

Title	An integration theorem for completely integrable systems with singularities			
Author(s)	Matsuda, Michihiko			
Citation	Osaka Journal of Mathematics. 5(2) P.279-P.283			
Issue Date	1968			
Text Version	publisher			
URL	https://doi.org/10.18910/11404			
DOI	10.18910/11404			
rights				
Note				

Osaka University Knowledge Archive : OUKA

 $\verb|https://ir.library.osaka-u.ac.jp/|$

Osaka University

AN INTEGRATION THEOREM FOR COMPLETELY INTEGRABLE SYSTEMS WITH SINGULARITIES

MICHIHIKO MATSUDA(*)

(Received June 24, 1968)

Let M be a C^{∞} -manifold. We denote the Lie algebra of all vector fields on M of C^{∞} -class by L(M). For two elements u and v of L(M), defining $(\operatorname{ad} v)^k u$ inductively as $[v, (\operatorname{ad} v)^{k-1}u]$, we consider a power series

$$g_t(u, v) = \sum_{k=0}^{\infty} (-1)^k \frac{t^k}{k!} (\operatorname{ad} v)^k u.$$

Let c(u, v; x) be the radius of convergence of $g_t(u, v)$ at x on M. We consider a Lie subalgebra L of L(M) which satisfies the following convergence condition (C):

- (C) For any pair of u and v in L and for any compact set K in M, there exists a positive number c(u, v; K) such that
 - (i) we have $c(u, v; x) \ge c(u, v; K)$ at every x on K, and
- (ii) $g_t(u, v)$ is continuously differentiable with respect to (t, x) term by term at every (t, x) which satisfies |t| < c(u, v; K) and $x \in K^i$, the interior of K.

Theorem. If a Lie subalgebra L satisfies the condition (C), then through every point x on M there passes a maximal integral manifold N(x) of L. Any integral manifold of L containing x is an open submanifold of N(x).

Here an integral manifold N of L is a connected submanifold of M which satisfies $T_r(N)=L(x)$ at every x on N, where $L(x)=\{u(x); u\in L\}$.

The problem was solved under the following assumptions (i)~(iii) respectively by Chevalley, Hermann and Nagano:

- (i) dim L(x) is constant on M (Frobenius' theorem, Chevalley [1]),
- (ii) $\dim L$ is finite (Hermann [2]),
- (iii) M and L(M) are of C^{ω} -class, but L is arbitrary (Nagano [3]). If we assume (ii) or (iii), then L satisfies our condition (C) (see Remark 1 and Remark 2).

^(*) This work was partially supported by the Yukawa Fellowship.

280 M. Matsuda

Proof of Theorem. We shall prove only the local existence of an integral manifold of L passing through x, since the local uniqueness of integral manifolds and the existence of the maximal integral manifold can be proved in the same way as Nagano [3] and Chevalley [1].

Let $U=\{(x^1, \dots, x^n); |x^i-x_0^i| < a\}$ be a relatively compact cubic neighbourhood of $x_0=(x_0^i)$ such that $\phi_t(v)$ gives a diffeomorphism from U to $\phi_t(v)U$, if |t| < T(v, U). Here $\phi_t(v)$ is a local one-parameter group of diffeomorphisms generated by v, and T(v, U) is a positive number. By our assumption $g_t(u, v)$ satisfies a symmetric hyperbolic partial differential equation

$$\frac{\partial h}{\partial t} + v^i \frac{\partial h}{\partial x^i} - h^i \frac{\partial v}{\partial x^i} = 0$$

at (t, x) which satisfies $|t| < c(u, v; \overline{U})$ and $x \in U$, where $v = v^i \frac{\partial}{\partial x^i}$. Also $\phi_t(v)_* u$ satisfies the same partial differential equation at such (t, x) that |t| < T(v, U) and $x \in U$. Since $g_t(u, v)$ and $\phi_t(v)_* u$ have the same initial value u at t = 0, by the uniqueness theorem we obtain

(1)
$$\phi_t(v)_* u = \sum_{k=0}^{\infty} (-1)^k \frac{t^k}{k!} (\operatorname{ad} v)^k u$$

at (t, x) such that $|t| < \min \{c(u, v; \overline{U}), T(v, U)\}$ and

$$A|t| + \sqrt{\sum_{i=1}^{\infty} (x^i - x_0^{i})^2} < a$$
,

where $A = \max_{i} \sqrt{\sum_{i=1}^{\infty} v^{i}(x)^{2}}$ on \bar{U} .

If $v(x_0) \neq 0$, we may assume that $v = \frac{\partial}{\partial x^1}$ in U. Then from the identity (1) we get

(2)
$$u(x(\tau-t)) = \sum_{k=0}^{\infty} (-1)^k \frac{t^k}{k!} u^{(k)}(x(\tau)),$$

where $x(\tau)=(x_0^1+\tau, x_0^2, \dots, x_0^n)$ and $u^{(k)}=\frac{\partial^k u}{\partial (x^1)^k}$. This identity (2) holds for (t, τ) such that

(3)
$$|t| + |\tau| < a, |t| < \min. \left\{ \frac{a}{2}, c(u, v; \bar{U}) \right\}.$$

As a function of τ , $u(x(\tau))$ is real analytic in the interval (-a, +a). Hence we have

(4)
$$u^{(I)}(x(\tau-t)) = \sum_{k=0}^{\infty} (-1)^k \frac{t^k}{k!} u^{(k+I)}(x(\tau))$$

for (t, τ) which satisfies (3) and for every $l \in \mathbb{Z}_+$. From this identity we get

(5)
$$\phi_t(v)_*(\operatorname{ad} v)^l u = \sum_{k=0}^{\infty} (-1)^k \frac{t^k}{k!} (\operatorname{ad} v)^{l+k} u$$

at $x(\tau)$ for every t which satisfies (3) and for every $l \in \mathbb{Z}_+$.

Let us consider an integral curve C passing through x_0 . Take a point $y(s) = \exp(sv)x_0$ on C. Then there exists such a positive number σ that we have

(6)
$$\phi_{\sigma}(v)_{*}(\operatorname{ad} v)^{l}u = \sum_{k=0}^{\infty} (-1)^{k} \frac{t^{k}}{k!} (\operatorname{ad} v)^{l+k} u$$

at every y(s') on C between x_0 and y(s) and for every $l \in \mathbb{Z}_+$. We may assume that $s = m\sigma$ for a positive integer m.

Operating $\phi_{(m-1)\sigma}(v)_*$ on the identity (6) at $y(\sigma)$, we get

$$\phi_{m\sigma}(v)_*(\operatorname{ad} v)^l u = \sum_{k=0}^{\infty} (-1)^k \frac{t^k}{k!} \phi_{(m-1)\sigma}(v)_*(\operatorname{ad} v)^{l+k} u$$

at $y(m\sigma)$ for every $l \in \mathbb{Z}_+$. Then operating $\phi_{(m-2)\sigma}(v)_*$ on the identity (6) at $y(2\sigma)$, we have

$$\phi_{(m-1)\sigma}(v)_*(\operatorname{ad} v)^l u = \sum_{k=0}^{\infty} (-1)^k \frac{t^k}{k!} \phi_{(m-2)\sigma}(v)_*(\operatorname{ad} v)^{l+k} u$$

at $y(m\sigma)$ for every $l \in \mathbb{Z}_+$. Thus we obtain

$$\phi_{(m-n)\sigma}(v)_*(\operatorname{ad} v)^l u = \sum_{k=0}^{\infty} (-1)^k \frac{t^k}{k!} \phi_{(m-n-1)\sigma}(v)_*(\operatorname{ad} v)^{l+k} u$$

at $y(m\sigma)$ for such (n, l) that $0 \le n \le m-1$ and $l \in \mathbb{Z}_+$. In particular for n=m-1, we have

$$\phi_{\sigma}(v)_*(\operatorname{ad} v)^l u = \sum_{k=0}^{\infty} (-1)^k \frac{t^k}{k!} (\operatorname{ad} v)^{l+k} u$$

at $y(m\sigma)$ for every $l \in \mathbb{Z}_+$. Hence inductively we obtain

(7)
$$\phi_{(m-n)\sigma}(v)_*(\operatorname{ad} v)^l u \in L(\exp(sv)x_0), \quad (0 \le n \le m-1)$$

for every $l \in \mathbb{Z}_+$. In particular for n=l=0, we get

$$\phi_s(v)_* u \in L \left(\exp(sv) x_0 \right).$$

Since u is arbitrary in L, we have

(9)
$$\dim L(\exp(sv)x_0) = \dim L(x_0),$$

on an integral curve C passing through x_0 .

For a point x on M, we shall take such a system $\{w_1, \dots, w_r\}$ of vector fields in L that $w_1(x), \dots, w_r(x)$ are independent at x and span L(x). Let L' be the

282 M. Matsuda

linear space spanned by these w_i in L. We imbed some neighbourhood of the zero in L' into M by the mapping: $w \rightarrow \exp(w)x$. Let N be its image, which is a submanifold of M. Take two elements u and v of L'. We put $f(s, t) = \exp(t(su+v))x$. Then we claim that

(10)
$$\left[\frac{\partial f(s,t)}{\partial s}\right]_{s=0} = \int_0^t \phi_{\tau}(v) u d\tau.$$

The left hand side of (10) is a vector field on the curve f(0, t). To prove this identity we show that both sides of (10) satisfy the same ordinary differential equation

$$\frac{dh}{dt} = u + h^i \frac{\partial v}{\partial x^i}$$

along the curve f(0, t). We take such a local coordinate system (z^i) around f(0, t) that we have $v = \frac{\partial}{\partial z^i}$ with respect to this coordinate system. Then for sufficiently small Δt , we get

$$\phi_{t+\Delta t}(v)_* u(f(0, t+\Delta t)) = \phi_t(v)_* u(f(0, t)).$$

Hence we have

$$\begin{split} \lim_{\Delta t \to 0} \frac{1}{\Delta t} \left\{ \int_0^{t+\Delta t} \phi_{\tau}(v)_* u(f(0, t+\Delta t)) d\tau - \int_0^t \phi_{\tau}(v)_* u(f(0, t)) d\tau \right\} \\ &= \lim_{\Delta t \to 0} \frac{1}{\Delta t} \int_{-\Delta t}^0 \phi_{\tau}(v)_* u(f(0, t+\Delta t)) d\tau = u(f(0, t)) \,. \end{split}$$

With respect to an arbitrary coordinate system (x^i) , the right hand side of (10) satisfies the equation (11). The left hand side of (10) satisfies (11) along the curve f(0, t), because we have

$$\frac{\partial}{\partial t} \left[\frac{\partial f}{\partial s} \right]_{s=0} = \left[\frac{\partial}{\partial s} \left(\frac{\partial f}{\partial t} \right) \right]_{s=0} = \left[\frac{\partial}{\partial s} (su+v) \right]_{s=0}.$$

Since both sides of (10) have the same initial value 0 at t=0, we obtain the identity (10).

By the identity (10) we have

(12)
$$\left[\frac{\partial f(s,t)}{\partial s}\right]_{s=0} \in L(f(0,t)).$$

The tangent space of N at f(0, t) is spanned by the left hand side of (12), if u varies over all elements of L'. Hence, by (9), we see that N is an integral manifold of L,

REMARK 1. Suppose dim L be finite. We shall show that $c(u, v; x) = \infty$ for every pair of u and v in L and for every x on M. Take a basis $\{u_1, \dots, u_r\}$ of L. We get

$$u = c^i u_i$$
 and $(\operatorname{ad} v) u_i = c_i^j u_i$,

where c^i and c_j^i are real constants. We have

$$(\operatorname{ad} v)^k u = c^{i_0} c^{i_1}_{i_0} \cdots c^{i_k}_{i_{k-1}} u_{i_k},$$

for $k=0, 1, 2, \cdots$. Let c be the maximum of $|c^h|$ and $|c_i^j|$, $(1 \le h, i, j \le r)$. We obtain the inequality

$$\left| c^{i_0} c^{i_1}_{i_0} \cdots c^{i_k}_{i_{k-1}} \right| \leq c^{k+1} r^k.$$

Hence $g_t(u, v)$ is expressed in the form $\sum_{i=1}^r a^i(t)u_i$, where $a^i(t)$ $(1 \le i \le r)$ is an entire function having a majorant series of the form $\sum_{i=1}^{\infty} c^{k+1} r^k t^k (k!)^{-1}$.

Our condition (C) is satisfied by L in this case.

REMARK 2. Let M and L(M) be of C^{ω} -class. Then we have the identity (1) as a direct consequence of the fact that $\phi_t(v)_*u$ is real analytic with respect to (t, x) at (0, x). Our condition (C) is satisfied by every Lie subalgebra of L(M).

REMARK 3. We shall give an example of L which is neither finite dimensional or real analytic, but satisfies (C). Let M be $S^1 \times S^1$. Take a function f(x) on S^1 which vanishes at infinitely many points, but does not vanish identically. We define L as the Lie subalgebra generated by $f(x)\frac{\partial}{\partial x}+g(y)\frac{\partial}{\partial y}$, where g varies over all real analytic functions on S^1 . Then L is neither finite dimensional or real analytic, but satisfies (C).

REMARK 4. There exists a Lie subalgebra L which does not satisfy our condition (C). Nagano [3] gave an example of L to which our theorem can not be applied.

OSAKA UNIVERSITY

Bibliography

- [1] C. Chevalley: Theory of Lie groups I, Chap. III, Princeton Univ. Press, 1946.
- [2] R. Hermann: The differential geometry of foliations II, J. Math. Mech. 11 (1962), 303-315.
- [3] T. Nagano: Linear differential systems with singularities and an application to transitive Lie algebras, J. Math. Soc. Japan 18 (1966), 398-404.