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A key goal of biomedical research is to elucidate the complex network of gene interactions underlying complex traits such as
common human diseases. Here we detail a multistep procedure for identifying potential key drivers of complex traits that integra-
tes DNA-variation and gene-expression data with other complex trait data in segregating mouse populations. Ordering gene expres-
sion traits relative to one another and relative to other complex traits is achieved by systematically testing whether variations in
DNA that lead to variations in relative transcript abundances statistically support an independent, causative or reactive function
relative to the complex traits under consideration. We show that this approach can predict transcriptional responses to single gene–
perturbation experiments using gene-expression data in the context of a segregating mouse population. We also demonstrate the
utility of this approach by identifying and experimentally validating the involvement of three new genes in susceptibility to obesity.

In the past few years, gene-expression microarrays and other general
molecular profiling technologies have been applied to a wide range of
biological problems and have contributed to discoveries about the
complex network of biochemical processes underlying living systems1,
common human diseases2,3 and gene discovery and structure deter-
mination4–6. Microarrays have also helped to identify biomarkers7,
disease subtypes3,8,9 and mechanisms of toxicity10 and, more recently,
to elucidate the genetics of gene expression in human populations11,12

and to reconstruct gene networks by integrating gene-expression and
genetic data13. The use of molecular profiling technologies as tools to
identify genes underlying common, polygenic diseases has been less
successful. Hundreds or even thousands of genes whose expression
changes are associated with disease traits have been identified, but
determining which of the genes cause disease rather than respond to
the disease state has proven difficult.

Microarray data have recently been combined with other experi-
mental approaches to facilitate identification of key mechanistic
drivers of complex traits3,13–17. One such technique involves treating
relative transcript abundances as quantitative traits in segregating
populations. In this method, chromosomal regions that control the
level of expression of a particular gene are mapped as expression
quantitative trait loci (eQTLs). Gene-expression QTLs that contain the
gene encoding the mRNA (cis-acting eQTLs) are distinguished from
other (trans-acting) eQTLs. cis-acting eQTLs that colocalize with

chromosomal regions controlling a complex trait of interest are
identified. The identification of a common chromosomal location
for both cis-acting eQTLs and disease trait QTLs, especially in cases
where the corresponding expression and disease traits are correlated, is
used to nominate genes in the disease-susceptibility locus, bypassing
fine mapping of the region altogether2,3,11,12,16,17.

Here we present a multistep variation to this approach to identify-
ing key drivers of complex traits that further exploits the naturally
occurring DNA variation observed in segregating populations, and the
association that DNA variations can have with changes in expression
and other complex traits. We use gene-expression cis- and trans-acting
eQTL data as well as complex-trait QTL data to identify expression
traits that sit between the complex-trait QTL and complex trait. We
validated the utility of this process on simulated data and known
relationships among gene expression traits and applied it to large-scale
genotypic, gene-expression and complex-trait data to identify known
and new genes involved in susceptibility to obesity.

RESULTS
DNA variation enhances ability to order complex traits
Standard gene-expression experiments can not easily distinguish
variations in RNA levels that are causal for other complex traits
from those that are reactive to other traits. Given two traits that are at
least partially controlled by the same DNA locus, however,
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only a limited number of relationships between the traits are
possible. We use several graphical models to represent these
relationships (Fig. 1a). It is advantageous to establish relationships
among complex traits in segregating populations because the
associations between a locus L and two traits R and C under the
control of that locus can be directed unambiguously (Fig. 1b). One
method to identify the model best supported by the data uses
conditional correlation measures18. We developed a likelihood-based
causality model selection (LCMS) test that uses conditional correla-
tion measures to determine which relationship among traits
is best supported by the data. Likelihoods associated with each of
the models are constructed and maximized with respect to the model
parameters, and the model with the smallest Akaike Information
Criterion (AIC) value19 is identified as the model best supported
by the data.

Validating the LCMS procedure
To validate the LCMS procedure, we tested it using simulated data and
an experimental data set in which the relationship among the expres-
sion traits was known. First, we simulated genotypes and quantitative
traits in the context of an F2 population with 360 individuals,
assuming different relationships among quantitative traits (Supple-
mentary Methods online). The results indicated good power to detect
the true model in the simulated data. When the locus genotypes
explained 7%, 10% or 20% of the variation in one of the two
simulated traits (corresponding to lod scores of 5.2, 6.3 and 9.5,
respectively), there was B80% power at the 0.05 significance level to

detect the true relationship between the two
traits when the locus genotypes explained
only 1–2% of the variation in the second

trait (Supplementary Fig. 1 online). For all models, nearly 100%
power was realized when the locus genotypes explained at least 4% of
the variation in the second trait.

To assess the power of the LCMS procedure using experimental
data, we exploited one of the features of F2 populations, strong linkage
disequilibrium over local regions that make it difficult to resolve QTLs
accurately, as a more realistic way to ‘simulate’ independence relation-
ships among complex traits. That is, if two gene-expression traits are
each driven by a strong cis-acting eQTL, and these eQTLs are closely
linked, they will induce a correlation structure between the two traits
(Fig. 2), as we show for the previously described BXD data set3. The
pattern of correlation (Fig. 2c) is a consequence of linkage disequili-
brium in the BXD cross, an effect that is particularly pronounced in
such populations because all mice are descended from a single
F1 founder, with only two meiotic events separating any two mice
in the population.

If genes with strong cis-acting eQTLs are selected such that minimal
recombination in the population has occurred between any two
eQTLs, then the eQTLs will often be indistinguishable using standard
methods to test for pleiotropic effects20. Consequently, the two closely
linked traits will seem to be independently driven by a single QTL.
To assemble this set, we identified all possible gene pairs from the set
of 557 gene-expression traits previously detected in the BXD data set
with cis-acting eQTLs (lod 4 7.0)3. Of the 154,846 possible gene pairs,
175 pairs were physically separated by o5,000,000 bp (Fig. 2a,b),
with a median distance of 835,500 bp (o1 cM). On average, we would
expect roughly one recombination event between the genes for each
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Figure 1 Using QTL data to infer relationships

between RNA levels and complex traits.

(a) Possible relationships between QTLs, RNA

levels and complex traits once the expression of a

gene (R) and a complex trait (C) have been shown

to be under the control of a common QTL (L).

Model M1 is the simplest causal relationship with

respect to R, in which L acts on C through

transcript R. Model M2 is the simplest reactive

model with respect to R, in which R is modulated

by C. Model M3 is the independent model, in

which the QTL at locus L acts on these traits

independently. Model M4 is a more complicated

causal diagram in which a QTL at locus L affects

the expression of multiple transcripts (R1 through
Rn), and these RNAs in turn act on a complex

trait C. Finally, model M5 is the ideal causal

diagram for target identification, in which

multiple QTLs (L1 through Ln) explain a

significant amount of the genetic variance in a

complex trait C, where the QTLs act on C through

a convergence on a single transcript R.

(b) Hypothetical gene network for disease traits

and related comorbidities. The QTL (Li) and

environmental effects (Ej) represent the most

upstream drivers of the disease. These

components, in turn, influence one set of

transcript levels (RCk
), which in turn lead to the

disease state (measured as disease traits, Cm).

Variations in the disease traits affect reactive

RNA levels (RRl
), which then lead to comor-

bidities of the disease traits or to positive or

negative feedback control to the causal pathways.
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of the 175 gene pairs in the 111 F2 mice making up the BXD cross.
We used a standard test to assess whether each gene pair was driven
by two closely linked QTLs or by a single QTL with pleiotropic
effects20 and found that only 20% of the pairs were driven by closely
linked QTLs.

We fit the likelihoods for the three models (Fig. 1a) to the gene-
expression data for each of the 175 gene pairs twice: once for each
QTL position for each of the two gene-expression traits. We computed
the AIC values for each fit and identified the model giving the lowest
AIC value for both QTL positions as the model best supported by the
data. Of the 175 gene pairs tested, 158 pairs (90%, compared with
20% using the standard pleiotropy test) were best supported by the
independence model. This result is consistent with the fact that we
selected the pairs as gene-expression traits driven by distinct, but
closely linked, eQTLs and provides direct experimental support that
the correlation structure among gene-expression traits and between
gene-expression traits and QTL genotypes can be used to identify the
correct relationship between the genes.

A multistep procedure to identify causal genes for obesity in mice
Next, we applied the LCMS procedure to the omental fat pad
mass (OFPM) and liver gene-expression data in the BXD data
set3,21 to identify key drivers of the OFPM trait. We defined a broader
process, a series of heuristic filters, to identify those expression traits
most significantly associated with the OFPM trait (Supplementary
Fig. 2 online).

The first step in the process is to build a genetic model for the
OFPM trait, identifying the underlying QTLs that reflect the initial
perturbations that give rise to the genetic components of the trait. We
constructed the OFPM genetic model by following a previously
established stepwise regression procedure that produces reliable mod-
els in this context22,23.

We considered epistatic interactions among all pairs of positions
tested in the genome for both the OFPM and expression traits. These
interactions were very small compared with the additive and dom-
inance effects. For the OFPM trait, no significant pairwise interactions
between any two genome positions gave rise to lod scores 42.

Figure 2 Strong gametic phase disequilibrium

between genes with significant cis-acting eQTLs

simulates independence events. (a) The Ppox and

Ifi203 gene expression traits have strong cis-

acting eQTLs with lod scores of 29.2 and 17.4,

respectively, at the positions indicated. The

physical locations of these genes on chromosome

1 are also shown aligned next to the genetic

map. (b) Scatter plot of the mean-log (ML)

expression ratios for Ppox and Ifi203 in the BXD

data set. The two genes are positively correlated,

with a correlation coefficient of 0.75. This

correlation is probably induced by the two genes

having closely linked eQTLs and not a result

of any functional relationship. (c) Twenty-one
genes physically residing on chromosome 1

were identified with strong cis-acting eQTL

(corresponding lod scores 4 10.0)3. Pearson

correlation coefficients were computed for the

mean log expression ratios between each of the

210 possible pairs of genes. The absolute value

of each of the correlations is plotted here against

the distance (cM) separating the cis-acting eQTLs

for each pair. The pattern in this plot indicates that the magnitude of correlation is directly proportional to the distance between the cis-acting eQTLs, which

are coincident with the physical locations of the genes (correlation coefficient ¼ 0.82). This is precisely the relationship we would expect if the correlation

structures were attributed to linkage disequilibrium between the eQTLs. The Ppox-Ifi203 pair is highlighted by the red dot.
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Table 1 Top ten gene-expression traits correlated with and supported as causal candidates for the OFPM trait

Accession number Gene

Gene-expression

correlation coefficient

(P value)

Overlapping

QTLs

Overlapping QTLs

testing causal

Genetic variation

in OFPM causally

explained (%)

NM_011764 Zinc finger protein 90 (Zfp90) 0.45 (6.8 � 10�5) 3 3 68

AY027436 Kruppel-like factor 6 (Klf6) 0.42 (2.1 � 10�4) 3 3 68

AI506234 NA 0.49 (1.3 � 10�5) 3 3 68

NM_008288 Hydroxysteroid 11-beta dehydrogenase 1 (Hsd11b1) 0.51 (5.4 � 10�6) 4 3 61

AK004942 Glutathione peroxidase 3 (Gpx3) 0.43 (1.4 � 10�4) 4 4 61

NM_030717 Lactamase beta (Lactb) 0.54 (1.3 � 10�6) 3 2 52

NM_026508 TNF receptor-associated protein 1 (Trap1) 0.50 (8.6 � 10�6) 3 2 52

AK004980 Malic enzyme (Mod1) 0.40 (4.1 � 10�4) 3 2 52

NM_008194 Glycerol kinase (Gyk) 0.57 (2.6 � 10�7) 4 2 46

NM_08509 Lipoprotein lipase (Lpl) 0.49 (1.3 � 10�5) 3 2 46

NA, not applicable.
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Therefore, epistatic interactions were not considered further in these
analyses. The chromosome 6 and chromosome 19 QTLs were fixed in
the OFPM genetic model, because they were previously identified as
major-effect QTLs for fat mass traits in the BXD set3,21. The chromo-
some 6 and chromosome 19 linkage regions are hot-spot regions for
eQTL activity and are enriched for pathways underlying metabolic
traits24,25. Our stepwise regression procedure yielded a genetic model
for OFPM that consisted of four QTLs located on chromosomes 1 at
95 cM, 6 at 43 cM, 9 at 8 cM and 19 at 28 cM. The model explained
39.3% of the variation in the OFPM trait and had an associated
P value equal to 0.0007, with all individual terms significant at the 0.05
significance level.

Expression traits that causally explain a significant proportion
of the correlation between variations in DNA and the OFPM trait
should also be correlated with the OFPM trait. Therefore, we wanted
to exclude expression traits that are not significantly correlated with
the OFPM trait. We computed the Pearson correlation coefficients
for the OFPM trait and the 4,423 gene-expression traits that
were significantly differentially expressed in at least 10% of the samples
profiled and found that 440 expression traits had P values corre-
sponding to Pearson correlation coefficients of o0.001 (Supple-
mentary Table 1 online). We permuted the OFPM trait 1,000
times and computed the Pearson correlation for the permuted
OFPM vector and each of the 4,423 expression traits. The

mean number of expression traits over all permutation runs
with P values o 0.001 was 11, yielding a false discovery rate26

(FDR) of 2.5%.
If an expression trait is causal for the OFPM trait, then at least one

of the QTLs underlying the OFPM trait must also underlie the
expression trait. Therefore, we applied another filtering step to identify
those genes in the association set with eQTLs that coincided with the
OFPM QTL. We computed lod scores for the 440 expression traits at
the four OFPM QTLs. For expression traits giving rise to significant
eQTLs at any of the locations (at the 0.01 level), we determined the
peak eQTL position and carried out a slight generalization of the
multivariate ‘pleiotropy versus close linkage’ test20 to establish whether
the data supported pleiotropic effects of a single QTL affecting the
expression and OFPM traits (Supplementary Methods online).

There were 113 expression traits with at least two significant eQTLs
overlapping the OFPM QTL, where the overlapping QTLs were
supported as a single QTL with pleiotropic effects (Supplementary
Table 2 online). These 113 genes gave rise to 267 eQTLs overlapping
the OFPM QTL. The requirement that the two traits share two or more
QTLs resulted in a FDR of 0.4% (compared with 15% when requiring
only one shared QTL), computed by permuting the QTL genotypes
100 times and carrying out QTL analysis at the four OFPM QTLs for
each of the expression traits. The resulting 113 transcripts are the most
significant candidate causative genes with respect to the OFPM genetic
model, given that an expression trait can be causal in the network
associated with OFPM (Fig. 1b) only if the expression trait is affected
by one or more of the genetic components driving the OFPM trait.

For each overlapping expression-OFPM QTL in the set of 113
genes, we fit the corresponding QTL genotypes, gene-expression data
and OFPM data to the independent, causal and reactive likelihood
models. The causal model had the smallest AIC value in 134 cases
(50%), whereas the reactive model was the best in 23 cases (9%), and
the independent model was the best in the remaining cases. We then
rank-ordered the 113 genes according to the percentage of genetic
variance in the OFPM trait that was causally explained by variation in
their transcript abundances (Supplementary Table 2 online). The ten
most highly ranked genes (Table 1) are the strongest causal candidates
for the OFPM trait in this mouse population. Of these genes, Hsd11b1
was one of the best candidates.

Notably, Hsd11b1 was ranked 152 of the 440 genes in the associa-
tion set. This difference in ranking between the LCMS-generated list
and that generated by standard Pearson correlations highlights the
chief advantage of this approach: the covariance structure for two
traits can be decomposed into causal and reactive components,
providing a new rank-ordering scheme based on the percentage of
variance in one trait causally explained by another. An intuitive view
of Hsd11b1 as a causal candidate for the OFPM trait, involving
standard partial correlation arguments, is depicted in Figure 3 and
Table 2. The independence of QTL genotypes and OFPM conditional
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Joint OFPM and Hsd11b1
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Hsd11b1 conditional on OFPM

Figure 3 Use of conditional correlations support Hsd11b1 as causal for

OFPM at the chromosome 1 OFPM QTL. The blue curve represents the lod

score curve for Hsd11b1; the red curve represents the lod score curve for

OFPM; and the black curve represents the lod score curve for Hsd11b1 and

OFPM considered simultaneously, indicating that the two traits considered

together provide a significant QTL at the chromosome 1 locus. The green

line represents the lod score curve for Hsd11b1 after conditioning on OFPM;

the orange line represents the lod score curve for OFPM after conditioning

on Hsd11b1. Because the lod score effectively drops to 0 in the case of the

orange curve and is significantly greater than 0 in the case of the green

curve, a causal relationship is supported.

Table 2 Overlapping QTLs for Hsd11b1 expression and OFPM and testing for causal associations

OFPM QTL location* OFPM lod score Hsd11b1 QTL location* Hsd11b1 lod score Hsd11b1-OFPM joint QTL lod score Causal P value Reactive P value

1 (95) 2.10 1 (97) 3.87 5.2 0.29 0.001

6 (43) 2.84 6 (39) 2.43 4.7 0.04 0.05

9 (8) 2.53 9 (1) 3.48 5.4 0.21 0.04

19 (28) 1.92 19 (35) 3.10 4.8 0.17 0.02

*Chromosome location is given first, followed by centimorgan position in parentheses. The causal P value was computed under the null hypothesis that there is no significant linkage of OFPM to the
indicated position once we condition on Hsd11b1 expression (causal). Similarly, the reactive P value was computed under the null hypothesis that there is no significant linkage of Hsd11b1 to the
indicated position once we condition on OFPM (reactive).
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on Hsd11b1 expression, and the lack of independence of QTL
genotypes and Hsd11b1 expression conditional on OFPM, supports
the idea that Hsd11b1 is causal for the OFPM trait18. The association
of Hsd11b1 with the OFPM trait was previously established in a
transgenic mouse overexpressing Hsd11b1 in adipose tissue27.
HSD11B1 activity levels and mRNA levels are significantly correlated
with fat mass and insulin sensitivity in humans28.

Transcriptional responses driven by perturbations to Hsd11b1
Given the causal association between expression of Hsd11b1 and the
OFPM trait, we wanted to elucidate the transcriptional network
associated with Hsd11b1. We applied the LCMS procedure to the
Hsd11b1 expression trait and all other gene-expression traits to
identify genes predicted to respond to Hsd11b1. To validate these
genes, we carried out an independent Hsd11b1 perturbation experi-
ment in mouse, identified the liver transcriptional response to this
perturbation and then assessed whether the predicted Hsd11b1 reac-
tive gene set overlapped with that observed from the Hsd11b1
perturbation experiment. We used a specific Hsd11b1 inhibitor

(similar to one previously described29,30) to
decrease Hsd11b1 activity (A.H.V. et al., per-
sonal communication) in mice to assess the
transcriptional response in liver tissue to this
single gene perturbation.

The genetic model for the Hsd11b1 expres-
sion trait consisted of six eQTLs. We deter-
mined the overlap between the Hsd11b1

eQTLs and each of the other 23,573 genes represented on the array
as described for OFPM. We then applied the LCMS test to all
expression traits with eQTLs overlapping the Hsd11b1 eQTLs. Of
the 23,574 genes tested, 3,277 (B14%) had eQTLs overlapping at least
four of the six Hsd11b1 eQTLs and testing as reactive to the Hsd11b1
expression trait. To approximate the null distribution, we permuted
the expression data 100 times such that the correlation structure
among the expression traits was preserved. The mean number of genes
identified as reactive to Hsd11b1 over the 100 permutations was
75 (FDR of 2.3%).

We identified 532 genes as being significantly differentially regulated
in liver, relative to control mice, in at least one of the three mice
treated with Hsd11b1 inhibitor at the 0.05 significance level. By
chance, we would have expected 74 genes to overlap, given the overall
14% rate estimated above; however, we observed 143 genes over-
lapping the 3,277 gene set. The probability of seeing 143 genes by
chance is 1.3 � 10�15 using Fisher’s exact test. In comparison, when
we searched for enrichment between the expression traits significantly
correlated with Hsd11b1 and the Hsd11b1 inhibitor set, we identified

24%
decrease

0.10

0.15

0.20

0.25

0.30

0.35

0.40

36%
decrease

0.1

0.2

0.3

0.4

Time point Time point

A
di

po
si

ty

A
di

po
si

ty

Control

Mutant

Control

Mutant

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Zfp90

D12Ertd647e

Slc22a5 Slc17a2 Car3

Cyp2j5 Cyp7b1 1700024P16Rik 2510009E07RikFabp4 Gpc3

Gas6Cyp2b13

Gys2

Sgk2Sdro Vnn1 Cml1Mod1

Slc17a1 Sult2a2

Aldh1a1 Hao3 Serpina6

Hmgn2 Mt2

Tm7sf2 Decr1 Paqr9 Akr1b7

Saa4

Ddit4 Cyp2c37 Cyp2c38 4930577M16Rik

Pcsk4 Slc2a5 Ppic

a

c

b Figure 4 Three genes in the OFPM causality list

achieve validation in genetically modified mice.

(a,b) Growth curves for C3ar1�/� (a) and

Tgfbr2+/� (b; mutant) and control mice over

seven time points. Growth is given on the y axis

as the fat mass to lean mass ratio. At each

time point the mean ratio is plotted for each

group. The significance of the mean ratio

differences at time point 7 is given in Table 3.

(c) Genetic subnetwork for liver expression in

the BXD cross previously described13 highlights

Zfp90 (black node) as a central node in the

liver transcriptional network of this cross. This

subnetwork was obtained from the full liver

expression network previously described13 by
identifying all nodes in this network that were

descended from and within a path length of 3

of the Zfp90 node. Nodes highlighted in green

represent genes testing as causal for fat mass

(Supplementary Table 2 online).

Table 3 Mean fat mass to lean mass ratios for Zfp90 transgenic, C3ar1�/� and Tgfbr2+/� mice

Mouse model

Mutant n

(control n)

Fat mass to

lean mass ratio

in mutants (mean 7 s.d.)

Fat mass to

lean mass ratio

in controls (mean 7 s.d.)

Fat mass difference

P valuea

Mutant versus

control P value

Zfp90 transgenic versus high-fat controlb 3 (12) 0.45 7 0.05 0.15 7 0.06d NA 6.5 � 10�7

Zfp90 transgenic versus chow controlc 3 (8) 0.45 7 0.05 0.27 7 0.07d NA 0.0021

C3ar1�/� 5 (7) 0.31 7 0.11a 0.41 7 0.10 0.0026 NA

Tgfbr2+/� 7 (7) 0.23 7 0.09a 0.36 7 0.10 1.3 � 10�6 NA

aComputed from final measurements at week 12. b32-week-old Zfp90 transgenic mice compared with 22-week-old FVB mice on a high-fat diet. c32-week-old Zfp90 transgenic mice compared with
32-week-old FVB mice on a chow diet. dComputed from FVB/NJ controls. Mean differences were tested using a standard t-test. Significant differences in the mean for mutant and control mice were
tested using the ARMAX procedure. P values correspond to the null hypothesis that there is no difference in the means between the control and mutant mice.
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the P value threshold for the Pearson correlation coefficient that
maximized the enrichment between these two sets. The maximum
enrichment occurred at a P value cut-off of 7.1 � 10�6; 5,404 genes
were correlated with Hsd11b1 at this level (FDR ¼ 0.02%), and 156 of
these overlapped the Hsd11b1 inhibitor signature set, giving an
enrichment P value of 0.0003. These results indicate that the LCMS
procedure is able to enrich for the correct relationship among gene-
expression traits significantly beyond what can be realized using the
Pearson correlation alone.

Validating Zfp90, C3ar1 and Tgfbr2 as causal for obesity
Ninety genes tested as causal for the OFPM trait at one or more QTLs
(Supplementary Table 2 online). The gold standard for validating this
type of prediction is the construction of animals that are genetically
altered with respect to the activity of the gene of interest followed by
screens for variations in the trait of interest. C3ar1 and Tgfbr2
(numbers 14 and 29 in the list, respectively) knockout mice were
commercially available. For Zfp90 (number 1 in the list), we con-
structed a BAC transgenic mouse. Liver expression of these three genes
was significantly correlated with the OFPM trait in the BXD set, and
each gene could causally explain at least 45% of the genetic variance in
the OFPM trait. Therefore, we predicted that eliminating or signifi-
cantly increasing the activity of these genes would lead to significant
variation in the OFPM trait.

We recorded weight, fat mass and lean mass for male homozygous
C3ar1�/� (n ¼ 5–7), heterozygous Tgfbr2+/� (n ¼ 5–7; Tgfbr2�/�

mice died) and wild-type littermate control (n ¼ 5–10) mice every
2 weeks starting at 10 weeks of age for 12 weeks using quantitative
nuclear magnetic resonance. The growth curves for C3ar1�/� and
Tgfbr2+/� mice were significantly different from those of controls
(Fig. 4a,b), and at each subsequent time point, the difference in fat
mass increased. At the final quantitative nuclear magnetic resonance
measurement on 22-week-old mice, the mean fat mass to lean mass
ratios were significantly different in C3ar1 and Tgfbr2 knockout mice
versus their respective wild-type controls (Table 3), validating the
predictions made from the BXD cross.
Tgfbr2 is active in the TGF-b signaling pathway, which regulates cell

proliferation and differentiation and extracellular matrix production.
Although no direct evidence for the involvement of Tgfbr2 in obesity
has been previously established, elevated expression of TGF-b and
TGF-b polymorphisms have been associated with body mass index,
obesity (including abdominal obesity) and type 2 diabetes31–34. There-
fore, the association between TGF-b and obesity suggests that Tgfbr2
may have a role in obesity development through the TGF-b signaling
pathway. C3ar1 is active during complement activation, and C3ar1
knockout mice are protected against airway hyper-responsiveness in
response to challenge with an antigen. Similarly, although there is no
direct evidence supporting the role of C3ar1 in obesity, indirect
evidence from its ligand C3a suggests a link between C3ar1 and
obesity-related traits. For example, injecting C3a in the hypothalamic
region of rats increased their food and water intake in response
to catecholamine stimulation35. In addition, increased levels of
C3a are correlated with obesity, cholesterol, lipid levels and familial
combined hyperlipidemia36–38.

Construction of Zfp90 transgenic mice resulted in two males and
one female transgenic with respect to the human ZFP90 gene. After
20 weeks of breeding the transgenic mice to wild-type mice, no litters
were produced. The failure of these mice to breed could be related to
the fact that this gene product is predicted to be involved in
spermatogenesis39. We took quantitative nuclear magnetic resonance
measurements of the three transgenic mice at 32 weeks of age. Their

fat mass to lean mass ratios were nearly three times higher than those
of 22-week-old control mice that had been on a high-fat diet for 14
weeks and were nearly 1.7 times higher than those of age-matched
control mice (Table 3). These preliminary data suggest that Zfp90 may
have an uncharacterized role in the regulation of obesity traits. To
identify genes that are closely related to Zfp90, we examined the
previously described genetic network constructed from the BXD liver
expression data13. Zfp90 is a central node in this liver transcriptional
network (Fig. 4c). Zfp90 falls upstream of several key genes predicted
to be causally associated with the OFPM trait, including Mod1, Hao3,
Vnn1 and Car3 (Supplementary Table 2 online). This represents a
very significant enrichment for obesity-related genes in this indepen-
dently derived liver-specific genetic network driven by Zfp90.

DISCUSSION
We describe a multistep process to extract causal information from
gene-expression data related to complex phenotypes such as obesity
and gene expression. Central to this process is a likelihood-based test
for causality that takes into account genotypic, RNA and clinical data
in a segregating population to identify genes in the trait-specific
transcriptional network that are under the control of multiple QTLs
for the trait of interest but still upstream of the trait. Whereas previous
methods allow for tests of pleiotropy versus close linkage to determine
whether multiple traits are under the control of common QTLs20, the
LCMS procedure described here allows for the possibility to unravel
the nature of such associations.

We applied the LCMS procedure to a segregating mouse population
phenotyped for OFPM and identified known (Hsd11b1) and new
susceptibility genes (Tgfbr2, C3ar1 and Zfp90) for fat mass in this
population, in addition to significantly predicting the transcriptional
response to perturbation of Hsd11b1. The three new susceptibility
genes that we identified have not previously been directly associated
with obesity-related traits. In addition to these three genes, a SNP in
lipoprotein lipase (ranked number 9 in Table 2) was recently reported
to be associated with obesity and other components of the metabolic
syndrome in a human population40.

Our results indicate that integrating genotypic and expression
data may help the search for new targets for common human diseases.
But certain issues surrounding this process will require more careful
consideration. One such issue is the dependency of the LCMS
procedure on measurement and modeling errors. Suppose RNA
trait R is causal for trait C, but the measurement errors related
to the expression of R far exceed that of C. This might lead to a
failure to detect R as causal for C or, worse, incorrectly identify C
as causal for R. A second issue is that the LCMS procedure will
fail to discriminate between traits that are very highly correlated
(Supplementary Fig. 3 online). Thus, for cases in which a causal
gene is almost completely correlated with a complex trait of interest or
tightly regulates the expression of other genes unrelated to the
complex trait, the power to resolve the true relationships will be
reduced. Furthermore, our procedure introduces a very simplistic
view of the gene networks associated with disease, focused on
identifying genes in the causal-reactive interval. The true situation is
more complicated, however, because the causal-reactive genes are
interacting in a larger network and may be subject to negative
and positive feedback control. Finally, the high-dimensional nature
of this problem, involving potentially tens of thousands of molecular
profiling traits, combined with the complexities of genetic model
selection procedures, has only recently begun to be explored
in this context. Many statistical issues remain to be addressed41–43,
and many of the steps in our overall process that are herein
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only heuristically justified will require more careful statistical
consideration before the approach can be automatically applied to
general data sets.

Despite these and other issues, the ability to partition genes into
causal and reactive sets and identify those targets from the causal set
that are optimally placed in the gene network associated with complex
traits of interest with respect to therapeutic intervention offers a
promising approach to understanding the complex network of gene
changes that are associated with complex traits such as common
human diseases and, in the process, identifying new ways to combat
these diseases.

METHODS
The BXD data set. The F2 mouse population and associated liver gene-

expression data used in this study have been previously described3,21 (GEO

accession GSE2008). An F2 population consisting of 111 mice was constructed

from two inbred strains of mice, C57BL/6J and DBA/2J. Only female mice were

maintained in this population. Mice were on a rodent chow diet up to 12

months of age and then switched to an atherogenic high-fat, high-cholesterol

diet for another 4 months. At 16 months of age, the mice were killed and

their livers extracted for gene-expression profiling. The mice were genotyped at

139 microsatellite markers uniformly distributed over the mouse genome to

allow for the genetic mapping of the gene-expression and disease traits.

Treatment of mice withHsd11b1 inhibitor. We placed six male C57BL/6J mice

on an obesity-inducing diet for 8 weeks starting at 12 weeks of age. At 18 weeks

and 3 d of age, half of the mice had the Hsd11b1 inhibitor compound

introduced into their feed for 11 d, whereas the other mice were treated as

controls for the same period of time. After the 11-d treatment, all mice were

killed and RNA was extracted from the livers of each animal for profiling on

gene-expression microarrays.

Preparation of labeled cDNA. We removed livers from control mice and mice

treated with Hsd11b1 inhibitor for expression profiling, immediately flash-froze

them in liquid nitrogen and stored them at �80 1C. We purified total RNA

from 25-mg portions using an RNeasy Mini kit in accordance with the

manufacturer’s instructions (Qiagen). We prepared liver cDNA in the same

fashion as for the F2 mice in BXD cross, as described previously3. We hybridized

RNAs from each treated mouse against a pool of RNAs constructed from equal

aliquots of RNA from each control mouse.

Analysis of expression data. We processed array images as previously described

to obtain background noise, single-channel intensity and associated measure-

ment error estimates3. Expression changes between two samples were quanti-

fied as log10(expression ratio), where the expression ratio was taken to be the

ratio between normalized, background-corrected intensity values for the two

channels (red and green) for each spot on the array. We applied an error model

for the log ratio as described44 to quantify the significance of expression

changes between two samples.

Probe selection for mouse gene expression arrays. The mouse microarray

used for the BXD cross has been previously described3. The mouse microarray

used for the present studies is an updated version, containing 23,574 non-

control oligonucleotide probes for mouse genes and 2,186 control oligonucleo-

tides. We extracted full-length mouse sequences from Unigene clusters (build

168, February 2004), combined with RefSeq mouse sequences (release 3,

January 2004) and RIKEN full-length sequences (version fantom1.01). We

clustered this collection of full-length sequences and selected one representative

sequence per cluster. To complete the array, we selected 3¢ expressed-sequence

tags from Unigene clusters that did not cluster with any full-length sequence

from Unigene, RefSeq or RIKEN. To select a probe for each gene sequence, we

used a series of filtering steps, taking into account repeat sequences, binding

energies, base composition, distance from the 3¢ end, sequence complexity and

potential crosshybridization interactions45. For each gene, we examined every

potential 60-bp sequence and printed the 60-bp oligonucleotide that best

satisfied the criteria on the microarray. All microarrays used in this study were

manufactured by Agilent Technologies, Inc.

Statistical analyses: the LMCS procedure. Assuming standard Markov proper-

ties for the simple graphs (Fig. 1a), the joint probability distributions for the

three models are as follows:

M1:PðL;R;CÞ ¼ PðLÞ PðRjLÞPðCjRÞ

M2:PðL;R;CÞ ¼ PðLÞPðCjLÞ PðRjCÞ

M3:PðL;R;CÞ ¼ PðLÞPðCjLÞPðRjC;LÞ

The term P(R|C,L) in model M3 reflects the fact that the correlation between

R and C may be explained by other shared loci or common environmental

influences, in addition to locus L. We assume Markov equivalence between

R and C for model M3 so that P(C|L) P(R|C,L) ¼ P(R|L) P(C|R,L). P(L) is the

genotype probability distribution for locus L and is based on a previously

described recombination model46. The random variables R and C are taken to

be normally distributed about each genotypic mean at the common locus L, so

that the likelihoods corresponding to each of the joint probability distributions

are based on the normal probability density function, with mean and variance

for each component given by the following equations: for P(R|L), the mean and

variance are EðRjLÞ ¼ mRL
and VarðRjLÞ ¼s2

R, respectively; for P(C|L), the

mean and variance are EðCjLÞ ¼ mCL
and VarðRjLÞ ¼s2

C, respectively; and for

P(R|C), the mean and variance are EðRjCÞ ¼mR+r sR
sC
ðC � mCÞ and

VarðRjCÞ ¼ ð1 � r2Þs2
R, respectively; where r represents the correlation

between R and C and mRL
and mCL

are the genotype-specific means for R

and C, respectively. The mean and variance for P(C|R) follow similarly from

those for P(R|C). From these component pieces, the likelihoods for each model

are formed by multiplying the densities for each of the component pieces across

all the individuals in the population. The exact forms of these likelihoods for

the F2 cross are given in Supplementary Methods online.

For each model, the corresponding likelihood is maximized and parameters

are estimated using standard maximum likelihood methods. We then compute

the AIC values for each model as two times the negative of log likelihood,

maximized over the parameters, plus two times the number of parameters. The

model associated with the smallest AIC value is the one best supported by

the data.

We are able to constrain attention to three models (Fig. 1a) because of the

requirement that R and C be driven by a common L for each position tested.

Without this requirement, other biologically plausible models would be

possible. Also, although additional models taking into account feedback control

are possible, in the context of a single cross we assume that a given direction

will dominate (given the set of perturbations in the cross acting on R and C), so

that the best model represents this dominant direction. Further, for model M3,

we made simplifying assumptions on the residual correlation structure between

R and C after conditioning on L that allowed us to consider only a single

independence model for the purpose of estimating the likelihood. In fact,

model M3 represents a number of different models regarding the relationship

between R and C, conditional on L.

Detecting QTL and genetic model selection. We used a forward stepwise

regression framework to build up genetic models for the OFPM and Hsd11b1

traits, based on a previously described least squares QTL mapping strategy47.

Given the marker map for the BXD set21, we estimated QTL genotype

probabilities at 1-cM intervals over the length of the genome, conditional on

marker genotypes. We then constructed explanatory variables for the additive

and dominance terms for each position from the estimated genotype prob-

abilities and used them in the regression analysis. We used generalized linear

models to assess the degree of epistatic interactions among all pairwise

positions used in the genome-wide scan for the OFPM and Hsd11b1 traits.

We then constructed the best genetic model for OFPM and Hsd11b1 using

Efroymson’s stepwise regression method48, limiting the number of QTLs that

were allowed to be introduced into the model to six and thereby restricting

attention to the most important effects. We added variables to the model if the

associated F statistic was greater than 3 and, similarly, deleted them from the

model if the associated F statistic was less than 3. This model-building

procedure is similar to that used by others who showed that such methods

lead to robust, highly predictive models in this context22,23. Furthermore, this
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type of forward selection is consistent in the genetics context49. To compute the

eQTLs at the four OFPM and six Hsd11b1 QTL positions, we used generalized

linear models to regress expression values onto the additive and dominance

indicator variables described above for each position.

Construction of Zfp90 transgenic, C3ar1�/�, Tgfbr2+/� and control mice.

Details of the construction of the Zfp90 transgenic, C3ar1�/� and Tgfbr2+/�

mice are given in Supplementary Methods and Supplementary Figures 2, 4

and 5 online. All procedures were done in accordance with the National

Research Council and the Guide for the Care and Use of Laboratory Animals

and were approved by the University of California Los Angeles Animal

Research Committee.

Note: Supplementary information is available on the Nature Genetics website.
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