
Chapman University Chapman University 

Chapman University Digital Commons Chapman University Digital Commons 

Biology, Chemistry, and Environmental Sciences 
Faculty Articles and Research 

Science and Technology Faculty Articles and 
Research 

7-13-2021 

An Integrative Model for Soil Biogeochemistry and Methane An Integrative Model for Soil Biogeochemistry and Methane 

Processes: I. Model Structure and Sensitivity Analysis Processes: I. Model Structure and Sensitivity Analysis 

Daniel M. Ricciuto 

Xiaofeng Xu 

Xiaoying Shi 

Yihui Wang 

Xia Song 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.chapman.edu/sees_articles 

 Part of the Atmospheric Sciences Commons, Biogeochemistry Commons, Climate Commons, 

Environmental Health and Protection Commons, Environmental Indicators and Impact Assessment 

Commons, Environmental Monitoring Commons, Other Environmental Sciences Commons, and the Soil 

Science Commons 

https://digitalcommons.chapman.edu/
https://digitalcommons.chapman.edu/sees_articles
https://digitalcommons.chapman.edu/sees_articles
https://digitalcommons.chapman.edu/science_articles
https://digitalcommons.chapman.edu/science_articles
https://digitalcommons.chapman.edu/sees_articles?utm_source=digitalcommons.chapman.edu%2Fsees_articles%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/187?utm_source=digitalcommons.chapman.edu%2Fsees_articles%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/154?utm_source=digitalcommons.chapman.edu%2Fsees_articles%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/188?utm_source=digitalcommons.chapman.edu%2Fsees_articles%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/172?utm_source=digitalcommons.chapman.edu%2Fsees_articles%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1015?utm_source=digitalcommons.chapman.edu%2Fsees_articles%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1015?utm_source=digitalcommons.chapman.edu%2Fsees_articles%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/931?utm_source=digitalcommons.chapman.edu%2Fsees_articles%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/173?utm_source=digitalcommons.chapman.edu%2Fsees_articles%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/163?utm_source=digitalcommons.chapman.edu%2Fsees_articles%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/163?utm_source=digitalcommons.chapman.edu%2Fsees_articles%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages


An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model 

Structure and Sensitivity Analysis Structure and Sensitivity Analysis 

Comments Comments 

This article was originally published in Journal of Geophysical Research: Biogeosciences, volume 126, in 

2021. https://doi.org/10.1029/2019JG005468 

Creative Commons License Creative Commons License 

This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License 

Copyright 
The authors 

Authors Authors 

Daniel M. Ricciuto, Xiaofeng Xu, Xiaoying Shi, Yihui Wang, Xia Song, Christopher W. Schadt, Natalie A. 

Griffiths, Jiafu Mao, Jeffrey M. Warren, Peter E. Thornton, Jeff Chanton, Jason K. Keller, Scott D. Bridgham, 

Jessica Gutknecht, Stephen D. Sebestyen, Adrien Finzi, Randall Kolka, and Paul J. Hanson 

https://doi.org/10.1029/2019JG005468
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/


1. Introduction

Northern peatlands contain a vast pool of soil carbon that may be vulnerable to atmospheric release under 

changing environmental conditions, potentially causing a positive feedback to the climate system (Frolking 

et al., 2011; Nichols & Peteet, 2019; Yu, 2012). The magnitude of carbon emissions and their mechanistic 

responses to changing environments are elusive due to the complexity of hydrologic and biogeochemi-

cal processes in peatland systems (Blodau, 2002). Methane (CH4) is one of the key carbon forms leaving 

peatlands under anaerobic conditions. Given the high radiative warming potential of CH4 compared to 

CO2 (Neubauer & Megonigal, 2015), it is critically important to accurately predict future CH4 emissions 

from global peatlands. Peatlands are typically formed over millennial timescales due to organic carbon in-

puts, long-term water saturation and low temperatures and thus store major amounts of terrestrial carbon 

(Yu, 2012). It is expected that hydrological and biogeochemical dynamics play important roles affecting CH4 

fluxes from peatlands, but many of these key processes are missing in current Earth system models (Bohn 

et al., 2015). Therefore, to build a better predictive capacity for CH4 dynamics in peatlands, it is necessary 

to fully consider the processes and environmental conditions controlling CH4 processes, particularly the 

Abstract Environmental changes are anticipated to generate substantial impacts on carbon cycling 

in peatlands, affecting terrestrial-climate feedbacks. Understanding how peatland methane (CH4) fluxes 

respond to these changing environments is critical for predicting the magnitude of feedbacks from 

peatlands to global climate change. To improve predictions of CH4 fluxes in response to changes such 

as elevated atmospheric CO2 concentrations and warming, it is essential for Earth system models to 

include increased realism to simulate CH4 processes in a more mechanistic way. To address this need, we 

incorporated a new microbial-functional group-based CH4 module into the Energy Exascale Earth System 

land model (ELM) and tested it with multiple observational data sets at an ombrotrophic peatland bog 

in northern Minnesota. The model is able to simulate observed land surface CH4 fluxes and fundamental 

mechanisms contributing to these throughout the soil profile. The model reproduced the observed vertical 

distributions of dissolved organic carbon and acetate concentrations. The seasonality of acetoclastic and 

hydrogenotrophic methanogenesis—two key processes for CH4 production—and CH4 concentration 

along the soil profile were accurately simulated. Meanwhile, the model estimated that plant-mediated 

transport, diffusion, and ebullition contributed to ∼23.5%, 15.0%, and 61.5% of CH4 transport, respectively. 

A parameter sensitivity analysis showed that CH4 substrate and CH4 production were the most critical 

mechanisms regulating temporal patterns of surface CH4 fluxes both under ambient conditions and 

warming treatments. This knowledge will be used to improve Earth system model predictions of these 

high-carbon ecosystems from plot to regional scales.
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vertical dynamics of CH4 substrates, CH4 production and oxidation, and the CH4 transport pathways (Xu 

et al., 2016).

A recent rise in global atmospheric CH4 concentrations has been attributed to a number of natural and 

anthropogenic causes, including emissions from peatlands (Nisbet et al., 2019; Poulter et al., 2017; Rigby 

et al., 2008). While northern peatlands are thought to contribute less than tropical wetlands and anthropo-

genic sources currently, boreal wetlands have received recent attention in the modeling community due to 

their larger area, higher warming rates, and high carbon stocks (Bohn et al., 2015). Model predictions in 

such studies are highly variable, and simple models based on environmental drivers alone (e.g., tempera-

ture and water-table height) have relatively poor predictive skill in predicting CH4 fluxes across a range of 

ecosystems (Turetsky et al., 2014). Major uncertainties and model biases likely result from poor model rep-

resentations of CH4 production, consumption and transport, and a relatively small number of observations 

for model validation (Bridgham et al., 2013). Uncertainty in the temperature sensitivity of CH4 production 

also contributes to prediction uncertainty at regional to global scales (Riley et al., 2011).

The Spruce and Peatland Responses Under Changing Environments (SPRUCE) experiment presents a 

unique opportunity to test model responses against observations under experimentally manipulated envi-

ronmental conditions at an unprecedented scale within a peatland ecosystem. Specifically, SPRUCE is an 

experiment in an ombrotrophic bog in northern Minnesota designed to assess the response of northern for-

ested peatland ecosystems to increases in temperature and exposure to elevated atmospheric CO2 concen-

trations (Hanson et al., 2016, 2017). The SPRUCE project was designed with a primary objective of provid-

ing information and data for model development and improvement. Both direct and indirect effects of these 

experimental perturbations have already been used to develop and refine new peatland modules within 

Earth system models (Hanson et al., 2017). In this study, we introduce a new model that integrates multiple 

sources of pre-treatment SPRUCE data about soil biogeochemistry and CH4 processes (Xu et al., 2014, 2015) 

into a processed-based model. The model is further used to answer the following questions:

1.  Can our process-based model framework capture pre-treatment observations of CH4 fluxes, CH4 concen-

trations, and associated biogeochemical data within the level of observation uncertainty?

2.  Which model parameters and process drive model prediction uncertainty?

3.  What pathways dominate CH4 emissions?

To answer these questions, we developed a new model structure and compare the model results with field-

scale observational data. A model parameter sensitivity analysis was used to further examine the behavior 

of the new model and the most critical parameters and processes contributing to variations in surface CH4 

fluxes under pre-treatment conditions.

2. Methods

2.1. Experimental Site and Data Products

The SPRUCE experiment evaluates the response of the existing peatland biological communities to 

whole-ecosystem warming up to +9°C at both ambient and elevated (∼900 ppm) CO2 concentrations using 

open-top enclosures (Hanson et al., 2017). These enclosures are located in a Picea—Sphagnum spp. bog (S1 

bog) in northern Minnesota, 40 km north of Grand Rapids (47°30.476′ N; 93°27.162′ W; 418 m above mean 

sea level), in the USDA Forest Service Marcell Experimental Forest (Kolka et al., 2011). The S1 bog is an 

ombrotrophic peatland with a perched water table that has no groundwater inflow, and it is located at the 

southern margin of the boreal forest in a sub-boreal climate. It is dominated by a mixed black spruce (Picea 

mariana) and larch forest canopy (Larix laricina) with various understory shrubs, including Labrador tea 

(Rhododendron groenlandicum), leatherleaf (Chamaedaphne calyculata) and blueberry (Vaccinium spp.). 

Annual precipitation and air temperature average 768 mm and 3.3°C respectively (Sebestyen et al., 2011). 

The S1 bog was harvested in strip cuts in 1969 and 1974 to test the effects of seeding on the natural regen-

eration of black spruce (Sebestyen et al., 2011). Ground layer vegetation within the S1 bog is composed 

of a bryophyte layer dominated by Sphagnum spp. mosses but also including feather mosses (Pleurozium 

spp) and haircap mosses (Polytrichum spp). The peatland soil is the Greenwood series, a Typic Haplohe-

mist (http://www.websoilsurvey.nrcs.usda.gov), with average peat depths to the Wisconsin glacial-age lake 

bed of 2–3 m, but depths up to 11 m are present (Parsekian et al., 2012). A further summary of the peat 
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geochemistry can be found in (Tfaily et  al.,  2014). Near-surface porewater pH is about 4.0 (Griffiths & 

Sebestyen, 2016).

The observational, pre-treatment data used in this study were compiled from a number of different re-

search groups that collaborate as part of the SPRUCE project. One set of CH4 flux observations was meas-

ured using a large-collar approach (Hanson et al., 2016, 2017). A second set of CH4 flux observations was 

measured using an automatic chamber approach, and was used to validate the model performance (Gill 

et al., 2017). Meanwhile, surface water and porewater profiles of DOC concentrations were made by Grif-

fiths and Sebestyen (2016); Zalman et al. (2018). The DOC concentration for surface and pore water were 

from Griffiths et al. (2017). The vertical concentration of CH4 in the soil profile and soil DOC concentra-

tions were measured are available at the SPRUCE experiment data portal (https://mnspruce.ornl.gov/). In 

addition to the CH4-related observations, we also used observations of vegetation growth and productivity 

to validate model simulations, ensuring the model produces reasonable estimates of vegetation inputs to 

the soil column. These observations include fine root production and standing crop (Iversen et al., 2017), 

allometric and biomass data on tree species (Hanson et al., 2012), and Sphagnum productivity (Norby & 

Childs, 2018). Model simulations calibrated using this vegetation information are presented in Griffiths 

et al. (2017) and Jensen et al. (2018).

2.2. Model Integration and Development

For this study, we implemented a new version of the Energy Exascale Earth System land model (ELM) de-

signed for simulations at the SPRUCE site (hereafter referred to as ELM-SPRUCE). Our site-scale modeling 

framework explicitly predicts wetland hydrology, allowing for the application of a mechanistic framework 

that includes representation of the acetoclastic and hydrogenotrophic pathways for methanogenesis and 

tracks microbial populations in different functional groups. This framework also predicts how methano-

genesis and methanotrophy are impacted by local water table and moisture variations. Other modeling 

groups have developed simulations frameworks with similar levels of mechanistic detail (e.g., Grant, 1998; 

Hopcroft et al., 2011; Martens et al., 1998; Xu & Tian, 2012), but this is the first application in the Commu-

nity Land Model (CLM) and ELM frameworks to our knowledge. Our work improves upon CLM4Me (Riley 

et al., 2011), which is the pre-existing methane model available in ELM and the Community Land Model 

version 4.5 (CLM4.5), in which gridcell-averaged decomposition rates are used as a basis for computing CH4 

fluxes in inundated gridcell fractions. TECO-SPRUCE, which was also developed for the SPRUCE site, also 

includes a prognostic water table and CH4 cycling (Ma et al., 2017), and has been used to assimilate and vali-

date against observations. Both site-specific frameworks allow for a more comprehensive evaluation against 

available measurements, and the ability to predict potential changes in CH4 production, consumption and 

transport related to temperature and CO2 manipulation. However, our framework adds additional process 

complexity through its representation of explicit methanogenic pathways and microbial populations.

The new version of ELM-SPRUCE presented in this study integrates previously separate model develop-

ments for simulating wetland hydrology (Shi et al., 2015), methane cycling (Xu et al., 2015) and moss plant 

functional types (Shi et al., 2020; Walker et al., 2017). In addition to this model integration, we incorporate 

several new developments in this study for simulating wetland biogeochemistry that are described below. 

For the model integration, we began with the original version of ELM, which branched from the Commu-

nity Land Model version 4.5 (CLM4.5) (Oleson et al., 2013). In ELM-SPRUCE, we added several improve-

ments were made to meet the specific requirements for the hydrology in the ombrotrophic S1 Bog (Shi 

et al., 2015), including: revised hydrological parameters, the model representation of hummock and hollow 

microtopography, and lateral flows. A Sphagnum plant functional type incorporating the unique physiology 

of mosses module was also included (Shi et al., 2020; Walker et al., 2017). Finally, an improved CH4 module 

first implemented by Xu et al. (2015) was integrated and further developed for this study. This study specif-

ically focuses on the CH4 module and its application at the SPRUCE site.

The newly integrated CH4 module (Xu et  al.,  2015) replaces the existing CH4 model in CLM4.5 (Riley 

et al., 2011) with a more mechanistic representation of biogeochemical processes related to CH4 cycling. 

This new module represents CH4 production and consumption in association with the existing decom-

position subroutines in CLM4.5 (Thornton & Rosenbloom, 2005; Thornton et al., 2007). Added processes 

include DOC fermentation, methanogenesis based on H2 and CO2 (hydrogenotrophic methanogenesis), 
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methanogenesis based on acetate (acetoclastic methanogenesis), aerobic methanotrophy, anaerobic meth-

anotrophy, and H2 production (Figure  1). All of these mechanistic improvements were developed from 

known processes (Thauer et al., 1989, 2008), and/or adopted from approaches used in previous modeling 

studies (Grant,  1998,  1999; Kettunen,  2003; Riley et  al.,  2011; Segers & Kengen,  1998; Tian et  al.,  2010; 

Walter & Heimann, 2000; Zhuang et al., 2004). In addition, this model simulates a pH feedback because 

acetate formation increases the acidity of soils, which was also observed in incubation experiments (Xu 

et al., 2015). The detailed information for the CH4 module, including key parameters and model equations, 

can be referred in the Supporting Information S1. The simulated surface CH4 flux is the sum of diffusion, 

ebullition, and plant aerenchyma-mediated transport. Diffusion is a function of CH4 concentration and 

temperature in each layer, ebullition is a function of CH4 concentration and temperature in each layer; 

the plant aerenchyma mediated transport is a function of CH4 concentration, temperature, and root distri-

bution in each layer and the temporal variation of net primary production. The CH4 concentration is the 

difference between methanogenesis and methanotrophy; both processes are simulated as a function of mi-

crobial biomass, microbial growth efficiency, temperature, soil pH, and oxygen availability (Xu et al., 2015; 

Wang et al., 2019).

Several further developments to the CH4 module were undertaken for this study. While Xu et al., (2015) 

performed CLM4.5 simulations using only one soil layer for the purposes of comparing against incubations, 

here we integrated the CH4 modeling into the full 10-layer soil decomposition model for the first time in 

ELM for the prediction of ecosystem-level responses. This involved adding three new pools for each soil 

layer: bacterial biomass, fungal biomass, and dissolved organic matter. Each pool has both carbon and ni-

trogen components. In addition to the 8 pre-existing litter and soil organic matter pools, ELM-SPRUCE now 

contains a total of 11 pools per soil layer with a total of 34 transitions between different pools and carbon 

respiration to the atmosphere and nitrogen cycling processes. The processes for carbon flow in and out of 

bacteria and fungi pools are adopted from (Xu et al., 2014). In addition to these pools, concentrations of 

dissolved organic carbon (DOC) and acetate are also tracked for each soil layer. Details are included in the 

Supporting Information S1.
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Figure 1. The primary improvements of soil biogeochemistry on the basis of Community Land Model version 4.5 
(DOC, dissolved organic carbon; ACE, acetate; the numbers shown in the figure are corresponding to various processes; 
modified from Xu et al., 2015, 2016).
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We also extend the representation of lateral flows of water within the hummock-hollow microtopography in 

ELM-SPRUCE (Shi et al., 2015) to include flows of DOC, acetate, CO2, and CH4. To estimate biogeochemical 

processes contributing to CH4 cycling, the consideration of both lateral and horizontal flows is critical (Cres-

to-Aleina et al., 2015; Kolka et al., 2011; Verry et al., 2011; Waddington et al., 2015). While Shi et al. (2015) 

only considered lateral and vertical flows of water in the soil column, we resolve biogeochemical transport 

and diffusion along these hydrological flow paths. Given our prescribed 30 cm vertical offset between the 

grid cells, we considered the vertical layers that corresponded to each other on an absolute elevation in the 

hummock and hollow grid cells. Lateral transport is only allowed between these corresponding layers. Be-

cause of the vertical offset between hummock and hollow grid cells, it is not a one-to-one mapping, so that 

in some cases multiple vertical layers in one grid cell may correspond to one layer in the other (Figure 2) 

The nutrient and gas concentrations in the new framework were aggregated to a standard vertical profile 

in ELM-SPRUCE for further calculation or simulation in other modules. The vertical diffusion of DOC, 

acetate, CO2, and CH4 follows Fick's law along the concentration gradient.

The non-methane portions of the model (vegetation and hydrology) variables have been evaluated against 

observational data from multiple sources. In our previous ELM-SPRUCE study, we evaluated our modeled 

results for biogeophysical variables such as water table and evapotranspiration (Shi et  al.,  2015). ELM-

SPRUCE simulated net ecosystem exchange is consistent within the uncertainty bounds of pre-treatment 

carbon budget estimates (Griffiths et al., 2017), and simulated vegetation productivity (Jensen et al., 2018).

2.3. Model Implementation

The model simulations are implemented in a workflow that includes several steps (Figure 3). In the first 

step, a spin-up simulation is used to generate pre-industrial steady-state values for carbon and nitrogen 

storage in vegetation and along the soil profile. This stage consists of accelerated decomposition (AD) 

spin-up and final spin-up following the standard approach of CLM4.5 (Oleson et  al.,  2013; Thornton 

& Rosenbloom, 2005). The accelerated spin-up generates an equilibrium state to estimate the relative 
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Figure 2. Vertical layer differentiation in hummock and hollow columns for simulating horizontal exchanges of 
biogeochemical variables (DOC, acetate, CO2, and CH4 in this study). Each layer at the same height has horizontal 
exchange between the columns of biogeochemical variables along a concentration gradient. When multiple layers in 
one column correspond to one layer in the second column, contributions from each layer are averaged weighted by 
layer thickness at end of each time step.
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content of carbon and nitrogen in different pools including four soil carbon pools and three litter carbon 

pools, as well as four soil nitrogen pool and three litter nitrogen pools, in each of 10 layers along the 

soil profile. The length of this AD spin-up is 1200 model years. After readjustment of carbon pools and 

turnover times following the AD spin-up, a final spin up of 50 years was carried out for re-equilibration. 

Because the model in its current form is not able to simulate the accumulation of peat, it produces a soil 

carbon that is, inconsistent with the observed profile. In the second step, after the model spin-up is fin-

ished, we re-initialize the soil carbon/nitrogen ratio by adjusting the simulated soil carbon and nitrogen 

profiles at each soil layer to best match field observations (Iversen et al., 2014; Tfaily et al., 2014). We 

then adjust the characteristic e-folding depth parameter (Koven et al., 2013) so that our adjustments to 

the soil carbon profile would not significantly affect the CO2 emissions from each layer. This procedure 

allows for a soil carbon profile that is, consistent with observations while maintaining near steady-state 

fluxes (Table  1). Next, we perform a transient simulation from 1850-1974 in which atmospheric CO2 

concentrations and nitrogen deposition change over time. Finally, we simulate the period from 1974 

to 2016, also using time-varying historical CO2 concentrations and ni-

trogen deposition. The strip-cut that occurred in 1974 (Perala & Ver-

ry, 2011) is represented as a 99% harvest of above-ground tree biomass. 

In this phase, we also carry out a sensitivity analysis (Section 2.4) and 

parameter optimization (Section 2.5). After all the model calibration is 

completed, the optimized parameters are used for a complete set of new 

simulations from the beginning of spin up and transient runs, includ-

ing the re-initialization of soil carbon after spin-up. For meteorological 

inputs for all phases of the simulation, we continuously cycle the ob-

served SPRUCE environmental data (air temperature, wind speed, solar 

radiation, relative humidity, air pressure, and precipitation) from the 

period 2011–2017 that were obtained from an environmental monitor-

ing station at the SPRUCE S1 bog (Hanson et al., 2015).

This identical model procedure was repeated for a second version of 

ELM-SPRUCE, in which the new CH4 module was turned off and re-

placed with the default CLM4Me (Riley et al., 2011). This version still 

uses the Shi et  al.  (2015) hydrology and microtopography modifica-

tions in addition to modifications for the Sphagnum plant functional 

type.
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Figure 3. The procedure for model implementation.

Soil depth (m) Soil carbon density (gC m−3)
Soil carbon 

content (gC m−2)

0–0.018 22,385 392

0.018–0.045 22,385 617

0.045–0.091 22,385 1018

0.091–0.166 30,294 2271

0.166–0.289 43,978 5436

0.289–0.493 95,584 19,478

0.493–0.829 92,983 31,241

0.829–1.383 83,658 46,341

1.383–2.296 83,799 76,533

2.296–3.802 90,616 63,783

Table 1 
The Initial Soil Carbon Pool Size for the Model Transient Simulation 
Starting in 1974
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2.4. Sensitivity Analysis

Model sensitivity analysis is essential for model testing as it helps to apportion different sources of uncer-

tainty in the model parameters or model structure (Cariboni et al., 2007; Haefner, 2005). Here we focus on 

model parameters, because understanding their sensitivities can provide mechanistic insight into which 

processes dominate the uncertainty of specific model outputs. A sensitivity analysis was carried out to es-

timate the model behavior in response to key parameters. In this sensitivity analysis, 19 selected model pa-

rameters controlling CH4 processes were allowed to vary between −20% and +20% from their default values 

(Table 2). These parameters cover all key processes for CH4 production, oxidation, and transport through 

plants, diffusion, and ebullition. We ran an ensemble of 2000 model simulations, randomly varying all pa-

rameters simultaneously over their prescribed ranges to identify both the most sensitive and the most stable 

parameters controlling the CH4 processes. The computational expense of ELM-SPRUCE is high, requiring 

about 12  h per simulation on a single processor; therefore, we chose this sampling strategy to facilitate 

global sensitivity analysis using a surrogate model that is, constructed using Bayesian compressive sensing 

(Ricciuto et al., 2018; Sargsyan et al., 2014). This approach allowed for sensitivities with high confidence to 

be obtained with the 2000 model ensemble simulations, a relatively small number for this high-dimensional 

space. Simulations were performed both with ambient conditions, and +9°C, the highest level of warming 

the SPRUCE experiment following Griffiths et al. (2017) to understand how the treatments may affect the 

importance of different processes.

2.5. Model Optimization Algorithm

An evolutionary algorithm, quantum particle swarm optimization (QPSO) (Sun et al., 2004), was used to op-

timize model parameters related to CH4 cycling. Because some optimal parameter combinations were iden-

tified as unrealistic, we used a manual calibration approach for fine-tuning following the QPSO optimiza-

tion. Allowable ranges for CH4 parameters were the same as those used for the sensitivity analysis (Table 2). 
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Parameters Ecological meaning Minimum Maximum Optimal

m_dKAce Half saturation coefficient of available carbon mineralization 12.8 19.2 16.0

m_dAceProdACmax Maximum rate for acetate production 1.92 × 10−6 2.88 × 10−6 2.48 × 10−6

m_dH2ProdAcemax Maximum rate for H2 production 4.0 × 10−8 7.0 × 10−8 6.98 × 10−8

m_dGrowRH2Methanogens Hydrogenotrophic methanogen growth rate 8.0 × 10−3 1.2 × 10−2 1.0 × 10−2

m_dDeadRH2Methanogens Hydrogenotrophic methanogen death rate 8.0 × 10−4 1.2 × 10−3 1.0 × 10−3

m_dGrowRAceMethanogens Acetoclastic methanogen growth rate 6.4 × 10−3 9.6 × 10−3 7.034 × 10−3

m_dDeadRAceMethanogens Acetoclastic methanogen death rate 1.6 × 10−3 2.4 × 10−3 2.0 × 10−3

m_dGrowRMethanotrophs Methanotroph growth rate 6.4 × 10−3 9.6 × 10−3 8.0 × 10−3

m_dDeadRMethanotrophs Methanotroph death rate 1.6 × 10−3 2.4 × 10−3 2.0 × 10−3

M_dYAOMMethanotrophs Growth efficiency of anaerobic methanotrophs 0.12 0.18 0.15

m_dACMinQ10 Temperature dependence of acetate production 2.4 3.6 3.024

m_dCH4ProdQ10 Temperature dependence of CH4 production 1.6 2.4 2.0

m_dCH4OxidQ10 Temperature dependence of CH4 oxidation 0.96 1.44 1.20

m_dCH4min Minimum CH4 solubility 0.04 0.06 0.05

k_dom Dissolved organic matter turnover rate 5.6 × 10−3 8.4 × 10−3 7.004 × 10−3

k_bacteria Bacterial turnover rate 0.176 0.264 0.22

k_fungi Fungal turnover rate 0.176 0.264 0.22

dom_diffus Diffusion rate of dissolved organic matter 1.44 × 10−7 2.16 × 10−7 1.8 × 10−7

m_dPlantTrans Efficiency for plant transport of CH4 5.6 × 10−3 8.4 × 10−3 7.0 × 103

Table 2 
Ecological Meanings, Acceptable Ranges, and Optimized Values of the Key Parameters for CH4 Processes Used in the Sensitivity Analysis and Optimization 
(Adopted From Xu et al., 2015)
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The QPSO algorithm was used to minimize a cost function, which was constructed using a weighted sum of 

squared residuals (the difference between model and observation) for all CH4 related observations described 

in Section 2.1. Observational uncertainties, when available, were used for the weightings. When uncertain-

ties were not available, we assumed the uncertainty to be 25% of the magnitude of the observed value. Here 

we used a population size of 50 and 100 iterations to perform the QPSO optimization. The final optimized 

parameters were the most consistent with the observational data in magnitude and seasonality. Additional 

fine tuning did not significantly affect the cost function value. More details about the QPSO algorithm and 

calibration approach are provided in Lu et al. (2017).

3. Results

3.1. Model Validation

In this study, we specifically focus on CH4 cycling and compare modeled DOC, CH4 concentration and CH4 

flux against observational data.

The ELM-SPRUCE model is able to capture the temporal variation in land surface CH4 flux at the S1 bog 

(Figure 4). The modeled daily CH4 fluxes display significant correlations with field observations and are well-

aligned in terms of seasonality and magnitude (R2 = 0.327; P = 0.007; Mod = 0.751 (0.248) × Obs + 2.421E-8 

(6.569E-7)) for the large collars (Hanson et al., 2016). Predicting much lower flux magnitudes, the CLM4Me 

model has an insignificant correlation (R2  =  0.112, P  =  0.137; Mod  =  0.062 (0.040) × Obs  +  1.488E-8 

(1.056E-7)). The ELM-SPRUCE model also compares well (R2  =  0.581; P  =  0.078; Mod  =  0.089 (0.038) 

× Obs  +  1.427E-6 (3.337E-7)) with the static chamber observations (Zalman et  al.,  2018), although the 

small number of measurements means that the results are less statistically significant. The large temporal 

variations in CH4 flux from the hummocks and hollows measured using the auto-chamber method (Gill 

et al., 2017) are less consistent with the daily modeled fluxes (R2 < 0.05). Additionally, while seasonally con-

sistent in relative magnitude, the modeled fluxes were generally larger than the observed CH4 fluxes from 

hummocks and hollows; linear regression showed that the modeled fluxes overestimate the auto-chamber 

observations by about 10%. It is important to note that vegetation was removed in the auto-chambers, which 

was not considered in these simulations. There is also a timescale mismatch between the point-in-time ob-

servation (i.e., a timescale of minutes) and the daily model output. Therefore, the range of modeled hourly 

CH4 fluxes, which show higher variability, match better with these measured fluxes. The CLM4Me model 

did not have significant correlations with the static or autochamber flux data.

We also compared ELM-SPRUCE results to observed vertical profiles of substrates that are important for 

CH4 cycling. This further comparison showed that the model can reconstruct the vertical distributions of 
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Figure 4. The comparison between modeled CH4 flux with measured CH4 from various sources fluxes measured in the 
field using different techniques.
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DOC (R2 = 0.974; P < 0.001; Mod = 0.958 (0.070) × Obs + 6.672 (5.262)) and acetate (R2 = 0.588; P = 0.044; 

Mod = 0.448 (0.168) × Obs + 0.042 (0.116)). For CH4 concentrations, the model reproduces the data well 

near the surface but not at depth (R2 = 0.06) (Figure 5). The gradually declining DOC concentration along 

the soil profile is well-captured by the model in both magnitude and distribution along the vertical profile, 

and the model is able to simulate the gradual decline in DOC concentration from ∼100 to 30 g C m−3 at 

300 cm depth. The modeled vertical profile of acetate matched well with observed acetate concentration in 

the top 100 cm of the soil profile, while the modeled acetate concentration is slightly underestimated below 

100 cm. The observed CH4 concentration with depth in the upper meter of the soil profile was simulated, 

but performed poorly at deeper levels (Figure 5). The CLM4Me does not simulate DOC and acetate, while 

produces one order lower CH4 concentration and inconsistent vertical CH4 profile than the observed CH4 

concentration (Figure 5).

3.2. Sensitivity Analysis

A sensitivity analysis was carried out to estimate the CH4 emissions and contributions to these emissions 

from three transport pathways under ambient conditions and under +9°C, the maximum level of warming 

in the SPRUCE experiment. While we varied 19 model parameters (described in Supporting Information S1), 

the surface CH4 flux was sensitive to only five of these parameters—the maximum acetate production rate 

(m_dAceProdACmax), the methanogen growth rate (m_dGrowRAceMethanogens), the half-saturation coef-

ficient of available carbon mineralization (m_dKAce), the dissolved organic matter turnover rate (k_dom), 

and the methanogen death rate (m_dDeadRH2Methanogens). The most sensitive parameter was the max-

imum production rate of acetate, indicating the importance of substrate regulation for CH4 production. 

Under the +9°C warming condition, the contribution of acetate production rate weakened, while the min-

eralization rate of dissolved organic matter became more important. This shift suggests that while aceto-

clastic methanogenesis increases with warming, the warming may reduce the role of acetate as a substrate 

for methanogenesis but enhance the control from DOC, which might be caused by the faster decomposition 

rate of acetate compared to DOC.

For all three transport pathways, the half saturation coefficient of acetate is equally important. The sensi-

tivities of other key parameters controlling the contribution to CH4 surface flux from each of three trans-

port pathways are different, providing important information for model parameterization (Figure 6). For 

example, the most sensitive parameter controlling CH4 flux from plant-mediated transport under ambient 

conditions is the substrate production rate, followed by the growth rate of acetoclastic methanogens. Warm-

ing increased the sensitivity of the plant transport coefficient (m_dPlantTrans). CH4 flux from the diffusion 

transport pathway is primarily controlled by the diffusion rate of dissolved organic matter (dom_diffusion), 

which is a key precursor for CH4 production. The key parameters controlling CH4 flux from ebullition are 

the maximum acetate production rate and the growth rate of acetoclastic methanogens. Warming increased 

the sensitivity of two parameters: the decomposition rate of DOC and plant transport. Shifts in importance 

among the three transport pathways also resulted in changes to parameter sensitivities for the integrated 

CH4 flux at the surface. These sensitivities provide important information about the contributions of model 
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Figure 5. Model comparison with observational data of dissolved organic carbon (DOC), acetate, and CH4 concentrations along soil profile (the concentration 
of DOC, acetate, and CH4 are averages in the 2013 growing season).
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processes to prediction uncertainty, and which quantities would be useful to better measure under ambient 

and warming conditions.

3.3. Modeled Surface CH4 Flux Along the Three Transport Pathways

The modeled annual CH4 net efflux from the S1 bog is estimated at 31 g C m−2 y−1, close to the calculat-

ed annual CH4 net efflux based on simple interpolation from time series of measured CH4 flux (Hanson 

et  al.,  2016,  2017). The modeled CH4 flux showed obvious seasonality 

in plant-mediated transport and ebullition, while the diffusion did not 

show a clear seasonal pattern (Figure 7). The model estimated that the 

ebullition, diffusion, and plant-mediated transport contributed approx-

imately 61.5%, 15.0%, and 23.5%, respectively, to the CH4 emissions to 

the atmosphere at an annual time scale (Figure 7). There is no modeled 

CH4 emission in January, February, and March due to the frozen peat 

surface based on the assumption that the frozen surface prevents all CH4 

emissions from soil. Because of the buildup of CH4 beneath these frozen 

layers, the model simulates an early spring CH4 pulse when the frozen 

soil thaws in the spring.

3.4. Differences Caused by Microtopography

Hummock and hollows are unique microtopographical features in peat-

land ecosystems. ELM-SPRUCE assumes a 0.3 m elevational difference 

between two adjacent grids to represent a “mean hummock” and a “mean 

hollow.” The simulated surface CH4 flux and water table dynamics are 
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Figure 6. Sensitivity analysis of Energy Exascale Earth System land model-Spruce and Peatland Responses Under Changing Environments parameters for the 
following model outputs and scenarios: (a) Surface CH4 flux under ambient conditions, (b) Surface CH4 flux under the +9°C treatment, (c) Surface CH4 flux 
from plant transport under ambient conditions, (d) Surface CH4 flux from plant transport under the +9°C treatment, (e) Surface CH4 flux from diffusion under 
ambient conditions, (f) Surface CH4 flux from diffusion under the +9°C treatment, (g) Surface CH4 flux from ebullition under ambient conditions, (h) Surface 
CH4 flux from ebullition under the +9°C treatment. The height of each bar indicates the fraction of variance in a model output caused by variations in the 
corresponding model parameter. Stacked bars sum to one except in cases where higher-order parameter interactions are important (not shown).

Figure 7. The modeled CH4 transport pathways and their contributions 
to the annual budget of CH4 emission from the S1 bog under ambient 
condition (hourly step is adopted to better demonstrate the CH4 dynamic 
at a high temporal resolution). The pie chart shows the total contribution 
for each pathway to the annual sum of CH4 emissions.



Journal of Geophysical Research: Biogeosciences

only slightly different, while the belowground hydrology and biogeochemistry are different for hummock 

and hollow (Figure 8).

The vertical offset between the two columns and lateral transport between them cause a lower position 

of the water table in hummocks compared to hollows generally equal to the specified different in height 

between them (0.3 m). There are slight differences in annual CH4 flux between hummocks and hollows 

with consistent seasonal patterns between the two columns. A CH4 pulse in the early growing season was 

simulated for both hummocks and hollows, with a slightly stronger pulse in hollows than hummocks. Tem-

poral patterns of water table variations are similar for the two columns when there is no standing water in 
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Figure 8. Seasonality in the vertical profiles of dissolved organic carbon (DOC), acetate, and CH4 concentration 
and their resultant surface CH4 flux and surface water table dynamics for hummock and hollow columns in 2013 (a) 
Surface CH4 flux from hummocks; (b) Surface CH4 flux from hollows; (c) Water table dynamics in hummocks; (d) 
Water table dynamics in hollows; (e) Soil/water profile of CH4 concentration in hummocks; (f) Soil/water profile of 
CH4 concentration in hollows; (g) Soil/water profile of acetate concentration in hummocks; (h) Soil/water profile of 
acetate concentration in hollows; (i) Soil/water profile of DOC concentration in hummocks; (j) Soil/water profile of 
DOC concentration in hollows; notice the difference in the Y-axis scale for water table between panels (c) and (d).
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hollows (WT < 0 for Hollow). When there is standing water in the hollow, there are substantial variations 

between the two columns due to horizontal flows and surface runoff from the hollows. Similar vertical 

patterns of DOC, acetate, and CH4 concentrations occur for hummocks and hollows, with slightly higher 

concentrations in hummocks than in hollows. Meanwhile, there are apparent differences in CH4, acetate 

and DOC concentration at the soil depth of ∼0.3 m in hummocks versus hollows, which is consistent with 

the assumption of 0.3 m elevation difference in the surface of hummocks and hollows.

4. Discussion

4.1. Controls on CH4 Flux and Transport Pathways

The ranking of all parameters responsible for CH4 flux and transport using a sensitivity analysis can be used 

to indicate the most essential processes contributing to surface CH4 fluxes and the most critical field meas-

urements needed to better understand and predict CH4 fluxes in response to environmental change. Simu-

lated warming does change the relative importance of the parameters controlling CH4 processes, indicating 

the critical impacts of warming on biogeochemical processes. Specifically with warming, the turnover rate 

of dissolved organic matter (k_dom) becomes a more sensitive parameter, indicating the need for obser-

vations of this quantity under the experimental treatments. The sensitivity of this parameter in addition 

to other parameters associated with acetoclastic methanogenesis indicate the importance of this process 

under environmental change.

The sensitivity analysis showed that the most important process for CH4 dynamics in our model is aceto-

clastic methanogenesis, followed by the rate of acetate production, indicating that environmental factors 

controlling acetoclastic methanogenesis are likely the most important parameter(s) for the land-atmos-

phere CH4 flux (Xu et al., 2015). For example, acetate porewater concentration, water content in the field 

controlling acetate production, and plant root exudation have been confirmed to be critical in affecting CH4 

flux (Conrad, 1989; Whiting & Chanton, 1993; Zona et al., 2009). The impacts of warming on the simulated 

fluxes will be discussed further in a subsequent manuscript.

The sensitivity analysis confirmed the importance of substrate production and microbial functional groups 

as two important determinants on CH4 cycling, indicating substrate limitation in the peatland and micro-

bial suppression. This is consistent with previous field studies for substrate limitation of CH4 production 

(Hatala et al., 2012; McEwing et al., 2015). The substrate for CH4 production may come from soil organic 

matter mineralization or vegetation root exudation. Further experiment and modeling traceability are need-

ed to address this issue. Carbon dioxide and CH4 isotopic capability in this model might be a useful solution 

to this issue, and it deserves future efforts.

The optimized version of the model generally produced accurate predictions of CH4 fluxes. This result is 

consistent with the results of a previous SPRUCE modeling study (Ma et al., 2017). That study involved 

parameter optimization and sensitivity analysis using the TECO-SPRUCE model, which has reduced com-

plexity of CH4 and vegetation modules compared to ELM-SPRUCE. That study found a stronger influence 

of temperature sensitivity parameters on surface CH4 fluxes, suggesting that model may be more responsive 

to experimental warming. Ma et al. (2017) also predicted a higher contribution of plant-mediated transport 

to CH4 fluxes, suggesting that changes in vegetation composition may be more important in their model for 

predicting responses to warming treatments. These sensitivity analyses indicated that differences in model 

structure are likely contributing to a divergence in predictions despite calibration using pre-treatment ob-

servations. A companion paper to this study using ELM-SPRUCE to conduct warming simulations indeed 

indicates a muted warming response of CH4 fluxes compared to the TECO study (Yuan et al., 2021). This 

highlights the need for additional studies at the site using multiple models. As a result, we have initiated a 

model intercomparison project for this purpose.

One specific concern for the ELM-SPRUCE predictions is the overestimation of modeled CH4 flux com-

pared with auto-chamber measurements of CH4 flux in hummocks and hollows despite closer agreement 

with the other two measurement methods. This may be due in part to the experimental design. Specifically, 

in the auto-chamber experiments, aboveground vascular vegetation was clipped limiting plant-mediated 

transport and root exudation of labile DOM (Gill et  al.,  2017). Before clipping, the auto-chambers gave 

similar CH4 fluxes to those measured by (Hanson et al., 2016). The reported CH4 flux from auto-chamber 
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method is ∼10%–30% lower than the flux obtained with large-collar approach and static chamber approach 

that capture a portion of the vegetation (Figure 4). In the future, model simulations could be designed to 

replicate this effect by performing simulations without the presence of specific vegetation types. Our study 

estimated that ebullition accounts for 23.5% of the CH4 flux, which is much larger than the 1% estimated by 

Gill et al. (2017). The reason might be that small area (0.3 m diameter of the collar) in that study excluded 

open water, where ebullition usually occurs, and their approach only captures larger bubbles that were 

identified by non-linearities in CH4 emissions. Other studies show that smaller bubbles may be an impor-

tant source of ebullition (Prairie & del Giorgio, 2013). Overall our estimate falls in the range of 10–60% as re-

ported by a large number of field experiments (Chanton et al., 1989; Mer & Roger, 2001; Tokida et al., 2007).

4.2. Key Features of the New Model

There are several key features of this new version of ELM-SPRUCE. First, the model integrates improve-

ments in soil biogeochemistry and CH4 dynamics described here with previous hydrologic improvements 

for two microtopography columns and parallel efforts to include a representation of moss. While previous 

modeling efforts have generally focused on specific components of wetland systems, these improvements 

allow for simulations with mechanistic representation of vegetation, hydrology, and soil biogeochemistry 

processes simultaneously, and this in turn can facilitate the examination of key feedbacks at the SPRUCE 

site. The vertically resolved representation of the model structure is critical for ecosystems with complex, 

depth-dependent belowground mechanisms, such as peatlands. In addition, the representation of site-spe-

cific plant functional types will allow exploration of how differences in productivity and mortality among 

these types may impact the site soil biogeochemistry under environmental change. For example, the recent-

ly observed decline in Sphagnum productivity (Norby et al., 2019) and shifts in the vascular plant commu-

nity composition may have profound impacts on CH4 cycling.

The highly mechanistic representation of biogeochemistry also allows model integration with the multiple 

types of observational data that are being collected as part of the SPRUCE experiment. For example, in this 

study, we compared the model output with observational data for CH4 substrates, CH4 concentration, and 

different transport pathways, in addition to the surface flux. This modeling approach provides a framework 

to understand how CH4 dynamics respond to external environmental change. Meanwhile, this model is 

able to test the similar stimulation impacts of warming and elevated CO2 on CH4 flux with different mech-

anisms, which will be explored in future work. As the treatment data streams become available, we expect 

to simultaneously integrate this information with ELM-SPRUCE, continuously improving model perfor-

mance and developing a mechanistic understanding of key processes and feedbacks contributing to carbon 

cycle responses. The model will also help to identify key processes, pools and temperature responses that 

experimentalists need to measure further to constrain key prediction uncertainties.

Importantly, ELM-SPRUCE allows us to determine if it is necessary to include this level of biogeochemical 

detail to successfully model the effects of warming and elevated CO2 on CH4 dynamics. The simpler TECO 

modeling framework has been a useful and highly successful testbed for an integrative approach, having 

been used to assimilate data on soil processes and snow (Huang et al., 2017), vegetation and soil carbon 

cycling (Jiang et al., 2018) and methane (Ma et al., 2017) in an ecological forecasting framework (Huang 

et al., 2019). ELM-SPRUCE, a considerably more complex and computationally demanding model, is cur-

rently being integrated into this forecasting framework using novel, efficient techniques for model-data 

integration (Lu et al., 2018). ELM-SPRUCE will allow additional valuable sources of data to be integrated 

into the model that are already being collected in the experimental enclosures, including vegetation pro-

ductivity for specific functional types, DOM and acetate concentration profiles, CH4 production profiles, 

measurements of microbial biomass, and partitioning of acetoclastic and hydrogenotrophic methanogene-

sis through isotopic analysis.

4.3. Importance of Model Timestep

The timestep of model output also affects the model performance in comparison with field observational 

data. This study showed that the hourly output is more consistent with observational CH4 flux than the 

modeled daily CH4 flux. We infer that the observational data tend to be highly variable with finer time steps, 
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which is consistent with the upscaling of ecosystem function. For example, the range of hourly flux in CH4 

is much wider than the daily flux (Figure 4). This is primarily caused by the large variation of temperature 

and precipitation at a sub-daily level. It is well known that the finer-scale ecosystem functions are more var-

iable compared with coarse scale results (Hatala et al., 2012), and aggregating over space or time, if possible, 

may be necessary for comparison with models. It is important to conduct model evaluation at appropriate 

time scales to match the observational data, but also experimental designs should consider the appropriate 

time scale on which the ecosystem functions are measured and evaluated to maximize their relevance for 

modeling frameworks.

5. Conclusions and Future Directions

Here we extend the ELM-SPRUCE model (Griffiths et al., 2017; Shi et al., 2015) to include new capabili-

ties for predicting CH4 fluxes and variables associated with underlying production, oxidation, and trans-

port mechanisms. ELM_SPRUCE is now an integrative site-scale model that simulates CH4 dynamics from 

multiple perspectives including CH4 substrate, CH4 concentration in the soil profile, surface flux of CH4, 

transport pathways, and microbial mechanisms driving the production and oxidation of CH4. The model is 

used to predict pre-treatment conditions at the SPRUCE experiment site in a northern Minnesota peatland 

ecosystem. When model parameters are optimized using observations, the model accurately predicts the 

magnitude of and seasonal variations in CH4 fluxes, as well as vertical profiles of DOC, acetate, and CH4 

within the peat layers. A parameter sensitivity analysis indicates that several parameters dominate uncer-

tainties in CH4 flux predictions including the turnover rate of dissolved organic matter, the maximum ace-

tate production rate, and the growth rate of acetoclastic methanogens. Temperature sensitivity parameters 

are less important than indicated by previous studies. Our modeling framework, implemented within an 

Earth system model, lends itself naturally to regional and global scaling.

In the future, we expect improvements from ELM-SPRUCE to be fully integrated into the land component 

of the E3SM climate model. However, there are significant limitations in the current model structure and 

methods for spatial scaling that must be addressed to extend our model for regional and global relevance. 

Extending the ELM-SPRUCE model to account for variations in hydrology, vegetation, and sources of CH4 

fluxes over space and time is critical for eventual inclusion in an Earth system model. Variations in hydrol-

ogy may strongly affect vegetation growth and peat decomposition with feedbacks on microtopography 

and peat properties, leading to different site microclimates and substrates for CH4 processes (Waddington 

et al., 2015). Understanding how microtopography, hydrologic state variables and CH4 fluxes are related is 

critical. Small differences in microtopography and developmental state can cause large differences in CH4 

emissions at seemingly similar sites, emphasizing the need for mechanistically based scaling techniques 

(Zalman et al., 2018). Microtopographic characteristics are currently observed with high accuracy at regular 

time intervals within the enclosures using terrestrial laser scanning (Graham et al., 2020), and this work 

could be extended over larger spatial scales, providing a key input for model-based scaling and parame-

terization of the Shi et al. (2015) hydrology module in ELM-SPRUCE over larger spatial scales. A spatially 

explicit version of ELM-SPRUCE must also have the ability to predict changes in vegetation productivity 

and community composition from warming and eCO2 that likely feed back to CH4 cycling. Ecosystem 

warming has already caused substantial changes to vegetation phenology at the SPRUCE site (Richardson 

et al., 2018), and changes in vegetation community composition may affect the ecosystem structure and 

function (Johnson et al., 2005), leading to different responses of CO2 and CH4 fluxes over long timescales 

(Ward et al., 2013). The introduction of dynamic vegetation into ELM-SPRUCE, for example, by integrating 

the Ecosystem Demography and CLM4.5 models (Fisher et al., 2015) is necessary to predict a realistic tem-

poral evolution of vegetation across a range of sites. Finally, including isotopic tracers in our simulations is 

also necessary to trace the sources of the surface CH4 flux and compare to observations across different sites. 

For example, homoacetogenesis is a key process for methanogenesis (Ye et al., 2014). At SPRUCE, it has 

been shown that this homoacetogenesis is an important process, that rates increase with temperature, and 

is important in the competition for H2 with hydrogenotrophic methanogenesis (Leeways, 2019). An isotopic 

module will enhance our understanding of this process and its influence on surface CH4 fluxes. 13C and 14C 

have already been incorporated in the current ELM version, but the isotopic module needs to be extended to 

RICCIUTO ET AL.

10.1029/2019JG005468

14 of 18



Journal of Geophysical Research: Biogeosciences

represent the effects CH4 production and oxidation and other microbial processes (e.g., homoacetogenesis) 

on these isotopes.

A key goal of our ELM-SPRUCE modeling effort is eventual application to other wetland systems. A prom-

ising result for eventual spatial upscaling is that carbon cycle model simulations at wetland eddy covariance 

sites are fairly accurate in predicting gross and net carbon fluxes, especially when the models include real-

istic hydrology (Sulman et al., 2012). A mechanistic model-based upscaling will help integrate the observa-

tions obtained with site-level enclosure measurements with CO2 and CH4 fluxes measured to the larger foot-

prints of eddy covariance towers over wetland sites. We can then assess the accuracy of these simulations 

across a variety of wetland tower sites, and better understand how key model sensitivities vary across sites 

using established methods (Ricciuto et al., 2018). Global simulations may then be performed using existing 

CH4 modeling protocols (e.g., Melton et al., 2013). This will allow us to better understand the implications 

of the ambitious SPRUCE experiment for global peatlands, carbon cycling and terrestrial feedbacks to the 

climate system.

Data Availability Statement

Model code used in these simulations are available on the Github repository at http://doi.org/10.5281/

zenodo.3733924. Model simulation output used in this analysis will be made publicly available on the 

SPRUCE project website https://mnspruce.ornl.gov and can be accessed at https://doi.org/10.25581/

spruce.082/1638024.
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