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ABSTRACT: To interact with one another and respond to environmental cues, microorganisms 

communicate with their own chemical languages using a wide range of extracellular signals and 

cellular responses. However, identification of these signaling molecules remains elusive, as does 

the assessment of their biological significance. Endophytes are microorganisms (both bacteria and 

fungi) that live within plants, most of them without causing any symptom of disease. They have 

drawn a growing interest worldwide especially for their enormous taxonomic diversity but also for 

their capability to biosynthesize secondary metabolites. Moreover, the precise role of such 

endomicrobiota within the host-plant as the ecological significance of their metabolites remains 

underexplored. 

In this context, we have undertaken an integrative approach dealing with traditional natural 

products chemistry, molecular networking and mass spectrometry imaging to decipher the 

molecular dialogue between the fungus Paraconiothyrium variabile and the bacterium Bacillus 

subtilis which have been both isolated as endophytes from the conifer Cephalotaxus harringtonia 

and are characterized by a strong and mutual antibiosis. From this study, we highlight that bacterial 

surfactins and a fungal tetronic acid are involved in such competition and that the fungus is able 

to hydrolyse surfactins to fight against the bacterial partner.  
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INTRODUCTION.  

Communication is understood as a process by which information is exchanged between living 

individuals through a common system of symbols, signs, tones or behaviour. In bacteria, lower 

eukaryotes, fungi and plants, the modes of intra and interspecies communication appear to be 

mainly of chemical nature.1 Thus, to interact with one another and respond to environmental cues, 

microorganisms communicate with their own chemical languages using a wide range of 

extracellular signals and cellular responses.2 Nevertheless, in several cases, identification of these 

signaling molecules remains elusive, as does the assessment of their biological significance. 

Endophytes are microorganisms that live within plants, most of them without causing any 

symptom of disease.3 They have drawn a growing interest worldwide not only for their enormous 

biological diversity but also for their capability to biosynthesize secondary metabolites.4,5 

Nevertheless the precise role of such endomicrobiota within the host-plant as well as the ecological 

role of their metabolites remains underexplored. 

In a previous study, we showcased the cultivable fungal diversity present in the leaves of 

Cephalotaxus harringtonia (Knight ex J. Forbes) K. Koch,6 an Asian medicinal plant rich in 

cytotoxic compounds, whose phytochemical content has been well studied in our laboratory.7-9 

More than 640 isolates and bacterial isolates were identified by ITS rDNA sequencing and 

16S rDNA, respectively.6 Among them, the fungus Paraconiothyrium variabile (LCP5644) and 

the bacterium Bacillus subtilis (9E1a) were isolated and exhibited a strong and mutual antibiosis. 

The fungus P. variabile is now biologically well-characterized in our laboratory and its chemistry 

has not been explored until now. According to our previous work this fungus showed interesting 

biological or chemical properties, being antagonistic against a phytopathogen,10 using plant 
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metabolites for its own benefit11 or showing bioconversion potential for synthetic purposes.12 

Interestingly, P. variabile has also been recently isolated from Taxus baccata and was shown to 

be paclitaxel producer.13 On the other hand, the position of B. subtilis as an endophyte is still 

debated even though Firmicutes (the clade to which B. subtilis belongs) have been commonly 

described as endophytic bacteria.14 In any case, B. subtilis constitutes a good model for a bacterium 

closely associated with plants especially since its genome has been fully sequenced.15 

It has been suggested that the secondary metabolites responsible for antagonistic effects may 

only be produced in response to interactions with other stressing microorganisms (inducible 

metabolites) unlike constitutive metabolites. Accordingly, many recent studies provided 

compelling evidence that microbial interactions can play major roles in the onset of metabolite 

production4 and that the growth of different microorganisms together forces direct interactions that 

may induce the production of compounds not previously observed when the strains are grown 

independently.16-19 

As a result, the characterization of the metabolites produced in a microbial consortium is more 

relevant if metabolites are detected and isolated in co-cultured system and in our case in the zone 

of inhibition. However, only restricted amounts of material can be isolated from solid cultures, 

therefore very sensitive analytical techniques are required. With the advent of new investigative 

tools dealing with microbial competition, this should permit better characterization of the 

molecular interaction in a microbial system. 

Among those, molecular networking compares metabolite profiles based on parent ion 

fragmentations. This method has been used to chemically dereplicate complex crude extracts and 

to prioritize metabolites for structure elucidation.20-22 Novel bioactive compounds have been thus 

discovered using molecular networking approach such as vitroprocines A-J isolated from a marine 
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Vibrio sp.,23 colombamides produced by marine cyanobacteria24 or the quinomycin-type 

depsipeptide retimycin A isolated from the obligate marine bacteria Salinispora.25 Recently, 

molecular networking has been also successfully applied to determine the quantitative change of 

mycrocystin production in the course of cyanobacterial co-culturing experiments.26 

In addition, the advances in instrumentation such as time-of-flight (TOF) mass analysers and 

ionization methods, such as matrix-assisted laser desorption/ionisation (MALDI), enhanced the 

sensitivity of mass spectrometry techniques and allowed metabolite events associated with 

microbial competition to be addressed. Indeed, the emerging technology of Mass Spectrometry 

Imaging (MSI) is now capable of recording the spatial distribution of metabolites secreted by 

microorganisms directly on agar medium and has been successfully applied to small molecules 

such as natural products.27,28 Two main MSI techniques: MALDI-TOF and TOF-SIMS (Secondary 

Ion Mass Spectrometry), allow detection of different mass ranges and different classes of 

compounds. The first one is the most widely used and was successfully applied using microbial 

MSI 25,29-31 to monitor the surfactin production of Bacillus spp.32,33 TOF-SIMS imaging has also 

been used to localize the surfactins produced during Bacillus sp. swarming transferred onto a 

silicon wafer.28  

In this study molecular networking, MALDI-TOF and TOF-SIMS have been used to decipher 

and map the chemistry of the microbial competition between the endophytes P. variabile and 

B. subtilis on agar. A new method was designed to optimize the sample preparation allowing 

bacterial surfactins and their hydrolyzed analogues to be detected independently using two MSI 

methods. The response of P. variabile to the bacterial challenge was assessed. The fungus was 

found to hydrolyze the surfactant lipopeptides and to produce antimicrobial tetronic acids against 

bacteria. This work therefore provides new insights in the comprehension of the chemical 
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mediation involved in the course of interspecies interaction within the endophytic microbiota of a 

host-plant.  

 

RESULTS AND DISCUSSION. 

Interspecific microbial competition of endophytes  

Among the endophytic microbial strains obtained from the leaf of the conifer C. harringtonia, 

P. variabile LCP5644 and B. subtilis 9E1a showed a strong and unique antagonism during their 

isolation, which was never observed between other partners of the plant-microbiota (Figure 1). 

This antagonism was persistent as no covering was observed after 60 days of culture (data not 

shown) and is characterized by the inhibition of the aerial hyphae development of the fungus as 

represented in Figures 1B and 1D. This effect is referred to as a balding effect and has already 

been described in the course of the interaction between B. subtilis and Streptomyces coelicolor.33 

As represented in Figures 1A and 1B, the bacterium is also affected by the presence of the fungus, 

as no bacterial growth is visible in front of P. variabile. Furthermore, no competition was detected 

when the microorganisms were grown in a divided Petri dish, suggesting the involvement of a 

diffusible chemical rather than volatile organic compounds production (data not shown).  

The numbers of studies reporting bacterium-fungus interactions have increased during the last 

few years, and some secondary metabolites, which orchestrate the associations, have been 

identified. Among the different categories of bacterial-fungal molecular interactions (e.g., 

signaling-based interactions, interactions via modulation of the physicochemical environment, 

chemotaxis, interactions via cooperative metabolism or via protein secretion and gene transfer), 

the best-known and most extensively studied is antibiosis.34 Indeed, this kind of interaction 

involves a chemical warfare mediated by the production of deleterious diffusible molecules from 
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one partner to the other. With the aim to decipher the compound-based signals involved in the 

competition between the endophytes, we undertook the study of the metabolites specifically 

produced in the competition zone by using molecular networking and comparing them with the 

metabolites produced independently by each microbial partner.  

Molecular network analysis of the metabolites produced in the course of the competition 

The molecular network shows the comparative metabolomics of 12 crude extracts including 

extracts from the bacterial, the fungal and the competition zones, respectively (all in triplicate, 

n=3), in addition to one extract of the culture media (control, also in triplicate, n=3). Analysis of 

MS/MS data led to the identification of 2672 precursor ions which were visualised as nodes in the 

molecular networking and are connected by 3726 edges with a cosine score varying from 0.7 to 1 

(a cosine score of 1 corresponds to two identical MS/MS spectra) (Figure 2).  

The molecular network was seeded with known compounds from the Global Natural Products 

Social (GNPS) molecular networking standards library, in which one molecular family (groups of 

related precursor ions) encompassed standards from the surfactin class of compounds. This 

molecular family is highlighted in Figure 2 and shown in more detail in Figure 3. Precursor ions, 

which matched a molecular networking library standard, are illustrated by diamonds in Figure 3. 

Indeed, such molecular family contained the ions for surfactin C13 ([M+Na]+ m/z 1030.64), 

surfactin C14 ([M+Na]+ m/z 1044.66) and surfactin C15 ([M+Na]+ m/z 1058.67). All of these 

surfactins matched known standards with a cosine score > 0.82 and were mainly detected in both 

the bacterium and competition extracts (orange node).  

Related surfactin derivatives (illustrated by triangles in Figure 3) were also detected in this 

cluster and displayed a difference of + 18 amu from native surfactins and were assigned as 

hydrolyzed surfactins (m/z 1048.65 [C13+Na+H2O]+, m/z 1062.66 [C14+Na+H20]+, m/z 1076.68 
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[C15+Na+H2O]+). Interestingly such compounds were specifically in both the sole bacterium and 

competition extracts (orange node). In addition, the MS/MS spectrum of the ion detected at m/z 

1032.65 (orange node) shows a fragmentation pattern not only similar to that of C14-surfactin but 

also to a mixture of fragment ions, indicating the presence of several compounds (data not shown). 

The MS/MS spectrum of the ion detected at m/z 1090.7 (purple node) is similar to that of the 

hydrolyzed C15-surfactin (m/z 1076.7 [M+Na+H2O]+), but with a mass difference of 14 amu in 

the b-fragment ion series, indicating that this ion is likely an hydrolyzed C16-surfactin (data not 

shown). Consequently the two ions detected at m/z 1032.65 and 1076.7 are likely to be surfactin 

analogs. 

Surfactins are cyclic lipodepsipeptides secreted by species of Bacillus. The microbial functions 

described for those compounds include a powerful surfactant effect.33 Surfactins inhibit the growth 

and development of other microorganisms by acting primarily on cellular membranes to disrupt 

membrane integrity.35 Altogether, several studies based on mass spectrometry imaging (MSI) have 

demonstrated that during bacterial competition, B. subtilis is able to produce cyclic surfactant 

lipopeptides, which inhibit the formation of Streptomyces sp. aerial hyphae.32 In addition, MSI 

measurement undertaken by Dorrestein et al. 32 in the zone of interaction between B. subtilis and 

Streptomyces sp. also revealed the presence of inactive linear surfactins resulting from the 

hydrolysis of the ester function on the cyclodepsipeptide, suggesting a resistance mechanisms 

developed by Streptomyces against B. subtilis. 

The morphological aspect of P. variabile fungal hyphae (Figure 1D) in the course of the 

interaction with the strain B. subtilis as well as the detection of hydrolyzed surfactins in the zone 

of competition suggest a similar action of surfactins on P. variabile. 
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Mass Spectrometry Imaging of the microbial competition between the endophytes 

P. variabile and B. subtilis. 

To explore this hypothesis and map the chemical communication involved in the course of the 

microbial competition between both endophytes, MSI experiments were performed. Indeed, 

visualizing microbial interactions with MSI has provided insights into many important biological 

processes since it allows capturing molecular snapshots of metabolic exchange, antibiotic 

resistance, and microbial competition.29,36,37 There are a number of different MSI methods reported 

for chemical mapping of microbial systems. Among these, MALDI-MSI has been the most widely 

used for attaining direct spatial and molecular information of microbial samples.  

Sample analysis with MALDI-TOF in positive mode enabled the division of the co-culture area 

into four regions of interest (ROI), e.g. the internal bacterium area, the external bacterium area, 

the fungus and the competition area. Mass spectra were extracted from each of these ROI 

corresponding to the bacterium, competition and fungal zones, respectively (Figures 4 and 5). High 

molecular weight ions were detected in both the bacterium and competition areas (Figure 4), with 

ions at m/z 1030.6, 1044.7 (C13-, C14-surfactins) especially localized in the bacteria whereas the 

ions at m/z 1058.7, 1074.7 and 1072.7 (C15-, C16-surfactins) were detected in both competition 

area and bacterium. Finally, the ions at m/z 1062.7, 1092.7 and 1076.7 (C14, C15 hydrolyzed 

surfactins) were detected specifically in the competition area. Interestingly, the hydrolyzed C14- 

and C15-surfactins were almost exclusively detected in the competition area (Figure 4 g-i and 

Figure 5, ROIs 2 and 3 ), while native surfactins were mainly detected in the bacterial zone.  

Spatial localization of chemical mediators involved in the interspecific microbial competition 

were also mapped using TOF-SIMS, which is characterized by a better spatial resolution than that 

of MALDI-TOF.38 Samples do not need to be coated by a matrix when using TOF-SIMS. Samples 



 10 

prepared on indium tin oxide (ITO) coated glass slides and silicon wafer yielded no results as the 

printing disturbed the distribution of the allelochemicals. In addition, the fungal morphology was 

greatly modified in the presence of ITO. Alternatively, growing the microorganisms on filter paper 

covering the MEA agar medium allowed maintaining a strong antibiosis without disturbing the 

other biological processes. Furthermore, the surface is flatter using the paper filter which removed 

the topography of the fungal mycelium (Figure S1). The TOF-SIMS analysis of the endophytic 

competition was thus made at two different growing distances (1.5 and 2.5 cm). This enabled the 

analysis of different ROIs as shown in Figure 6 and Figure 7. The growing distance of 2.5 cm 

showed the native C15-surfactin (m/z 1034.7 [M-H]-, (red color in Figure 7, ROI 1) was 

exclusively localized in the bacterium area while the hydrolyzed C15-surfactin (m/z 1052.7 [M-

H]-, green color in Figure 6, ROI 3) was confined to the competition area. 

Interestingly, the data from the growing distance of 1.5 cm showed additional hydrolyzed 

surfactins that were detected, such as C13- and C14-surfactins at m/z 1024.7 and 1038.7, 

respectively (Figure 7). The analysis with TOF-SIMS of the same samples but in positive mode 

confirmed these observations (data not shown).  

Thus, both MALDI-TOF and TOF-SIMS imaging allowed the detection of hydrolyzed surfactins 

in the course of the interspecific endophytic microbial competition. In addition, such MSI results 

are also in accordance with the Orbitrap MS/MS data and Molecular Networking representation 

which showed the presence of hydrolyzed surfactins in the competition area extract and suggested 

the excretion of a putative fungal protein related to hydrolase as previously described for the 

detoxification process by Streptomyces.32  

Enzymatic degradation or modification have been well described in the context of antibiotic 

resistance.39 Degradative enzymes that impact competitive interactions also include those that 
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degrade metabolites with signaling functions. Such mechanisms have been extensively described 

for bacteria but are less common for fungi except for pathogenic strains, which developed diverse 

responses to counteract the arsenal of host-plants allelopathic metabolites.40,41 In the case of 

endophytes, recent studies have highlighted the potential of endophytic fungi for the production of 

new compounds through the biotransformation of natural products.42-47 Nevertheless, these studies 

are not ecologically relevant. In addition, previous work by our research group has highlighted the 

ability of the endophytic fungus P. variabile to metabolize natural products such as polyketides or 

flavonoids which may be related to the host plant.11,12  

 

Biotransformation of the surfactins by the fungus P  variabile. 

In order to assess the resistance capacity of P. variabile against B. subtilis surfactant 

lipopeptides, a commercially available surfactin was added to the fungal biomass in 

biotransformation experiments as previously described for other compounds.12 The hydrolysis of 

surfactins in the presence of the fungal biomass was monitored by UPLC-MS (Figure S5). After 

24 hours of being in contact with the fungal biomass, native C14- and C15-surfactins disappeared 

entirely while hydrolyzed C14- and C15-surfactins were detected. Control consisting of surfactin 

alone in the buffer was also performed and no hydrolyzed surfactin was detected. Such 

experiments were also performed in the sole presence of the culture supernatant, and similar 

metabolites profiles were observed suggesting that fungal secreted enzymes are involved in these 

reactions (data not shown).  

 

Antimicrobial compounds produced by P. variabile.  
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As previously highlighted in this study by molecular networking and MSI, several metabolites 

were produced by the fungus P. variabile and were detected in the competition area. None of the 

fungal metabolites matched known natural products within the searched databases. Therefore, the 

metabolites produced by P. variabile that inhibited B. subtilis were isolated from the crude extract 

using bioactivity-guided fractionation. Compound 1, a colorless crystalline solid with an [α]20
D of 

+ 63.3 (c 0.3, CHCl3), was found to be one of  the main compounds inhibiting the growth of 

B. subtilis. The molecular formula C15H18O4 indicating seven degrees of unsaturation was deduced 

from the molecular peak at m/z 261.1110 (calc. 261.1127) [M-H]- in ESI-HRMS. The infrared 

spectrum pointed out the presence of carbonyl groups (1747 and 1717 cm−1). The 1H NMR 

spectrum of 1 showed signals for three methyl groups at δH 1.00 (3H, H-6', t, J = 7.4), δH 1.61 (3H, 

s, H-7), 2.10 (3H, H-3’’, dd, J = 7.1, 1.6 ), six olefinic protons [δH 5.55 (1H, d, J = 15.5 Hz, H-1'), 

5.87 (1H, dd, J = 15.1, 6.5 Hz, H-4'); 6.00 (1H, dd, J = 15.1, 10.5 Hz, H-3'), 6.29 (1H, dd, J = 15.5, 

10.6 Hz, H-2'), 7.37 (1H, dd, J = 15.7, 1.6 Hz, H-1’’), 7.37 (1H, qd, J = 15.7, 7.1 Hz, H-2’’) ] and 

one methylene 2.10 (1H, m, H-5'). The 13C NMR spectrum of 1 displayed three sp3 methyl (δC 

13.1, 19.5, 22.0), one sp3 methylene (δC 25.6) in addition to one sp3 quaternary carbon (δC 91.8). 

This one showed also ten sp2 carbons (including six methines at δC 120.3, 124.1, 127.4, 133.0, 

140.5, 148.3, two carbonyls at δC 203.8, 185.7, an oxygenated carbon at δC 185.7 and one 

quaternary carbon). In addition E configurations were assigned for the double bonds by analysis 

of coupling constants.  

The data analysis of 2D NMR spectra (including COSY, HSQC, HMBC, Figure 8) revealed that 

1 is a (2H)furan-3-one identified as the known compound nivefuranone A, previously isolated 

from the endophytic fungus Microdiplodia sp. KS75-1.48 Absolute configuration at C-5 was 



 13 

suggested as S because of its positive rotation value which is in accordance with aspertetronin A49 

and is found the opposite to that of gregatine A.50,51 

Inhibition of the growth of B. subtilis in the presence of nivefuranone A was performed in solid 

media and 96-wells plates with resazurin coloration. In both cases a potent inhibition was observed 

compared with the control (Figure 8, CMI: 76 µM) suggesting that nivefuranone A is one of the 

fungal metabolites involved in the competition between these two endophytes. It should be noted 

that compound (1) has not been detected by MSI analysis, probably because of its poor ionization.  

 

CONCLUSION 

Deciphering the molecular mechanism involved in interspecific microbial competition has 

attracted growing interest in this last decade.52-54 However, few studies focused on interspecific 

communication between endophytic microorganisms evolving from the same plant host. As a 

result, the molecular basis of endophytic interactions is not well understood although it is now well 

established that endophyte communities directly or indirectly interacts within the plant (fungus-

fungus or fungus-bacterium interaction). In this plant microbiota, potentially every natural product 

could have an impact on the metabolic and transcriptomic profiles of the neighbour 

microorganisms.55,56 

Visiting the remarkably multifarious group of endophytes through their antibiosis interactions 

in the host-plant microbiota provided several opportunities to understand the functions and identity 

of signaling molecules and improve our understanding of the chemical language between 

endophytic bacteria and fungi. In this study, the chemical communication between the fungus 

P. variabile and the bacterium B. subtilis, both isolated from the leaf of the conifer 

C. harringtonia, was examined by multidisciplinary tools including molecular networking and 
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MSI. This work enabled the detection of lipopeptide surfactins produced by B. subtilis, which are 

well known for their "balding effect" (surfactant activity) toward their microbial competitors, also 

likely to explain the morphological changes observed on P. variabile hyphae. In response to this 

challenge, it was demonstrated through biotransformation studies and MSI that P. variabile may 

resist to the bacterial assault by hydrolyzing the surfactins. In addition, P. variabile was found to 

produce (2H) furan-3-one with an antibiotic effect, identified as nivefuranone A and likely to 

prevent the growth of the bacterium.  

This study shows that MSI is a powerful tool to identify and map in situ the production of chemical 

mediators present in very limited amounts. Moreover, its combination with other analytical 

methods, such as molecular networking, empowers microbial natural products chemistry enabling 

rapid detection of metabolites involved in microbial communication.  

 

EXPERIMENTAL SECTION 

Competition between endophytic microorganisms 

The fungus Paraconiothyrium variabile strain LCP5644 (MNHN collection) and the bacterium 

Bacillus subtilis strain 9E1a were isolated from the inner tissue of the needle of Cephalotaxus 

harringtonia var. drupacea (reference N°2686 Arboretum de Chèvreloup MNHN). Endophytic 

microorganisms were cultivated on solid medium MEA (malt extract 20 g/L, glucose 20 g/L, 

bacteriological peptone 1 g/L, and purified agar CONDA 20 g/L). Competition experiments were 

performed in Petri dishes (12 cm², MEA 60 mL) by setting 10 µL of each microbial suspension at 

1.5 and 2.5 cm distantly from each other. The cultures were incubated at 24 °C under ambient 

light. Monocultures of fungi and bacteria were performed as controls also in triplicate. To exclude 
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the involvement of volatile organic compounds, the competition was also assessed in Petri dish 

(9 cm², MEA 25 mL) divided by a plastic barrier. 

Mass spectrometry analysis  

The medium extracts were characterized by online nano-LC and electrospray tandem mass 

spectrometry. The analyses were performed on a U3000 Dionex nanoflow system connected to a 

LTQ Orbitrap mass spectrometer equipped with a nano-electrospray source (Thermo-Fischer, Les 

Ulis, France). Chromatographic separation took place in a C18 pepmap 100 column (75 µm ID, 

15 cm length, 5 µm, 10 nm, Dionex). The extracts were injected on pre-concentration column with 

a flow rate of 20 µL.min-1 of water/TFA (0.1 %). After three minutes of wash with the same 

solvent, the compounds were eluted and separated in the analytical column with a flow of 200 

nL/min and a gradient from 2 % to 60 % acetonitrile with 0.1 % formic acid in 30 minutes. The 

mass spectrometer was operated in the data dependent mode to automatically switch between 

Orbitrap MS and MS2 in CID mode in the linear trap. Survey full scan MS spectra from m/z 200 

to m/z 1500 were acquired in the Orbitrap with mass resolution of 30 000 at m/z 400, after 

accumulation of 500 000 charges in the linear ion trap. The most intense ions (up to four, 

depending on signal intensity) were sequentially isolated for fragmentation, in the linear ion trap 

using CID at a target value of 100 000 charges. The resulting fragments were recorded in the 

Orbitrap with a mass resolution of 7 500. 

Molecular networking of competition between endophytic microorganisms 

HR-MS/MS raw data files were converted from .RAW to .mzXML file format using the Trans-

Proteomic pipeline (Institute for Systems Biology, Seattle)57 and molecular networking were 

created using the online workflow at Global Natural Products Social (GNPS)58,59 

(gnps.ucsd.edu).60 The data were then clustered with MS-Cluster with a parent mass tolerance of 
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0.2 Da and a MS/MS fragment ion tolerance of 0.1 Da to create consensus spectra. Further, 

consensus spectra that contained less than 2 spectra were discarded. A network was then created 

where edges were filtered to have a cosine score above 0.7 and more than 6 matched peaks. Further 

edges between two nodes were kept in the network if and only if each of the nodes appeared in 

each other’s respective top 10 most similar nodes. The spectra in the network were then searched 

against GNPS’s spectral libraries. To visualize the data, they were imported into Cytoscape 

software (version 3.2.1)61 where nodes correspond to a specific consensus spectrum (parent mass 

ions) and edges represent significant pairwise alignment between nodes (cosine score ranging from 

0 to 1 (identical fragmentation spectra). 

Sample preparation for mass spectrometry imaging 

The competition was performed on a MALDI plate (MTP 384 plate polished steel BC, Bruker 

Daltonique, Wissembourg, France) by applying a thin layer of MEA (5 mL). Once the agar 

solution cooled, 2 µL of bacterial suspension (104 cells/mL) and 5 mL of mycelial suspension 

(50 mm3 mycelium pieces vortexed and sonicated in 1 mL of sterile water) were deposited at 1.5 

or 2.5 cm apart from each other. For TOF-SIMS experiments, a round Petri dish (9 cm²) was filled 

with 15 mL of MEA medium and once cooled, sterilized filter paper (Qualitative, Number 2, Cat. 

No 1002125 WhatmanTM) was gently deposited on the medium. A volume of 10 µL of the previous 

microbial suspension was deposited at a distance of 1.5 or 2.5 cm. Competitions on silicon wafer 

and ITO coated glass slides were also assessed. All the cultures were incubated at 24 °C for 26 

days under ambient light. Optical images of the samples were recorded with an Olympus BX51 

microscope (Rungis, France), equipped with 1.25 × to 50 × lenses and a SC30 camera, monitored 

by Stream Motion 1.9 software (Olympus, Rungis, France). 

Matrix coating and MALDI-TOF Imaging 
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CHCA matrix solution was prepared in ACN/H2O/TFA (70/30/0.1 V:V:V) at 10 mg·mL-1, and 

then deposited on the agar surface with a TM-Sprayer (HTX Technologies, Carrboro, NC, USA) 

at 70 °C, with movement speed of 120 cm/min, nebulized nitrogen pressure of 10 psi (~700 hPa) 

and pump flow rate of 0.24 mL·min-1. The samples on MALDI plate were analyzed with a 

MALDI-TOF/TOF UltrafleXtreme (Bruker Daltonique, Wissembourg, France) mass spectrometer 

in reflector mode and MS/MS fragmentation was performed on both samples and commercial 

surfactins control. Frequency of the Smartbeam-IITM Nd:YAG (wavelength 355 nm) laser was set 

at 2 kHz while the laser power was adjusted according to signal intensity. Shot number per pixel 

was set to 500 and pixel size to 150 microns. After a delay of 210 ns, the ions produced were 

extracted and then accelerated with a voltage of 25 kV. This setting allowed the measurement of a 

mass resolution of 36 000 for the monoisotopic peak corresponding to protonated bradykinin at 

m/z1060.57. Mass calibration was carried out using 4 peaks of PepMix 5 (bradykinin [1-5], 

m/z 573.31; bradykinin [1-7], m/z757.40; bradykinin, m/z1060.57; and angiotensin, m/z 1296.68), 

with a "Quadratic / Cubic Enhanced" algorithm. Average mass accuracy of 3.8 ppm was thus 

measured on these standards. Acquisitions and image reprocessing (ion density maps) were 

performed with flexControl 3.4 and flexImaging 4.0 software (Bruker Daltonique, Wissembourg, 

France), respectively. The component spectra were normalized using the "median" method to 

avoid normalization-induced artifacts.62  

TOF-SIMS Imaging 

After the cultivation, the filter paper on which the bacteria and fungi were co-cultured was 

removed from the Petri dish and dried under vacuum for at least 3 h to remove the moisture 

absorbed from culture media. A small rectangular piece of the filter paper containing fungi and 

bacteria was then cut off followed by being fixed on a stainless steel plate by conductive double-
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sided tape. The fungi were previously removed from the filter paper to avoid topographic effect 

on the surface and contamination into the mass spectrometer.  

TOF-SIMS imaging acquisitions were recorded with a commercial TOF-SIMS IV (ION-TOF 

GmbH, Münster, Germany) single stage reflectron TOF mass spectrometer. The primary ion beam 

is of Bi3
+ cluster ions delivered by a bismuth liquid metal ion gun (LMIG) with a kinetic energy 

of 25 keV. The so-called high current bunched mode (described in detail elsewhere)63 was utilized 

to focus and accelerate the ion beam to guarantee a high mass resolution, providing a pulsed 

primary ion current of ~ 0.4 pA at 10 kHz. Secondary ions are extracted and first accelerated to a 

kinetic energy of 2 keV and then post-accelerated to 10 keV before hitting a hybrid detector 

composed of a single micro-channel plate followed by a scintillator and a photomultiplier. Large 

area analyses were realized by moving the sample stage step by step with a patch size of 

500 µm × 500 µm, a pixel density of 100 × 100 pixels and 10 pulses per pixel, resulting in an ion 

dose density of ~1.0 × 1010 ions·cm-2. A low energy (21 eV) pulsed electron flood gun was applied 

during the acquisitions to compensate for the charges accumulated on the surface of the insulating 

sample. Thanks to the linear function of time-of-flight and the square root of m/z, mass spectra 

were calibrated with internal low mass fragments: C-, CH-, C2
-, C3

-, and C4H
- in negative ion mode. 

Data acquisition and processing were performed using SurfaceLab 6.5 software (ION-TOF GmbH, 

Münster, Germany).  

Nano-Spray-Orbitrap MS/MS of competition extract 

The filter paper corresponding to the competition zone was cut off and washed with 100 µL 

ethanol. After being vortexed for 30 min, the filter paper which was immersed in ethanol was 

stored at -20 °C overnight. Then the supernatant was dried by a vacuum concentrator, followed by 

being dissolved with 5 µL ethanol solvent to obtain the final stock solution. For MS/MS 
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experiment, 1 µL stock solution was diluted in 4 µL spray solvent (ACN/H2O/FA, 50/50/0.5 

V/V/V) and all the 5 µL solution was loaded into a nano-capillary needle (Thermo Fisher Scientific, 

Le Ulis, France).  

Fungal biotransformation experiments 

P. variabile was cultivated in YMS medium (glucose 16 g·L-1, yeast extract 4 g/L, malt extract 

10 g/L, bacteriological peptone 5 g/L) by inoculating spore suspension (2 cm² plug in 1 mL of 

20 % glycerol solution, filtered through a miracloth of 25 µm, final concentration 106 spores/mL). 

500 µL of this suspension was added to 50 mL YMS medium in a 150 mL Erlenmeyer flask. 

Fungal biomass was obtained after 72 hours of incubation at 27 °C under mild rotary shaking 

(160 rpm). The collected biomass was filtered, yielding 1.5 g of fungal mycelium which was stored 

in phosphate buffer (4 mL, pH 6). 4 µL of commercial surfactin solution (DMSO, 20 mg·mL-1) 

was added to P. variabile biomass while controls were carried out by adding 40 µL of surfactin 

solution to phosphate buffer solely and 40 µL of DMSO to P. variabile biomass, respectively. 

After 24 hours, 300 µL of methanol was added to 1.5 mL of mycelia and supernatant, sonicated 

for 20 minutes, centrifuged and 10 µL of supernatant was injected into UPLC-MS to detect 

hydrolyzed surfactins.  

Fermentation, Extraction, and Isolation. Spore suspension of P. variabile (106 spores/mL) 

was spread on fifteen Petri dishes with Malt Extract agar medium and incubated at 25 °C for 

26 days. Following this fermentation, the mycelium and the broth were extracted with ethyl acetate 

(3 times). The combined organic phases were dried over Na2SO4, filtered and concentrated in 

vacuo to afford 900 mg of crude extract.  
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The EtOAc extract of P. variabile obtained was purified by preparative HPLC (gradient from 

45 % to 52 % MeCN in H2O for 32 min; flow rate: 20.0 mL·min-1; tR = 28.5 min) to yield 

nivefuranone A (1). 

Antimicrobial activity of nivefuranone A. 

The antibacterial activity of nivefuranone A and fungal crude extract were evaluated using the 

agar diffusion. Briefly, culture suspension of B. subtilis 9E1a (approximately 106 CFU/mL) was 

spread on the solid medium plates (40 mL). Ten microliters of nivefuranone A (DMSO, 50 and 

10 mg/mL) and 10 µL the fungal crude extract (DMSO, 50, 10 and 1 mg·mL-1) were deposited 

onto the solid media plates. The diameter of inhibition zone was measured after 48 h of incubation 

at 25 °C. Econazole (10 µL, 5 mg/mL) and DMSO were used as positive and negative controls 

respectively. 

Minimum Inhibitory Concentration (MIC) of Nivefuranone A. 

MICs were determined using the microdilution resazurin assay. Resazurin salt powder (Sigma) 

was prepared in distilled water (0.01 %, w/v), sterilized by filtration through a 0.22 μm membrane, 

and stored at 4 °C for a week.  

The inoculum was prepared from B. subtilis cultivated in Luria-Bertani medium for 24 hours. 

Two microliters of nivefuranone A (10 mg/mL in DMSO) were added in 200 μL of LB medium 

and serial dilutions were performed in 96-well plates at concentrations from 100 to 0.1 μg/mL. 

Growth controls containing DMSO and chloramphenicol (from 1 μg/mL to 1 ng/mL) were also 

included. The plates were incubated at 26 °C. After 2 days, 30 μL of resazurin solution was added 

to each well and plates were allowed to incubate at 37 °C for an additional 24 h. A change from 

blue to pink indicates reduction of resazurin and therefore bacterial growth. The MIC was defined 

as the lowest drug concentration that prevented this colour change. 
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Figure 1. A) Antagonism between the fungus P. variabile (PV) and the bacterium B. subtilis (BS) 

on solid medium at 20 days post-inoculation. B) Zoom on the fungal hyphae in the course of the 

competition between the two endophytes. C) Observation of P. variabile hyphae in monoculture 

and D) in the course of the competition.  
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Figure 2. Molecular network of 2672 precursor ions from crude extracts of B. subtilis 9E1a (blue 

nodes), P. variabile (green nodes) and a competition interaction between the two strains (purple 

nodes). Precursor ions produced by both B. subtilis and P. variable monocultures but not present 

during the interaction (maroon nodes), precursor ions produced by B. subtilis and present during 

the competition interaction (orange nodes), precursor ions produced by P. variabile and present 

during the competition interaction (red) and precursor ions present under all three culture 

conditions (light blue) are also present. Precursor ions obtained from the media control are colored 

yellow.  
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Figure 3. A) Surfactin molecular family (highlighted yellow in the molecular network in Figure 

2). Nodes are color coded as depicted in Figure 2. If parent ions matched molecular network library 

standards, they are labelled as diamonds: m/z 1030.64, C13-surfactin [M+Na]+; m/z 1044.66, C14-

surfactin [M+Na]+; m/z 1058.67, C15-surfactin [M+Na]+. Specific hydrolyzed surfactins are 

represented with triangles: m/z 1048.65, hydrolyzed C13-surfactin [M+Na+H2O]+; m/z 1062.66, 

hydrolyzed C14-surfactin [M+Na+H2O]+; m/z 1076.68, hydrolyzed C15-surfactin [M+Na+H2O]+; 

m/z 1092.68. Withdrawal of the edge is related to the cosine score (from grey,cosine score: 0.7, to 

black, cosine score: 1). B) chemical structure of surfactins (n=5, C13-surfactin; n=6, C14-

surfactin; n=7, C15-surfactin).  
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Figure 4. MALDI-TOF ion images of surfactins and hydrolysed surfactins produced during 

competition with a growing distance of 1.5 cm (a) m/z 1030.6 C13-surfactin [M+Na]+. (b) m/z 

1044.7 C14-surfactin [M+Na]+. (c) m/z 1058.7 C15-surfactin [M+Na]+. (d) m/z 1062.7 Hydrolysed 

C14-surfactin [M+Na]+. (e) m/z 1072.7 C16-surfactin [M+Na]+. (f) m/z 1074.7 C15-surfactin 

[M+K]+. (g) m/z 1076.7 Hydrolysed C15-surfactin [M+Na]+. (h) m/z 1092.7 hydrolysed C15-

surfactin [M+K+H2O]+. (i) Two-color overlay of sodium cationized C14-surfactin [M+Na]+ and 

hydrolysed C14-surfactin [M+Na]+. R: Red; G: Green. (j) Two-color overlay of sodium cationized 

C15-surfactin [M+Na]+ and hydrolysed C15-surfactin [M+Na]+. R: Red; G: Green. (k) Two-color 



 27 

overlay of potassium cationized C15-surfactin [M+K]+ and hydrolysed C15-surfactin [M+K]+. R: 

Red; G: Green. (l) Optical image of B. subtilis (BS) and P. variabile (PV) co-cultured on a MALDI 

target plate with an inoculating distance of 1.5 cm. The analyzed area is highlighted by a white 

dotted rectangular. The four dotted color squares correspond to four ROIs, of which the size of 

each is 407 pixels. “C” corresponds to competition zone between BS and PV.  

 

 

 

 

 

Figure 5. MALDI-TOF mass spectra from the four ROIs indicated in Figure 4. ROI 1 corresponds 

to the B. subtilis zone; ROI 2 corresponds to the end of B. subtilis zone and the beginning of the 
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competition zone; ROI 3 corresponds to the competition zone; ROI 4 corresponds to the 

P. variabile zone. 

 

Figure 6. TOF-SIMS imaging of surfactin and hydrolyzed surfactin distribution with a growing 

distance of 2.5 cm. (a) Optical image of filter paper on which B. subtilis and P. variabile were co-

cultured. (b) Ion images of C15-surfactin, hydrolyzed C15-surfactin, and a two-color overlay 

between these two compounds. The six colored rectangles correspond to six regions of interest 
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(ROIs). (c) Mass spectra of the six ROIs. The analyzed area is 30 mm × 1 mm while the size of 

each ROI is 1.5 mm × 1 mm.  

 

Figure 7. TOF-SIMS imaging of surfactin and hydrolyzed surfactin distribution with growing 

distance of 1.5 cm. 15 mm × 1 mm. (a) Optical image of filter paper on which B. subtilis and 

P. variabile were co-cultured. (b) Ion images of C15-surfactin, hydrolyzed C15-surfactin, and a two-

color overlay between these two compounds. The four squares correspond to four regions of 
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interest (ROIs). (c) Mass spectra of the four ROIs. The analyzed area is 15 mm × 1 mm while the 

size of each ROI is 1 mm × 1 mm. 

 

 

Figure 8. Main compound isolated from P. variabile and inhibiting the growth of the bacterium 

B. subtilis. A) Structure of the nivefuranone A (compound 1) and key HMBC and COSY 

correlations. B) and C) Antimicrobial activity against B. subtilis in the presence of nivefuranone 

A and kanamycin, respectively. 
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