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Abstract An integrative, systems approach to the model-
ling of brain energy metabolism is presented. Mechanisms
such as glutamate cycling between neurons and astrocytes
and glycogen storage in astrocytes have been implemented.
A unique feature of the model is its calibration using in vivo
data of brain glucose and lactate from freely moving rats
under various stimuli. The model has been used to perform
simulated perturbation experiments that show that glycogen
breakdown in astrocytes is significantly activated during
sensory (tail pinch) stimulation. This mechanism provides
an additional input of energy substrate during high
consumption phases. By way of validation, data from the
perfusion of 50µM propranolol in the rat brain was
compared with the model outputs. Propranolol affects the
glucose dynamics during stimulation, and this was accu-
rately reproduced in the model by a reduction in the
glycogen breakdown in astrocytes. The model’s predictive
capacity was verified by using data from a sensory
stimulation (restraint) that was not used for model calibra-
tion. Finally, a sensitivity analysis was conducted on the
model parameters, this showed that the control of energy

metabolism and transport processes are critical in the
metabolic behaviour of cerebral tissue.
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1 Introduction

Brain energy metabolism is central to all cellular processes
that maintain neuronal functionality. Naturally, this area has
received considerable attention, with conceptual studies
spanning the classical view of energy metabolism (glucose
oxidation exclusively in neurons) to that proposed by Pellerin
and Magistretti (1994) for the astrocyte-neuron lactate shuttle
(ANLS). Critical additions to our understanding have been
provided by in vivo experimental information from new
measurement technologies. In this regard, imaging methods
(fMRI, PET) have contributed significantly, while real-time
measurement of neurochemical concentrations (Lowry and
O’Neill 2006) has provided a source of quantitative
information without losing the in vivo context.

In recent years a further potent tool, in the form of
mathematical modelling (Aubert and Costalat 2005), has
been added to this mix of conceptual studies and
experimental measurement. Mathematical modelling
allows biological hypotheses to be tested within a
computer simulation (in silico) framework that combines
conceptual models with experimental data in a quantitative
form. Our aim in this article is to add an integrative,
systems dimension to this approach with an improved
mathematical description of the relevant mechanisms and
an explicit systems approach to the modelling of energy
metabolism.
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1.1 Integration via mathematical modelling

As our knowledge of biological processes become more
sophisticated, approaches are required that are correspond-
ingly more systems based and allow the integration of a
range of biological phenomena. In the case of brain energy
metabolism it can be argued that such an integrative
philosophy first appeared in the ANLS hypothesis proposed
by Pellerin and Magistretti (1994). In the same spirit, the
linkage between cerebral blood flow systems and metabo-
lism is a further area that requires a systems approach that
integrates a diversity of knowledge and a range of data sets
(see for example Gjedde 2002).

1.2 In vivo data as a part of the integrative approach

Mathematical models are credible tools for testing biolog-
ical hypotheses only when they are calibrated with relevant
experimental data. For example, neuroimaging technology
offers a family of data sources that have been widely used
to provide information on brain metabolism function
through the quantification and localization of cerebral
activity (Miller 2008). A complementary source of data
for local, quantitative, measurements of chemical species in
the brain is in vivo electrochemical sensing whereby real-
time data can be obtained from freely moving animals
submitted to physiological stimuli (Lowry and O’Neil.
2006). With this approach, a microvoltammetric electrode
(sensor) is implanted in a specific brain region to monitor
local changes in the concentration of energy substrates and
other neurochemical species in the extracellular fluid with
sub-second time resolution over extended periods.

1.3 Understanding brain energy metabolism
within the appropriate analytical framework

Mathematical modelling of biological hypotheses, com-
bined with in-vivo sensing, is especially important for the
study of brain energy metabolism. Brain energy metabolism
is characterized by interactions and regulation mechanisms
that are difficult to unambiguously assess using the limited
range of in vivo experimental observations that are possible.
A classical method of measuring/estimating metabolic
reaction rates such as Flux Balance Analysis (FBA; Varma
and Palsson 1994) can be applied. However, this requires
flux estimations at the cell boundaries (membranes), and
while this is theoretically possible for brain metabolism, the
analysis is complicated by the presence of two cellular
species (astrocytes and neurons). As a result, more
hypotheses are required (see Çakir et al. 2007) such that
the analysis becomes correspondingly more complex and
less conclusive. A further drawback of FBA is that it is
limited to steady-state conditions; this is a major constraint

for brain metabolism, as the response to stimulation is
intrinsically transient.

Finally, it should be recalled that the important inter-
actions within the brain energy supply system are not
limited to traffic between astrocytes, neurons and capillar-
ies. Metabolic regulation is composed of all the possible
interactions between biomolecules (genes, enzymes, metab-
olites, substrates etc.) involved in a metabolic process.
These intracellular interactions and their associated sub-
systems will drive the overall cellular behaviour (i.e.
glucose consumption, lactate production) and must be
considered in any integrative modelling exercise. Thus, to
correctly assess brain energy metabolism, the analytical
framework must be able to cope with all three particularities
of the cerebral tissue, namely: (i) cell-to-cell interactions
through the extracellular space, (ii) transient conditions
representative of the cerebral environment (stimulation,
changes in blood flow) and (iii) intracellular interactions
and regulation that drive the overall tissue metabolic
behaviour.

A dynamic, integrative approach (such as presented in
this study) has the advantage of being a good abstraction of
the system, given our current knowledge and in vivo data
sources. It imposes minimal biological hypotheses, with the
idea of capturing the most important and relevant dynamic
features of cerebral energy metabolism. The calibrated
model then becomes a repository of known mechanisms
based on realistic quantitative experimental observations.
As a result it can plausibly be presented as an analytical
framework for the study of brain energy metabolism.

1.4 Contributions of this study

There is significant prior work on the mathematical
modelling of brain metabolism. In particular, Aubert and
co-workers have recently published compartmented models
for brain energy metabolism that allowed, amongst other
things, the ANLS to be studied from a theoretical point of
view (Aubert and Costalat 2005; Aubert et al. 2005). Using
these models as a starting point, we have developed an
integrative, dynamic, metabolic model for brain energy
metabolism that has significant novel aspects. Specifically,
the model presented here includes the following additions
or modifications when compared to the model by Aubert
and Costalat (2005):

& The coordination of neuronal and astrocytic activity is
considered through neurotransmitter (glutamate)
cycling.

& The central energy metabolism is expanded by consid-
ering 5 reactions for glycolysis instead of 3 and
mitochondrial regulation has been modified to include
inhibition at high energetic states.
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& The glycogen dynamics in astrocytes are included. This
is crucial in providing a buffering system for the
’energy budget’ between high and low activity periods.

& The calibration of kinetic parameters for metabolic
pathway regulation (reaction rates, affinity constant,
regulation constants etc.) is performed using in vivo
real-time neurochemical measurements of glucose
(GLC) and lactate (LAC) from freely moving animals
during stimulation (Fillenz and Lowry 1998; Bolger et
al. 2006). As such the model presented here is as close
as possible (using current technology) to the dynamic
performance of energy metabolism in the brain.

& The results of a sensitivity analysis of the calibrated
model are given. This allows the identification of
functional properties of the brain tissue that are critical
to energy metabolism.

2 Model description

A complete description of the model and all its properties
(states, mass balances and kinetic equations) is presented in

Appendix A. This section is therefore restricted to an
overview of the model and its sub-systems. Referring to the
schematic interpretation of the model shown in Fig. 1, we
begin by considering the various model component
systems.

2.1 Cerebral compartments and exchange systems

Four compartments are considered: neurons (variables
indexed ‘n’), astrocytes (variables indexed ‘g’), capillaries
(variables indexed ‘c’) and the extracellular space (variables
indexed ‘e’). Within this compartmental arrangement, GLC
is transferred from capillaries to neurons and astrocytes via
the extracellular space (see Fig. 1, and the variables,
νGLC

ce, νGLC
en and νGLC

eg in Fig. A-1, Appendix A.1).
In addition, a direct transfer of GLC from capillaries to
astrocytes is considered (νGLC

cg). Transporters for GLC are
described by facilitated diffusion (see Table A.1.2 in
Appendix A.1). LAC transport (νLAC

ec, νLAC
ne, νLAC

ge

and νLAC
gc; see Appendix A.1) is described with the same

mechanisms as for GLC, with the difference that the
gradient will favour release of LAC (instead of uptake in
the case of GLC). Oxygen (O2) and carbon dioxide (CO2)

Fig. 1 Schematic view of the model for astrocytes-neurons metabolism. Fluxes names refer to reactions in Appendix A
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dynamics in the extracellular space are neglected. As
regards O2, the intracellular dynamic is considered, with a
balance between transport (Figure A.5: vO2

cn, vO2
cg) and

consumption (Figure A.5: vmito
n, vmito

g).

2.2 Energy metabolism

Within the glycolysis systems in Fig. 1, GLC entering
neurons or astrocytes is converted to pyruvate (PYR) in five
steps. The details of these steps are given in Appendix A.2
and described here in overview form. The glycolysis model
describes adenosine triphosphate (ATP) consumption by the
hexokinase (νHK) and phosphofructokinase (νPFK).
Glyceraldehyde-3-P (GAP) produced from the phospho-
fructokinase (PFK) reaction is then converted to phospho-
enolpyruvate (PEP) with NADH (nicotinamide
dinucleotide) regeneration from NAD (νPGK) and, finally,
PYR is produced from PEP by the pyruvate kinase (νPK).
PYR can either be converted to LAC (νLDH) or oxidized in
the mitochondria (νmito) to regenerate the main energy
‘currency’ in the cerebral tissue, ATP, from ADP (adeno-
sine diphosphate).

In general, the regulation mechanisms and reactions
for energy metabolism are based on the work of Aubert
and Costalat (2005), Gjedde (1997) and Heinrich and
Schuster (1996). The addition of hexokinase reaction (not
considered by previous studies by Aubert and Costalat)
allows an additional layer of control on the GLC
consumption by the cerebral tissue, this addition
improves the description of local increases in GLC
consumption upon activation. In our model, mitochondri-
al regulation was modified from Aubert and Costalat
(2005) to include inhibition of mitochondrial activity at
high ATP/ADP ratio (Gjedde 1997). Thus, the model
describes mitochondrial regulation from the availability
of PYR, O2 and the energetic requirements of the tissue.
Energetic metabolism in neurons and astrocytes is
buffered by phosphocreatine (PCr) which is used to
regenerate ATP during short-term abrupt increases in
energy demand. Adenosine monophoshphate (AMP)
equilibrium with ADP and ATP through the adenylate
kinase reaction is also considered, using parameters from
Aubert and Costalat (2005).

2.3 Neuronal stimulation system

Neuronal function through stimulation is described in detail
in Appendix A.3. In the model described here, the major
‘sink’ for energy metabolism is the maintenance of ionic
gradients in neurons and astrocytes (νpump). The dynamics
of sodium (Na) are considered, which allows the descrip-
tion of the tissue energetic ‘load’ both in resting conditions
(Na-ATPases pumps working to maintain Na gradient) and

during stimulation (increased Na inflow in neurons, vstim
n).

The stimulation of neurons (see equation 2 in Table A.3.2)
is modelled as in Aubert and Costalat (2005), with a base
stimulation rate (v1

n: flow of Na after neuronal habituation)
and a spiking at the onset of stimulation (v2

n).
An important phenomenon in brain physiology is the

coordination of neuronal and astrocytic response during
stimulation. As proposed by Pellerin and Magistretti
(1994), a suitable coordination mechanism is the uptake
of glutamate (GLU) by astrocytes (with Na co-transport)
after neuronal stimulation, thus forming a loop between
neurons and astrocytes. Subsequent to Pellerin and Magis-
tretti’s proposal the function of glutamate cycling has been
the object of quantitative measurements using 13C NMR by
several teams (Shen et al. 1999; Zwingmann and Butter-
worth 2005; Shestov et al. 2007). The quantitative
importance of glutamate cycling was also emphasised in a
review by Hyder et al. (2006) and in modelling studies
(Gruetter et al. 2001; Uffmann and Gruetter 2007). In order
to obtain a better assessment of the physiological response
of the cerebral tissue, the reactions for glutamate cycling
are included in the model presented here. As shown in
Fig. 1 (with further description in Appendix A.3), this
neurotransmitter cycling is described by three reactions: (i)
release of GLU by neurons, (ii) cleaning of extracellular
space by astrocytes (with Na co-transport) and (iii) non-
stimulatory transfer of GLU back to neurons for further
usage in the loop. Note, however, that in our model, the
cycling is simplified by neglecting the dynamics of
glutamine (GLN) which acts as the non-stimulatory
intermediate in the transfer from astrocytes to neurons.
The conversion of GLU to GLN in astrocytes, with transfer
to neurons and re-conversion to GLU is modelled as one
reaction (see Appendix A.3: vGLU

gn). Possible efflux or
influx of additional neurotransmitter is neglected in the
model, as the current study is focused on energy metabo-
lism. But future improvements on modelling the links
between energy metabolism and brain function should
include the exchanges between GLU and the intermediates
of the TCA cycle in neurons and astrocytes, as it was
shown to be significant in certain conditions (Gruetter et al.
2001).

Glutamate cycling activates astrocytic metabolism
through two mechanisms. First, Na pumps are activated to
maintain the Na gradient in the astrocytes, thereby
consuming ATP. Secondly, the conversion of GLU to
GLN (vGLU

gn in our model) requires 1 molecule of ATP
per molecule of GLU processed. Thus, by considering GLU
cycling, the astrocyte-neuron coordinated metabolic activa-
tion can be described by a physiologically realistic
mechanism, without relying on artificially induced stimu-
lation in astrocytes, as was the case in Aubert and Costalat
(2005).
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2.4 Glycogen metabolism

The inclusion of astrocytic glycogen (GLY) dynamics in the
model (see Appendix A.4) was found to be a key
mechanism in describing the in vivo experimental measure-
ments. In the present work, the description of GLY
dynamics is limited to two reactions (synthesis and
breakdown, see Table A.4.1 in Appendix A.4) with an
activation of GLY breakdown during stimulation periods
(which could be induced by noradrenaline). This mecha-
nism allows an additional input of energy substrate during
high demand periods, an addition that was critical in
correctly describing in-vivo experimental observations. As
reported by Brown et al. (2005) for optic nerve preparation,
astrocytes GLY contributes in maintaining neuronal func-
tionality under aglycemia or during intense stimulation.
Here we observe through modelling that this mechanism of
GLY storage and reutilization might be contributing
significantly (as was also suggested by Forsyth (1996)) to
energy metabolism even in normal, physiological stimula-
tions. Further analysis of GLY dynamics might however be
required, as it changes the assessment of the dynamics of
GLC and O2 consumption and uncoupling phenomenon
(GLY is a buffer between the entering GLC flux and its
mitochondrial oxidation). As is observed in our simula-
tions, the required influx of GLY to maintain metabolic
fluxes during stimulation was coherent with the current
estimations of astrocytic GLY content (see Results and
Discussion). However, the quantitative relationship be-
tween GLY breakdown and the type and intensity of
stimulation would require further studies, as the current
work is developed only for sensory stimulation.

2.5 The complete model

A complete diagram of the model, state variables, fluxes
and interactions is presented in Appendix A.5. The model
describes 13 independent states for neurons, 14 for
astrocytes, 3 extracellular states and 4 capillary states. In
total, 44 kinetic equations are used to describe the
metabolic system, and the model has 63 kinetic parameters
(reaction constants, maximum reaction rates, affinity con-
stants and regulation parameters). These parameters were
adjusted and finally determined through a model calibration
procedure based upon parameter estimation methods which
adjust parameters to optimally match model outputs to
observed data (see Model Simulations and Calibration and
Appendix B for further details).

The kinetic rates included in the model also use 26
physical constants (volumes fractions, arterial concentra-
tions, electrochemical constants etc.). These constants are
assumed to be known and representative of the system (see
Aubert and Costalat 2005; Gjedde 2002). A full list of

parameters values and physical constants is provided in
Appendix A.6. Finally, the input stimulation is described by
9 parameters (strength, duration, CBF fractional increase,
etc.). These parameters and their numerical values are given
in Table A.6.3 in Appendix A.6.

3 In vivo data on brain energy metabolism

The use of time course information for GLC and LAC
measurements obtained using microelectrochemical sensors
during perturbation experiments with animals provides an
insight into the dynamic properties of cerebral metabolism.
These time histories can be used to calibrate the model
parameters by a parameter estimation procedure. In our
case, in vivo data for extracellular cerebral GLC and LAC
recorded in freely moving rats was used to perform the
calibration. Two different physiological stimulations were
considered: tail pinch (TP) and restraint (holding) experi-
ments. Quantitative GLC data from 5 min. TP experiments
was taken from Fillenz and Lowry (1998). This data set
was complemented with LAC data for 5 min. TP, also from
freely moving rats (Bolger et al. 2006). A set of 5 min.
restraint (holding) experiments was also considered with
LAC measurements (Bolger et al. 2006).

4 Model simulations and calibration

The 34 differential equations that constitute the mathemat-
ical model, and given in Appendix A, were implemented,
solved and analyzed using the Matlab scientific computing
environment and the Systems Biology toolbox (SBtoolbox:
Schmidt and Jirstrand 2006). The parameters for the model
(as listed in Appendix A.6) were determined using both
data from the literature and by direct estimation, as follows:

4.1 Parameters, coefficients and physical constant from the
literature

The volumes fractions, resting steady-state values, sodium
transport parameters and CBF values used in our model
were considered to be the same as reported in Aubert and
Costalat (2005). For the in vivo parameter estimation/
calibration routines, the initial values for parameters were
taken from Aubert and Costalat (2005), where possible. The
glutamate loop parameters were first set to produce a
cycling of GLU consistent with values reported in the
literature by Hyder et al. (2006) and Gjedde (2001). Further
data and parameters (affinity constants and maximum
reaction rates) were taken from Simpson et al. (2007) for
LAC transport and from Barros et al. (2007) for GLC
transport. These values for kinetic parameters placed the
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model coefficients in a feasible area of parameter space,
and allowed it to operate with physiologically plausible
values of concentrations and fluxes. These initial conditions
were used as starting points for the estimation routines that
calculate the model parameters that provide the best fit to
actual experimental data.

4.2 Parameter estimation routines

In broad terms, parameter estimation routines work by
minimizing the difference between model simulations and
the corresponding experimental data. This consists in
minimizing the normalized residual sum of squares between
simulated and experimental time profiles by changing
model parameters. This was done using the parameter
estimation routines of the SBtoolbox, in particular the
algorithm SBPDparamestimation.m. The experimental data
used in here can be separated in two classes:

I. Typical steady-state values (fluxes and concentrations)
reported in the literature on brain physiology and

II. In vivo time-series data from perturbation experiments
(5 min. tail pinch) in freely moving animals.

Appendix B presents typical results of model calibration
with resting steady-state values for concentrations and
fluxes taken from the literature. These results show that
the model is able to correctly describe the overall
consumption rates and ratio of GLC, LAC and O2 in the
brain (see Appendix B for further details).

Finally, using extracellular GLC and LAC data from tail
pinch experiments, it was possible to find a unique set of
parameters to describe cerebral metabolic behaviour (see
Appendix A.6 for a list of parameters). The only parameters
that are allowed to change between different experiments
are the stimulation parameters (strength and duration),
however this is expected, since different stimulations were
used (TP and restraints) and the actual manipulation of
animals for in vivo measurements induces an additional
variability in the stimulus. The final result of model
calibration is a unique set of parameters that describes both
the steady-state (resting) and dynamic response of brain
metabolism to various physiological stimuli.

5 Results and discussion

5.1 Tail pinch experiments: energy, GLC and LAC
dynamics

Figure 2 presents an overview of typical simulation results
for a 5 min. TP experiment, together with a comparison
with experimental in vivo GLC and LAC data. The baseline
GLC concentration is correctly simulated, and we note that

the baseline (0.34 mM) is relatively low compared to other
reports (0.7-2 mM). However, variations are reported
between brain regions (McNay et al. 2001) and lower
values are also recorded in non-anesthetized animals
(McNay and Gold 1999). The calibrated model correctly
describes the initial dip in extracellular GLC (Fig. 2f),
followed by a post-stimulation overshoot. As mentioned in
Fillenz and Lowry (1998), this overshoot is not explained
by a decrease in GLC consumption or by the effect of CBF.
Also from Fig. 2, the simulated fluxes for glycolysis in
astrocytes show an increase in glycolytic rate during
stimulation (Fig. 2d: vPFK

g); this is coherent with the actual
literature on brain metabolism, as glycolysis in astrocytes is
activated upon neuronal stimulation (Pellerin and Magis-
tretti 1994; Hyder et al. 2006). The simulated decrease in
astrocytic ATP concentration (Fig. 2b: ATPg) shows how
the glutamate loop mechanism affects energy metabolism in
astrocytes in a way that is coordinated with neuronal
activation. The ATP profile in neurons (Fig. 2b: ATPn)
showed little variations, as the mitochondrial regulation in
neurons allows a much sharper increase in activity upon
stimulation (Fig. 2h: vmito

n). This is possible because,
among other things, the maximal reaction rate of mito-
chondrial oxidation is higher in neurons than in astrocytes
(see Table A-6 in Appendix A: vmax,mito

n>vmax,mito
g), thus

matching the Na-ATPase activation in neurons with a
sufficient and fast energy supply.

The LAC measurement during TP (see Fig. 2i) shows a
rapid increase in concentration after stimulation. This LAC
can only originate from an increase in overall production by
the cerebral tissue. In the example simulation presented in
Fig. 2, the increase in extracellular LAC after stimulation is
caused by an increase in LAC production by astrocytes (see
νLDH

g in Fig. 2g).

5.2 The role of glycogen

It is clear from the above results that an increase in energy
substrate inflow is required to explain how LAC and GLC
concentrations could both be higher than their baseline
values for a long period of time (post stimulation). The
transfer of GLC between capillary and extracellular space
(see vGLC

ce in Fig. 2c), even though it constitutes the major
GLC inflow to the tissue, does not show sufficient
variations to explain the GLC profile. As was explained
previously (see Model Description and Appendix A.4), the
additional inflow during stimulation is assumed to be
coming from an activation of glycogen breakdown by a
molecular signal (noradrenaline) that is known to be
involved in sensory response.

The amplitude of the glycogen (GYL) breakdown flux
during TP (see νPYG

g in Fig. 2e) was found by the
parameter calibration routine to be≈2x10−3mM∙s−1. In
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addition, a 70 seconds delay (post-stimulation) before the
increase in GLY breakdown was identified through the
calibration routine. The effect of the noradrenaline ‘signal’
for GLY breakdown is also longer than the stimulation
duration (≈400 s of GLY breakdown for a 300 s
stimulation).

The increase in GLY breakdown allows astrocytes to
switch from a pure GLC usage to a mix of GLC and GLY
usage. The comparison of hexokinase rate (vHK

g) and
glycogen breakdown (vPYG

g) in astrocytes (Fig. 2e) pro-
vides a clear explanation for the observed triphasic
behaviour for GLC. First, at the onset of stimulation, the
activation of glycolysis in astrocytes induces an increase in
the vHK

g rate (Fig. 2e), this explains why the GLC
concentration decreases quickly. Then, after a delay, the
noradrenaline ‘signal’ induces GLY breakdown, which in
turn supplies the excess GLC needed in astrocytes. As a
result, vHK

g goes back to its steady-state value as soon as
the GLY breakdown is initiated, and this stabilizes the
extracellular GLC concentration. After stimulation ends, the
noradrenaline signal is still activating GLY breakdown for≈
170 s, inducing a consequent increase in G6P (simulation

results not shown). This in turn inhibits vHK
g and results in

a fast increase in extracellular GLC.
Interestingly, using the pool of stored GLY during high

demand periods allows the cerebral tissue to meet its
increased energy requirements with minimal changes in
GLC transport from the capillaries (see vGLC

ce in Fig. 2c).
This allows GLC levels to be maintained in the cerebral
environment during stimulation, a factor that is critical for
neuronal glycolysis (neurons don’t accumulate GLY). The
described GLY breakdown (2x10−3mM∙s−1 for 400 s)
would lead to a dip of≈0.8 mM in astrocytic GLY
concentration. This is consistent with the current literature
on GLY levels in astrocytes, where Brown and Ransom
(2007) reported GLY concentrations in astrocytes in the
range of 1.4 to 4.2 mM (adjusted for consistency of units).
Simulation results from the model also shows that the GLY
pool is replenished in resting conditions, allowing an
overall balance between high and low activity periods
(simulations not shown). GLY is thus considered here not
as an ‘infinite’ substrate pool, but rather as a dynamic
energy reserve that the cerebral tissue can use to buffer its
‘energy budget’ between low and high demand periods.

Fig. 2 Results and simulations for a 5 min. tail pinch experiment.
GLC and LAC (dots in ‘f’ and ‘i’) were measured in brain
extracellular space using substrate specific microelectrochemical
sensors implanted in freely-moving animals and used for model

calibration. Stimulation profile a; ATP b; CBF and GLC transport rate
c; PFK reaction rate d; HK reaction rate and GLY breakdown in glia e;
Extracellular GLC f; LDH reaction rate g; Mitochondrial oxidation
rate h; Extracellular LAC i;

J Comput Neurosci



5.3 Probing energy metabolism with propanolol
perturbation

As mentioned previously, the complexity of cerebral tissue
complicates analysis based on experimental results alone
and leaves room for alternative explanations. In the specific
case of GLY breakdown, it could be argued that the
observed increase in GLC is not coming from the action of
astrocytic glycogenolysis, but rather from an increase in
GLC transport. To further investigate this point, the GLY
breakdown hypothesis was compared to in vivo data from
experiments with animals which had pharmacologically
treated astrocytes. As observed by Fillenz and Lowry
(1998), the dynamic behaviour of GLC concentration
during TP is affected by propanolol perfusion in the
cerebral tissue. Since propanolol mainly affects astrocytes,
it is assumed that the difference will be explained by
different astrocytic metabolism (both at rest and during
stimulation).

The effect of propanolol on astrocytes was investigated
using the model by changing 4 parameters for astrocytic
GLC metabolism and transport in a manner that corre-

sponded to the physiological effect of propanolol. (i.e. a
decrease in metabolic reaction rates). It was found that a≈
19% decrease in maximum reaction rate for GLC transport
(Vmax,GLC

eg) was able to fit the different GLC baseline
(0.375 mM instead of 0.34 mM). Metabolic regulation and
response to stimulation in astrocytes was also affected by
propanolol. To represent the fact that astrocytes are less
activated during stimulation, glutamate cycling rate was
reduced by 10% in the presence of propanolol. The
amplitude of the GLY breakdown during stimulation was
found to be 18% of the value for normal conditions
(0.36x10−3 instead of 2x10−3mM∙s−1). The signal for GLY
breakdown was also slightly delayed, starting at 135 s post-
stimulation, instead of 70 s in normal conditions. With
these minimal changes in parameters to represent the
physiological effect of propanolol on astrocytes, it was
possible to use the same model to describe both data sets
(TP response with and without propanolol perfusion).

Results and simulation of a 5 min. TP experiment with
propanolol perfusion are presented in Fig. 3. The dynamics
of GLC in that case clearly show that the lower GLY
breakdown (vPYG

g in Fig. 3e) in the model is coherent with

Fig. 3 Results and simulations for a 5 min. tail pinch experiment with
propanolol (a beta-adrenoceptor antagonist — astrocytes have a small
store of glycogen with a rapid turnover rate, which in cultured

astrocytes is broken down by stimulation of beta-adrenoceptors
perfusion. GLC was measured in the extracellular space and used for
model calibration. Same caption as Fig. 2 applies
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experimental observations. With pharmacologically treated
astrocytes, a strict decrease in GLC (during stimulation)
followed by recovery is observed (see Fig. 3f). Thus,
challenging the dynamic metabolic model with two data
sets with different physiological conditions for astrocytes
allowed a key mechanism in GLC regulation (secondary
activation of GLY breakdown during stimulation) to be
identified and quantified. This clarification of the cellular
mechanisms for the GLY phenomenon would not have been
possible using only steady-state data on normal physiolog-
ical conditions in the brain.

5.4 Testing the model’s predictive capacity with restraint
experiments

An important procedure when building a mathematical
model for a biological system is its validation. This can be
performed by testing the model’s capacity to predict results
from experimental data sets and inputs (stimuli) that were
not used in the calibration routine (Haefner 1996). Thus a
different sensory stimulus was used for validation (restraint
instead of TP). The restraint stimulus was represented in the
model by modifying the input parameters for neuronal

stimulation (base stimulation flow, vn
1, early stimulation

flow, vn
2 and stimulation time constant, tstim). All remaining

parameters of the metabolic model remained unaltered.
Experimental results (in vivo LAC measurements) and

the corresponding model simulation of a 5 min. restraint
experiment are presented in Fig. 4. The stimulation
parameters found by input calibration are vn

1 =
0.019 mM•s−1 (as opposed to 0.041 for TP), vn

2=
1.6 mM•s−1 (as opposed to 2.56 for TP) and tstim=5.2 s
(as opposed to 2 for TP). Thus, it would seem that the
restraint is producing a lower stimulation rate, although the
spike at the onset of stimulation is slightly broader (because
of a higher tstim). With this modified input, the model was
able to correctly predict the measured LAC profile during
the restraint experiment. Interestingly, the LAC profile in
the restraint case shows a slight dip in the beginning, which
is also seen in the experimental data (see Fig. 4i). This
initial dip in LAC followed by an overshoot is reported for
other types of stimulations (see Aubert and Costalat 2005
and references therein).

From these results, it is asserted that the integrative
modelling approach proposed here with neuronal stimula-
tion, GLU cycling and GLY metabolism is appropriate for

Fig. 4 Results and simulations for a 5 min. restraint experiment. LAC was measured in the extracellular space and used for model calibration.
Same caption as Fig. 2 applies
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the description of the overall dynamic coupling of neuronal
and astrocytic activity. The fact that a single set of model
parameters could describe steady-state behaviour (see
Appendix for further calibration with steady-state values)
and three different dynamic experiments is an indication of
the model’s robustness. However, it is clear that many
parameters and variables were not substantially analysed in
this study and thus, the modelling approach could be
further improved by including more in vivo data as it
becomes available.

5.5 Sensitivity analysis

A sensitivity analysis on the model parameters can be used
to obtain further insights into the properties of the
metabolic system. This can be performed in many different
ways, however, since the dynamic properties of the system
seem to be important and seem to be accurately charac-
terised by the model, the variations in parameter sensitiv-
ities will be calculated over time. This approach consists of
calculating the ‘parameter trajectories’ (i.e. dynamic change
in model behaviour after a parameter change). Defining the
change in ‘model behaviour’ is an important step in this
analysis. Here, the weighted sum of metabolites profiles
will be used as a criterion to describe ‘model behaviour’.
Thus, a change in a parameter that affects more metabolite
profiles or that has a higher impact on these profiles will be

measured as being more sensitive. The parameter sensitiv-
ities or parameter trajectories (Tj) will thus be described as
follows:

TjðtÞ ¼ 1

n
�
Pn
i

ΔSiðtÞj j�
Si;ss

� �
Δpj
�� ���

pj

ð1Þ

where Si(t) is the concentration profile of the ith state of the
model (here n=34) and pj is the jth parameter of the model
(here j=68 parameters+26 constants). A variation in Si(t)
after a parameter change is thus calculated by ∆Si(t). These
variations in concentration profiles are weighted (with the
steady-state conditions Si,ss) and summed to calculate the
absolute change in ‘model behaviour’. This change is then
divided by the relative change in parameters (here ∆pj=1%
of pj). Thus, Tj(t) is the percent change in model behaviour
over time after a 1% change in parameter value. A value of
Tj of 1 would thus mean that a change of 1% in parameter
would lead to an average change in 1% for the model states.
The results of the parameter trajectories analysis are
presented in Fig. 5. For clarity, only the most sensitive
parameters are shown (Tj>0.1). The results can be
separated in sub-categories. First, it was observed that the
most sensitive parameters were related either to energy
metabolism (Fig. 5a, c) or transport and physiology
(Fig. 5b, d). These two categories can also be sub-divided

Fig. 5 Parameter trajectories
calculated from the calibrated
model. Tj(t) is the average per-
cent change over time in model
states after a 1% change in
parameter value. Parameters
with Tj<0.1 are not shown.
Energy related parameters a and
c, transport and physiological
parameters b and d
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into high-sensitivity parameters (Tj>1, Fig. 5a, b) and
medium-sensitivity parameters (0.1<Tj<1, Fig. 5c, d).

5.6 Sensitivity of energy metabolism

The regulation of energy metabolism seems to be critical
for the correct functioning of brain metabolism. The most
sensitive parameters in this regard (Fig. 5a) are the
mitochondrial maximum reaction rate in astrocytes (Vmax,

mito
g) and the oxidative phosphorylation ratio (nOP, the

ratio between moles of ATP produced by moles of PYR
oxidized). Thus, the ability of neurons and astrocytes to
produce energy significantly affects the overall behaviour
of cerebral metabolism. The regulation of the PFK complex
by ATP (see Appendix A.1, Table A.1, νPFK

n) is considered
to be an important control mechanism for glycolysis.
Underwood and Newsholme (1965) measured an activity
profile of PFK as regards to ATP that showed the
activation-inhibition kinetic that is now used extensively
(see Heinrich and Schuster 1996; Aubert and Costalat
2005). This regulation is included in the model and is
defined by an inhibition constant (Ki,ATP) and an exponent
(nH). Interestingly, these two parameters are among the
most sensitive parameters in the model (see Fig. 5a). The
consumption of ATP by the cells is often mentioned as the
driving mechanism for glycolysis (hence the activation of
glycolysis during Na-ATPase activation). The sensitivity of
the model to the ATPases was indeed observed by the
parameter trajectories (Fig. 5c). The fact that both ATP-
producing and ATP-consuming processes are sensitive is
also in accordance with results by Ainscow and Brand
(1999) who studied energetic metabolism control in rat
hepatocytes. Finally, the total amount of energetic shuttles
(ANP) is also a sensitive parameter in this study.

5.7 Sensitivity of transport processes

The regulation of energy metabolism is not the only
sensitive process in the model. As shown in Fig. 5b, d,
parameters related to nutrient transport (Tmax,GLC

ce, GLCa,
O2a) induce moderate-to-high changes in model behaviour.
Interestingly, the changes in GLC transport parameters take
more time to induce changes in model behaviour, whereas a
change in arterial O2 induces an almost immediate change
in metabolic behaviour. This phenomenon was also
observed experimentally by Fillenz and Lowry (1998),
where experiments with atmospheric O2 modulation on
freely moving rats produced rapid changes in metabolic
behaviour. The sensitivity of nutrient transporters (observed
experimentally by Simpson et al. 2007) could also represent
a physical limitation for the system (i.e. the tissue produces
a limited amount of energy for each mole of GLC and O2

available), hence the observed sensitivity. Changes in

sodium transport parameters (gNA
g, kpump, Vm) also affect

metabolic behaviour. However, this observed sensitivity
could be caused by the direct links between sodium
transport and energy metabolism. Finally, the relative
volumetric fractions of neurons and astrocytes (Vn and
Vg) also show moderate (Vn) and high (Vg) sensitivity.

5.8 Insensitivity of energy metabolism

It is interesting to note that many of the kinetic parameters
of energy metabolism, namely all the regulation for the
reactions involved in glycolysis (except PFK), were among
the least sensitive parameters in the model (Tj<0.1). This
observation suggests that the energy metabolism is a robust
energy ‘generator’ driven mostly by cellular energetic
requirements.

6 Conclusion

An integrative dynamic modelling approach for brain
energy metabolism has been presented. The calibration of
model parameters with information from the literature and
in vivo GLC and LAC concentration data during 5 min. tail
pinch allowed critical improvements on the model’s
descriptive capacity. A key mechanism in energy metabo-
lism, the activation of GLY breakdown in astrocytes during
stimulation, was identified and quantified. Tail pinch
experiments with propanolol perfusion allowed further
validation of this phenomenon. The model was also able
to describe the dynamic response of brain energy metabo-
lism with different stimulation inputs (restraint and TP).
The calibrated model was then used to calculate parameter
trajectories, a methodology that allowed energy regulation
and nutrient transport to be identified as key mechanisms in
the metabolic behaviour of the brain. The model resulting
from this study is thus generic enough to be further used to
integrate (in a systems perspective) available knowledge on
brain metabolism. One possibility here would be to analyze
different brain regions and different stimuli. Since the
model describes the overall metabolic balance and the input
stimulation is easily adjustable, it could be adapted to many
in vivo or in vitro experimental conditions.

6.1 Some remarks on ANLS

Simulation results suggest that the observed dynamics for
GLC and LAC during stimulation support the ANLS
hypothesis. For example, the lactate dehydrogenase
(LDH) simulated fluxes in neurons and astrocytes shows a
shuttling (see for example Fig. 2g: νLDH

g>0 while νLDH
n<

0). The associated transport rate (νLAC
ge>0 and νLAC

ne<0)
simulations (not shown) are also coherent with a shuttling.
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The parameter calibration routine with experimental data
thus led to a model that exhibits ANLS behaviour,
although, as in Aubert and Costalat (2005), no special
features of the model are especially favourable to the ANLS
hypothesis. However, it must be noted that the model is far
from a ‘full’ LAC shuttling, as glycolysis is still providing
neurons with PYR, and the LAC produced by astrocytes is
partially cleared by the capillary. In resting conditions, only
7% of the PYR consumed by neuronal mitochondria comes
from LAC, a proportion that rises to 12–15% during
stimulation. This allowed neurons to perform their ‘stimu-
latory work’ with minimal changes in ATP, as the LAC
inflow in neurons is quickly channelled to mitochondria
(Fig. 2h, νmito

n). Simulations also show that LAC shuttling
will depend on the intensity of stimulation and thus,
different rates of ANLS could be observed, as was the case
in works by Aubert and co-workers. However, further
analysis will be required to clarify this point, as the
analytical and experimental technologies are now suffi-
ciently mature to quantitatively assess these biological
hypotheses in an integrative perspective. For example,
experimental O2 data was not used in this study, but the
modelling approach could be used to analyze such data and
maybe provide further insight on the dynamics and
compartmentalisation of oxidative vs. non-oxidative me-
tabolism in the brain. In this context, the precise description
of metabolic mechanisms by using dynamic models
calibrated with quantitative data will be the key to provide
answers.

6.2 Supplemental information

The model presented in this study is available on the
Biomodels database (www.ebi.ac.uk/biomodels-main) in
SBML format.

Acknowledgements The authors wish to thank Marianne Fillenz for
suggesting critical improvements to the model, especially regarding
glycogen storage and utilization in astrocytes.

Appendix A: Mass balances and kinetic equations
of the brain energy metabolism model

This Appendix presents the mass balances, kinetic equa-
tions and parameters of the model.

The metabolic model is presented as a group of
interacting subsystems that describe specific cellular func-
tions, while performing critical interactions with other
subsystems. It is our belief that the decomposition of the
model will allow a better systems understanding of the
problem of simulating brain physiology. The subsystems
considered in the modelling are described in the following
Appendixes:

(A1) Compartments and exchange systems (GLC, LAC,
O2, CO2)

(A2) Central energy metabolism (glycolysis + mitochon-
drial oxidation)

(A3) Neuronal stimulation system and glutamate cycling
for astrocytes-neurons coordination

(A4) Glycogen storage (astrocytes only)

Each of these cellular subsystems will be described in
detail (differential equations and kinetic parameters).
Appendix A.5 then presents an overview of the complete
model. A complete set of model parameters is presented in
section A.6. Regulation mechanisms and changes in
behaviour in the model were described using a ‘switch
function’ (f(t,δ,a)) which is described in section A.7.

A.1 Compartments and exchange systems

The exchange systems account for the transfer fluxes
between the cerebral compartments Fig. 6. The model
considers 4 compartments:

& Capillary (Vc) = 0.55% of total volume
& Extracellular space (Ve) = 20% of total volume
& Neuronal volume (Vn) = 45% of total volume
& Astrocytic, or glial volume (Vg) = 25% of total volume

Fig. 6 Exchange systems
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The exchange fluxes between these compartments
consider the compartment’s volumetric ratios in order to
have consistent mass balances (for example Rcg = Vc/Vg =
0.055/0.25 for exchanges between capillaries and astro-
cytes). Each exchange flux is defined with a given
compartment as reference volume, so no volumetric
adjustment is required in these specific cases. The follow-
ing hypotheses are made to describe the transfer of
substrate and by-products of cerebral metabolism:

& Transfer of gaseous species (O2 and CO2) between
cellular compartments and capillaries is assumed to be
direct. O2 transfer is described with the mechanisms
used in Aubert and Costalat (2005).

& GLC and LAC exchanges between the compartments
are regulated by transporters that are described by
facilitated diffusion equations.

& CBF regulation was built upon works by Aubert and
Costalat (2005), but the regulation of blood flow in this
study is described using a generic sigmoid switch (see
Appendix A.6).

& No hypotheses are made as regards the ANLS. Lactate
transfer is described by facilitated diffusion and transfer
from astrocytes to neurons occurs only if the gradients
are favourable. Since two mechanisms excrete lactate
from the cerebral tissue (vec LAC and vgc LAC), there is
no ‘structural bias’ in the model to force lactate transfer
from astrocytes to neurons Tables 1 and 2.

A.2 Central energy metabolism

Figure A-2 presents the reactions that are considered for
central energy metabolism. In this work, we consider the
processing of GLC through glycolysis, with mitochondrial
oxidation of PYR to be the major pathways of central
energy metabolism. The action of ATPases and phospho-
creatine (PCr) buffering, as well as the action of lactate
dehydrogenase (vLDH) are considered. These reactions
occur in both neurons and astrocytes Fig. 7.

& Glycolysis is simplified and represented by 5 reactions
but these still accounts for ATP/ADP and NAD/NADH
balances and regulation (discussed in the text).

& Glycolytic reactions include the same reactions as were
presented in works by Aubert and Costalat (2005), with
the difference that the conversion of GLC to GAP is now
described in three reactions instead of one. This allows a
better description of regulatory phenomenon, especially
as regards to glycogen storage (astrocytes, see Appendix
A.4), and GLC consumption dynamics by the hexokinase
(vHK) a reaction highly inhibited by its product, G6P.

& A constant amount of energetic shuttles (ATP+ADP+
AMP = ANP) is assumed. Distribution between ATP,
ADP and AMP varies depending on energetic require-
ments, kinetic reactions and adenylate kinase equilibri-
um. Equilibrium description from Heinrich and
Schuster (1996) was used for adenylate kinase.

Table 1 Variables for exchange and transport systems

Variable Steady-state value Differential equation

Extracellular states

GLCe Glucose 0.47 @GLCe
@t ¼ uceGLC � Rne � uenGLC � Rge � uceGLC

LACe Lactate 0.37 @LACe
@t ¼ Ren � uneLAC þ Reg � ugeLAC � uecLAC

Astrocytic and neuronal states

O2n Oxygen 0.102 @O2n
@t ¼ ucnO2 � 3 � unmito

O2g Oxygen 0.102
@O2g
@t ¼ ucgO2 � 3 � ugmito

Capillary

O2c Oxygen 7.46 @O2c
@t ¼ ucO2 � Rcgu

cg
O2 þ Rcn � ucnO2

CO2c Carbon dioxide 0.98 @CO2c
@t ¼ ucCO2 � Rcg � ucgCO2 þ Rcn � ucnlCO2

GLCc Glucose 4.64 @GLCc
@t ¼ ucGLC � Rec � uceGLC � Rgc � ucgGLC

LACc Lactate 0.33 @LACc
@t ¼ ucLAC � Rec � uceGLC � Rgc � ugcLAC

Other states and variables

Vv Venous volume 0.0237 @Vv
@t ¼ Fin tð Þ � Fout tð Þ

Fin Capillary entering
blood flow (s−1)

0.012 Fin tð Þ ¼ Foþ fCBF tð Þ

Fout Flow out of the capillary (s−1) 0.012 Fout tð Þ ¼ F0 � Vu
Vu;0

� �1=xþtu Vu
Vu;0

� ��1=2
� 1
Vu;0

dV
dt

� �
CBF regulation

fCBF tð Þ ¼ 1þΔF � f t; 2; 25ð Þ � f t; 2þ tend ; 25ð Þ½ � �

*t is the time post-stimulation, tend is the duration of stimulation. A delay of 2 sec. (poststimulation) affects the variations in CBF. The function ‘f
(t,δ,α)’ used to build fCBF(t) is described in Appendix A.7
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& The same hypothesis of a constant sum is made for
cofactors NADH + NAD = NADHtot as well as for
phosphocreatine buffer (PCr+Cr = PCrtot).

& Inhibition of mitochondrial activity at high ATP/ADP
ratio is considered (see Table A.2.2, equations 6 and
15).

& The stoichiometry and overall mass balances of the
reactions of central energy metabolism are the same in
neurons and astrocytes, with the same regulation
mechanisms. However, the kinetic parameters are
different, which allows describing the different meta-
bolic behaviour of neurons and astrocytes at rest or
during active periods.

& No hypotheses or fluxes are imposed a priori as regards
to the ANLS. The model simply describes the kinetic
behaviour of key enzymatic reactions. The Lactate
dehydrogenase enzyme, which catalyses the conversion
between PYR and LAC, is usually assumed to favour
the forward reaction (PYR → LAC). This is seen in the
parameters (see Table A.6) as the forward rate constant
is much higher than the reverse rate constant (kn LDH,f >
kn LDH,r). However, if the conditions are favourable
(NADH/NAD and PYR/LAC ratios), the reaction could
produce PYR from LAC Tables 3 and 4.

Table 2 Kinetic equations for exchange and transport systems

No. Reaction Kinetic equation

Transport

1 GLC exchange between capillary and extracellular fluid uceGLC ¼ Vce
max;GLC � GLCc

GLCcþKce
T ;GLC

� GLCe
GLCeþKce

T ;GLC

h i
2 GLC exchange between capillary and astrocytes

ucgGLC ¼ Ven
max;GLC � GLCc

GLCcþKcg
T ;GLC

� GLCg

GLCgþKcg
T ;GLC

� �
3 GLC exchange between extracellular fluid and neurons

uenGLC ¼ Vcg
max;GLC � GLCe

GLCcþKen
T ;GLC

� GLCn
GLCnþKen

T ;GLC

h i
4 GLC exchange between extracellular fluid and astrocytes

uegGLC ¼ Veg
max;GLC � GLCe

GLCeþKeg
T ;GLC

� GLCg

GLCgþKeg
T ;GLC

� �
5 LAC exchange between extracellular fluid and capillary

uecLAC ¼ Vec
max;LAC � LACe

LACeþKec
T ;LAC

� GLCc
GLCcþKec

T ;LAC

h i
6 LAC exchange between neurons and extracellular fluid

uneLAC ¼ Vne
max;LAC � LACn

LACnþKne
T ;LAC

� LACe
GLCeþKne

T ;LAC

h i
7 LAC exchange between astrocytes and extracellular fluid

ugeLAC ¼ Vge
max;LAC � LACg

LACgþKge
T ;LAC

� LACe

GLCeþKge
T ;LAC

� �
8 LAC exchange between astrocytes and capillary

ugcLAC ¼ Vgc
max;LAC � LACg

LACgþKgc
T ;LAC

� LACc

GLCeþKgc
T ;LAC

� �

9 O2 exchange between capillary and neurons ucnO2 ¼ PScap
Vn

� K02
Hb:OP
O2c

� 1
� ��1=nh�O2n

" #

10 O2 exchange between capillary and astrocytes ucgO2 ¼ PScap
Vg

� K02
Hb:OP
O2c

� 1
� ��1=nh�O2g

" #

11 Blood flow contribution to capillary O2 ucapO2 ¼ 2�Fin tð Þ
Vc

� O2a � O2cð Þ
12 Blood flow contribution to capillary GLC ucapGLC ¼ 2�Fin tð Þ

Vc
� GLCa � GLCcð Þ

13 Blood flow contribution to capillary LAC ucapLAC ¼ 2�Fin tð Þ
Vc

� LACa � LACcð Þ

Fig. 7 Central energy metabolism
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A.3 Neuronal stimulation and glutamate cycling
for astrocytes-neurons coordination

The stimulatory subsystem is built upon works by Aubert
and Costalat (2005) to describe neuronal stimulation (vn
stim). A critical addition to the stimulation system is the
glutamate cycling proposed by Pellerin and Magistretti
(1994) for neuronal-astrocytic coordination Fig. 8. The
following mechanisms and hypotheses are modelled:

& A sodium inflow (vnstim described by vn1 and vn2 in
Table A.3.2) stimulates neuronal ATPase. This inflow is
considered to be an ‘input’ in the sense that it can be
modulated to get a better description of physiological
stimulations (strength and duration).

& Upon neuronal stimulation, GLU is released by neurons
and taken up by astrocytes (veg

& GLU) with the co-transport of 3 sodium ions.
& The conversion of GLU to glutamine (GLN) in

astrocytes for its ‘non-stimulatory’ transfer to neurons
is modelled as one reaction (vgn GLU).

& This simplified model (neglecting GLN) retains the
critical feature of the GLU cycling: a coordinated

activation of ATPases in astrocytes upon neuronal
activation.

& The stoichiometry for ATP consumption in the cycle is
respected, as 2 molecules of ATP are required in
astrocytes for each molecule of GLU circulating in the
cycle (one for Na pumping and one for GLU conversion
and transfer).

Considering the dynamics of GLU cycling allows
describing cerebral activity with a physiological approach,
instead of using two distinct stimulations for neurons and
astrocytes, as was the case in Aubert and Costalat (2005).
The equations for the stimulation system are presented in
Tables 4 and 5.

A.4 Glycogen storage system

Figure A-4 presents the mechanisms considered for
glycogen storage in astrocytes and its link to central energy
metabolism through G6P. The reactions for GLY storage
are considered only for astrocytes, as neurons don’t
accumulate GLY. Glycogen levels in astrocytes can vary

Table 3 Central energy metabolism

Variable Steady-
state

Differential equation

Neuronal states

GLCn Glucose 0.43 @GCLn
@t ¼ uenGLC � unHK

G6Pn Glucose−6−P 0.75 @G6Pn
@t ¼ unHK � unPG1 � unG6PDH

F6Pn Fructose-6-P 0.2 @F6Pn
@t ¼ unPG1 � unPFK � unPPP

GAPn Glyceraldehyde-3-P 0.05 @GAPn
@t ¼ 2 � unPFK � unPGK � unPPP

PEPn Phosphoenolpyruvate 0.025 @PEPn
@t ¼ unPGK � unPK

PYRn Pyruvate 0.12 @PYRn
@t ¼ unPK � unLDH � unmito

LACn Lactate 0.28 @LACn
@t ¼ unLDH � uenLAC

ATPn Adenosine
triphosphate

2.25 @ATPn
@t ¼ �unHK � unPFK þ unPGK þ unPK þ 15 � unmito þ unCK � unpump;Na � unATPase

h i
� 1� dAMPn

dATPn

h i�1

with ATPn + ADPn + AMPn = ANP
NADHn Nicotinamide adenine

dinucleotide reduced
0.04 @NADHn

@t ¼ unPGK � unLDH � unmito
with NADHn + NADn = NADHtot

PCrn Phosphocreatine 2.5 @PCrn
@t ¼ �unCK with PCrn+ Crn = PCrtot

Astrocytic states

GLCg Glucose 0.16
@GLCg

@t ¼ uegGLC þ ucgGLC � ugHK
G6Pg Glucose-6-P 0.75

@G6Pg

@t ¼ ugHK þ ugPG1 � ugGLYS þ ugGLYP
F6Pg Fructose-6-P 0.2

@F6Pg

@t ¼ ugPG1 � ugPFK
GAPg Glyceraldehyde-3-P 0.05

@GAPg

@t ¼ 2 � ugPFK � ugPGK
PEPg Phosphoenolpyruvate 0.025

@PEPg

@t ¼ ugPGK � ugPK
PYRg Pyruvate 0.12

@PYRg

@t ¼ ugPK þ ugLDH � ugmito
LACg Lactate 0.89

@LACg

@t ¼ ugLDH þ uegLAC � ugcLAC

ATPg Adenosine
triphosphate

2.2
@ATPg

@t ¼ �ugHK � ugPFK þ ugPGK þ ugPK þ 15 � ugmito þ ugCK � ugpump;Na � ugATPase

h i
� 1� dAMPg

dATPg

h i�1

with ATPn + ADPn + AMPn = ANP
NADHg Nicotinamide adenine

dinucleotide reduced
0.04 @NADHg

@t ¼ ugPGK þ ugLDH � ugmito with NADHg + NADg = NADHtot

PCrg Phosphocreatine 1.5
@PCrg
@t ¼ �ugCK with PCrg+ Crg = PCrtot
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depending on the energetic requirements of the tissue and
time of the day. Levels of glycogen up to 4.2 mMol are
reported for astrocytes (Brown and Ransom, 2007; units
adjusted for consistency). The pool of glycogen in
astrocytes is thus not negligible and could potentially

sustain cerebral activity for a few minutes. Qualitatively, it
would seem that under resting conditions, glycogen storage
(up to 4.2 mMol) would be favoured, as glucose is
available from the extracellular space and glycolytic
requirements are lower. During high activity periods (or

Fig. 8 Stimulation and
astrocytes-neurons coordination

Table 4 Kinetic equations for central energy metabolism

No. Reaction Kinetic equation

Neuronal metabolism

1 Hexokinase unHK ¼ knHK � ATPn � GLCn
GLCnþKm;GLC

h i
� 1� f G6Pn; 0:6; 20ð Þ½ �

2 Phosphoglucose isomerase
unPG1 ¼ unmax;f ;PG1 � G6Pn

G6PnþKm;G6P

h i
� unmax;r;PG1 � F6Pn

F6PnþKm;F6P

h i
3 Phosphofructokinase

unPFK ¼ knPFK � ATPn � 1þ ATPn
K1;ATP

� �nH
� ��1

� F6Pn
F6PnþKm;F6P

h i
4 Phosphoglycerate kinase

unPGK ¼ knPGK � GAPn � ADPn � NADn
NADHn

h i
5 Pyruvate kinase unPK ¼ knPK � PEPn � ADPn

6 Mitochondrial oxidation of pyruvate
unmito ¼ unmax;mito � PYRn

PYRnþKm;PYR

h i
� ADPn

ADPnþKm;ADP

h i
� O2n

O2nþKm;O2

h i
� 1� f ATPn

ADPn
; 20; 5

� �h i
7 Lactate dehydrogenase

unLDH ¼ knLDH ;f � PYRn � NADHn � knLDH ;r � LACn � NADn

8 Creatine kinase unCK ¼ knCK;f � PCrn � ADPn � knCK;r � CrnATPn

9 ATPase (excluding Na-ATPase)
unATPase ¼ Vn

max;ATPase � ATPn
ATPnþKm;ATP

h i
Astrocytic metabolism

10 Hexokinase ugHK ¼ kgHK � ATPg � GLCg

GLCgþKm;GLC

h i
� 1� f G6Pg; 0:6; 20ð Þ½ �

11 Phosphoglucose isomerase
ugPG1 ¼ ugmax;f ;PG1 � G6Pg

G6PgþKm;G6P

h i
� ugmax;r;PG1 � F6Pg

F6PgþKm;F6P

h i
12 Phosphofructokinase

ugPFK ¼ kgPFK � ATPg 1þ ATPg

KI ;ATP

� �nH
� ��1

� F6Pg

F6PgþKm;F6P

h i
13 Phosphoglycerate kinase

ugPGK ¼ kgPGK � GAPg � ADPg
NADg

NADhg

h i
14 Pyruvate kinase ugPK ¼ kgPK � PEPg � ADPg

15 Mitochondrial oxidation of pyruvate
ugmito ¼ ugmax;mito � PYRg

PYRgþKm;PYR

h i
� ADPg

ADPgþKm;ADP

h i
� O2g

O2gþKm;O2

h i
� 1� f ATPg

ADPg
; 20; 5

� �h i
16 Lactate dehydrogenase

ugLDH ¼ kgLDH ;f � PYRg � NADHg � kgLDH ;r � LACg � NADg

17 Creatine kinase ugCK ¼ kgCK;f � PCrg � ADPg � kgCK;r � Crg � ATPg

18 ATPase (excluding Na-ATPase)
ugCK ¼ Vg

max;ATPase � ATPg

ATPgþKm;ATP

h i
Adenylate kinase equilibrium (neurons and astrocytes)

ADP ¼ ATP
2 � �qAK þ ffiffiffi

u
p½ � with u ¼ q2AK þ 4 � qAK ANP

ATP � 1
� 	

dAMP
dATP ¼ �1þ qAK

2 � 0:5 � ffiffiffi
u

p þ qAK � ANP
ATP� ffiffi

u
p
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hypoglycemia), glycogen breakdown can be initiated by
neurotransmitters (noradrenaline) to induce glycogenolysis.
However, as was recently reported in a special issue of Glia
(Vol. 55, No.12, 2007) the role of astrocytic glycogen in brain
energy metabolism is much more complex than that if a
simple energy reserve. The following hypotheses and mech-
anisms are considered in the glycogen storage system Fig. 9:

& Glycogen synthesis from G6P is described in one
reaction, the glycogen synthase (vg GYS) and break-
down is described also in one reaction, the glycogen
phosphorylase (vg PYG).

& Michaelis-Menten kinetics are used to describe both
reactions

& GLY accumulation will be favoured when the entering
flux of GLC exceeds the glycolytic requirements (i.e. at
rest). However, GLY cannot be accumulated at concen-
trations higher than 4.2 mM.

& Upon neuronal activation, a ‘signal’ (noradrenaline) is
assumed to induce GLY breakdown. This is modelled
as a fractional increase of vg PYG for a certain time
following the stimulation. This signal, as was the case
for the stimulatory signal, can vary depending on the
stimulation. This signal is, however, assumed to start
after neuronal stimulation onset (delay).

& Inhibition of vg HK by its product, G6P, is considered in
the model (see equation 10 in Table A.2.2). Thus, if GLY
breakdown increase the G6P pool, an inhibition of vg

HK can occur, although the overall glycolytic flux would
be maintained through GLY consumption. This would
allow astrocytes to switch from ‘pure’ GLC usage to a
mix of GLC and GLY usage.

The model we present here for glycogen storage
considers the dynamic, regulatory response of the glycogen
pool and its integration in brain energy metabolism. The
last hypothesis is critical as regards the role of GLY in
energy metabolism. Switching from ‘pure’ glucose usage to
a mix of glycogen and glucose usage during high activity
periods would have a critical effect on the ‘energy balance’
in astrocytes. Glycogenolysis has a higher energetic yield
(initiating glycolytic flux with G6P instead of GLC
temporarily saves one molecule of ATP). Thus, during
low demand periods, the glycogen pool can be replenished,
as the glycolytic requirements are lower and this would
later constitute a reserve of substrate with a higher energetic
yield for high demand periods. The glycogen pool must
thus be viewed not only as a substrate reserve, but also as a
dynamic energy reserve. Using the glycogenolytic potential
in astrocytes (even for normal cerebral activity) would
allow astrocytes to buffer their energy budget between high
and low demand periods. Moreover, glycogen dynamics are
important for the ANLS theory. As reviewed by Pellerin et
al. (2007) the GLY ‘dynamic usage’ hypothesis is not
contradictory with the ANLS. Transferring the ’energetic
potential’ of astrocytic GLY to neurons could be done
through LAC shuttling. But the fact that astrocytes can
switch to GLY usage during high demand period also
potentially leaves more GLC for neurons to consume. Thus,
a precise quantification of glycogen dynamics and its
integration in models for brain energy metabolism is going
to be crucial for future developments (Pellerin et al. 2007)
Table 5, 6 and 7.

A.5 The complete model

Figure 10 (next page) presents the complete model used in
this study.

Fig. 9 Glycogen storage system

Variable Steady-state value Differential equation

Neuronal states

Nan Sodium 15 @Nan
@t ¼ unleak;Na � 3 � unpump þ unstim

GLUn Glutamate 3 @GLUn
@t ¼ ugnGLU � RNa�GLU � unstim

Astrocytic states

Nag Sodium 15
@Nag
@t ¼ ugleak;Na � 3 � ugpump þ ugstim

GLUg Glutamate 1e-6
@GLUg

@t ¼ uegGLU � ugnGLU
Extracellular states

Nae Sodiumq 150 constant

GLUe Glutamate 1e-6 @GLUe
@t ¼ Rne � RNa�GLU � unstim � unstim

Table 5 Stimulation related
variables

J Comput Neurosci



A.6 Model parameters

Table A.6.1 presents model kinetic parameters. These
parameters were found through model calibration (see
section on model calibration) with in vivo data on energy
metabolism (see article) and brain physiology data (typical
fluxes and ratios, see Appendix B). Table A.6.2 presents the
physical constants and known concentrations that are used
in the model. Table A.6.3 presents the ‘input’ parameters
that are used to define the effect of neuronal stimulation.

A.7 Switch function

The present model needs to describe physiological changes
in behaviour (changes in CBF during stimulation etc.)
which are not well described by ‘pure’ on/off switches.

Sigmoid behaviour is much more common with biological
systems. The following function can be used to describe a
sigmoid switch:

f t; d; að Þ ¼ 1

1þ e�a� t�dð Þ

where ‘t’ is the time, ‘δ’ is the time of the ‘event’ inducing
switch in behaviour and ‘α’ is the sharpness of the change
or the ‘slope’ during the change in behaviour. Figure 11
presents profiles of that function.

Thus, by combining different forms of that function, it is
possible to describe ‘smooth’ or ‘sharp’ changes in
biological behaviour without having to use binary switch-
ing. This approach allows a better description of biological
behaviours and reduces discontinuities, which is important
in numerical solvers for differential equations. The switch

Table 7 Glycogen storage system

Variable Steady-state value Differential equation

Astrocytic state

GLYg Glycogen 3
@GLYg
@t ¼ ugGLYS � ugGLYP

Kinetic equations

1 Glycogen synthase ugGLYS ¼ ugmax;GLYS � G6Pg

G6PgþKm;G6P

h i
� 1� f GLYg ; 4:2; 20

� 	
 �
2 Glycogen phosphorylase ugGLYS ¼ ugmax;GLYP � G6Pg

G6PgþKm;G6P

h i
� 1þ fGLY½ �

3 GLY regulation fGLY ¼ ΔGLY � f t; t0;GLY ; 4
� 	� f t; t0;GLY þ tend;GLY ; 4

� 	
 ��
* ‘t’ is time post-stimulation, t0,GLY is the delay (post-stimulation) before GLY breakdown starts and tend,GLY is the duration of GLY
breakdown. The function f(t,δ,a) is presented in section A.7

Table 6 Kinetic equations for stimulation related fluxes

No. Reaction Kinetic equation

Neuronal metabolism

1 Sodium leak current unLeak�Na ¼ Sm �gnNa
Vn �F

R�T
F ln Nae

Nan
� Vm

� �h i
2 Neuronal Na inflow due to stimulation unstim ¼ u1n þ u2n � t

tstim
�
e� t= tstimð Þ

� �
For 0 ≤ t ≤ tend *

3 Na-ATPases unpump ¼ Sm
Vn
� kpump � ATPn � Nan � 1þ ATPn

Km;Na�pump

� ��1

4 Glutamate release uneGLU ¼ unstim � RNa�GLU

Astrocytic metabolism

5 Glutamate uptake uegGLU ¼ uegmax;GLU
GLUe

GLUeþKm;GLU

h i
6 Glutamate transfer to neurons ugnGLU ¼ ugnmax;GLU

GLUg

GLUgþKm;GLU

h i
� ATPg

ATPgþKm;ATP

h i
7 Sodium leak current ugLeak�Na ¼ Sm �ggNa

Vg �F
R�T
F ln Nae

Nag
Vm

� �h i
8 Na-ATPases ugpump ¼ Sm

Vg
� kpump � ATPg � Nag � 1þ ATPg

Km;Na�pump

� ��1

* ‘t’ is time post-stimulation and tend is the duration of neuronal stimulation. Outside the period [0… tend], vn stim = 0.
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can also be used with concentrations (instead of time) to
represent metabolic regulation (i.e. maximum accumulation
levels, inhibitions etc.) Tables 8, 9, 10.

Appendix B: Model calibration with fluxes and ratios
from literature

An important consideration in building a realistic model for
brain energy metabolism is the overall balancing of sub-
strates consumption. Typical rates for GLC and O2 consump-
tion at rest and during stimulation are presented in Figure 12.

The glutamate cycling, induced by neuronal stimula-
tion, is characterized by the circulation of GLU in
astrocytes (νgn GLU, as described, for example, in Hyder
et al. 2006). The profile for νgn GLU produced by the
model (Figure B-1a) is within the ranges reported in the
literature (see Hyder et al. 2006). The most relevant
glycolytic rate here is assumed to be the PFK rate (Figure
B-1b), as it accounts for substrate coming from both GLC
and GLY (see Appendix A.4 and Figure A-5 for further
details). Steady-state consumption fluxes for GLC and O2
are within the ranges reported in the literature for overall

GLC and O2 consumption by the brain. Using the
glycolytic rates (vn PFK + vg PFK) at rest and during
stimulations, our model shows overall GLC consumption
rates in the range of 90 to 105g per day (Figure B-1f). The
O2 consumption rate and LAC excretion by the tissue
would also be in ranges described in the literature since

Fig. 11 Switch function behaviour

Fig. 10 Presents the complete model used in this study
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Table 8 Model parameters

Parameter name Value Description Units

Vmax,glu
gn 0.2994 reaction rate constant for glutamine synthase mM∙s−1

Veg
max,glu 0.2082 maximum uptake rate of GLU in astrocytes mM∙s−1

Km,ATP 0.0153 affinity constant for ATP mM

Ven
max,GLC 0.504 maximum transport rate of GLC e–>n mM∙s−1

Vmax,GLC
eg 0.038 maximum transport rate of glc e–>g mM∙s−1

Vmax,GLC
cg 0.010 maximum transport rate of glc c–>g mM∙s−1

Vmax,HK
n 0.051 maximum reaction rate for for HK in neurons mM∙s−1

Vmax,HK
g 0.050 maximum reaction rate for for HK in astrocytes mM∙s−1

Vmax,f,PGI
n 0.502 maximum reaction rate for for PGI in neurons mM∙s−1

Vmax,f,PGI
g 0.483 max. reaction rate for for PGI in astrocytes mM∙s−1

Vmax,r,PGI
n 0.503 max. reverse reaction rate for for PGI in neurons mM∙s−1

Vmax,r,PGI
g 0.451 max. reverse reaction rate for for PGI in astrocytes mM∙s−1

kPFK
n 0.558 reaction rate constant for PFK in neurons mM−1∙s−1

kPFK
g 0.403 reaction rate constant for PFK in astrocytes mM−1∙s−1

kPGK
n 0.429 reaction rate constant for PGK in neurons mM−1∙s−1

kPGK
g 0.251 reaction rate constant for PGK in astrocytes mM−1∙s−1

kPK
n 8.61 rate constant for PK in neurons mM−1∙s−1

kgPK 2.73 rate constant for PK in astrocytes mM−1∙s−1
kLDH,f

n 5. 30 rate constant for LDH in neurons mM−1∙s−1

kLDH,f
g 6.26 rate constant for LDH in astrocytes mM−1∙s−1

kLDH,r
n 0.105 reverse rate constant for LDH in neurons mM−1∙s−1

kLDH,r
g 0.547 reverse rate constant for LDH in astrocytes mM−1∙s−1

Vmax,LAC
ne 0.1978 rate constant for lactate exchange n<−>e mM∙s−1

Vmax,LAC
ge 0.0861 rate constant for lactate exchange g<->e mM∙s-1

Vmax,GLC
ce 0.0496 maximum transport rate of glc c–>e mM∙s−1

Vmax,LAC
gc 0.0002 rate constant for lactate exchange g<->c mM∙s−1

Vmax,LAC
ec 0.0325 rate constant for lactate exchange e<->c mM∙s−1

Vmax,mito
n 0.0556 maximum reaction rate for mitochondrial resp. mM∙s−1

Vmax,mito
g 0.0084 maximum reaction rate for mitochondrial resp. mM∙s−1

Vmax,ATPase
n 0.0489 ATPase maximum rate neurons mM∙s−1

Vmax,ATPase
g 0.0357 ATPase maximum rate in astrocytes mM∙s−1

kCK,f
n 0.0524 rate constant for CK mM−1∙s−1

kCK,f
g 0.0243 rate constant for CK mM−1∙s−1

kCK,r
n 0.0152 reverse rate constant for CK mM−1∙s−1

kCK,r
g 0.0207 reverse rate constant for CK mM−1∙s−1

Vmax,GYS 1.53 x10-4 Maximum reaction rate for GLY synthase mM∙s−1

Vmax,PYG 4.92 x10−5 Maximum reaction rate for GLY phosphorylase mM∙s−1

KI,ATP 0. 7595 inhibition constant for ATP mM

Km,Na-pump 0.4243 affinity constant for Na-ATPase pump mM

Km,ADP 0.00107 affinity constant of mito. for ADP mM

Km,O2 0.00297 affinity constant of mito. for O2 mM

KO2 0.0897 O2 transport constant mM

KT,LAC
ec 0.764 affinity constant for lactate exchange e<->c mM

KT,LAC
gc 0.128 affinity constant for lactate exchange g<->c mM

KT,LAC
ne 0.093 affinity constant for lactate exchange n<->e mM

KT,LAC
ge 0.221 affinity constant for lactate exchange g<->e mM

KT,GLC
ce 8.45 affinity constant of glc transport c–>e mM

KT,GLC
cg 9.92 affinity constant of astrocytes for GLC from cap. mM

KT,GLC
en 5.32 affinity constant of neurons for GLC mM
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KT,GLC
eg 3.52 affinity constant of astrocytes for GLC mM

Km,GLC 0. 105 affinity for intracellular GLC mM

PScap
n 0.220 O2 mass transfer constant between cap. and neuron s−1

PScap
g 0.245 O2 mass transfer constant between cap. and astrocyte s−1

Km,G6P 0.50 affinity for G6P mM

Km,F6P-PGI 0.06 Affinity of PGI for F6P mM

Km,F6P-PFK 0.06 affinity of PFK for F6P mM

nH 4 Hill coefficient for ATP inhibition

nho2 2.7 O2 reaction order constant

Km,gly 0.982 affinity constant for GLY mM

Km,pyr 0.063 affinity constant of mitochondria for PYR mM

Km,glu 0.05 affinity constant for GLU mM

Km,nadh 0.015 affinity constant for NADH mM

Km,nad 0.069 affinity constant for NAD mM

qAK 0.92 equilibrium constant for AK

Table 9 Physical constants and known concentrations

Parameter name Value Description Units

PCrtot 5 total PCr + Cr mM

O2a 8.34 arterial O2 mM

CO2a 27.5 arterial CO2 mM

GLCa 4.8 arterial GLC mM

LACa 0.313 arterial LAC mM

NADHtot 0.22 total NADH+NAD mM

ANP 2.38 total ATP + ADP + AMP mM

tv 35 characteristic time for venous vol. dynamics s

kpump 3.17x10-7 transport rate constant cm∙mM−1∙s−1

CBF0 0.012 cerebral blood flow in resting conditions s−1

Ve 0.2 extracellular fraction volume

Vc 0.0055 capillary fraction volume

Vg 0.25 glial fraction volume

Vn 0.45 neuron fraction volume

Ren 4/9 volumetric ratio (Ve/Vn)

Reg 0.8 volumetric ratio (Ve/Vg)

Rce 0.0275 volumetric ratio (Vc/Ve)

Rcn 0.01222 volumetric ratio (Vc/Vn)

Rcg 0.022 volumetric ratio (Vc/Vg)

nOP 15 oxidative phosphorylation ratio (ATP produced per PYR consumed)

Naero 3 aerobic metabolism ratio (O2 consumed per PYR)

Vv,0 0.0237 base venous volume fraction

HbOP 8.6 O2 concentration with hemoglobin mM

Nae 150 extracellular sodium mM

F 96500 molecular charge C∙mol−1

RT 2577340 perfect gas constant and temperature kPa L∙mmol−1

Smn 40500 characteristic length for Na (neurons) cm−1

Smg 10500 characteristic length for Na (astrocytes) cm−1

gNa
n 0.0039 surface resistance mS∙cm−2

gNa
g 0.0039 surface resistance mS∙cm−2

Vm −70 surface potential mV
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the simulated O2 to GLC ratio (5.75 at rest and going
down during stimulation, see Figure B-1d) is also in the
range of reported values. The rate of GLC consumption
(Figure B-1f) is only marginally smaller at rest (90g·d-1)
than during neuronal activation (100-105g·d-1 depending
on stimulation parameters). This is in accordance with the
literature, as a high baseline rate for GLC metabolism in
the brain is the general consensus (Magistretti 2006 and
references therein). Thus the model calibration, as regards

the overall GLC, O2 and LAC rates (at rest and during
stimulation) produced a physiological behaviour represen-
tative of the cerebral environment.

The phenomenon of predominant GLC consumption in
astrocytes, with further oxidation in neurons (νg

,PFK > vn

PFK while vn mito > vmito
g, as was the case in the Hyder et al.

framework and in many ANLS supporting arguments) is
not observed in the simulations. In our model, GLC
consumption happens mostly in neurons (at rest: vPFK

n ≈

Fig. 12 Simulated fluxes for
GLC oxidative metabolism and
O2/GLC ratio during resting and
neuronal stimulation (5 min tail
pinch starting at t = 1000s).

Parameter name Value Description Units

vn
1 (tail pinch) 0.041 base sodium transport rate during stimulation mM∙s−1

vn
2 (tail pinch) 2.56 early stimulation of sodium transport rate mM∙s−1

vn
1 (restraint) 0.027 base sodium transport rate during stimulation mM∙s−1

vn
2 (restraint) 3.83 early stimulation of sodium transport rate mM∙s−1

tstim (tail pinch) 2 time constant of stimulation s

tstim (restraint) 5.2 time constant of stimulation s

tend 300 duration of neuronal stimulation s

Δf 0.42 CBF fractional increase during stimulation

RGLU-Na 0.075 GLU/Na ratio for release of GLU by neurons during stimulation

ΔGLY 62 GLY breakdown fractional increase during stimulation

t0,GLY 71 delay before GLY breakdown (post-stimulation) s

tend,GLY 403 duration of GLY breakdown s

Table 10 Stimulation parameters
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6 μM·s−1 and ν,PFK
g ≈ 4.5 μM·s−1, Figure B-1b). During

stimulation, however, glycolytic rate in astroyctes can be
slightly higher than in neurons (depending on the strength
of the stimulus).

PYR oxidation is much more pronounced in neurons
(vmito

n ≈ 13 μM·s−1 and vmito
g ≈ 6 μM·s−1, see Figure B-1c)

and this induces a slight shuttling of lactate from astrocytes
to neurons (Figure B-1e, vn LDH is negative). However,
glycolysis remains the major source of PYR for mitochon-
drial oxidation. In our model, LAC shuttling accounts only
for ≈7% of the energetic requirements of resting neurons.
This proportion rises to ≈12–15% during stimulations
periods, which allows increases in energy demand in neurons
be met by a sharp increase in mitochondrial rate rather than
an increase in glycolytic flux. However, as regards the
ANLS, our simulation results are not in agreement with a
‘full’ lactate shuttle (i.e. all the LAC produced in astrocytes
being transferred to neurons for oxidation). This would lead
to an O2 to GLC ratio of 6 (with no variations during
stimulation), which is clearly not the case in both our
simulations and in many reports from the literature.
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