

R-bail (Michalski, 1990). The meaning of the concept R-ball is defined as three disjuncts:

(SHAPE = round) & (BOUNCES = yes) or

(SHAPE = round) & (SIZE = medium v large) or

(BOUNCES = yes) & (SIZE = medium v large)

By using the hybrid representation, these three disjuncts merge into one WTR:

[SHAPE = round: 1]

[BOUNCES = yes : 1]

[SIZE = medium v large : 1]

2
Threshold = - = 0.67

RULE INDUCTION AND EXEMPLAR-BASED LEARNING 239

The number following a condition is its weight. This WTR includes three conditions:

[SHAPE = round] & [BOUNCES = yes] & [SIZE = medium v large],

which represent the central tendency of the concept R-ball. Each condition is equally

important. The meaning defined by the WTR is that an object that satisfies any two or more

of the three conditions is a R-ball, otherwise it is not. Balls that satisfy all three conditions

are the typical ones, while those that only satisfy two of the three conditions are less typical.

Now suppose the rneaning of the concept R-ball changes a bit and all R-balls must be

round. The new meaning of the concept is now defined by two disjuncts:

(SHAPE = round) & (BOUNCES = yes) or

(SHAPE = round) & (SIZE = medium v large)

These two disjuncts are combined into one WTR:

[SHAPE = round : ~]

[BOUNCES = yes : 1]

[SIZE = medium v large : 1]

1
Threshold = - = 0.5

2

In this WTR, the condition [SHAPE = round] is a necessary condition and must be satisfied

by all R-balls. The other two conditions are not necessary conditions; only one of them

must be satisfied.

Suppose that the attribute SIZE is linear and the order of its values is small, medium, and

large. The WTR representing R-ball becomes:

[SHAPE = round : 0]

[BOUNCES = yes : 1]

[SIZE = large : 1]

1
Threshold = - = 0.25

4

An R-ball with a large size is more typical than an R-ball with a medium size. For example,

consider four R-balls: Rb l (round yes large), Rb2 (round yes medium), Rb3 (round yes

small), and Rb4 (round no medium). Their similarities to this WTR are:

0 + 0 + 0
Similar i ty(Rbl , WTR) = 1 -- 1,

2

0 - t - 0 + 0 . 5 3
Similari ty(Rb2, WTR) = 1 2 -- 4 '

0 + 0 + 1 1
Similari ty(Rb3, WTR) = 1

2 2 '

Similari ty(Rb4, WTR) = 1 0 + 1 + 0.5 1
2 4

so Rbl is more typical than Rb2, which is more typical than Rb3, which is more typical

than Rb4.

2 4 0 J, ZHANG AND R.S. MICHALSKI

Di ~ Concept boundary

Figure L An illustration of the hybrid concept representation.

Figure 1 graphically shows how a graded concept is described by this concept represen-

tation. In this figure, the area inside the ilxegular shape is the space covered by the graded

concept that is described by one WTR (the circle) and 6 exemplars (+). The rectangle inside

the circle is the disjunct of the WTR that describes the central tendency of the concept.

3. Partial Matching

A two-step partial matching method was implemented in FCLS to match an example with

a WTR. In the first step, an example is covered by a WTR if its similarity to the WTR is

not smaller than the WTR's threshold. The examples covered by no WTR are referred to

as no-match examples, while the examples covered by more than one WTR are referred

to as multiple-matched examples. The first step of the partial matching method fails to

classify no-match and multiple-matched examples. To classify no-match and multiple-

matched examples, the second step was proposed. In the second step, the classification

of a no-match or a multiple-matched example is determined by its relative similarity to

WTRs of all concept descriptions. An example is classified to a concept if its relative

similarity to one of the WTRs of the concept description is the largest among WTRs of all

concept descriptions. The relative similarity between a WTR and an example e is defined

as follows:

Relative_Similarity(e, WTR)

1 e ~ covered(WTR)/x WTR_t = 1

- - Sig~i!ariW(e'WTR)-WTR=f' covered(WTR) A WTR_t ¢ 1
- - / I-WTR-t e C

/ Similari tY(e~WTR) =WTR={
WTR_t e ~ covered(WTR)

where WTR_t is WTR's threshold and covered(WTR) is the set of all examples covered

by \V'I~. When WTR_t = 1 and e is covered by WTR, e satisfies all WTR's conditions

so Relative_Similarity (e, WTR) = 1. The relative similarity of an example to a WTR that

covers it is between 0 and 1 inclusive. The relative similarity of an example to a WTR that

does not cover it is between 0 (exclusive) and - 1 (inclusive). Therefore, a covered example

always has a lm'ger relative similarity than an uncovered example.

RULE INDUCTION AND EXEMPLAR-BASED LEARNING 241

Another important reason for proposing the two-step partial matching method is that

exemplars can be partially matched. Because the threshold of an exemplar is 1, an exemplar

cannot be partially matched if only the first step is applied. When the second step is applied,

an exemplar can be partially matched.

4. The FCLS Learning Algorithm

The learning task of FCLS is to generate a concept description for each given concept

from a set of examples. Each concept description is a disjunction of WTRs and/or a set of

exemplars. This section describes the FCLS learning algorithm.

4.1. The FCLS Learning Algorithm

Table 1 shows the FCLS learning algorithm. The input of FCLS includes a set of exam-

ples with their concept memberships and a number of parameter values. The output is a

disjunction of WTRs and/or a set of exemplars for each given concept.

The parameter Max~rr_Rate is the maximum error rate that a WTR (of a descrip-

tion) is allowed to have. The error rate of a WTR (of a description) is the ratio of the

number of negative examples covered to the total number of examples covered by the

WTR (or the description). The parameter Min_Coverage is the minimum fraction of all

positive examples that a WTR must cover. A Max~Err~ate of 0 forces FCLS to pro-

duce consistent and complete descriptions. Max_Err_Rate is useful for tolerating noise.

Min_Coverage controls the distribution of a concept description between WTRs and exem-

plars. A larger value ofMin_Coverage favors exemplars, while a smaller one favors WTRs.

When Min_Coverage = 0, no exemplar is generated and concept descriptions include only

generalized WTRs. When Min_Coverage = 1, the concept description includes only exem-

plars so that the learning algorithm becomes pure exemplar-based learning. The parameters

Beam_Width and Max_Tries are discussed in Sections 4.2 and 4.3, respectively. We now

define acceptable WTRs.

Table 1. The FCLS learning algorithrn.

FCLS(Examples, Max_Err-Rate, Min_Coverage, Beam_Width, Max_Tries)

1. Descriptions <- Empty

2. Repeat

2.1 Current_Concept <- Select_Current_Concept(Descriptions, Examples)

2.2 WTRS <- WTR_Generating(Current_Concept, Examples, Max_Err_Rate,

Min_Coverage, Beam_Width).

2.3 WTR <- WTR_Optimizing(Current_Concept, Examples, WTRS, Max-Err_Rate,

Min_Coverage, Max_Tries, Beam_Width).

2.4 If WTR < > NULL then Descriptions <- Descriptions + WTR

Until Error_Rate(Descriptions) < Max~rr_Rate or WTR = NULL

3. While Error_Rate(Descriptions) > Max_Err_Rate

3.1 Current_Concept <- Select_Current_Concept(Descriptions, Examples)

3.2 Descriptions <- Descriptions + Select_One_Exemplar(Current_Concept, Examples).

4. Return Descriptions

242 J. ZHANG AND R.S. MICHALSKI

A WTR is acceptable if:

(1) t' > Min_Coverage and
Ptotal

(2) n < Max_Err_Rate,

where p(n) is the number of positive (negative) training examples covered by the WTR,

and Ptotal is the total number of positive training examples.

FCLS works in an iterative fashion. In each iteration the concept description with the

largest error omission is selected by the function Select_Current_Concept as the current

concept. The current concept is then generalized. Generalization in FCLS consists of two

iterative processes: WTR generation and exemplar selection. The WTR generation process

generates a disjunction of acceptable WTRs for each concept, while the exemplar selection

process selects a set of exemplars. Each iteration of the WTR generation process tries

to generate an acceptable WTR for the selected concept: Current_Concept. The function

Select_Current_Concept selects the concept with the largest error of omission (i.e., the

percentage of uncovered positive examples) as Current_Concept. The WTR generation

process is composed of two algorithms: WTR generating and WTR optimizing. The WTR

generating algorithm generates a set of WTRs with unitary weights and thresholds, and

performs neither weight learning nor threshold adjusting. The WTR optimizing algorithm

optimizes the WTRs generated by the WTR generating algorithm through learning weights

and adjusting thresholds. If an acceptable WTR is generated, then the WTR optimizing

algorithm returns it, and otherwise it returns NULL.

WTR generation is an iterative process that is repeated until either no acceptable WTR can

be generated or the error rate of the descriptions generated is not larger than Max_ErrA~ate.

The error rate of descriptions is the fraction of all training examples that are not correctly

classified by the two-step partial matching method.

If the error rate of generated descriptions is larger than Max_Err_Rate, then FCLS selects

a set of exemplars to reduce the error rate. The algorithm for selecting exemplars is similar

to IB2 (Aha, et al., 1991). Each iteration of the exemplar selection algorithm selects an

incorrectly classified example as an exemplar of the selected concept Current_Concept, then

reclassifies all remaining incorrectly classified examples. This process is repeated until the

error rate is no longer larger than Max~rr_Rate.

4.2. The WTR Generating Algorithm

The WTR Generating algorithm first generates a set of most general disjuncts whose error

rate is not larger than Max~rr~ate. These disjuncts are then converted to WTRs by setting

all weights and thresholds to 1. Table 2 summarizes the WTR generating algorithm.

This algorithm is similar to the AQ algorithm (Michalski, 1983) and performs a general-

to-specific beam search. The beam width is specified by Beam_Width. CurrentJ)isjuncts

stores Beam_Width disjuncts that have the highest potential for improvement and is ini-

tialized to the most general disjunct, which covers the entire example space. During each

cycle, the error rate of each disjunct in Current_Disjuncts is tested. If the error rate of a dis-

junct is not higher than Max_Err_Rate, then the disjunct is added into Consistent_Disjuncts.

Otherwise, the disjunct is specialized by removing a value from one of its conditions. This

specialization is repeated for each condition of the disjunct. The value to be removed from

a condition is chosen to maximize the number of negative examples and minimize the num-

ber of positive examples excluded from the disjunct. This value is chosen by the function

RULE INDUCTION AND EXEMPLAR-BASED LEARNING

Table 2. The WTR generating algorithm.

243

WTR_Generating(Current_Concept, Examples, Max ErrAtate, Min_Coverage, Beam_Width)
1. Current_Disjuncts <- {Most_GeneralA)isjunct}
2. Consistent_Disjuncts <- empty.
3. Repeat

3.1 New_Disjuncts <- Empty
3.2 For each Disjunct in Current.Disjuncts

if error-rate(Disjunct) < Max-Err_Rate,
then Consistent_Disjuncts <- Consistent_Disjuncts + Disjunct
else For each condition [A --= v l -.- vn] of Disjunct, if n > 1 then

i. V <- Select_Value({vl vn }, Disjunct, Current_Concept, Examples)
ii. if V < > NULL

then Disjunct <- Remove V from [A = vl - -- vn] of Disjunct
Disjunct_Potential_Quality (Disjunct)
New_Disjuncts <- New_Disjuncts + Disjunct

3.3 Current_Disjuncts <- Select_Best_Disjuncts(NewA)isjuncts, Beam_Width)
Until CurrentA3isjuncts = empty

4. Consistent_Disjuncts <- Select_Best_Disjuncts(Consistent_Disjuncts, Beam_Width)
5. Return ConvertAgisjuncts_To_WTRs(Consistent_Disjuncts)

Select_Value. If only one value is involved in a condition, then Select_Value returns NULL.

This iteration yields several new disjuncts, each of which covers fewer negative examples.

Each new disjunct is evaluated for its potential quality by the Disjunct Potential Qual-

ity Evaluation Function. Select_~est_Disjuncts selects Beam_Width new disjuncts with the

highest potential qualities and stores them in CurrentA)isjuncts. When Current_Disjuncts is

empty, the Beam_Width disjuncts with the highest potential quality in Consistent_Disjuncts

are converted to WTRs by setting their weights and thresholds to 1 and are returned.

The potential quality of a disjunct consists of two parts: current quality and potential

improvement. Current quality is computed based on the completeness and consistency of

a disjunct, while potential irnprovement is an estimate of how rauch improvement can be

achieved on the basis of the disjunct's current quality. A disjunct with a low current quality

is probably not worth being improved, even though it has a high potential irnprovement. A

disjunct with a low potential improvement has little chance for further improvement.

The current quality of a disjunct is computed based on the number of positive and negative

examples covered by the disjunct. The potential improvement of a disjunct is computed

based on the distribution of the covered positive examples and negative examples. Some

distributions make a disjunct rauch easier to be improved than the others. For example,

Fig. 2 shows two disjuncts DNT1 and DNT2 that cover the same number of positive and

negative examples; they have the same current quality. However, DNT1 is rauch easier to

improve than DNT2 because the positive examples covered by DNT2 are scattered, while

the positive examples covered by DNT1 are concentrated. A disjunct with dispersed covered

positive examples is har d to improve, so it has a low potehtial improvement. A disjunct with

concentrated covered positive examples can be easily specialized to a consistent disjunct,

so it has a high potential improvement.

The Disjunct Potential Quality evaluation function is defined as a product of two parts:

Disjunct_Potential_Quality(d) = P , Disjunct_PotentialJmprovement(d)
Ptotal

244 J . Z H A N G A N D R . S . M I C H A L S K I

xl

+ + + +

+ + + +

DNT1

il i

(a)

- + +

+ + + +

+ +
i,

D N T 2

x l

x2 x2
v v

(b)

Figure 2. Illustration of the difference between the quality and potential improvement of disjuncts: DNT1 and

DNT2 have the same quality, but DNT1 has a higher potential imprõvement than DNT2.

where d is the disjunct to be evaluated, p is the number of positive examples covered by

d, and Ptotal is the total number of positive examples. Disjunct_Potential_Improvement(d)

includes two aspects: consistency and the distribution of the covered positive and negative

examples.

Assume that the disjunct d is represented as:

d = [A1 = v n V . . . VVlml]&. . .&[A~ = v n l V . . . VVnmù]

where A1 to An are all attributes. For each attribute A i (1 < i < n), its importance to d

Importance(Ai, d) is computed as follows:

Importance(Ai, d) = ~ (pil~ * qik)

k = l . . . m l

Ip ,cvd(d) n Eikl

Pik = [p-cvd(d) l

[p_cvd(d) Cl Eik]

qik = [(cvd(d) N Eik[)

where p_cvd(d) is the set of all positive examples covered by d, cvd(d) is the set of

all examples covered by d, and Eik is the set of all examples whose value of A i is Vik.
] p _ c v d (d) [Ip-cvd(d)l < Importance(Ai, d) < 1. When qik = for k = 1, im, covered

I c v d (d) l - - - -] c v d (d)] " " ' '

positive and negative examples are equally distributed over all values of the attribute Ai .

Thus, Importance(Ai, d) takes the smallest value: Ip-cvd(d)l When qik is either 1 or 0 for
I c v d (d) l "

k = 1, . . . , im, both covered positive and negative examples are highly concentrated so

Importance(Ai, d) = 1. In such a case, d can be specialized to a consistent disjunct by

removing all values of A i with qik = O.

Disjunct_Potential_Improvement(d) is defined as the probabilistic sum of Importance-

(A i, d) for (1 < i < m). The probabilistic sum of Importance(A 1, d) and Importance(A2, d)

is defined as follows:

Disjunct_Potential_Improvement(d) = Importance(A1, d) + Importance(A2, d)

-Importance(A1, d) • Importance(A2, d)

One characteristic of the probabilistic sum is that if one of Importance(Ai, d) (1 < i < m)

is equal to 1, then Disjunct_Potential~mprovement(d) = 1.

RULE INDUCTION AND EXEMPLAR-BASED LEARNING 245

4.3. The WTR Optimizing Algorithm

The WTR optimizing algorithm optimizes WTRs by adjusting their weights and thresholds

to best fit training examples. The boundary of a WTR is defined by its threshold. Decreasing

the threshold increases the WTR's coverage. To decrease the threshold of a WTR without

increasing its error rate, the similarities of nearly covered negative examples taust be re-

duced. A nearly covered example of a WTR is an example whose similarity to the WTR is

in the range of WTR_t (the threshold of WTR) and WTR_t - A. A is a function of all the

weights of WTR i. One way to reduce the similarities of nearly covered negative examples

is to specialize the disjunct of a WTR by removing some values of a condition. The value

chosen for specialization occurs on many nearly covered negative examples and few nearly

covered positive examples. Thus, a WTR is optimized by specializing its disjunct and

decreasing its threshold.

The WTR optirnizing algorithm is similar to the WTR generating algorithm in that

it also performs a general-to-specific beam search. In this algorithm, the threshold is

decreased, while the disjunct is specialized. Thus, a WTR is offen generalized although its

disjunct is specialized. Another major difference involves the different negative examples

that these two algorithms try to exclude. The WTR generating algorithm reduces the

number of covered negative examples, whereas the WTR optimizing algorithm reduces the

number of nearly covered negative examples. This difference is reflected in their different

potential quality evaluation functions and their methods for selecting values of a condition

for specialization. The potential quality of a disjunct is computed solely based on the

covered examples, while the potential quality of a WTR is computed based on covered

and nem'ly covered examples. In the WTR generating algorithm, the value of a condition

that occurs most frequently on covered negative examples and least frequently on covered

positive examples is selected for specialization, while in the WTR optimizing algorithm,

the value of a condition that occurs most frequently on nearly covered negative examples

and least frequently on nearly covered positive examples is selected for specialization.

After a threshold decreases, some nearly covered examples may become covered. There-

fore, a WTR with many nearly covered positive examples has a higher improvement potential

than a WTR with many nearly covered negative examples. In Fig. 3, the two circles are the

boundaries of two distinct WTRs, and examples (+ for positive and - for negative) inside

the boundary of each WTR are its covered examples, while examples outside and near the

boundary of each WTR are its nearly covered examples. WTR1 has a quality higher than

WTR2, because WTR1 covers no negative examples. However, WTR1 has little potential

+ -Q: ~'@
- +

WTR1 WTR2

Figure 3. Illustration of the potential improvernent of a weighted threshold rule (WTR): WTR2 has a lower

quality than WTR 1, hut a higher potential improvement.

246 J. ZHANG AND R.S. MICHALSKI

improvement, because all its nearly covered examples are negative examples. In contrast,

WTR2 has a lower quality, but a larger potential improvement.

The potential quality of a WTR is computed based on both covered and nearly covered

examples.

WTR_Potential_Quality(WTR) -- WTRpos__ • WTRpos
pos WTRpos + WTRneg

W T R p o s = ~ C_Value(e, WTR)

e E WTRpos ~:overed UWTRpos-nearly-c~wered

WTRneg = ~ C_Value(e, WTR)

e EWTRneg _covered UWTRneg _aearly- cover~

{ 1 e E WTRcovered
WTR_t - Simitarity (e, WTR)

C_Value(e, WTR) = 1 - 0.5 • wrR.~-(wTrLt-Æ) e C WTRnearly-covere d

WTRpos (WTRneg) is the sum of C_Values (Coverage Values) of positive examples (negative

examples). The C_Value of a covered example is 1. The C_Value of a nearly covered

example ranges from 0.5 to 1, depending on the distance to the threshold. The closer to

the threshold it is, the higher its C_Value. WTRpos_coverea (WTRneg_covered) is the set of

all positive (negative) examples covered WTR. WTRpos_nearly-cevered (WTRneg_nearly-covered)

is the set of all nearly covered positive (negative) examples. WTRcovered is all examples

covered and WTRnearly-covered are all examples nearly covered.

Table 3 shows the WTR optimizing algorithm. Current_WTRs is a list of length

BEAM_WIDTH of WTRs to be improved and is initialized to the WTRs generated by the

WTR generating algorithm. These initial WTRs are optimized by computing their weights

and thresholds. Best_WTR stores the WTR with the highest quality and is initialized to the

acceptable WTR with the highest quality in Current_WTRs.

As in most inductive learning systems, the quality of a WTR is evaluated based on its

completeness and consistency with regard to the training examples. Generally, one can

gain completeness at the expense of consistency, or one can gain consistency by sacrificing

completeness. They are two competing criteria. For this reason, the quality evaluation func-

tion is defined as the product of these two parts: normalized completeness and normalized

consistency.

Quality(WTR) = Normalized_Completeness(WTR) * Normalized_Consistency(WTR)

Normalized_Consistency(WTR)

l
1

0

= [Max_Err_Rate,-- p-~ /
[m a x / M"x-arLaate , 0 /

MaxA~rr_Rate = 0 A n = 0

MaxA~rr_Rate = 0 A n > 0

otherwise

Normalized_Completeness (WTR)

10 { Min_Coverage = 1
_..f._e -Min_Coverage I

m a x 1-Min_Coverage] otherwise

where Ptotal represents the total number of positive examples, and p and n are the number

of positive and negative examples covered by WTR, respectively. When the completeness

of a WTR is not larger than Min_Coverage, the WTR is not acceptable. In such cases,

RULE INDUCTION AND EXEMPLAR-BASED LEARNING

Table 3. The WTR optimizing algorithm.

247

WTR_Optimizing(Current_Concept, Examples, Initial_WTRs, Max_ErrARate,

Min_Coverage, Beam_Width, MAX_TRIES)

1. Current_WTRs <- Initial_WTRs

Best_WTR <- Empty

2. For each WTR in Current_WTRs

WTR <- W¢ight_Learning(WTR)

WTR <- Threshold~djusting(WTR)

if Acceptable(WTR) and (Best_WTR = Empty or Quality(WTR) > Quality(Best_WTR))

then Best_WTR <- WTR

3. Repeat

3.1. NEW_WTRs <- empty

3.2. For each WTR in Current_WTRs

For each condition [A = vl ... vn] ofWTR, ifn > 1 then

i. V <- Select_Value({vl vn },WTR, Current_Concept, Examples)

il. if V <> NULL

then WTR <- Remove V from [A --- Vl... vn] of WTR

WTR <- Weight_Learning(WTR)

WTR <- Threshold_Adjusting(WTR)

WTR_Potential_Quality (WTR)

if Acceptable(WTR, Max_Err_Rate, Min_Coverage) and

Quality(WTR) > Quality(Best_WTR)

then Best_WTR <- WTR

No_Improvement <- 0

else No_Improvement <- No_Improvement + 1

New_WTRs <- New_WTRs + WTR

3.3. Current_WTRs <- Select_Best_WTRs(New_WTRs, Beam_Width)

Until No_Improvement > MAX_TRIES or Current_WTRs = empty

4. Return Best_WTR

Normalized_Completeness(WTR) = 0 and Quality(WTR) = 0. When the inconsistency of

a WTR is larger than or equal to Max~rr_Rate , the WTR is not acceptable. In such cases,

Normalized_Consistency(WTR) = 0 and Quality(WTR) = 0. This means that the quality

of an unacceptable WTR is equal to 0.

Like the WTR generating algorithm, this algorithm repeats the beam search until the

stop condition is satisfied. In each cycle of the loop, a set of new WTRs is generated.

Each newly generated WTR is evaluated by two functions: the Quality Evaluation Func-

tion and the WTR Potential Quality Evaluation Function. The acceptable WTR with the

highest quality replaces Best_WTR, if its quality is higher than or equal to Best_WTR's.

The Beam_Width new WTRs with the highest potential qualities are selected for further

improvement. MAX_TRIES is an integer parameter that controls the execution of the loop.

If Best_WTR has not been improved in MAX_TRIES steps, then the algorithm stops.

4.4. Weight Learning and Threshold Adjustment

In computing the weight of a condition, the algorithm counts the number of positive and

negative examples that do not match the condition. This weight learning algorithm is similar

to the one used in STAGGER (Schlimmer, 1987). Specifically, the weight of a condition c

248 J. ZHANG AND R.S. MICHALSKI

is calculated as:

weight(c) = p(unmatched [NEG)

p(unmatched I POS)

where p(unmatched I NEG) and p(unmatched I POS) are the fraction of negative and

positive examples that do not match with the condition c. When c is satisfied by all positive

examples, p(unmatched I POS) = 0 so weight(c) = oe and c is necessary. When c is

satisfied by all negative examples, p(unmatched I NEG) = 0 so weight(c) = 0. This case

seldom occurs, because such a condition is rarely generated by the learning algorithm.

The fewer negative exarnples that satisfy c, the larger p(unmatched I NEG) and weight(c).

The more positive examples that satisfy c, the smaller p(unmatched I POS), therefore the

larger weight(c). When both p(unmatched I NEG) and p(unmatched I POS) are equal to

0, weight(c) is set to 1.

The decrease in a threshold is divided into a number of steps; the threshold is decreased

by a fixed quantity 3 in each step. After each decrease, the coverage of the WTR is checked

to see if it covers more examples. If not, its threshold is again decreased by 6. This process

is repeated until the WTR covers more examples. Afterwards, the WTR is evaluated to

check if it has improved. If it has not improved in MAX_TRIES times, then the adjustment

of the threshold stops, and the threshold on which the WTR achieves the highest quality is

the threshold of the WTR. The quantity ~ decreased in each step for WTR is determined as

follows:

1 -- MINi=I...n { Similarity (ei, WTR) }

100

where el , en are the training examples.

4.5. Time Complexity o f FCLS

FCLS consists of two iterations: WTR generation and exemplar selection. WTR generation

is much more time consuming than exemplar selection, so we ignore the complexity of

exemplar selection. WTR generation repeats the WTR generating and the WTR optimizing

algorithms. Each iteration generates one WTR. The following subsections discuss the time

complexities for the WTR generating and WTR optimizing algorithms. Let n be the size

of the training set, a be the number of attributes, v be the maximum number of values of

an attribute, and b be Beam_Width.

4.5.1. Time Complexity o f the WTR Generating Algorithm. Because each iteration of the

WTR generating algorithm removes a value from a condition of a disjunct, the maximum

number of iterations (the Repeat Loop in Step 3 in Table 2) is a • v. The For Loop in Step

3.2 in Table 2 repeats b times. The else part of Step 3.2 in Table 2 executes at most a times.

The time taken to select a value of an attribute for specialization (the function Select_Value)

is O(n • v), plus the time taken to evaluate the potential quality of the disjunct, which is

O (a. n. v). Finally the time taken to select b best disjuncts from b. a disjuncts (the function

Select_Best_Disjuncts) is O (a • b • log(a • b)). Therefore, the overall time for the WTR

generating algorithm is O(a 3 . b • n . v2).

RULE INDUCTION AND EXEMPLAR-BASED LEARNING 249

4.5.2. Time Complexity o f the WTR Optimizing Algorithm. Similar to the WTR gener-

ating algorithm, the maximum number of iterations of the WTR optimizing algorithm (the

Repeat Loop of Step 3 in Table 3) is a • v. The outside For Loop of Step 3.2 in Table 3

repeats b times and the inside For Loop of Step 3.2 executes at most a times. The time taken

to generate a WTR (3.2.i and 3.2.ii in Table 3) is the sum of the time taken to select a value

of an attribute for specialization, to evaluate the potential quality and quality of the WTR,

to calculate weights, and to adjust the threshold. The time to select a value of an attribute is

O (v • n). Both the time to evaluate the potential quality and the time to evaluate the quality

are O(a • n . v). The time for weight learning is O (a . n . v). Each time the threshold is

adjusted, the potential quality and quality of the WTR are reevaluated. The time to match

a WTR and an example is the time to calculate the distance between the example and the

WTR. Its time complexity is O(a). The distance between an example and the WTR is fixed

during threshold adjusting. Therefore, we can cache all distances between all examples

and the WTR, so that we do not have to measure the distances each time the threshold is

adjusted. The time for threshold adjusting is O(n). The time taken to select b best WTRs

from b • a WTRs is O (b • a • log(b - a)). Finally, the overall time for the WTR optimizing

algorithm is O(a 3 • b • n . 02).

4.5.3. Summary. We now give the time complexity of the FCLS algorithm. The Repeat

Loop of Step 2 in Table 1 executes at most n times, because each WTR covers at least one

example that is not covered by other WTRs. Therefore, the time complexity of FCLS is
O(a 3 " b . n 2. 1)2).

4.5.4. Comparison with CN2 and C4.5. Whenallattributesarebinary, thetimecomplex-

ity z of CN2 is O (a 3 • b • n2). For binary attributes, the overall time for FCLS is the same

as that of CN2. According to (Utgoff, 1989), the time for constructing a tree (no pruning)

is O (a 2. n + 2 ~) for binary attributes. The actual run time of FCLS is larger than C4.5 and

CN2. This is caused by the weight learning, threshold adjusting, distance measuring, and

evaluation functions.

5. An Example Illustrating the FCLS Algorithm

Consider again the concept R-ball used in Section 2.4. In addition to the three attributes:

SHAPE, BOUNCE and SIZE, an irrelevant attribute COLOR that takes the values white

and black is added to the problem. Each object in the domain is now described by four

attributes. Table 4 shows all training examples. Examples 1 to 6 are positive examples, and

examples 7 to 12 are negative examples.

In this example, weight learning is ignored. Beam-Width, Max_Err~Rate, and Min_Cover-

age are set to 1, 0 and 0 respectively. First, the FCLS algorithm calls the WTR generating

algorithm, which starts with the most general disjunct:

[SHAPE = round v square][BOUNCE = yes v no]

[SIZE = large v medium v small][COLOR = white v black]

For each of the four conditions, the WTR generating algorithm chooses one value to

remove and generates four more specific disjuncts. For example, it chooses the value

250

Table 4.

J. ZHANG AND R.S. MICHALSKI

Positive and negative examples of the concept R-ball.

SHAPE BOUNCE S I Z E COLOR CLASS

1 round yes large white positive

2 round yes small black positive

3 square yes medium black positive

4 round no large white positive

5 round yes small white positive

6 square yes medium black positive

7 square no small black negative

8 round no small black negative

9 square yes small white negative

10 square no large white negative

11 round no small white negative

12 square yes small black negative

~quare to remove for the first condition, because removing the value square excludes more

negative examples (7, 9, 10 and 12) and fewer positive examples (3 and 6) from the disjunct

than removing the value round. This yields the following four new disjuncts:

[SHAPE = round][BOUNCE = yes v no][SIZE = large v medium v small]

[COLOR = white V black]

Examples Covered: 1, 2, 4, 5, 8, 11

[SHAPE = round v square][BOUNCE = yes][SIZE = large v medium x/small]

[COLOR = white v black]

Examples Covered: 1, 2, 3, 5, 6, 9, 12

[SHAPE = round v square][BOUNCE = yes v no][SIZE = large v medium]

[COLOR = white v black]

Examples Covered: 1, 3, 4, 6, 10

[SHAPE = round v square][BOUNCE = yes v no][SIZE = large v medium v small]

[COLOR = black]

Examples Covered: 2, 3, 6, 7, 8, 12

Assuming a beam width of one, one of the four disjuncts is selected based on its potential

quality for further improvement. For simplicity, we choose the most consistent disjunct:

[SHAPE = round v square][BOUNCE = yes v no]

[SIZE = large v medium][COLOR = white v black]

This disjunct covers four positive examples and one negative example, and has higher

consistency than the other three disjuncts. Repeating the same process, the following four

new disjuncts are generated:

[SHAPE = round][BOUNCE = yes v no][SIZE = large v medium]

[COLOR = white v black]

RULE INDUCTION AND EXEMPLAR-BASED LEARNING 251

Examples Covered: 1, 4

[SHAPE = round v square] [BOUNCE = yes][SIZE = large v medium]

[COLOR = white v black]

Examples Covered: 1, 3, 6

[SHAPE = round v square][BOUNCE = yes v no][SIZE = medium]

[COLOR = white v black]

Examples Covered: 3, 6

[SHAPE = round v square][BOUNCE = yes v no][SIZE = large v medium]

[COLOR = black]

Examples Covered: 3, 6

All of these four disjuncts cover no negative examples, but they cover different num-

bers of positive examples. The second disjunct, which covers the largest number of pos-

itive examples, is chosen as the output of the WTR generating algorithm. The following

disjunct:

[BOUNCE = yes][SIZE = large v medium]

Threshold = 1

serves as the initial WTR for the WTR optimizing algorithm. This initial WTR is first

optimized by decreasing its threshold. Table 5 shows the distances and similarities of all

examples to the above WTR. 3, the quantity to decrease in the threshold, is 0.01. The

threshold adjustment algorithm continues to reduce the threshold by 0.01 until more exam-

ples are covered (i.e., Threshold = 0.5). The 0,5 threshold does not improve the quality of

the WTR, so the threshold remains 1.

The W T R optimizing algorithm optimizes this WTR by specializing its disjunct and

decreasing its threshold. The way to specialize its disjunct is the same as in the WTR

generating algorithm (i.e., by removing a value from a condition). Because no value can be

removed from the condition [BOUNCE = yes], only three new WTRs are generated. The

Table 5. Distances and similarities of examples to [BOUNCE = yes] [SIZE = large v medium].

Examples D i s t ance Similarity

1 0 1

2 I 0.5
3 0 1

4 1 0.5

5 1 0.5
6 0 1

7 2 0

8 2 0

9 1 0.5
10 1 0.5
11 2 0
12 1 0.5

252 J. ZHANG AND R.S. MICHALSKI

following WTR is the best one of the three new WTRs:

[SHAPE = round] [BOUNCE = yes] [SIZE = large v medium]

Threshold = 1

This WTR is then optimized by reducing its threshold. Finally, the following WTR is

returned.

[SHAPE = round] [BOUNCE = yes] [SIZE = large v medium]

Threshold = 0.67

This WTR covers all six positive examples, none of the negative examples and is the final

description for the concept R-ball.

6. Empirical Evaluaüon

To evaluate FCLS, a number of experiments were conducted on various problems with

FCLS, C4.5 (Quinlan, 1993), and Iß3 (Aha, et al. 1991). Seven problems were used in

the evaluation. Three of them were designed to involve graded concepts so that FCLS was

expected to perform weil on them. The remaining four problems were 11-multiplexor, 4-

term 3DNF, cougressional voting records, and lymphatic cancer and used to test the FCLS's

applicability. In addition to the above experiments, some experiments were conducted to

evaluate the performance when exemplars were used in the hybrid representation and when

data contained noise.

6.1. Design of Experiments

In our experiments, we ran FCLS under three modes: learning DNF (DNF mode), learning

threshold rules (without weight learning, TR mode), and learning weighted threshold rules

(with weight learning, WTR mode). The algorithm for learning DNF is the WTR generating

algorithm described in Section 4.2. This algorithm generates a set of disjuncts as a concept

description, and it provides the performance baseline for TR and WTR modes. The TR

mode is the FCLS algorithm with only threshold adjusting but without weight learning. The

WTR mode is the FCLS algorithm with both threshold adjusting and weight learning. In

our experiments, we varied values of several parameters of C4.5 and the best results were

presented. We used rules generated by C4.5. C4.5 provides another performance baseline

for the FCLS method.

The performance was evaluated for two dependent variables: classification accuracy and

description complexity. Classification accuracy was measured as the percentage of correct

classifications made by the concept description on a set of test examples. The testing set

was either the entire space of examples or a set of randomly selected examples that were

not in the training set. Description complexity was measured by the numbers of rules (of

WTRs) and conditions involved in a description.

In all experiments, FCLS was run on training sets of various sizes. For each training set

size, FCLS was tun on ten different randomly generated training sets. The final descriptions

produced from these ten runs were tested for accuracy on a set of test examples, and

RULE INDUCTION AND EXEMPLAR-BASED LEARNING 253

measured for complexity respectively. The results reported are the average of the ten

runs. Beam_Width was set to three for all experiments. Max_Tries was set to five. Both

Min_Coverage and Max_Err_Rate were set to 0 for the experiments reported in Sections

6.2, 6.3 and 6.4, so the descriptions generated by FCLS were complete and consistent. The

experimental results with varying values of Min_Coverage are reported in Section 6.5.

6.2. Experiments on Designed Problems

The experiments described in this subsection were performed on three specially designed

problems, called designedproblem I to III. These problems were designed to test the novel

features in FCLS. All test sets included 1000 randomly selected examples and were disjoint

with all training sets.

Designed Problem I is an m-of-n concept and contains ten nominal attributes with four

values each: 0, 1, 2, and 3. The target concept has the general form of "at least k of n

conditions are satisfied." Specifically, the concept is "if and only if any five or more of

the first seven attributes of an example have value 0 or 1, then the example belongs to the

concept." This description can be compactly represented by one WTR:

[Xl = 0 v 1:1] &[x2 = 0 v 1:1] & [x3 ---- 0v 1:1] &[x4 = 0 v 1:1]

&[x5 = 0 v 1:1] &[x6 = 0v 1:1] & [X 7 = 0V 1:1]

Threshold = 5/7 = 0.71

where the number following a ":" is the weight of the condition. In a DNF representation,

21 disjuncts are needed to represent the concept.

Designed Problem H consists of eight linear attributes each of which has four values: 0,

1, 2 and 3. The target concept is described by six conditions, two of which are twice as

important as the other four conditions. Specifically, the concept is expressed by one WTR:

[Xl = 0 v 1:2] &[x2 = 0 v 1:2] &[x3 = 0 v 1:1] & [x4 = 0v 1:1]

&[x5 = 0 v 1:1] c~Z; [X 6 = 0V 1:1]

Threshold = 5/8 = 0.625

This problem is more complicated than designed problem I because all attributes are linear

and the weights of all conditions are not equal.

Designed Problem III contains 15 binary attributes. The target concept can be described

by two WTRs, each of which consists of 6 conditions, two of which are twice as important

as the other four. The target concept is described by the disjunction of the following two

WTRs:

WTR1:

[xl = 0:2] & [X 2 = 0:2]

& [X3 = 0: 1]

[X 4 = 0 ; 1] • [X 5 = 0 ; 1]

& [x6 = 0:1]

Threshold = 5/8 = 0.625

WTR2:

[X 7 = 0"2] • [X 8 m_ 0:2]

& [x9 = 0:1]

[X l o = 0 : 1 1 & [x l l = 0 : l]

& [x 1 2 = 0 : 1]

Threshold = 5/8 = 0.625

Tables 6, 7, and 8 show the detailed results of the experiments with the three designed

problems, respectively. Each table contains five columns: Training Set Size, Learning

254

Table 6. Results from Designed Problem I.

J. ZHANG AND R.S. MICHALSKI

Training set size Learning method Accuracy #Rules #Conds

100 (34.5 RULE 74% 5: 2% 6.2 -4- 0.7 8.9 • 1.6

FCLS DNF 78% ± 2% 8.0 ± 0.5 40.3 :~ 4.5

TR 89% 5: 4% 3.5 4- 0.7 23.6 5:4.3

WTR 91% :~ 4% 2.7 ± 0.5 20.2 5:2.1

200 C4.5 RULE 76% 5: 3% 8.6 5:1.1 14.8 zL 3.0

FCLS DNF 80% 5: 1% 12.5 ± 0.6 74.8 ~ 6.0

TR 99% 5: 2% 2.6 5:0.7 19.5 • 6.5

WTR 98% 4, 2% 2.8 5:0.7 21.5 5:4.9

300 C4.5 RULE 79% 4- 2% 10.9 5:1.0 20.8 ± 3.2

FCLS DNF 82% 4, 1% 16.7 5:1.3 104.4 • 10.9

TR 99% 4- 1% 2.6 ± 0.8 19.4 :k 6.6

WTR 99% ± 1% 2.4 ± 0.4 18.8 4. 3.7

400 C4.5 RULE 78% 4- 2% 12.3 5:1.1 25.0 5:3.1

FCLS DNF 84% 4- 1% 20.9 5:1.3 133.5 5:11.1

TR 99% -4- 2% 3.7 ± 1.9 29.1 • 16.5

WTR 98% 5: 2% 3.4 5:1.1 27.7 5:10.1

Table Z Results from Designed Problem II.

Training set size Learning method Accuracy #Rules #Conds

100 C4.5 RULE 79% 5: 1% 4.1 -t- 0.8 9.5 d: 2.4

FCLS DNF 77% -4- 2% 9.2 ± 0.6 46.3 i 3.3

TR 82% 4- 2% 5.7 -4- 0.5 35.5 ± 3.9

WTR 83% ± 2% 5.0 5:0.4 32.3 4, 3.2

200 C4.5 RULE 82% 4- 2% 5.5 5:0.9 12.9 5:3.1

FCLS DNF 79% -4- 2% 15.9 5:0.7 89.7 5:5.3

TR 85% ± 1% 9.8 5:1.1 62.7 i 7.2

WTR 88% 5: 2% 7.8 5:1.2 52.6 5:7.1

C4.5 RULE 82% 5: 1% 5.2 5:1.0 12.1 J= 3.0

FCLS DNF 82% 4, 2% 20.8 5:1.5 120.7 ± 9.6

TR 86% + 2% 12.0 ± 1.4 87.4 4, 10.1

WTR 91% 5: 1% 9.0 5:1.2 69.3 5:9.3

400 C4.5 RULE 82% 4- 1% 5.6 5:0.5 13.0 ± 3.6

FCLS DNF 82% 4- 1% 26.3 5:1.7 160.1 4, 11.6

TR 87% 5: 1% 17.8 ± 0.8 122.4 ± 6.5

WTR 93% 4, 2% 8.9 4- 2.0 75.5 ± 12.8

Method, Accuracy, #rules, and #conds. Training Set Size is the size of a t raining set.

Accuracy is the pe rcen tage o f correct ly classif ied test examples . #rules and #conds are

the number o f rules (WTRs) and condi t ions involved in concep t descr ip t ions generated,

respectively. All results are accompan ied by a 95% conf idence interval calculated US±hg a

Student t - t e s t

In all three p rob lems , significant improvernents were achieved on both accuracy and

complex i ty by the TR and W T R rnodes over the D N F m o d e at all t raining set sizes. The TR

and W T R m o d e s obta ined significantly h igher accuracies than C4.5. C4.5 genera ted fewer

rules and condi t ions than the TR and W T R modes in Des igned Prob lems II and III. This is

RULE INDUCTION AND EXEMPLAR-BASED LEARNING

Table 8. Results from Designed Problem III.

255

Training set size Learning method Accuracy #Rules #Conds

100 C4.5 RULE 80% + 3% 4.6 -4- 0.8 9.9 4- 3.2

FCLS DNF 79% 4- 2% 13.5 4- 1.0 59.2 4- 5.8

TR 82% ± 2% 7.9 4- 0.7 57.9 -!- 5.3

WTR 85% 4- 2% 6.1 4- 1.0 50.7 4- 8.9

200 C4.5 RULE 80% 4- 2% 5.4 4- 1.3 12.7 ± 4.2

FCLS DNF 81%4-1% 22.94-0.8 112.44-7.0

TR 84% 4- 2% 13.5 4- 1.1 103.0 4- 7.8

WTR 86% 4- 1% 10,1 4- 1.4 85.4 4- 10.1

300 C4.5 RULE 82% 4- 2% 6.4 4- 1.2 16.5 4- 4.5

FCLS DNF 83% 4- 1% 28.6 ± 1.4 151.3 4- 10.5

TR 86% 4- 2% 18.3 4- 1.5 140.7 4- 12.5

WTR 90% 4- 2% 13.2 4- 1.5 120.8 4- 13.7

400 C4.5 RULE 82% + 2% 5.8 4- 1.3 13.8 ± 3.8

FCLS DNF 84% 4- 1% 37.4 4- 2.3 210.5 4- 18.4

TR 87% 4- 1% 23.6 4- 1.6 187.9 4- 18.0

WTR 92% 4- 2% 15.5 4- 1.0 144.6 4- 9.8

because C4.5 simplified the rules generated and allowed inconsistency and incompleteness

in rules. Rules generated in the TR and WTR modes were consistent and complete. The

majority of these rules cover only a small number of examples and may be removed without

significantly degrading accuracy. It is almost always true that the average number of

conditions in a rule generated by the TR or WTR mode is larger than the average number

of conditions in a rule generated by the DNF mode. This result is due to the fact that

a TR or WTR often contains a highly specialized disjunct. The results from Designed

Problem I show that the TR and WTR modes have very similar performances. This was

expected because all conditions of the target concept are equally important, and weights

play no role.

The WTR mode outperformed the TR mode in Designed Problem II and Designed Prob-

lem III. These improvements are due to the weight learning in the WTR mode. Conditions

of target concepts in these two problems are weighted differently. The TR mode does not

perform weight learning, so it fails to capture different weights of conditions. The accu-

racies in these two problems are not as high as those in Designed Problem I. This can be

explained as follows. In the WTR mode, weights are adjusted based on training examples.

It is almost impossible ~o learn the exact weights of target concepts, thus the descriptions

generated in these two problems are only approximations of the target concept descriptions.

Linear attributes in Designed Problem II and disjunction in Designed Problem III increase

learning difficulty.

FCLS generated descriptions for both concepts, one for the positive concept and one

for the negative concept. In Designed Problems I and II, FCLS generated one WTR for

the positive concept in the most cases, but generated more than one WTR for the negative

concept. Most errors were introduced by the description of the negative concept. FCLS

needs to be improved so that it generates rules for positive examples only.

We claimed that FCLS can estimate the degree of typicality of members of concepts.

This claim is consistent with the experimental results that show a more typical example gets

256 J. ZHANG AND R.S. MICHALSKI

a higher relative similarity to the concept description. For instance, in our experiments,

the relative similarity of the example (0 0 1 0 0 01 1 0 3) in the Designed Problem I is 1,

while the relative similarity of the example (1 1 2 3 1 1 0 2 3 3) is 0.05. (0 0 1 0 0 0 1 1 0 3) is

a typical example, because its first seven values are either 0 or 1. (1 1 2 3 1 1 0 2 3 3) is a

boundary example, because only five of its first seven values are either 0 or 1.

6.3. Experiments on l l-Multiplexor and 4-Term 3DNF

This section describes the experiments on the 11-multiplexor and a 4-term 3DNF. The hybrid

representation has no advantage over logic representations in representing the concepts

involved in these two problems. Adversely, the hybrid representation complicates these

tasks because it necessitates searching a larger hypothesis space. During testing, the entire

event space was used as the test set in the 11-multiplexor problem, and 1000 testing events

were used for the 4-term 3DNF problems.

ll-MultipIexor. The Multiplexor is a family of tasks in which an object consists of n

address bits and 2 n data bits. An object belongs to the positive concept if the particular

data bit indicated by the address bits is on. A member of this family of tasks is named by

the total number of bits (number of address bits + number of data bits) involved. Fll has

three address bits and eight data bits. The size of the instance space is 2048. Each of the

two target concept descriptions (positive and negative) consists of eight disjuncts and 32

conjuncts.

4-Term 3DNF Boolean Function. A /-term kDNF boolean function (Pagallo and

Haussler, 1988) consists of 1 disjunctive terms of at most k conjuncts each. The 4-term

3DNF boolean function used in the experiments consists of four disjuncts, each of which

has exactly three conjun.cts. No attribute is shared by two disjuncts, and the total number

of attributes in this problem is 16.

The results from these two problems are reported in Tables 9 and 10, respecfively. In

the 11-multiplexor problem, the DNF mode performed better than the TR mode when the

training set size was 100. It achieved about the same performance as the TR mode when

the training set sizes were 200, 300 and 400. Both the DNF and the TR modes significantly

outperformed the WTR mode when the training set sizes were 100, 200 and 300. All three

modes performed at about the same level when the training set size was 400. The target

of 11-multiplexor is a DNF expression, so the DNF representation is the most appropriate

representation. The TR representation enforces less representational bias than the DNF

representation, while the WTR representation enforces less representational bias than the

TR representation. Therefore, more examples are needed for the WTR mode to converge

to the target concept than for the TR and DNF modes. C4.5 achieved higher accuracy than

the WTR mode, but lower than the DNF and TR modes. The results achieved by C4.5 were

similar to the results reported in (Quinlan, 1993).

As shown in Table 10, the accuracy of the WTR mode is worse than that of the DNF and

TR modes. Similar to 11-multiplexor, the TR mode achieved about the same accuracies as

the DNF mode when the training set sizes were 200, 300, and 400. Actually, the TR mode

obtained slightly higher accuracies than the DNF mode when the training set sizes were 300

and 400. In some trials, the DNF and TR modes generated exactly the same descriptions.

This interesting result shows that the TR mode succeeds in adjusting its representation for

a given problem, but the WTR mode does not.

RULE INDUCTION AND EXEMPLAR-BASED LEARNING

Table 9. Results from 1 l-multiplexor.

257

Training set size Learning method Accuracy #Rules #Conds

100 C4.5 RULE 67% :k 3% 12.4 -2 1.5 42.9 -2 6.1

FCLS DNF 77% 3= 5% 19.3 -2 0.8 93.4 ± 4,4

TR 69%-t-4% 17.2-20.9 t12.9-27.1

WTR 71% -2 2% 13.5 :t: 2.5 104.2 ::i: 6.2

200 C4.5 RULE 88% ± 4% 18.6 :t: 1,3 74.1 ± 6.0

FCLS DNF 96% -2 2% 20.9 -2 1.2 91.7 -2 10.3

TR 95%-22% 18.5-21,5 112.95:7.1

WTR 82% -2 3% 23.9 -2 1.0 157.3 ± 10.9

300 C4.5 RULE 96% :k 4% 18.3 :k 0.9 74.6 -2 4.1

FCLS DNF 99% -2 1% 21.5 :t: 1.2 95.8 ~: 8.0

TR 99% ± 1% 22.0 :t: 1.2 99,6 -2 8,3

WTR 93% -2 2% 24.2 -2 1.9 143.1 -2 I27

400 C4.5 RULE 100% :t: 0% 16.8 -2 0.7 67.2 ~: 0.7

FCLS DNF 100% -2 0% 20.8 • 1.1 90.8 ± 7.3

TR 100% -2 0% 20.8 ± 1.2 89,4 ± 6.5

W"FR 99%~ 1% 21.5 -2 1.4 112.4-210.0

Table 10, Results from the 4-term 3DNF boolean function.

Training set size Learning method Accuracy #Rules #Conds

I00 C4.5 RULE 73% :/: 4% 9.7 5: 1.8 29.9 • 7.8

FCLS DNF 89% -2 4% 11.6 ± 0.6 44.3 ~ 3.5

TR 74% -2 3% 9.9 ::t: 1.3 78.7 :~ 9.2

WTR 75% -2 2% 9,3 ± 1.0 75.9 :at:_ 6.2

200 C4.5 RULE 94% -2 6% 10.6 ± 1.0 32.6 ± 1.9

FCLS DNF 95% :t: 1% 14.5 5:0.4 59.0 -2 5.0

TR 93% -2 3% 14.5 ± 1.0 I02.9 ± 8.7

WTR 85% • 2% 13.3 -2 0.4 103.5 5:2.3

300 (14.5 RULE 98% -2 1% 12.8 5:0.9 40.3 -2 4.0

FCLS DNF 96% -2 1% 15.3 ± 1.3 63.3 3:8.0

TR 99% -2 1% 15,3 -2 1.9 111.5 -2 I2.7

WTR 88% 5: 2% 17.6 ± 1.0 143.1 ± 10.6

400 C4,5 RULE 100% ~ 0% 15.5 :t: 1.5 51.8 :k 7.3

FCLS DNF 98% :~ 1% 16.7 =~ 1.0 69.8 -2 6.0

TR 100% ::t: 0% 14.7 ::t: 2.3 107.4 :k 21,6

WTR 92% ~ I% 20.1 :t: 0.8 160.0 ± 6,5

6,4. Experiments on Two Practical Problems

In add i t i on to art if icial doma ins , two prac t ica l domains , congres s iona l vo t ing records and

l y m p h a t i c cancer , were also used to tes t FCLS. The data r ega rd ing the U.S. C o n g r e s s i o n a l

vo t ing r eco rds were the s ame as the ones used by L e b o w i t z (1987) in his ex p e r i men t s

on c o n c e p t u a l c lus ter ing. T h e data r ep resen t the 1981 vo t ing records o f 100 se lec ted

represen ta t ives , e ach o f w h i c h is cha rac te r i zed by 19 at t r ibutes . T h e p r o b l e m was to learn

desc r ip t ions d i s c r i m i n a t i n g b e t w e e n the vot ing records of D e m o c r a t s and Repub l i cans . Ten

t r a in ing sets for e ach o f the four t ra in ing s izes (20, 40, 60, 80) were f o r m e d by r a n d o m l y

d r awi ng e x a m p l e s f r o m the 100 examples . Al l tes t sets were the r e m a i n i n g examples . T h e

258

Table 11. Results from the congressional voting records.

J. ZHANG AND R.S. MICHALSKI

Training set size Learning method Accuracy #Rules #Conds

20 C4.5 RULE 79% 5: 2% 2.9 5:0.6 3.3 5:0.9

FCLS DNF 78% 5: 5% 2.7 -t- 0.6 7.6 5:3.2

TR 79% 5: 3% 2.0 5:0.0 7.5 5:2.8

WTR 77% 5: 3% 2.4 5:0.5 8.3 5:3.4

40 C4.5 RULE 80% 5: 3% 3.5 5:0.6 5.0 5:1.7

FCLS DNF 79% 5: 4% 4.5 5:1.0 22.5 5:5.4

TR 85% 5: 3% 2.3 5:0.5 17~4 5:4.6

WTR 82% 5: 5% 3.1 ± 0.8 19.2 5:5.5

60 C4.5 RULE 81% 5: 5% 3.7 -t- 0.4 5.4 5:0.9

FCLS DNF 81% 5: 4% 6.4 4- 0.6 36.8 4- 4.8

TR 86% 5: 4% 3.2 5:0.9 27.9 5:5.9

WTR 86% 5: 3% 4.0 ± 0.5 33.0 5:3.9

80 C4.5 RULE 76% 5: 6% 3.4 5:0.7 5.8 5:1.6

FCLS DNF 80% 5: 5% 8.1 4- 1.0 52.0 5:8.5

TR 87% 5: 2% 4.1 5:1.0 38.9 5:7.7

WTR 86% 5: 4% 5.3 5:0.6 47.6 5:7.8

Table 12. Results of the lymphatic cancer.

Training set size Leaming method Accuracy #Rules #Conds

25 C4.5 RULE 70% 5: 5% 6.0 5:1.1 10.0 :kz 2.2

FCLS DNF 71% 5: 5% 6.0 5:0.5 19.2 5:2.0

TR 68% 5: 5% 4.0 5:0.0 20.4 5:3.5

WTR 70% 5: 6% 4.8 5:0.6 18.6 :t: 1.7

50 C4.5 RULE 74% 5: 4% 8.1 5:1.5 14.7 :t: 3.7

FCLS DNF 76% 5: 3% 7.9 5:0.8 32.1 5:3.8

TR 80% 5: 3% 5.3 5:0.6 32.8 5:5.4

WTR 81% 5: 3% 5.7 5:0.7 31.6 5:4.8

75 C4.5 RULE 76% 5: 4% 8.5 5:1.4 15.8 5:3.6

FCLS DNF 79% 5: 4% 9.3 5:0.6 45.2 5:6.3

TR 83% 5: 4% 6.9 5:0.6 46.3 Æ 3.4

WTR 82% 5: 3% 6.9 5:0.4 46.9 5:3.2

100 C4.5 RULE 78% :k 5% 15.2 5:3.0

FCLS DNF 82% + 4% 10.3 5:0.7 55.0 5:3.8

TR 86%5:4% 7.15:0.7 54.95:6.2

WTR 82% 4- 3% 7.0 5:0.6 53.4 5:6.2

results are repor ted in Table 11. Both the W T R and the TR modes significantly improved

the accuracy over the D N F m o d e at the training set sizes 20, 40, and 60. The W T R and TR

modes p e r f o r m e d similarly.

The lymphat ic cancer data is character ized by 18 attributes and 4 diagnost ic classes. Data

of 148 pat ients were available. 25, 50, 75, and 100 examples were r andomly selected for

learning respect ively, the remain ing 48 examples were used as the test set. The results are

shown in Table 12. Both the W T R and TR methods at tained higher accuracy except at the

s ize of 25. The descr ip t ion genera ted by the W T R and TR methods are s impler than the

DNF mode .

RULE INDUCTION AND EXEMPLAR-BASED LEARNING

Table 13. Results from the congressional voting records for varying values of MIN_COVERAGE.

259

MIN_COVERAGE Learning method Accuracy #Rule #Exemplar

0.00 TR 87% 4- 2% 4.14- 1.0 0 4- 0

WTR 86% 4- 4% 5.34- 0.6 0 4- 0

0.05 TR 88% 4- 4% 4.0B 0.7 1.0 4- 0.4

WTR 85% 4- 3% 4.54- 0.6 1.0 4- 0.7

0.10 TR 90% 4- 3% 3.44- 0.4 1.7 4- 1.1

WTR 87% 4- 4% 3.54- 0.5 3.2 4- 1.3

0.15 TR 87% 4- 5% 2.84- 0.4 2.9 4- 1.0

WTR 88% 4- 4% 2.84- 0.3 3.5 4- 1.0

0.20 TR 85% 4- 4% 2.54- 0.4 3.2 4- 1.6

WTR 86% 4- 6% 2.64- 0.0 3.9 4- 1.3

Exemplar-based 84% 4- 7% 0.0+ 0.0 17.0 4- 1.5

Table 14. Results of the lymphatic cancer for varying of MIN_COVERAGE.

MIN_COVERAGE Leaming method Accuracy #Rule #Exemplar

0.00 TR 86% 4- 4% 7.1 4- 0.7 0 -t- 0

WTR 82% 4- 3% 7.0 -t- 0.6 0 4- 0

0.05 TR 88% 4- 3% 6.4 4- 0.5 0.3 4- 0.4

WTR 84% 4- 4% 6.6 4- 0.5 0.8 4- 0.8

0.10 TR 90% 4- 4% 5.2 4- 0.3 4.0 4- 1.2

WTR 85% 4- 5% 5.3 4- 0.5 4.0 4- 1.7

0.15 TR 89% 4- 3% 4.4 4- 0.4 5.8 4- 1.9

WTR 83% 4- 4% 4.5 4- 0.4 6.7 4- 2.5

0.20 TR 88% 4- 2% 4.3 4- 0.4 6.3 4- 1.6

WTR 83% 4- 4% 4.2 4- 0.3 7.6 4- 2.9

Exemplar-based 78% 4- 4% 0.0 4- 0.0 26.8 4- 2.6

6.5. Experiments with Varying MIN_COVERAGE VALUES

We also c o n d u c t e d s o m e p re l imina ry expe r imen t s to evalua te the use of exempla r s in F C L S

on these two prac t ica l p rob lems . W e ran FCLS in the T R and W T R m o d e s wi th va ry ing

values of the p a r a m e t e r MIN_COVERAGE. The larger the va lue of MIN_COVERAGE, the

more exempla r s m a y be inc luded in the f inal descr ip t ions . Tables 13 and 14 show the resul ts

f rom c o n g r e s s i o n a l vo t ing records and l ympha t i c cancer, respect ively. T h e resul t s ob t a ined

f rom these two p r o b l e m s are very similar. W h e n some exempla r s were inc luded to rep lace

some smal l TRs or W T R s , the accu rac i e s increased. Af te r too m a n y TRs or W T R s were

r ep laced by exempla r s , the accurac ies decreased. M o r e expe r imen t s need to be conduc t ed

to t h o r o u g h l y eva lua te the use of exemplars .

6.6. Experiments on Instance-Based Learning

I n s t a n c e - b a s e d l ea rn ing (IBL) a lgor i thms are c losely re la ted to the F C L S a l g o r i t h m and

are used to learn concep t s wi th g raded structures . The ma jo r d i f fe rence b e t w e e n IBL and

F C L S is tha t F C L S genera tes genera l i zed ins tances . This sec t ion d iscusses the exper i -

m e n t s c o n d u c t e d to empi r i ca l ly c o m p a r e IBL wi th FCLS. IB3 (p rov ided by D. A h a) was

260

Table 15. Results of Iß3, the TR mode, and the WTR mode.

J. ZHANG AND R.S. MICHALSKI

Training set Iß3 TR WTR

Problem s i z e Accuracy # ins Accuracy #Rules Accuracy #Rule

DPI 200 79%-t-1 1804-8 99%-t-2 3q-1 98%±2 3±1
400 80% 4-1 372 4-10 99%±2 44-2 98%±2 34-1

DPII 200 77% 4-3 160 4- 16 85%±I 104- 1 88%±2 84-1
400 79% 4-4 330 4- 26 87%±1 18 4-1 93% 4-1 9 ± 2

DPIII 200 77% 4-2 151±18 84% 4-2 14±1 86%±1 104-1
400 78% 4-3 3215:33 87%±1 24±2 92%4-2 1 6 i l

run on the three designed problems (DP I, DP II, and DP III) and the results are shown

in Table 15. We varied values of several important parameters (Suggested by Dr. Aha)

in these experiments and selected the best results. FCLS performed significantly better

than Iß3 on all the three problems. The significant improvement achieved by FCLS is

partly due to the generalization. When a graded concept is highly disjunctive, IBL may

perform better than FCLS. For example, the least improvement achieved by FCLS on

these problems was on the Designed Problem III in which the concept is described by two

WTRs.

6.7. Experiments on Noisy Data

We have not yet addressed the issue of handling noisy data. FCLS can be extended to

be no±se tolerant to some degree. First, the parameter Max~rr_Rate provides a means of

coping with noisy data. When Max_Err_Rate is larger than 0, the description generated by

FCLS is allowed to be inconsistent. Thät is, it can cover some noisy negative examples.

Second, exceptional cases in FCLS are represented as exemplars. Noisy examples are

similar to exceptional cases. Therefore when the data is noisy, we can turn oft the exemplar

selection module so that.no exceptional cases are stored as exemplars. This is controlled by

the parameter Min_Coverage. This section describes the experiments conducted to evaluate

the no±se handling ability of FCLS.

The problem used in these experiments was the Designed Problem I with 200 training

examples and 1000 test examples. We ran FCLS on the 200 training examples containing

different levels of no±se with varying values of Max_Err3~ate and Min_Coverage. Noisy

data were generated by switching the class membership of randomly selected examples.

For simplicity, Max_~rr..Rate and Min_Coverage were always set to the same value. It is

not necessary to set Max_Err_Rate and Min_Coverage to the same value. In fact, bettet

results may be obtained from other combinations of Max._Err3?ate and Min_Coverage

values. FCLS was run under the TR mode. For comparison, C4.5 and Iß3 were also run on

the same data sets with different settings of parameters. Table 16 shows the experimental

results, where Acc represents accuracy.

The results were consistent with what we expected. Accuracy and simplicity of concept

descriptions decreased as the no±se level increased. Accuracy increased as the values of the

two parameters increased. At the no±se levels of 5% and]0%, accuracy began to drop when

Max_Err_Rate and Min_Coverage became too large. Simplicity of concept descriptions was

improved with increasing no±se levels. One difficulty with this no±se handling method is

RULE INDUCTION AND EXEMPLAR-BASED LEARNING

Table 16. Experimental results on noisy data.

261

FCLS(TR mode)

Noise 0.00 0.05 0. i0 0.15 0.20 C4.5 Iß3

Ievel Acc% #Rules Acc% #Rules Acc% #Rules Acc% #Rules Acc% #Rules Acc% #Rules Acc% #ins

0% 9 9 4 - 2 3 4 - 1 7 6 ± 3 9 i l 7 9 £ I 1 8 0 B 8

5% 8 1 4 - 2 1 0 B 1 8 9 4 - 3 6 4 - 1 9 1 4 - 2 4 4 - 1 874 -3 3 4 - 1 87=k3 2=k0 7 4 4 - 4 104-2 764 - 1 134-1

10% 7 6 4 - 2 104-1 8 3 4 - 2 9 4 - I 8 6 £ 2 5 4 - 1 8 8 4 - 2 3 4 - 1 864 - 2 3 4 - 0 7 6 4 - 3 1 1 4 - i 764 - 1 134-1

15% 7 1 4 - 2 154-1 7 8 4 - 3 114-1 7 9 4 - 2 7 4 - 1 824 -5 4 4 - i 8 5 4 - 2 24- /) 7 2 4 - 5 124-2 774 - 1 134 - 2

20% 6 8 4 - 2 164-1 7 3 4 - 3 124-1 7 3 4 - 2 8 4 - 1 7 7 4 - 3 5 4 - 1 804 - 4 3 4 - 1 684 - 8 2 4 4 - 2 764 - 1 1 3 ± 2

the determination of Max_ErrA~ate and Min_Coverage values. Generally speaking, higher

values are required for Max_Err_Rate and Min_Coverage for higher noise levels.

From Table 16, it can be observed that both C4.5 and Iß3 are highly noise tolerant,

since their accuracies did not degrade much with noisier data. For noisy data, the highest

accuracy for IB3 was obtained when the parameter storeall, which determines the number

of instances stored, was set to oft. For nonnoisy data, Iß3 achieved the highest accuracy

when storeall was set to on.

6.8. Summary

FCLS worked significantly better on graded concepts than other learning methods, such

as C4.5, Iß3, and AQ-like methods. The WTR mode achieved accuracies higher than the

TR mode on concepts with weighted conditions, hut the differences were not substantial.

The TR mode performed as well as the DNF mode and C4.5 on concepts such as DNF

and Multiplexor, when enough training examples were available. This occurred because

the TR mode can adjust its representation to adapt concepts to be learned. In contrast,

the WTR mode failed to adjust its representation, so that it did not perform weil on these

classically defined concepts, Improvements were achieved if exemplars were added to the

hybrid representation. More experiments need be conducted in order to reach a conclusion.

Finally, the noise handling capabilities of FCLS have been empirically evaluated. The

results show that this method did improve the performance on a noisy domain, but the

problem of how to specify the values of those two parameters exists. The noise handling

method of FCLS needs to be improved.

7. Related Work

This section relates FCLS to some other works, which include Schlimmer's STAGGER

(1987), Bergadano, et al.'s POSEIDON (1992), Salzberg's NGE (1991), and Murphy and

Pazzani's GS (1991).

FCLS is similar to STAGGER in that they both utilize hybrid representations that combine

a numeric representation with a symbolic representation, and they both perform partial

matching to classify examples. In STAGGER, each pattern is associated with a pair of

weights that eapture the relative importance of the pattern to the overall description of the

concept. Patterns can consist of Boolean functions of attribute values. Weights in FCLS

are associated only with conditions (attribute values) of a WTR and reflect the relative

importance of the conditions to the WTR. If a pattern in STAGGER is a boolean function

262 J. ZHANG AND R.S. MICHALSKI

of attribute values, then no weight is associated with the attribute values of the pattern. The

degree of match between an example and a concept description in STAGGER is measured

using a B ayesian approach, whereas it is evaluated by a distance measure and an adjustable

threshold in FCLS. When attributes are nominal, the difference between these two measures

is minor.

In addition to the differences of representations and matching procedures, the FCLS

learning algorithm differs from STAGGER's. In STAGGER, the weights of the current

patterns are first computed from the training examples, and then are used to classify the

examples in an approach similar to a Bayesian classifier. Ifthis does not work weil, then new

patterns are constructed and the weights of these new patterns are computed. STAGGER

begins with a simple concept description and performs a search towards more complex

descriptions, which can take a great deal of time. FCLS instead uses a simpler general-to-

specific beam search that should allow it to learn many complex concepts more quickly.

STAGGER performs constructive induction and learns incrementally, while FCLS cannot.

In general, FCLS combines exemplar-based learning and rule learning, while STAGGER

combines a statistical learning approach and a rule-learning approach.

POSEIDON (Bergadano, et al., 1992) generates two-tiered concept descriptions. The

first tier, called Base Concept Representation, explicitly captures basic concept properties

and is created in two phases. In phase 1, AQ15 is used to induce a complete and consistent

concept description from supplied examples. In phase 2, this description is optimized by

removing some disjuncts and conjuncts. This optimization process is guided by a domain-

dependent quality criterion. The second tier, called Inferential Concept Interpretation (ICI),

characterizes allowable concept modifications and context dependency, and consists of a

procedure for partial matching and a set of inference rules. The partial matching procedure

is predefined and the inference rules are supplied by human experts based on the explanation

of exceptional cases (which are generated by the system).

In FCLS, a disjunct of a concept description is generated in one step by performing

a general-to-specific beam search. In the second phase of POSEIDON, a disjunct can

never be specialized. Therefore, if AQ15 generates some overgeneralized disjuncts, then

POSEIDON has no way to improve them. For this reason, POSEIDON cannot learn n-of-m
concepts. In POSEIDON, the partial matching procedure is predefined, while the partial

matching procedure in FCLS is adjustable during learning by modifying its weights and

the threshold. Moreover, FCLS's partial matching procedure is different among disjuncts.

FCLS does not include inference rules in its partial matching procedure. In general, FCLS

representation reduces the number of rules used to represent concepts. However, its rules

are more complex and the evaluation of rules is more complex. POSEIDON should be

applied when conceptual interpretation of concepts is important. FCLS should be applied

when a bias for graded behavior is useful.

POSEIDON was experimentally applied on two different problems: labor management

contracts and congressional voting data (Bergadano, et al., 1992). To empirically compare

FCLS with POSEIDON, FCLS was run on these two problems with the same training and

testing data. Table 17 shows the results which were the average oftwo runs. The training set

and test set of the labor contract data consisted of 27 and 30 examples, respectively. Both the

training set and test set of the congressional voting data included 50 examples. In Table 17,

#rules (#conds) is the number of disjuncts (conjuncts) involved in the descriptions generated.

POSEIDON achieved higher accuracy in the problem of labor management contracts,

while FCLS attained higher accuracy than POSEIDON in the problem of congressional

RULE INDUCTION AND EXEMPLAR-BASED LEARNING

Table 1Z Results from two domains used in POSEIDON.

263

Labor contract Congressional voting

Accuracy #Ru /es #Conds Accuracy #Rules #Conds
POSEIDON 90% 9 12 92% 10 21

FCLS
DNT 83% 7 19 89% 5 29
TR 85% 2 13 96% 2 26
WTR 86% 2 13 93% 3 20

voting records. The higher accuracy achieved by POSEIDON in the problem of labor

management contracts is because it was given the ICI rules by a human expert. POSEI-

DON's descriptions included three rules provided by human experts. Without these rules,

POSEIDON's accuracy was only 83%, which is lower than FCLS's. The major reason

for the higher accuracy obtained by FCLS is that FCLS can capture the graded structure

of concepts. In the domain of congressional voting records, most of the sixteen attributes

are relevant to distinguish republicans from democrats, but only some of the conditions

involved in these relevant attributes need to be satisfied in order to distinguish a republican

congressman from a democratic congressman. In other words, the target concept in this

problem is sirnilar to an n-of-m concept and has a graded structure. In both problems (except

the WTR mode in Congressional Voting), FCLS generated only one WTR for each concept.

Salzberg (1991) described an exemplar-based learning approach called nested general-

ized exemplar (NGE) approach. There are several similarities between FCLS and NGE.

First, both algorithms allow examples to be generalized. Second, both algorithms combine

the uses of rules (generalized examples) with specific examples. Third, both algorithms dy-

namically adjust their distance functions by modifying the weights of attributes (conditions

in FCLS). FCLS and NGE also differ on several aspects. First, NGE uses a single set of

weights on its attributes, whereas FCLS learns a different weight for a condition depending

on which rule it is in. Second, each WTR in FCLS is associated with a threshold that

defines the boundary of the WTR, whereas each hyperrectangle in NGE is associated with

a weight that changes the boundary of the hyperrectangle. Third, the learning algorithms

of the two approaches are different. A hyperrectangle in NGE is generalized from specific

examples, whereas a WTR in FCLS is generated by performing a general-to-specific beam

search. NGE learns incrementally, whereas FCLS does not. NGE is strongly dependent

on the order of examples presented. Finally, FCLS can estimate the typicality of concept

members, but NGE cannot. In general, NGE was not designed for concepts with graded

structures, therefore it is not appropriate for tasks involving graded concepts. To empiri-

cally demonstrate this claim, we ran NGE (provided by D. Aha) on the designed problems I

and II. Aha (1995) helped us in running this experiment and we varied values of important

parameters of NGE. Table 18 shows the results. NGE stored more instances than FCLS

did; this result is due to the greater degree of generalization performed by FCLS. Because

of the generalization performed by NGE, it stored fewer instances than IB3. NGE achieved

about the same accuracy as Iß3 on designed problem I, but much lower accuracy than IB3

on designed problem II.

GS was designed to learn m-of-n concepts. In GS, m-of-n concepts are learned by

creating new terms corresponding to m-of-n concepts during induction of decision trees.

264

Table 18. Results of NGE, Iß3, and the WTR mode.

J. ZHANG AND R.S. MICHALSKI

Training set NGE IB3 WTR

Problem s i z e Accuracy # Ins Accuracy # Ins Accuracy #Rule

DPI 200 78%~:1 1 0 i l 79%+1 180 -4-8 98% -4-2 3±1
400 78%±1 12+2 80% -4-1 372 -4-10 98% 4-2 3±1

DPII 200 59%q-3 99~6 77%+3 160+16 88% 4-2 85:1
400 61%+6 154 -4- 18 79%±4 330-t-26 93%+1 9 + 2

A m-of-n term is represented as a list of relevant attributes and their values and an in-

teger threshold. Each m-of-n term is generated by conducting a hill-climbing search.

Two operators are applied to generate new m-of-n hypotheses. The first one adds an

attribute-value pair to the relevant attribute list without increasing the threshold, and the

second one adds an attribute-value pair to the relevant attribute list and increases the

threshold by 1. The evaluation function of m-of-n hypotheses was not clearly given in

(Murphy & Pazzini, 1991). The m-of-n terms generated are embedded in a decision tree

as nodes, therefore GS can generate a disjunet of m-of-n terms as a concept descrip-

tion. GS and FCLS are similar in that both algorithms use a similar search method (beam

search in FCLS and hill-climbing search in GS) to generate a m-of-n terms. Also, simi-

lar operators (adding attribute-value pair and adjusting the threshold in GS and removing

attribute-value pair and adjusting the threshold) are used in search. The major differ-

ence between GS and FCLS is that the threshold in GS is an integer between 1 and n,

while the threshold in FCLS is a real value between 0 and 1. Because of this difference,

FCLS's representation is more powerful than that of GS and can represent different kind

of graded concepts. While FCLS can process numeric attributes, GS was designed for

use with only nominal attributes. GS does not have attribute weights, and it can only

learn standard n-of-m concepts. The advantage of GS over FCLS is its simpler learning

algorithm.

8. Conclusion and Future Work

The experiments presented in Section 6 demonstrate that FCLS can effectively learn con-

cepts with graded structures. This result is first attributed to the hybrid concept represen-

tation used in FCLS. The hybrid representation combines a symbolic representation with a

numeric one. The symbolic part of the representation is composed of rules, and the numer-

ical part consists of weights on conditions and thresholds of rules. Unlike NGE, weights

are assigned to conditions rather than attributes. That is, an attribute may have different

weights depending on conditions in a given rule. The central tendency or the basic principle

of a graded concept is explicitly described by the symbolic part, whereas the numerical part,

together with a similarity measure, extends the symbolic part to describe less typical cases

of graded concepts.

The hybrid representation can also be viewed as an extension of the exemplar-based

representation. First, a WTR can be considered as a generalized exemplar. Second, specific

exemplars may be stored as a part of a concept description to describe exceptions. Because

a WTR is offen a highly generalized exemplar, concept descriptions represented by the

RULE INDUCTION AND EXEMPLAR-BASED LEARNING 265

hybrid representation are useful for understanding concepts, comparing different concepts,

identifying exceptions, and efficiently storing and using concept descriptions.

Although partial matching methods have been known for several decades, the two-step

partial matching method used in FCLS is novel. The first step is a partial matching between

an example and a WTR defined as a function of both their similarity and the WTR's

threshold. FCLS dynamically adjusts the first step partial matching through weight learning

and threshold adjustment. The second step measures the relative similarity between an

example and a WTR. The first step of the partial matching method decides the coverage

of a WTR, while the second step allows us to classify examples that do not match with

any WTR and examples that match more than one WTR. The experimental results show

that this two-step partial matching significantly improved classification accuracy in most

problems that we tested.

Concept descriptions represented in out hybrid representation capture typicality infor-

mation. An example with a larger relative similarity to a WTR is more typical than an

example with a smaller relative similarity to a WTR.

Another accomplishment is the development of a technique for generating concept

descriptions represented in the hybrid representation. This technique generates a concept

description by adjusting the distribution between the symbolic and numeric representa-

tions, and between the generalized descriptions and the exemplars to achieve the 'best'

performance for a given problem.

A number of problems need to be addressed in the future. The similarity measure in

FCLS only measures the syntactic similarity of an example to a concept description. An

interesting problem is to augment the current syntactic similarity measure with a knowledge-

based semantic similarity measure. The semantic similarity measure will include a set of

inference rules and defines the similarity between an example and a WTR based on the

semantics. An approach similar to those used in POSEIDON (Bergadano, et al., 1992) and

Protos (Bareiss, 1989) may be used as the augmented similarity measure.

Another related future research topic is constructive induction. In general, constructive

induction can produce descriptions that are easier to understand, and capture the salient

features of concepts. It would be useful to apply constructive induction to generate rules

that capture the principles of concepts.

One of the limitations of FCLS is that it cannot learn incrementally. Incremental learnirig

in FCLS involves not only generalizing and/of specializing current descriptions, but also

adjusting the distribution between the symbolic and numeric representation and the distri-

bution between the generalized descriptions and specific exemplars. When a new example

is not correctly classified by the current description, some WTRs need to be generalized or

specialized. For instance, if the new example is not covered by any WTR, then the weights

and thresholds of the WTRs that are close to the new example are adjusted so that the new

example can be covered by one of the WTRs. If the new example is still not covered after

the weights and thresholds of some WTRs are adjusted, then the new example is stored

as an exemplar. After a certain number of exemplars are accumulated, some new WTRs

may be generated. WTRs surrounded by exemplars need to be relearned. The problem of

incremental learning in FCLS merits further investigation.

Finally, the FCLS algorithm, especially the quality functions, is too complicated. We

believe that it can be simplified without significantly degrading its performance. Currently,

we are designing a simpler algorithm in which some of the features mentioned above are

being incorporated.

266 J. ZHANG AND R.S. MICHALSKI

Acknowledgments

Part of this research was done in the Center for Artificial Intelligence at George Mason

University. The activities of the Center are supported in part by the Defense Advanced

Research Projects Agency under the grants administered by the Office of Naval Research,

No. N00014-91-J-1854, in part by the Office of Naval Research under No. N00014-91-

J-1351. The first author was also supported by a Faculty Research Grant of Utah State

University. The authors are grateful to Dr. David Aha ffom Naval Research Lab. for pro-

viding us Iß3 and NGE and for helping us run experiments with Iß3 and NGE. The authors

thank Michael Hieb and Gheorghe Tecuci for many useful comments and suggestions. The

authors also thank John Grefenstette and the reviewers for their detailed comments and

suggestions.

Notes

1. For adetailed definition ofnearly covered examples, see (Zhang, 1990).

2. Clark & Niblett (1989) reported that the time complexity of CN2 is O(a z . b . n2). They claimed that the

overall tirne for a single specialization step is O(a • b. n), but we think that it should be O(a 2 . b. n) because

each step generates a . b new complexes, each of which needs to be evaluated and evaluation of each complex

takes time O(a . n).

References

Aha, D. (1995). An implementation and experiment with the nested generalized exemplars algorithm, Technical

Report AIC-95-003, Naval Research Laboratory, Navy Center for Applied Research in Artificial Intelligence.

Aha, D., Kibler, D., & Albert, M. (1991). Instance-based learning algorithm, Machine Learning, 6:37-66.

Bareiss, E.R. (1989). An exemplar-based knowIedge acquisition, Academic Press.

Barsalou, L. (1985). Ideals, central tendency, and frequency of instantiation as determinants of graded structure

in categories, Journal of Experimental Psychology: Learning, Memory and Cognition, 11:629-654.

Bergadano, E, Matwin, S., Michalski, R.S., & Zhang, J. (1992). Leaming two-tiered descriptions of flexible

concepts, Machine Learning, 8:5-43.

Clark, E, & Niblett, T. (1989). The CN2 induction algorithm, Maehine Learning, 3:261-283.

Lebowitz, M. (1987). Experiments with incremental concept formation: UNIMEN, Machine Learning Journal,

2:103-138.

Michalski, R.S. (1983). A theory and methodology of inductive leaming, in R.S. Michalski, J.G. Carbonell, &

T.M. Mitchell (Eds.), Maehine Learning: An Artificial lntelligence Apl~~'oach (Vol. 1) San Mateo, CA: Morgan

Kaufmann.

Michalski, R.S. (1987). How to leam imprecise concepts: a method employing a two-tiered representation for

learning, Proceedings of the Fourth International Workshop on Machine Learning (pp. 50-58), Irvine, CA.

Michalski, R.S. (1990). Learning flexible concepts: fundamental ideas and a method Bases on two-tiered repre-

sentation, in Y. Kodratoff, & R.S. Michalski (Eds.), Machine Learning: An Artificial Intelligence Approach

(Vol. 3), San Mateo, CA: Morgan Kaufmann.

Michalski, R.S., Mozetic, I., Hong, J., & Lavrac, N. (1986). The multi-purpose incremental learning system AQ15

and its testing application to three medical domains, Proeeedings of the Fifth National Con(erence on Artificial

lntelligence (pp. 1041-1045).

Murphy, P.M., & Pazzani, M.J. (1991), ID2-of-3: Constructive Induction of M-of-N Concepts for Discriminators

in Decision Trees, Proceedings of the Eighth International Workshop on Machine Learning (pp. 183-187).

Pagallo, G., & Haussler, D. (1988). Feature discovery in empirical learning, Technical Report UCSC-CRL-88-08,

University of California at Santa Cruz, Santa Cruz, CA.

Quinlan, J.R. (1986). Induction of decision trees, Maehine Learning, 1:81-106.

RULE INDUCTION AND EXEMPLAR-BASED LEARNING 267

Quinlan, J.R. (1987). Simplifying decision trees, International Journal ofMan-Machine Studies, 27:221-234.

Quinlan, J.R. (1993). C4.5 Programsfor Machine Learning, San Mateo, CA: Morgan Kaufmann.

Rosch, E.H., & Mervis, C.B. (1975). Family resemblances: studies in the internal structure of categories. Cognitive

Psychology, 7:573-605.

Salzberg, S. (1991). A nearest hyperrectangle leaming method, Machine Learning, 6:251-276.

Schlimmer, J.C. (1987). Concept acquisition through representational adjustment, Ph.D. thesis, Department of

Information and Computer Science, University of California, Irvine.

Smith, E.E., & Medin, D.L. (1981). Categories and Concepts, Harvard University Press.

Utgoff, EE. (1989). Incremental Induction of Decision Trees, Machine Learning, 4:161-186.

Zbang, J. (1990). Learning flexible concepts from examples: employing the ideas of two-tiered eoncept represen-

tation, Ph.D. Thesis, Department of Computer Science, University of Illinois at Urbana-Champaign.

Zhang, J. (1991). Learning flexible concepts with integrating symbolic and subsymbolic approaches, Proceedings

of lnternational Workshop on Multi«trategy Learning (pp. 289-304), George Mason University.

Zhang, J. (1992). Selecting Typical Instances in Instance-Based Learning, Proceedings of the Ninth International

Conference on Machine Learning (pp. 470-479), Aberdeen Scotland, Morgan Kaufmann.

Received November 19, 1991

Final Manuscript May 12, 1995

