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Despite existing reports on differential DNA methylation in type 2 diabetes (T2D) and

obesity, our understanding of its functional relevance remains limited. Here we show the

effect of differential methylation in the early phases of T2D pathology by a blood-based

epigenome-wide association study of 4808 non-diabetic Europeans in the discovery phase

and 11,750 individuals in the replication. We identify CpGs in LETM1, RBM20, IRS2, MAN2A2

and the 1q25.3 region associated with fasting insulin, and in FCRL6, SLAMF1, APOBEC3H and

the 15q26.1 region with fasting glucose. In silico cross-omics analyses highlight the role of

differential methylation in the crosstalk between the adaptive immune system and glucose

homeostasis. The differential methylation explains at least 16.9% of the association between

obesity and insulin. Our study sheds light on the biological interactions between genetic

variants driving differential methylation and gene expression in the early pathogenesis

of T2D.
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T
ype 2 diabetes (T2D) is a common metabolic disease,
characterized by disturbances in glucose and insulin
metabolism. The pathogenesis of T2D is driven by inher-

ited and environmental factors1. There is increasing interest in
differential DNA methylation in the development of T2D as well
as with glucose and insulin metabolism2–6. Depending on the
region, DNA methylation may result in gene silencing and thus
regulate gene expression and subsequent cellular functions7.
Differential methylation in the circulation may predict the
development of future T2D beyond traditional risk factors such as
age and obesity3,8, but it may also be part of the biological
mechanism that links age and/or obesity to glucose, insulin
metabolism and/or T2D. A recent longitudinal study with mul-
tiple visits reported that most DNA methylation changes occur
80–90 days before detectable glucose elevation9, suggesting that
differential DNA methylation evokes changes in glucose and is
involved in the early stage(s) of diabetes. Differential DNA
methylation is further associated with obesity, which is an
important driver of the T2D risk and also precedes the increase in
glucose and insulin level in persons developing T2D8. A key
question to answer is whether the differential methylation asso-
ciated with glucose and insulin metabolism is an irrelevant epi-
phenomenon that is related to obesity acting as a statistical
confounder or whether there are functional effects of the differ-
ential methylation relevant of obesity that is associated to meta-
bolic pathology.

Here, we aim to determine the relation of differential DNA
methylation and fasting glucose and insulin metabolism as
markers of early stages of diabetes pathology in non-diabetic
subjects, accounting for obesity measured as body mass index
(BMI). We identify and replicate nine CpG sites associated with
fasting glucose (in FCRL6, SLAMF1, APOBEC3H and the 15q26.1
region) and insulin (in LETM1, RBM20, IRS2, MAN2A2 and the
1q25.3 region). Using cross-omics analyses, we present in silico
evidence supporting the functional relevance of the CpG sites on
the development and progression of diabetes, in terms of their
effect on expression paths and elucidate the genetic networks
involved.

Results
Epigenome-wide association analysis and replication. In the
discovery phase, we performed a blood-based epigenome-wide
association study (EWAS) meta-analysis of four cohorts
including 4,808 non-diabetic individuals of European ancestry
(Supplementary Data 1), which revealed differential DNA
methylation at 28 unique CpG sites in either the baseline model
without BMI adjustment or in the second model with BMI
adjustment (Table 1 and Supplementary Table 1). The summary
statistic results of the EWAS are provided as a Data file
[https://figshare.com/s/1a1e8ac0fd9a49e2be30]. These include
three CpG sites associated with both insulin and glucose, eight
CpG sites associated with fasting glucose only and 17 with
fasting insulin (P value < 1.3 × 10−7 in meta-analysis). Of these
28 CpG sites, 13 were identified by earlier EWAS studies of
either T2D or related traits, including glucose, insulin, hemo-
globin A1c (HbA1c), and homeostatic model assessment-insulin
resistance (HOMA-IR)2–5,8,10,11 (Supplementary Table 1). The
known CpG sites include three sites located in SLC7A11, CPT1A
and SREBF1 that are associated with both glucose and insulin.
The remaining ten CpG sites, located in DHCR24, CPT1A,
RNF145, ASAM, KDM2B, MYO5C, TMEM49, ABCG1 (harbor-
ing two CpG sites) and the 4p15.33 region, are associated with
insulin only. All of the previously reported CpG sites with gly-
cemic traits are also associated with BMI in previous
EWAS8,10,12–15 (Supplementary Table 1).

The 15 novel CpG sites were tested using the same statistical
models in 11 independent cohorts, including 11,750 non-diabetic
participants from the Cohorts for Heart and Aging Research in
Genomic Epidemiology (CHARGE) consortium (Supplementary
Data 1). Nine unique CpG-trait associations were replicated when
correcting for multiple testing using Bonferroni (15 CpGs, P value
threshold for significance < 3.3 × 10−3) and were investigated in
the further analyses (Table 2). These include five sites (in LETM1,
RBM20, IRS2, MAN2A2 and the 1q25.3 region) associated with
fasting insulin and one site (in FCRL6) associated with fasting
glucose in the baseline model without adjusting for BMI, and
three (in SLAMF1, APOBEC3H and the 15q26.1 region, all
associated with fasting glucose) emerging in the BMI-adjusted
model. Of note, no locus was found to be associated with fasting
insulin in the BMI-adjusted model.

Because the replication cohorts also included individuals of
African ancestry (AA, n= 4355) and Hispanic ancestry (HA, n=
577), we also performed the replication stratified by ancestry
(Supplementary Data 2). Two CpG sites (cg13222915 and
cg18247172) were replicated in the AA population when
corrected by the number of tests and two (cg00936728 and
cg06229674) replicated with nominal significance. In the HA
population, cg20507228 was replicated at nominal significance.
Two CpG sites (cg18881723 and cg13222915) show the opposite
direction for the effect estimate in HA ancestry population as
compared to the other two populations. However, the estimates of
effect size are not significantly different from zero (P value= 0.63
in cg18881723 and P value= 0.092 in cg13222915).

Glycemic differential DNA methylation and transcriptomics.
To determine whether the differential DNA methylation has
functional effects on gene expression and subsequent cellular
functions, we conducted three series of analyses. Figure 1 shows
the overview of the cross-omics analyses. First, we explored the
Genotype-Tissue Expression (GTEx)16 database for the expres-
sion levels of the genes which annotated to the novel CpG sites.
We found that the genes are expressed in a wide range of tissues,
including whole blood and spleen (in particular MAN2A2 and
RBM20), but also other tissues relevant for glucose and insulin
metabolism such as adipose subcutaneous, adipose visceral
omentum, liver (in particular, SLAMF1, APOBEC3H, FCRL6 and
RBM20), pancreas and skeletal muscle (in particular, SLAMF1,
APOBEC3H, FCRL6 and MAN2A2) and small intestine terminal
ileum (in particular, MAN2A2, RBM20, FCRL6 and APOBEC3H;
Supplementary Figure 1).

Second, the effect on gene expression in blood of the previously
identified 11 independent CpG sites (cg00574958 in CPT1A and
cg06500161 in ABCG1 were used) and the nine novel sites from
our current study was examined in the Biobank-based Integrative
Omics Study (BIOS) database that is part of the Biobanking and
BioMolecular Infrastructure of the Netherlands (BBMRI-NL)17

(indicated in Fig. 2 in the orange boxes). We found that five CpG
sites, i.e. cg00936728 (FCRL6), cg18881723 (SLAMF1),
cg00574958 (CPT1A), cg11024682 (SREBF1) and cg06500161
(ABCG1), are expression quantitative trait methylations
(eQTMs), i.e. there is correlation between gene expression and
methylation18. In most cases, the differential methylation levels
are associated with the expression (indicated in Fig. 2 in the
yellow boxes) of their respective genes. Cg18881723 (SLAMF1) is
also associated with the expression of two other genes near
SLAMF1, i.e. SLAMF7 and CD244 (Supplementary Table 2).

Third, we investigated whether the genetically regulated
expression of the annotated genes in specific tissues is altered
in T2D or related traits, such as glucose, insulin and HbA1c. To
answer this question, we mined in the MetaXcan database for

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10487-4

2 NATURE COMMUNICATIONS |         (2019) 10:2581 | https://doi.org/10.1038/s41467-019-10487-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Table1 CpG sites associated with glycemic traits in discovery phase

Locus CpG Chr: Pos Trait BetaM1 P valueM1 BetaM2 P valueM2

FCRL6 cg00936728 1: 159772194 Glucose −1.79 9.1 × 10−8ǂ −1.60 1.9 × 10−7

SLAMF1 cg18881723 1: 160616870 Glucose 1.16 7.5 × 10−8ǂ 1.25 3.4 × 10−10ǂ

1q25.3 cg13222915 1: 184598594 Insulin −1.69 2.6 × 10−9ǂ −1.06 4.1 × 10−6

BRE cg20657709 2: 28509570 Glucose −1.42 2.7 × 10−6 −1.53 4.1 × 10−8ǂ

LRPPRC cg01913188 2: 44223249 Glucose 1.18 9.4 × 10−6 1.38 5.7 × 10−9ǂ

IRAK2 cg14527942 3: 10276383 Insulin 2.44 3.4 × 10−10ǂ 2.14 2.9 × 10−11ǂ

LETM1 cg13729116 4: 1859262 Insulin 2.38 4.3 × 10−8ǂ 1.64 4.5 × 10−6

RBM20 cg15880704 10: 112546110 Insulin 2.50 3.8 × 10−9ǂ 1.38 6.7 × 10−5

IRS2 cg25924746 13: 110432935 Insulin 2.11 3.0 × 10−9ǂ 1.32 4.9 × 10−6

SPTB cg07119168 14: 65225253 Glucose −1.64 4.4 × 10−7 −1.63 4.9 × 10−8ǂ

15q26.1 cg18247172 15: 91370233 Glucose −1.05 4.9 × 10−6 −1.18 2.8 × 10−8ǂ

MAN2A2 cg20507228 15: 91460071 Insulin 1.18 5.5 × 10−8ǂ 0.87 9.0 × 10−7

FAM92B cg06709610 16: 85143924 Insulin 6.22 6.5 × 10−9ǂ 6.30 5.8 × 10−13ǂ

CD300A cg08087047 17: 72461209 Glucose −1.35 5.9 × 10−6 −1.45 1.1 × 10−7ǂ

APOBEC3H cg06229674 22: 39492189 Glucose −1.62 1.8 × 10−6 −1.70 4.7 × 10−8ǂ

Novel epigenome-wide significant results in the discovery phase (n= 4808) are shown. Model 1 (M1) indicates inverse variance-weighted fixed effect meta-analysis of effect estimates in four cohorts.

Each cohort performed a regression model adjusting for age, sex, technical covariates, white blood cell, and smoking status, and accounting for family structure in family-based cohorts. Model 2 (M2)

indicates the meta-analysis of the same studies, adjusting for body mass index (BMI) additionally. Locus: the cytogenetic location or the gene symbol of the CpG sites from Illumina annotation. Beta:

effect estimate of the meta-analysis. P value shown is genomic controlled after meta-analysis. The effect refers to the increase/ decrease in fasting glucose/ insulin as the outcome in the model
ǂSignificant results (P value < 1.3 × 10−7)

Table2 CpG sites associated with glycemic traits in replication

Locus CpG Chr: Pos Trait BetaM1 P valueM1 BetaM2 P valueM2

FCRL6 cg00936728 1: 159772194 Glucose −1.55 × 10−3 9.6 × 10−5ǂ NP NP

SLAMF1 cg18881723 1: 160616870 Glucose 1.17 × 10−3 7.7 × 10−3 1.48 × 10−3 1.2 × 10−3ǂ

1q25.3 cg13222915 1: 184598594 Insulin −3.77 × 10−3 3.3 × 10−16ǂ NP NP

BRE cg20657709 2: 28509570 Glucose NP NP −9.40 × 10−4 0.036

LRPPRC cg01913188 2: 44223249 Glucose NP NP 1.64 × 10−5 0.90

IRAK2 cg14527942 3: 10276383 Insulin −6.49 × 10−5 0.48 −7.72 × 10−5 0.45

LETM1 cg13729116 4: 1859262 Insulin 1.92 × 10−3 7.0 × 10−7ǂ NP NP

RBM20 cg15880704 10: 112546110 Insulin 3.05 × 10−3 8.6 × 10−12ǂ NP NP

IRS2 cg25924746 13: 110432935 Insulin 3.38 × 10−3 3.0 × 10−11ǂ NP NP

SPTB cg07119168 14: 65225253 Glucose NP NP −7.18 × 10−4 0.070

15q26.1 cg18247172 15: 91370233 Glucose NP NP −1.77 × 10−3 5.1 × 10−4ǂ

MAN2A2 cg20507228 15: 91460071 Insulin 6.11 × 10−3 2.3 × 10−15ǂ NP NP

FAM92B cg06709610 16: 85143924 Insulin 2.08 × 10−5 0.81 5.37 × 10−5 0.59

CD300A cg08087047 17: 72461209 Glucose NP NP −4.92 × 10−4 0.28

APOBEC3H cg06229674 22: 39492189 Glucose NP NP −2.09 × 10−3 1.4 × 10−6ǂ

Novel epigenome-wide significant results in the replication (n= 11,750) are shown. Replication was not performed in the non-significant associated model or trait (NP). Model 1 (M1) indicates inverse

variance-weighted fixed effect meta-analysis of effect estimates in the 11 cohorts. Each study performed a regression model adjusting for age, sex, technical covariates, white blood cell, and smoking

status, and accounting for family structure in family-based cohorts. Model 2 (M2) indicates the meta-analysis of the same studies, adjusting for body mass index (BMI) additionally. Locus: the

cytogenetic location or the gene symbol of the CpG sites from Illumina annotation. Beta: effect estimate of the meta-analysis. The effect refers to the increase/ decrease in methylation as the outcome in

the model
ǂSignificant results (P value < 3.3 × 10−3)

Glycemic traitMethylationGenetic variant Gene expression
1

5

2

4

63

Fig. 1 Overview of the cross-omics analysis. (1) Methylation quantitative trait loci (meQTL). (2) Expression quantitative trait loci (eQTL). (3) Expression

quantitative trait methylation (eQTM). (4) Epigenome-wide association study (EWAS) and Mendelian randomization (MR). (5) Genome-wide association

study (GWAS). (6) The association of gene expression expressed in the glucose or insulin metabolism-related tissues and glycemic traits. Results in 1, 2, 3

were extracted from the summary statistics from Biobank-based Integrative Omics Study (BIOS) database (n= 3814). Results in 4 was the results in the

current EWAS (discovery phase, n= 4808, replication phase, n= 11,750) and the two-sample Mendelian randomization based on the BIOS database (n=

3814) and GWAS results of Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC). Results in 5 was from the GWAS results of MAGIC

or the DIAbetes Genetics Replication And Meta-analysis consortium (DIAGRAM, n= 96,496–452,244). Results in 6 was based on the summary statistics

of Genotype-Tissue Expression project (GTEx) and MAGIC or DIAGRAM (n= 153–491)
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genome-wide association studies (GWAS) of T2D, fasting
glucose, HbA1c, insulin and HOMA-IR19–23 as a genetic proxy
for the traits24. No association was found between glycemic traits
and the DNA expression in adipose subcutaneous, adipose
visceral omentum and small intestine terminal ileum. Supple-
mentary Table 3 gives the significant findings for tissues known to
be implicated in glucose and insulin metabolism including
blood, liver, pancreas and skeletal muscle (P value < 0.05 for
MetaXcan). As described earlier, we associated the increased
expression of SREBF1 with decreased risk of T2D and decreased
HbA1c levels in the whole blood25. The increased expression in
the whole blood of ABOBEC3H, a methylation locus we identified
in the present study, is associated with increased HOMA-IR
level, a measure of insulin resistance. In skeletal muscle, the
increased fasting glucose is associated with the increased
expression of KDM2B and decreased expression of MAN2A2.

Moreover, we discovered that increased hepatic expression of
FCRL6, which was annotated to the methylation locus associated
with fasting glucose in the present study, is associated with the
risk of T2D. In the pancreas, the increased expression of the
methylation loci MYO5C and RBM20 are associated with
increased fasting glucose levels.

Glycemic differential DNA methylation and genomics.
Although differential DNA methylation may be the result of
environmental exposures, the process is often (partly) heritable
with genetic variants (co-)determining the process26. Therefore,
we next set out to find whether the differential methylation
associated with fasting glucose and insulin levels is driven by
genetic variants which referred to as methylation quantitative
trait loci (meQTLs). Using the BIOS database (blood-based

MAN2A2

FCRL6

HCG9

CCDC162P

SLAMF1 SLAMF1

BLM

15q26.1

FCRL6

MAN2A2

FG

SLAMF1

AL662890.3

FCRL6

CD244

SLAMF7

GRAMD1B

FADS1/

FADS2

DHCR24

RNF145

TMEM61

SREBF1RP11-16L9.4

RNF145

APOE

KDM2B

KDM2BMYO5C

CPS1

TOM1L2

P4HA2

MYO5C

FI

SREBF1

APOBEC3G

RBM20

ZNF259

NFKB1

CPT1A

TMEM49

ASAM

4p15.33

ABCG1

1q25.3

IRS2

APOBEC3H

CLMP

ABCG1

IRS2

C1orf21

AC006296.1

RBM20

LINC00396 

ABCG1

CPT1A

LETM1

SLC7A11

ZFP57

HbA1c

T2D

Color of rectangle fill:

Genetic variant (overlapped or nearest gene)

Methylation locus

Gene expression

Phenotype

Color of rectangle outline in methylation site:

BMI-independent methylation site
No outline: BMI-dependent methylation site 

Color of letter:

Novel methylation site and replicated successfully

Gene expression in the glucose or insulin metabolism related tissue correlated with glycemic traits 

Others (gene, phenotype, other methylation site or gene expression)

Color of edge:

Negative association

Positive association

Dash of edge:

-- meQTL or eQTL in trans
–> Casual association
– Others

Fig. 2 Significant associations of the cross-omics integration. The effect allele is standardized across all associations. Only the significant associations
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data)17, we were able to study 18 out of the 20 unique CpG sites
in this respect. We associated 2,991 single-nucleotide poly-
morphisms (SNPs) in 29 unique meQTLs (indicated in Fig. 2 in
the blue boxes) with differential methylation either in cis or trans
(for details see Supplementary Data 3). Six of these meQTLs (4 cis
and 2 trans-acting) are also associated with T2D, fasting glucose,
fasting Insulin, or HbA1c in earlier studies21,22,27–29 and the
directions of the effect between the SNP, methylation and gly-
cemic traits are consistent (shown in Fig. 2 in the pink boxes, for
details see Supplementary Table 4). A genetic locus near
TMEM61 is a common genetic driver affecting the differential
methylation at nearby CpG cg17901584 (DHCR24) in our study
and fasting glucose levels in an earlier study22. Further, the
RNF145 locus was found to be a common driver affecting the
differential methylation at cg26403843 (RNF145) and fasting
insulin levels21. The KDM2B locus affects differential methylation
at cg13708645 (KDM2B) and fasting glucose levels22, and the
TOM1L2/RAI1 locus affects the differential methylation at
cg11024682 (SREBF1) as well as HbA1c and T2D27,28. Two trans-
acting loci involve a genetic locus in CCDC162P that is affecting
differential methylation at cg20507228 (MAN2A2) and HbA1c27

and the genetic locus in RP11-16L9.4 affecting the differential
methylation at cg11024682 (SREBF1) and HbA1c27.

We next explored if these genetic variants associated with
differential methylation (meQTLs) are also associated with gene
expression, i.e. quantitative trait loci (eQTLs; see the integrated
outline of analyses in Fig. 2 and detailed in Supplementary
Table 5). We searched specifically for expression profiles earlier
associated with glycemic CpG sites in blood (listed in Supple-
mentary Table 2). We associated three genetic variants with both
differential methylation and gene expression in blood. These
include that: 1) rs11265282 in FCRL6 is positively associated with
the differential methylation at cg00936728 (FCRL6) and
decreased the expression of FCRL6 in blood, 2) rs1577544 near
SLAMF1 is associated with decreased differential methylation at
cg18881723 (SLAMF1) and decreased SLAMF1 expression in
blood, and 3) rs6502629 in TOM1L2 is associated with increased
differential methylation at cg11024682 (SREBF1) and decreased
SREBF1 expression in blood.

As we observed that the genes driving glycemic CpG sites
overlapped with genetic determinants of T2D or related traits, we
studied the causal effect of differential methylation on glucose
and insulin metabolism with a generalized summary statistic-
based Mendelian randomization (MR) test30. Up to eight
independent genetic variants include in the genetic risk score
were used as the instrumental variable for each CpG. Thirteen
CpG sites out of the initial 20 met the present MR criteria and
were tested by MR (Supplementary Data 4). No significant
association was detected when adjusting for multiple testing
accounting for 13 independent tests (P value threshold for
significance < 3.8 × 10−3). The genetic risk score for cg15880704
(RBM20) methylation levels is nominally significantly associated
with fasting insulin levels (P value= 0.04), and the genetic risk
score for cg18881723 (SLAMF1) levels is nominally associated
with fasting glucose levels (P value= 0.05) in the MR tests.

Multi-omics integration and functional annotation. To
understand the biological relevance of our findings, we first
integrated the cascade of associations into genomics, epige-
nomics, transcriptomics and glycemic traits through EWAS,
eQTM, meQTL and eQTL. There are three pathways emerging
when considering the consistency of the direction of the effects
between the associations. One pathway involves SREBF1, which
in part, was reported earlier3,25,31 but substantially extended in
the current report. The other two involve differential methylation

of FCRL6 and SLAMF1 (Fig. 3). The C allele of rs11265282 in
FCRL6 is associated with increased methylation, which turns
down the FCRL6 expression in blood. In addition, the genetically
decreased FCRL6 expression in the liver is also associated with a
decreased risk of T2D. The T allele of rs1577544 near SLAMF1
increases the differential methylation levels in the blood, which
decreases SLAMF1 expression in the circulation, which is con-
sistent with the negative association between the genetic variant
and gene expression levels.

To understand the correlation of the findings, we clustered the
normalized differential methylation values of the nine novel CpG
sites including those not annotated to a gene. Two clusters
emerge, one including IRS2, MAN2A2, 1q25.3 locus (intergenic),
RBM20, LETM1 and SLAMF1 and the second one including
FCRL6, 15q26.1 (intergenic) and APOBEC3H (Fig. 4 and
Supplementary Table 6). Four CpGs in FCRL6, 15q26.1
(intergenic), APOBEC3H and SLAMF1 are highly correlated with
each other, in which the absolute correlation coefficients are
bigger than 0.6, while they are located in different chromosomes,
suggesting a common biological mechanism: SLAMF1 and FCRL6
from chromosome 1, APOBEC3H from chromosome 22 and
15q26.1 from chromosome 15. We next performed gene set
enrichment analysis in different pathway databases, including
KEGG pathways32, Reactome Pathway Knowledgebase33 and
Gene Ontology (GO) biological process classification34. We found
that the genes in the first cluster are highly enriched together in
multiple pathways, including regulation of leukocyte prolifera-
tion, protein secretion and cell activation (SLAMF1 and IRS2),
hexose, monosaccharide and carbohydrate metabolism (IRS2 and
MAN2A2). Further, SLAMF1 (cluster 1) and APOBEC3H (cluster
2) are both enriched in immune effector processes and innate
immune response (Supplementary Table 7).

BMI in the association of methylation and glycemic traits. Of
note, among the 20 methylation loci associated with glycemic
metabolism in the present analyses, 11 are associated with BMI in
the previous EWAS8,10,12–15. These 11 loci are all associated with
insulin metabolism (Supplementary Table 1). Based on the bi-
direction MR findings performed as part of the previous EWAS of
BMI8, we found that BMI appears to drive methylation for
cg06500161 (ABCG1, P value= 6.4 × 10−5), a CpG that we
associated with insulin levels. Using a marginal P value of 0.05 in
their MR results, the differential methylation appears to be a
consequence of obesity rather than a cause for three other CpG
sites: cg110244682 (SREBF1; P value= 4.1 × 10−3), cg17901584
(DHCR24; P value= 4.1 × 10−3) and cg26403843 (RNF145; P
value= 0.011)8. Taken together (Supplementary Table 1), our
results raise the question whether BMI is driving differential
methylation, which subsequently raises insulin level in the cir-
culation. Such a pathway would predict that the association
between BMI and insulin changes when adjusting for differential
methylation at ABCG1, SREBF1, DHCR24 and RNF145. We tes-
ted this hypothesis in the non-diabetic individuals of the Rot-
terdam Study by comparing the relationship between BMI and
fasting insulin with and without adjusting for the methylation
levels at the four CpG sites. The variance explained (R2) by the
linear regression model improves significantly from 0.40 to 0.43
(P value= 1.2 × 10−13 by analysis of variance (ANOVA) testing)
when adjusting for the CpG effect, while the effect estimates for
BMI decrease by 9.2% (beta: 0.065, standard error (SE): 0.003, P
value= 1.2 × 10−82 for the model without CpG adjustment
compared to beta: 0.059, SE: 0.003, P value= 2.9 × 10−70

adjusting for the four CpGs). When we extended the adjustment
to the 16 CpG sites associated with circulating insulin levels, the
variance explained by the model improves further (R2= 0.46, P
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Fig. 4 Clustered correlation of the nine novel glycemic CpGs. The correlation of the novel CpG sites was checked by Pearson’s correlation test (n= 1544).

The hierarchical cluster analysis was used in the clustering
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value= 2.1 × 10−18) and the beta for BMI reduces further by
16.9% (beta: 0.054, SE: 0.003, P value= 4.6 × 10−58 for the model
adjusting for 16 CpG sites).

Discussion
The current large-scale EWAS identify and replicate nine CpG
sites associated with fasting glucose (in FCRL6, SLAMF1, APO-
BEC3H and the 15q26.1 region) or insulin (in LETM1, RBM20,
IRS2, MAN2A2 and the 1q25.3 region). When we adjust for BMI
as a potential confounder, three CpG sites (in SLAMF1, APO-
BEC3H and the 15q26.1 region) are associated with fasting glu-
cose only after adjustment for BMI. We validate 13 previously
reported CpG sites from 11 independent genetic loci2–6,8,10,12–15

and complement the understanding on why these CpG sites are
associated with T2D and/or glycemic traits based on compre-
hensive cross-omics analyses. We present in silico evidence
supporting the functional relevance of the CpG sites, in terms of
their effect on expression paths and elucidate the genetic net-
works involved.

Our data show that differential methylation plays a key role in
understanding the immunological changes observed in glucose
metabolism35. SLAMF1 and APOBC3H are both enriched in
immune function and the innate immune response. The differential
methylation level at FCRL6, 15q26.1 (intergenic), APOBEC3H and
SLAMF1 were highly correlated though they were on three different
chromosomes. This finding suggests a common pathway. SLAMF1
belongs to the immunoglobulin gene superfamily and is involved in
T-cell stimulation36. APOBEC3H proteins are part of an intrinsic
immune defense that has potent activity against a variety of ret-
roelements36 and its expression in whole blood is positively asso-
ciated with HOMA-IR from the current study. FCRL6 is a distinct
indicator of cytotoxic effector T-lymphocytes that is upregulated in
diseases characterized by chronic immune stimulation36. Mean-
while, we show that decreased FCRL6 differential methylation
increased expression of FCRL6 and fasting glucose in the blood. A
key finding that links FCRL6 to glucose metabolism is that the
genetically determined FCRL6 expression in the liver is also asso-
ciated with decreased risk of T2D. In line with a role in immune
relation and pathology37,38, the HLA region (6p22.1 region) is a key
meQTLs of FCRL6 (rs2523946), 15q26.1 (rs3129055 and
rs4324798) and SLAMF1 (rs3129055). Of interest is that in the
population of non-diabetic individuals, we found strong signals of
the immune system particularly when we adjust the effects attrib-
uted to BMI. Remarkably, three out of the four methylation loci at
SLAMF1, APOBEC3H and the 15q26.1 region emerged in the BMI-
adjusted model, suggesting that these associations were masked by
confounding noise of BMI on methylation in opposite effects to that
of insulin.

We studied the interplay between BMI, fasting glucose and
insulin levels, and differential methylation in the circulation. On
the one hand, we find evidence that the differential methylation of
the insulin-related CpG sites together explained up to 16.9% of
the association between obesity and insulin levels. These findings
are in line with the Nature paper on the EWAS of BMI that found
that the methylation patterns in blood predict future diabetes8.
Our study reveals that insulin is a key player underlying the
association reported earlier8. On the other hand, we find evidence
that the association between differential methylation and insulin
metabolism is attenuated up to 62%, e.g. CpG sites in SREBF1
(62%), ASAM (56%), CPT1A (54%) and TMEM49 (52%), when
BMI is accounted for in the model, suggesting that the interplay
between BMI, differential methylation and insulin metabolism is
extremely complex and differs across CpG sites. BMI may be a
confounder of associations for some CpGs but may be in the
causal pathway for others.

To our knowledge, we report for the first time that, in blood,
differential methylation of IRS2 was associated with fasting
insulin level. Expression level of IRS2 (insulin receptor substrate
2) in β-cells in the pancreas are associated with the onset of
diabetes39–41. Though the expression level of IRS2 is low in blood,
we find its blood-based differential methylation was associated
with fasting insulin. We also find an insulin-related genetic
locus, MAN2A2 (mannosidase alpha class 2 A member 2) in our
EWAS. MAN2A2 encodes an enzyme that forms intermediate
asparagine-linked carbohydrates (N-glycans)42. It is related to the
hexose/monosaccharide metabolism. In addition, the expression
of MAN2A2 in skeletal muscle is negatively associated with
fasting glucose level and the meQTL (rs9374080) of MAN2A2
associates with HbA1c27. Together, these findings suggest that
regulating the differential methylation level or expression level of
MAN2A2 may be relevant to the development of insulin resis-
tance. Another interesting gene that emerged is the familial car-
diomyopathy related gene RBM20, which may play a role in
cardiovascular complications of diabetes via mediating insulin
damage in cardiac tissues43. The expression of RBM20 in the
pancreas is also associated with fasting glucose. The meQTL for
RBM20 is associated with pulse rate (P value= 4.6 × 10−5) in
UKBIOBANK GWAS44, and its mRNA is highly expressed in
cardiac tissues45.

One limitation of our study is that the main findings are based
on data from blood which was the only accessible tissue in our
epidemiological studies and may not be representative of more
disease-relevant tissues. However, the concordance of differential
methylation between blood and adipose is high for certain
pathways46. DNA methylation globally is considered a relatively
stable epigenetic mark that can be inherited through multiple cell
divisions47,48. However, some changes can be dynamic reflected
by recent environmental exposures. This phenomenon could be
site-specific. While our study provides a snapshot of associations
specific to the fasting state, instant methylation of different CpG
sites in the vicinity of IRS2 and KDM2B have been reported
earlier49. Such effects may also occur at the loci presented in the
present study. Our present MR analyses yield no evidence for the
causal effects of CpG sites on fasting glucose or insulin. One
limitation in the interpretation of the findings is that low power
of the MR due to the fact we lack insight in the genes driving
differential methylation. For instance, seven of the 13 performed
CpG sites have instrumental variables which explain less than 5%
of the exposure. Further studies are needed to include additional
biologically relevant tissues and perform MR based on the tissue-
specific meQLTs. Last but not least, cg19693031 in TXNIP has
been repeatedly associated with type 2 diabetes case-control status
earlier3,50,51. Although it did not pass our pre-defined EWAS
significance threshold, TXNIP is associated with fasting glucose in
the non-diabetic population (P value= 7.6 × 10−7 in the BMI
adjustment model) if we take the current study aiming to repli-
cate earlier findings. Of note is that cg19693031 is not associated
with fasting insulin (in BMI-unadjusted model, p value= 0.30; in
the BMI-adjusted model, p value= 0.37).

In conclusion, our large-scale EWAS and replication identifies
nine differentially methylated sites associated with fasting glucose
or insulin, and shows that differential methylation explains part
of the association between obesity and insulin metabolism. The
integrative in silico cross-omics analyses provide insights of gly-
cemic loci into the genetics, epigenetics and transcriptomics
pathways. We also highlight that differential methylation is a key
point in the involvement of the adaptive immune system in
glucose homeostasis. Further studies in the future will benefit
from tissue-specific methylation and meQTL databases which are
currently the missing piece of the in silico data integration
framework.
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Methods
Study population. The discovery samples consisted of 4808 European individuals
without diabetes from four non-overlapped cohorts, recruited by Rotterdam Study
III-1 (RS III-1, n= 626), Rotterdam Study II-3 and Rotterdam Study III-2 (called as
RS-BIOS, n= 705), Netherlands Twin Register (NTR, n= 2753) and UK adult
Twin registry (TwinsUK, n= 724). The replication sets contained up to 11,750
individuals from 11 independent cohorts from CHARGE, including up to 6818
individuals from European ancestry, 4355 from African ancestry and 577 from
Hispanic ancestry (Supplementary Data 1). They are from Atherosclerosis Risk in
Communities (ARIC) Study, Baltimore Longitudinal Study of Aging (BLSA),
Cardiovascular Health Study (CHS), Framingham Heart Study Cohort (FHS), The
Genetic Epidemiology Network of Arteriopathy (GENOA), Genetics of Lipid
Lowering Drugs and Diet Network (GOLDN), Hypertension Genetic Epidemiology
Network (HyperGEN), Invecchiare in Chianti Study (InCHIANTI), Kooperative
Gesundheitsforschung in der Region Augsburg (KORA), Women’s Health Initia-
tive - Broad Agency Award 23 (WHI-BAA23) and Women’s Health Initiative -
Epigenetic Mechanisms of PM-Mediated CVD (WHI-EMPC). We excluded indi-
viduals with known diabetes and/or fasting glucose ≥ 7 mmol/l and/or those on
anti-diabetic treatment. All studies were approved by their respective Institutional
Review Boards, and all participants provided written informed consent. Details
about the studies have been reported previously, and the key references as well as
the summary of the design of each study are reported in Supplementary Note 1.

Glycemic traits and covariates. Venous blood samples were obtained after an
overnight fast in all discovery and replication cohorts. BMI was calculated as
weight over height squared (kg m−2) based on clinical examinations. Smoking
status was divided into current, former and never, based on questionnaires. White
blood cell counts were quantified using standard laboratory techniques or predicted
from methylation data using the Houseman method52. The cohort-specific mea-
surement of glycemic traits and covariates are shown in Supplementary Note 1.

DNA methylation quantification. The Illumina© Human Methylation450 array
was used in all discovery and replication cohorts to quantify genome-wide DNA
methylation in blood samples. We obtained DNA methylation levels reported as β
values, which represents the cellular average methylation level ranging from 0 (fully
unmethylated) to 1 (fully methylated). Study-specific details regarding DNA
methylation quantification, normalization and quality control procedures are
provided in the Supplementary Note 1.

Epigenome-wide association analysis and replication. All statistical analyses
were performed using R statistical software and the two-tailed test was considered.
Insulin was natural log transformed. In the discovery analysis, we first performed
EWAS in each cohort separately. Linear regression analysis was used to test the
association between glucose and insulin with each CpG site in the Rotterdam Study
samples. Linear mixed models were used in NTR and TwinsUK, accounting for the
family structure. We fitted the following two models for each cohort: (1) the
baseline model adjusting for age, sex, technical covariates (chip array number and
position on the array), white blood cell counts (lymphocytes, monocytes, and
granulocytes) and smoking status, and (2) a second model additionally adjusting
for BMI. We removed probes that have evidence of multiple mapping or contain a
genetic variant in the CpG site53. All cohort-specific EWAS results for each model
were then meta-analysed using inverse variance-weighted fixed effect meta-analysis
as implemented in the metafor R package54. In total, we meta-analysed 393,183
CpG sites that passed quality control in all four discovery cohorts. The details of
the quality control for each cohort could be found in the Supplementary Note 1.
The association was later corrected by the genomic control factor (λ) in each meta-
EWAS55. We produced quantile-quantile (QQ) plots of the -log10 (P) to evaluate
inflation in the test statistic (Supplementary Figure 2). A Bonferroni correction was
used to correct for multiple testing and identify epigenome-wide significant results
(P < 1.3 × 10−7). We did not correct the number of glycemic traits and models, as
they are highly correlated and not independent. The genome coordinates were
provided by Illumina (GRCh37/hg19). The CpG sites were annotated to genes
using Infinium HumanMethylation 450 BeadChip annotation resources. The
correlation of the CpG sites located in the same gene was further checked in the
overall RS III-1 and RS-BIOS samples by Pearson’s correlation test (n= 1544) to
find the independent top CpG sites.

For the associations discovered in the meta-EWAS that have not been reported
previously, we attempted replication in independent samples using the same traits
and regression models as in the discovery analyses. Study-specific details of
replication cohorts are provided in Supplementary Data 1 and Supplementary
Note 1. Results from each replication cohort were meta-analysed using the same
methods as in the discovery analyses. Bonferroni P value < 3.3 × 10−3 (0.05
corrected by 15 CpGs tested for associations) was considered significant.

Glycemic differential DNA methylation and transcriptomics. To explore whe-
ther the differential CpG sites were associated with gene expression level in blood,
we explored eQTMs17 from the European blood-based BIOS database17 from
BBMRI-NL which captured meQTLs, eQTLs and eQTMs from genome-wide
database of 3841 Dutch blood samples (See resources of the database in URLs). The

associated gene expression probes of the known and replicated CpG sites were
searched. We then tested whether the expression of the genes that harbor the
identified methylation sites was associated with T2D and related traits in glucose
metabolism-related tissues (adipose subcutaneous, adipose visceral omentum, liver,
whole blood, pancreas, skeletal muscle and small intestine terminal ileum) using
MetaXcan package24,56. MetaXcan associates the expression of the genes with the
phenotype by integrating functional data generated by large-scale efforts, e.g. GTEx
project16 with that of the GWAS of the trait. MetaXcan is trained on transcriptome
models in 44 human tissues from GTEx and is able to estimate their tissue-specific
effect on phenotypes from GWAS. For this study, we used the GWAS studies of
T2D19, fasting glucose traits21,22, fasting insulin22, HbA1c23 and HOMA-IR20. We
used the nominal P value threshold (P value threshold for significance < 0.05) as we
had separate assumptions for each terminal pathway between gene expressions and
phenotype. The associations with genes in low prediction performance were
excluded, i.e. the association of the tissue model’s correlation to the gene’s mea-
sured transcriptome is not significant (P value > 0.05).

Glycemic differential DNA methylation and genomics. We identified the genetic
determinants of the significant CpG sites known or replicated through the current
EWAS using the results of the cis and trans meQTLs from the European blood-
based BIOS database17 (See resources of the database in URLs). All the reported
SNPs with P value adjusted for false discovery rate (FDR) less than 0.05 in the
database were treated as the target genetic variants in the present study. The SNPs
were annotated based on the information in the BIOS study17 or the nearest
protein-coding gene list from SNPnexus57 on GRCh37/hg19. We also explored the
associations of these DNA methylation-related genetic variants with T2D or related
traits, i.e., fasting glucose, insulin, HbA1c and HOMA-IR, based on public GWAS
data sets in European ancestry20–22,27–29. Meanwhile, we checked the effect
direction consistency of the association between the SNPs, CpG sites and T2D or
related traits. That is the direction of the association between SNP and T2D or
related traits should be a combination of the direction of SNP with CpG sites and
CpG sites with T2D or related traits. A multiple-testing correction was performed
by Bonferroni adjustment (P value significant threshold < 1.8 × 10−3, 0.05 corrected
by the 29 genetic loci shown in Supplementary Data 3). The associations of the
DNA methylation-related genetic variants and the gene expression were also
looked up in the BIOS database17. This is limited to the expression profiles earlier
associated with glycemic CpG sites in blood.

For the significant CpG sites known or replicated through EWAS, we attempted
to evaluate the causality effect of CpG sites on their significant traits, either fasting
glucose or fasting insulin, using two-sample MR approach as described in detail
before by Dastani et al.30,58 based on the summary statistic GWAS results from the
BIOS database and the Meta-Analyses of Glucose and Insulin-related traits
Consortium (MAGIC) database17,21 (Supplementary Figure 3). Briefly, we
constructed a weighted genetic risk score for individual CpG on phenotype using
independent SNPs as the instrument variables of the CpG, implemented in the R-
package gtx. The effect of each score on phenotype was calculated as

ahat ¼

P
ðωiβi=s

2
i ÞP

ðω2
i =s

2
i Þ

;

where βi is the effect of the CpG-increasing alleles on phenotype, si its
corresponding standard error and ωi the SNP effect on the respective CpG.
Because the genetic variants might be close (cis) or far (trans) from the methylated
site, we also performed MR test in the cis only SNPs if the CpG has both cis
and trans genetic markers. All SNPs were mapped to the human genome build
hg19. For each test (one CpG with one trait), we extracted all the genetic markers
of the CpG in the fasting glucose or insulin GWAS from the MAGIC data set
(n= 96,496)21 with their effect estimate and standard error on fasting glucose or
insulin. Within the overlapped SNPs, we removed SNPs in potential linkage
disequilibrium (LD, pairwise R2 ≥ 0.05) in 1-Mbp window based on the 1000
Genome imputed genotype data set from the general population: Rotterdam Study
I (RS I, n= 6291)59. We managed to exclude the genetic loci which were genome-
wide associated with glycemic traits, but none of the genetic loci meet this
exclusion criterion. The instrumental variables that explain more than 1% of the
variance in exposure (DNA methylation) were taken forward for MR test. The
Bonferroni P value threshold was used to correct for the 13 CpG sites available
for MR (P value < 3.8 × 10−3).

Functional annotation. Further, we integrated the cascade of associations as above
among the results of EWAS, eQTM, meQTL and eQTL and showed in Fig. 3. We
checked the effect direction consistency of the association between the SNPs, CpG
sites, gene expression in blood and glycemic traits. The correlation of the novel
CpG sites was checked in the overall RS III-1 and RS-BIOS samples by Pearson’s
correlation test (n= 1544). The hierarchical cluster analysis was used in the
clustering. Gene set enrichment analyses were performed in the genes of new CpG
sites60. We tested if genes of interest were over-represented in any of the pre-
defined gene sets from KEGG pathway database32, Reactome Pathway Knowl-
edgebase33 and GO biological process34. Multiple test correction was performed in
the tests. Gene sets of KEGG pathway database, Reactome Pathway Knowledgebase
were obtained from Molecular Signatures Database (MsigDB) c2 and GO biological
process was obtained from MsigDB c560. We used the platform of Functional
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Mapping and Annotation of Genome-wide Association Studies (FUMA GWAS)61

and GENE2FUNC function to perform the gene set enrichment analysis and the
tissue-specific gene expression patterns based on GTEx v616. Besides, the tools
Ensembl Human Genes62 (see URLs) and UCSC GRCh37/hg1963 (see URLs) were
also used in interpreting genetic determinants, CpG sites and genes.

BMI in the association of methylation and glycemic traits. We used linear
regression to check the effect of CpGs on the relationship between BMI and fasting
insulin in the non-diabetic individuals in Rotterdam study. The initial model used
BMI as the independent variable and the natural log transformed insulin as the
dependent variable. The covariates included age, sex, technical covariates (chip
array number and position on the array), white blood cell counts, smoking status
and data set (RS III-1 and RS-BIOS). The normalized differential methylation
values of CpG sites were added as covariates in the advanced model. The differ-
ences of the models were compared by ANOVA testing using anova function in R
(P value < 0.05).

URLs. BIOS database, https://genenetwork.nl/biosqtlbrowser/ [https://
genenetwork.nl/biosqtlbrowser/]; SNPnexus, http://snp-nexus.org/index.html
[http://snp-nexus.org/index.html]; GWAS database of glycemic traits, https://www.
magicinvestigators.org/ [https://www.magicinvestigators.org/]; GWAS database of
T2D, http://diagram-consortium.org/ [http://diagram-consortium.org/]; MetaX-
can, https://s3.amazonaws.com/imlab-open/Data/MetaXcan/results/
metaxcan_results_database_v0.1.tar.gz [https://s3.amazonaws.com/imlab-open/
Data/MetaXcan/results/metaxcan_results_database_v0.1.tar.gz]; NHGRI-EBI Cat-
alog, https://www.ebi.ac.uk/gwas/ [https://www.ebi.ac.uk/gwas/]; Ensembl, https://
www.ensembl.org/Homo_sapiens/Info/Index [https://www.ensembl.org/
Homo_sapiens/Info/Index]; FUMA, http://fuma.ctglab.nl [http://fuma.ctglab.nl];
UCSC, https://genome.ucsc.edu/cgi-bin/hgGateway [https://genome.ucsc.edu/cgi-
bin/hgGateway] (available: 1st Jan 2019)

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data Availability
All relevant data supporting the key findings of this study are available within the article

and its Supplementary Information files; the cohort data sets generated and analyzed

during the current study are available from the authors from each cohort upon

reasonable request. The summary statistics of each cohort and meta-analysis in the

discovery phase and the source data underlying Supplementary Figure 2 are provided as a

Data file [https://figshare.com/s/1a1e8ac0fd9a49e2be30]. The web links for the publicly

available data sets used in the paper are listed in URLs. In detail, for the BIOS data, the

cis-meQTL look-up files were mainly from “Full list of primary cis-meQTLs” and the

results in “Cis-meQTLs independent top effects” were also checked. The trans-meQTL

look-up file was from “Trans-meQTLs top effects”. The “eQTM” look-up file was from

“Cis-eQTMs independent top effects”. The eQTL look-up file was from “Cis-eQTLs

Gene-level all primary effects”. Fasting glucose GWAS was from both ftp://ftp.sanger.ac.

uk/pub/magic/MAGIC_Metabochip_Public_data_release_25Jan.zip [ftp://ftp.sanger.ac.

uk/pub/magic/MAGIC_Metabochip_Public_data_release_25Jan.zip] and ftp://ftp.sanger.

ac.uk/pub/magic/MAGIC_Manning_et_al_FastingGlucose_MainEffect.txt.gz [ftp://ftp.

sanger.ac.uk/pub/magic/MAGIC_Manning_et_al_FastingGlucose_MainEffect.txt.gz];

fasting insulin GWAS was from ftp://ftp.sanger.ac.uk/pub/magic/

MAGIC_Manning_et_al_lnFastingInsulin_MainEffect.txt.gz [ftp://ftp.sanger.ac.uk/pub/

magic/MAGIC_Manning_et_al_lnFastingInsulin_MainEffect.txt.gz]; HbA1c was from

ftp://ftp.sanger.ac.uk/pub/magic/HbA1c_METAL_European.txt.gz [ftp://ftp.sanger.ac.

uk/pub/magic/HbA1c_METAL_European.txt.gz]. The type 2 diabetes GWAS was

downloaded from http://diagram-consortium.org/ [http://diagram-consortium.org/]

“T2D GWAS meta-analysis - Trans-Ethnic Summary Statistics Published in in Mahajan

et al. (2018)”. The file “T2D_TranEthnic.BMIunadjusted.txt” was used. A reporting

summary for this article is available as a supplementary information file.
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