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Abstract

Background: Gene Ontology (GO) provides rich information and a convenient way to study gene functional

similarity, which has been successfully used in various applications. However, the existing GO based similarity

measurements have limited functions for only a subset of GO information is considered in each measure. An

appropriate integration of the existing measures to take into account more information in GO is demanding.

Results: We propose a novel integrative measure called InteGO2 to automatically select appropriate seed measures

and then to integrate them using a metaheuristic search method. The experiment results show that InteGO2

significantly improves the performance of gene similarity in human, Arabidopsis and yeast on both molecular

function and biological process GO categories.

Conclusions: InteGO2 computes gene-to-gene similarities more accurately than tested existing measures and has

high robustness. The supplementary document and software are available at http://mlg.hit.edu.cn:8082/.

Background

The Gene Ontology (GO) provides a representation of

biological knowledge through structured, controlled

vocabulary of terms, which are interrelated forming a

directed acyclic graph (DAG) for describing the func-

tional information of gene products [1,2]. GO consists of

three categories that shared by all organisms: molecular

function (MF), biological process (BP) and cellular com-

ponent (CC) [1]. As a widely used bioinformatics

resource, GO provides rich information and a convenient

way to study gene functional similarity, which has been

successfully used in various aspects including predicting

gene functional associations [3], homology analysis [4],

assessing target gene functions [5], and predicting subcel-

lular localization [6].

Since GO was released, various computational measure-

ments have been developed to compute gene functional

similarities by comparing GO terms with which the genes

are annotated [7-23]. These term- comparison measure-

ments can be classified into three categories based on the

types of knowledge in GO that they used: edge-based,

node-based, and hybrid [18].

The measures in the edge-based category take the struc-

ture of GO into account [11,12,22]. By using the topologi-

cal information of GO directed acyclic graph (DAG), a

recently designed method Relative Specificity Similarity

(RSS) models both the distance of given term pair to its

closest leaf terms and the distance to their most recent

common ancestor (MRCA) [22]. The edge-based mea-

sures, however, are still fully dependent on the topology of

GO DAG, and it is inappropriate to simply equalize the

terms at the same topological level [18].

In the node-based category, methods originally designed

for natural language processing [24-26] are utilized for

term comparisons. In the earlier developed measures, the

similarity of two GO terms is defined as the information

content of their most informative common ancestor

(MICA), indicating its specificity. It was further advanced

by modeling the distance between a given term pair to its

MICA [13]. The results show strong correlations with
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yeast gene co-expressions and protein sequence similari-

ties [24,27]. However, the node-based measures only con-

sider the annotations and common ancestors, neglecting

the complex topology of the GO DAG.

Hybrid measurements have been recently proposed to

consider the more complete information in GO. [15]

utilizes all of the parent terms of the target terms,

which takes the topology of the GO DAG into account.

Hybrid Relative Specificity Similarity (HRSS) employs

the concepts of information content, adapting topology,

annotations and MICA [22]. The experiment results

show that both Wang and HRSS measures perform bet-

ter than the traditional node-based measures [15,22].

However, these measures still only focus on several

types of information in GO but neglect others.

Since none of the existing measure can employ all the

information in GO, an integrative approach to unite all

the strength of existing measures is preferred. In this

direction, [23] proposed a rank-based gene semantic

similarity measure called InteGO by synergistically inte-

grating multiple similarity measures (called seed mea-

sures) to take into account more aspects of GO

(structure, annotation, MICA, MRCA, all of the com-

mon parent, etc). InteGO first selects measures based

on an evaluation set, and then integrates the selected

measures using one of four straightforward methods

(maximum, minimum, average and median). The experi-

ment results showed that InteGO performs significant

better than the seed measures [23]. However, the perfor-

mance of InteGO is still limited, because it is vulnerable

to the selection of low performance measures, and its

fixed integration strategy may not be suitable for all

gene pairs.

In this paper, we aimed to present a new integrative

measure called InteGO2, by choosing the most appropri-

ate seed measures for each gene pair from a pool of

candidate measures using a grouping method, and by

integrating the selected seed measures using a meta-

heuristic search method. The major contributions are:

* Our new integrative measure not only takes into

account the state-of-the-art GO based measures, but

also selects the most appropriate seed measures for

each gene pair.
* A metaheuristic search method is presented in

InteGO2 to flexibly integrate multiple seed measures.

Method

The framework of InteGO2 is shown in Figure 1. The

whole process includes two parts: 1) model training

(right), in which the parameters of InteGO2 are obtained

using a training set T , and 2) gene-to-gene similarity

calculation (left) for the input gene set G. In InteGO2,

we solve two key problems, i.e, to select the most

appropriate seed measures for each gene pair from all

the candidate measures and to appropriately integrate

the seed measures.

InteGO2 has three steps. First, we calculate all the simi-

larity scores using all the candidate measures and then

rank them, resulting in a ranked matrix Mr . Second, a

grouping process is applied on Mr to identify the com-

mon features of all the ranked results, with which we

define a set of seed measures for each gene pair saved in

Sseed. Third, we integrate all the measures in Sseed with an

addition model, in which the parameter of each compo-

nent is estimated by applying a learning process on train-

ing set T . We will introduce the three steps of InteGO2

in the following text.

Step 1. Computing similarities using all measures

The similarity scores of all the gene pairs in a given gene

set GS are calculated using all the candidate measures

Sall. And then for each measure, all the gene pairs are

sorted incrementally according to their similarity scores,

resulting in a ranked matrix Mr , in which each row is a

gene pair and each column is a measure, and Mr (i, j) is

the rank of gene pair i in measure j. Subsequently, the

ranked gene similarity score RankSim(g1g2, m) for genes

g1 and g2 in GS is calculated as:

RankSim
(

g1g2, m
)

=
2 × Mr

(

g1g2, m
)

|GS|2
(1)

where g1 and g2 are two target genes, m is a candidate

measure in Sall, |GS| is the number of genes in gene set

GS, which according to Figure 1, is the input gene set G

or the training set T . RankSim(g1g2, m) ∈ [0, 1]. Rank-

Sim(g1g2, m) indicates how similar g1 and g2 is, com-

pared with all of the gene pairs in GS. Note that

although the similarities using each measure may at a

different scale or have a different distribution, the

ranked results are comparable. Therefore, the integra-

tion of all the ranked results may better reflect func-

tional similarity.

Step 2. Selecting seed measures

Since different similarity measures use different types of

information in GO, or model data in different ways, one

measure may perform the best on certain functional

categories but not on the others. Alternatively, the inte-

gration of suitable measures makes it possible to calcu-

late the overall similarity score by considering all the

aspects of GO. A key problem here is to select the most

appropriate measures (called seed measures) for every

gene pair from a pool of candidate measures.

In this paper, we present a solution to this problem

based on only one principle that the final ranked score

should be the score that all the seed measures agree. To
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this end, a grouping algorithm to select the most appro-

priate seed measures for each gene pair is proposed as

follows. Let RankSim(g1, g2, m1), RankSim(g1, g2, m2), …,

RankSim(g1, g2, mn) be the ranked similarity scores of n

candidate measures for g1 and g2, and mx ∈ Sall. By put-

ting them on a number axis, we group all the candidate

measures agglomeratively based on their distances on

the axis, forming a dendrogram D(g1g2). And then we

gradually reduce the distance threshold d in D(g1g2) to

iteratively find the isolated measures and remove them

until a core group of measures is leftover - which is

called the seed measure group (see examples in Figure

2). Mathematically, a seed measure group is the largest

group with at least c measures, where c is a pre-defined

value (c = 3 in our settings; more detail about the choice

of c is shown in Additional file 1). And the distance

between genes in the seed measure group is not larger

than d′, where d′ is a pre-defined value (d′ = 0.10in our

settings; more detail about the choice of d′ is shown in

Additional file 2).For g1g2, only the measures in the seed

measure group are considered as seed measures, saved

in Sseed.

An illustration example of the seed measure group is

shown in Figure 2(a). In the figure, with the decrease of

d from d1 to d′, the isolated measures are in the order

of m1, m3, m4, and m5, and the the seed measure group

include m2, m6, m7, and m8.

It is clear that a seed measure group can be labeled as

as high, low, or mix according to its distribution in the

number axis. Mathematically, we define the label of a

seed measure group using the highest number of the

isolated measures in the leftmost, middle or rightmost

of the number axis. For example, the seed measure

group in Figure 2(a) is high, in Figure 2(b) is low, and

in Figure 2(c) is mix. We label the seed measure groups,

because the integration strategy could be different for

different seed measure group types.

Step 3. Integrating seed measures

In order to integrate the selected seed measures, we

adopt an addition model which is one of the best known

method for integrating a number of alternatives [28].

Given a gene pair, we have learned its seed measures and

the type of seed measure group from the previous step.

For different types of seed measure groups, we build an

addition model as shown in Eq. 2:

Sim (g1, g2) =

⎧

⎨

⎩

∑

Hi · RankSim(i) + Hα · max + Hβ · min + Hγ · ave if type = high;
∑

Li · RankSim(i) + Lα · max + Lβ · min + Lγ · ave if type = low;
∑

Mi · RankSim(i) + Mα · max + Mβ · min + Mγ · ave if type = mix.
(2)

where type is the type of seed measure group; i is a

seed measure in the seed measure group; RankSim(i) is

the similarity of given gene pair calculated with measure

i (Eq. 1); Xi is the parameter of seed measure i, where X

is H, M or L; max, min and ave represent the maxi-

mum, minimum and average of all the RankSim values

for g1 and g2 using all the seed measures; and Xa, Xb ,

Xg are their parameters respectively. We include maxi-

mum, minimum and average in the Eq. 2, because the

experiment results in [23] show that maximal, minimal

and average values are better than individual measure in

the tested conditions.

In order to use Eq. 2 for seed measure integration, the

parameters, e.g. Xa, Xb , Xg , needs to be assigned. Instead

of leaving the difficult job to the end users, we estimate

these parameters using a training data T . Specifically, we

adopt a metaheuristic search method to gradually update

the parameters in Eq. 2 to maximize the score of an

objective function in T.

Figure 1 The Framework of InteGO2. Framework of InteGO2 for calculating gene-to-gene similarities for a input gene set (left) and for

estimating the parameters in the integration model (right).
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There are a wide variety of metaheuristics, including

simulated annealing, tabu search, iterated local search, vari-

able neighborhood search, and greedy randomized adaptive

search. It also includes a learning component to the search,

such as ant colony optimization, evolutionary computation,

and genetic algorithm. In this paper, we adopt the tabu

search method. Comparing with a simple local search

procedure, tabu search carefully explores the neighborhood

of each solution through the use of memory structures

(tabu list) to avoid sticking in the poor-scoring areas or

areas where scores plateau [29]. Specifically, given the

training set T , we use the EC number (Enzyme Commis-

sion) to explain molecular function with the criteria that

the molecular functions of a group of genes are similar if

Figure 2 Illustrative example of three types of seed measure group. m1, m2, m3,...,m8 are eight candidate measures. The values on the

number axis are their RankSim values. (a), (b) and (c) are illustration examples of high, low and mix seed measure groups respectively.
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they have the same EC numbers [15,30,31]. Therefore, we

can locate the best candidates of solutions for next move in

the searching process.

Given all the genes in T grouped by their EC numbers,

we compute both the intra-EC gene similarities and the

inter-EC gene similarities using Eq. 2 starting with a set

of random parameters. We then gradually update the

parameters to increase the difference between the intra-

and inter-EC similarities. Quantitatively, we utilize the

logged fold change (LogFC) measure which has been

widely used in the gene expression studies [32]. The

LogFC score of EC number eiis defined in Eq. 3:

LogFC(ei) =
1

|EC|
×

∑

ej∈EC;G(ej)∩G(ei)=θ

∑

g∈G(ei)

dif fg(ei, ej)

|G(ej)|
(3)

where G(ei) is set of all of genes which are assigned to

ei; EC is a set of ECs which do not have any overlapped

genes with ei (G(ej ) ∩ G(ei) = ∅) in the training set T;

and diffg (ei, ej ) is calculated as:

diffg(ei, ej) = ln

|G(ei)| ×
∑

g′∈G(ej)

(1 − Sim (g, g′, t) + c)

|G(ej)| ×
∑

g∗∈G(ei)

(1 − Sim (g, g∗, t) + c)
(4)

where c is a constant small positive number, as a Lapla-

cian smoothing parameter; G(ei) is the set of all of the

genes which EC number is ei except gene g; G(ej ) is the set

of all of the genes which EC number is ej ; g is a gene

assigned to ei. Sim(g, g′, t) and Sim(g, g*, t) are defined in

Eq. 2. In Eq. 4, the numerator and denominator represent

the inter-EC distance and intra-EC distance respectively.

The higher the diffg (ei, ej ) is, the more obvious the positive

difference between inter-EC difference and intra-EC differ-

ence is.

Finally, given training set T grouped by a set of EC

numbers, the optimization function for each tabu search

move is the average LogFC score of all the involved EC

numbers in the training set T :

OptF(T) =
1

|T|
×

∑

ei∈T

LogFC(ei) (5)

Subsequently, we estimate the parameters in Eq. 2

using the following tabu search process (Figure 3):

1. Initialize TL as the empty tabu list, and a set of ran-

dom parameters in Eq. 2 as current solution s (starting

point) satisfying ∑i∈MGXi + Xa + Xb + Xg = 1.0, where

X is H, M , or L. The initial best solution is bs = s.

2. Calculate the neighborhood solutions of s by

increasing or decreasing one or multiple parameters

in s. Note that we learn one group of parameters at

a time. For example, while learning parameters for

Hx, the other two groups Lx and Mx are fixed.

3. The best solution for next move s′ is selected

from the neighborhood solutions of s using the opti-

mization function (Eq. 5).

4. If s′ > bs, let s′ be the current solution, update TL

and bs = s′.

5. If s′ ≤ bs, we still let current best solution s = s′ and

update TL if s′ ∉ TL. Otherwise, we delete s′ from the

neighborhood solutions and go back to step 3.

6. Repeat step 2 to 5 till bs is stable.

7. To avoid bias, we repeat step 1 to 6 multiple

times and choose the best result.

Results

We evaluate InteGO2 on three model organisms

(human, Arabidopsis and Yeast) with different levels of

GO annotation scale and complexity [33]. For each of

them, we use EC numbers and pathways as independent

biological evidences for molecular function and biologi-

cal process category in GO respectively. Finally, we test

the robustness of InteGO2 by gradually removing seed

measures with best performance.

Data preparation

The GO annotation and structure data were down-

loaded from the GO website (http://www.geneontology.

org/GO.downloads.shtml). The EC number and pathway

information of human, Arabidopsis and Yeast were

downloaded from the HumanCyc (http://humancyc.org),

PlantCyc (http://ftp.plantcyc.org/Pathways) and Sacchar-

omyces genome database (http://www.yeastgenome.org/

download-data/curation) respectively. InteGO2 was

implemented with Python 2.7 with NetworkX package

(http://networkx.github.io).

Performance evaluation on molecular function

Proteins sharing the same EC numbers are considered

to have similar molecular functions. For every manually

curated pathway in human, Arabidopsis and yeast, we

grouped the genes based on their EC numbers (full four

digits) and tested the difference between the inter- and

intra-group gene-gene similarities. There are in total

125, 205 and 32 EC groups with least three genes in

human, Arabidopsis and yeast respectively.

In the experiments, we chose seven widely used mea-

sures in all the three categories as candidate measures.

We also added a fake measure to simulate the situation

where a wrong measure was included to test the robust-

ness of InteGO2. Among the seven measures, SimUI

[34] and TO [35] measure use the GO annotations

information directly; Resnik [24], Schlicker [13] and

Peng et al. BMC Systems Biology 2014, 8(Suppl 5):S8
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SimGIC [36] measure use annotation information to cal-

culate the information content of GO terms; Wang [15]

measure considers the complex topology of GO; HRSS

[22] considers the shared path based on information

content. More detail description is shown in Additional

file 3. In the fake measure, a random half of the similar-

ity scores were computed with Resnik measure, and the

other half were 1 or 0, such that the similarity of two

genes with the same EC is 0, otherwise it is 1 (the

reversed values ensure that the fake measure has low

quality).

In order to evaluate InteGO2 systematically, we

adopted the cross-validation strategy by randomly

selecting 1/5 of human ECs as the testing set (200 genes

involved) and the other 4/5 of human ECs being the

training set (823 genes involved). The same training set

was used for Arabidopsis and yeast (1151 and 121 genes

involved respectively). Using the training set, the para-

meters in Eq. 2 were estimated, which were directly

applied on the testing set to compute the EC-based

LogFC scores using Eq. 5.

We found that the parameters for the three types of

seed measure groups (high, low and mix) are signifi-

cantly different, reflecting different integration strategies.

The highest parameter in the high seed measure groups

is maximum, in the low seed measure groups is mini-

mum, and in the mix seed measure groups is simUI

measure.

Figure 3 The flowchart of tabu search process. The tabu search process is shown step by step in the flowchart.
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We compared the performance of InteGO2 with all

the candidate measures, the average value of them and

InteGO. Figure 4 shows that InteGO2 performed the

best among all the measures in all the three species.

For example, the median, 75th and 25th percentile of

LogFC scores of InteGO2 on human were 5.9, 6.9 and

4.5, significantly higher than the seed measures it inte-

grated (Figure 4(a) and supplementary table S1 in

Additional file 4). Interestingly, the performance of

InteGO2 was significantly higher than our previous

measure InteGO, indicating that adding a weak mea-

sure has almost negligible effect to InteGO2, but can

significantly affect InteGO. Comparing the LogFC

scores on every EC group using InteGO2, InteGO and

Wang measure (the best seed measure), we found that

InteGO2 performed the best in all 25 ECs in the testing

set, while InteGO and Wang measure were being the

best in 2 or 1 ECs only (Figure 5(a)). Similarly, the

median of LogFC scores of InteGO2 in Arabidopsis is

4.6, which is 1.5-fold higher than InteGO (Figure 4(b)

and supplementary table S2 in Additional file 4).

InteGO2 performed the best in 186 of 205 ECs, while

Wang performed the best in 61 ECs (Figure 5(b)). We

also evaluated InteGO2 on yeast which has richer infor-

mation in GO than human and Arabidopsis. InteGO2

performed the best with the median LogFC score being

6.2 (Figure 4(c) and supplementary table S3 in Addi-

tional file 4). it was the best in 31 out of 32 total EC

groups (Figure 5(c)).

Statistics analysis was carried out to test the significance

of InteGO2 results. The p-values of t-test indicate that

the results of InteGO2 are significantly different with

the results of other measures except simGIC, simUI and

Wang measure on Arabidopsis and yeast (T-Test, supple-

mentary Table S4 in Additional file 4).

Performance evaluation on biological process

Given that genes annotated to the similar biological pro-

cess may be involved in the same manually curated path-

way, we grouped genes based on the pathway information,

and on these gene groups we evaluated InteGO2. There

are in total 258, 154 and 141 pathways with at least two

genes in humanCyc, PlantCyc and Saccharomyces genome

database respectively.

The same LogFC method (Eq. 3) were used in the per-

formance test. In human and Arabidopsis, the median

and 75th percentile of LogFC scores of LogFC scores

were higher than other measures (Figure 6(a), (b) and

supplementary table S5 and S6 in Additional file 4),

indicating that integrating multiple gene similarity mea-

sures with InteGO2 could increase the overall perfor-

mance. Comparing the LogFC scores from the InteGO2,

InteGO and Wang measure for each pathway, Figure 7

(a) and (b) show that InteGO2 performs best in 204 of

258 pathways and 81 of 154 pathways on human and

Arabidopsis respectively. In yeast, the performance of

InteGO2 is still the best. The median, 75th percentile

and 25th percentile of LogFC scores are 3.9, 5.0 and 2.3,

which are significant higher than the second-best mea-

sure InteGO (Figure 6(c) and supplementary table S7 in

Additional file 4). In addition, InteGO2 performs best

in 132 of 141 (93.6%) yeast pathways (Figure 7(c)).

Although InteGO2 perform well in most datasets, its

performance on Arabidopsis is not good enough (the

median of LogFC score is around 1). The reason may be

that all the result of seed measures are not good and

Figure 4 LogFC score comparison in Molecular Function category on human (a), Arabidopsis (b) and yeast (c). LogFC score comparison

for eight candidate measures (fake, HRSS, Resnik, Schlicker, simGIC, simUI, TO and Wang) and three integration measures average, InteGO and

InteGO2 in Molecular Function category on human (a), Arabidopsis (b) and yeast (c). The top and bottom of the boxes represent 75th and 25th

percentiles, red lines are the median, top and bottom whiskers represent greatest and lowest values except outliers. Cross nodes represent

outliers that are larger than the sum of 75th and 1.5 interquartile range.

Peng et al. BMC Systems Biology 2014, 8(Suppl 5):S8

http://www.biomedcentral.com/1752-0509/8/S5/S8

Page 7 of 12



Figure 5 Venn Diagram for InteGO2, InteGO and Wang in Molecular Function category on human (a), Arabidopsis (b) and yeast (c).

Venn Diagram for InteGO2, InteGO and Wang measure with number of ECs on which perform best on human (a), Arabidopsis (b) and yeast (c).

Figure 6 LogFC score comparison in Biological Process category on human (a), Arabidopsis (b) and yeast (c). LogFC score comparison

for eight candidate measures (fake, HRSS, Resnik, Schlicker, simGIC, simUI, TO and Wang) and three integration measures average, InteGO and

InteGO2 in Biological Process (BP) category on human(a), Arabidopsis(b) and yeast(c). The top and bottom of the boxes represent 75th and 25th

percentiles, red lines are the median, top and bottom whiskers represent greatest and lowest values except outliers. Cross nodes represent

outliers that are larger than the sum of 75th and 1.5 interquartile range.

Figure 7 Venn Diagram for InteGO2, InteGO and Wang in Biological Process category on human (a), Arabidopsis (b) and yeast (c).

Venn Diagram for InteGO2, InteGO and Wang measure with number of Pathways on which perform best on human(a), Arabidopsis(b) and yeast(c).
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very close to each other. Therefore, the grouping pro-

cess (see subsection 2.2) in InteGO2 cannot select the

appropriate seed measures from the seed measure. Even

though, InteGO2 also increase the performance of the

similarity measures.

Statistics analysis was carried out to test the signifi-

cance of InteGO2 results. The p-values of t-test indicate

that the results of InteGO2 are significantly different

with the results of other measures except simGIC,

simUI and Wang measure on Arabidopsis (T-Test, sup-

plementary Table S8 in Additional file 4).

The results indicate that InteGO2 successfully utilizes

the GO information by integrating seed measures appro-

priately to better deliver functional similarities better

genes.

Robustness of InteGO2

To test the robustness of InteGO2, we gradually removed

a candidate measure (Wang, Schlicker, Resnik, simUI) and

then compute the logFC score. Figure 8 shows that the

performance reduced slowly by removing the first two

measures (supplementary table S9 in Additional file 4).

The median of LogFC decreased less than 1.0 after remov-

ing three best measures. This is because InteGO2 can

select the most appropriate seed measures for each gene

pair, since no measurement is suitable for every gene pair.

To analysis the contribution of the different measures to

the overall similarity, we applied leave-one-out measure

on InteGO2. The result shows that InteGO2 is overall

robust to remove any integrated measure (Additional

file 5). The performance of InteGO2 decreases most after

Resnik measure is removed.

Performance evaluation on protein sequences

In addition to use the logFC score as the evaluation cri-

teria, we used protein sequence similarity as an indepen-

dent evidence for further performance evaluation on the

molecular function category [18]. In this experiment, the

same human gene set in subsection “Performance eva-

luation on molecular function” was used, and the

sequence similarity scores (ln(BitScore)) were calculated

with BLAST [37]. Figure 9 shows that among all the

GO based semantic similarity measures, InteGO2 has

the highest correlation score with the sequence based

similarity with R-Squared 0.96 (polynomial model; Sup-

plementary Table S10 in Additional file 4).

Generating functional association maps

Since InteGO2 computes gene-to-gene similarities more

accurately than the tested existing measures, we com-

puted the gene similarity scores for all the human, Ara-

bidopsis and yeast genes on both molecular function

and biological process GO categories, and generated a

functional association map for each organism. As a

demonstration, the human P540 [38] gene functional

association map (Sim(g1g2) = 1.0) with 42 genes and

145 edges consists a tightly connected subgraph and

several small or large but sparsely connected subgraphs

(see Figure 10). These networks provide a new platform

for more advanced biomedical researches which could

be beneficial in medical diagnostics.

Conclusions

The calculation of GO-based gene functional similarity

has already been widely applied [3-6]. However, since

the existing measurements only use a subset of the GO

information (e.g., topology of DAG, annotations, MICA,

edge length and all the parents term), the demand to

integrate these measurements is compelling.

In this paper, we proposed a new integrative measure

called InteGO2 by automatically selecting the most

appropriate seed measures and by integrating the seed

measures using an addition model. First, we calculate

the ranked similarity scores using all the measures. Sec-

ond, seed measures are selected using a grouping pro-

cess. Third, the parameters of the addition model are

estimated by optimizing an objective function on a

training data. Experimental results using ECs and path-

ways show that InteGO2 performs the best among all

the measures. It also shows that InteGO2 is robust

against the unavailability of candidate measures. Note

that we have proposed InteGO in the previous work to

unify different measures [23], which can be considered

as a simplified case of InteGO2.

Figure 8 The Robustness test of InteGO2. The Robustness test of

InteGO2 on molecular function based on human EC.
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Figure 9 Comparing InteGO2 with other measures with protein sequence similarity on on human. The x-axis is the BLAST sequence

similarity and y-axis is the normalized semantic similarity based on GO.

Figure 10 The human P540 gene functional association map. The human P540 gene functional association map with 42 genes and 145 edges.
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To demonstrate the advantages of InteGO2, we com-

puted the gene similarity scores for all the human, Ara-

bidopsis and yeast genes on both molecular function

and biological process GO categories, and generated a

functional association map for each organism. The new

functional association maps, together with the existing

biological networks, can be beneficial in medical diag-

nostics, and they also may provide more biological

insights into gene function and regulation. In the future,

we will apply InteGO2 to more organisms, data sets

(such as protein-family-based index) and compare the

new functional association maps with the existing biolo-

gical network (such as protein-protein network and

genetic interaction network) to predict protein or

genetic interaction based on the GO similarity scores.

Additional material

Additional file 1: The effect of varying the least size of the seed

measure group on InteGO2 performance. The x-axis is the least size of

the seed measure group. The y-axis is the LogFC scores. The top and

bottom of the boxes represent 75th and 25th percentiles, red lines are

the median, top and bottom whiskers represent greatest and lowest

values except outliers. Cross nodes represent outliers that are larger than

the sum of 75th and 1.5 interquartile range.

Additional file 2: The effect of varying the threshold of the distance

between genes in the seed measure group on InteGO2 performance. The

x-axis is the threshold of the distance between genes in the seed

measure group. The y-axis is the LogFC scores. The top and bottom of

the boxes represent 75th and 25th percentiles, red lines are the median,

top and bottom whiskers represent greatest and lowest values except

outliers. Cross nodes represent outliers that are larger than the sum of

75th and 1.5 interquartile range.

Additional file 3: The description of the integrated measures. Seven

individual measures are described in this file. The reference papers of

these measures are also listed.

Additional file 4: Supplementary tables. All the supplementary tables

(ten tables in total) are included in this file.

Additional file 5: The effect of removing single integrated measure on

InteGO2 performance. The x-axis is the individual measure removed. The

y-axis is the LogFC scores. The top and bottom of the boxes represent

75th and 25th percentiles, red lines are the median, top and bottom

whiskers represent greatest and lowest values except outliers. Cross

nodes represent outliers that are larger than the sum of 75th and 1.5

interquartile range.
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