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Abstract

Genetic interactions occur when a combination of mutations results in a surprising phenotype. These interactions capture
functional redundancy, and thus are important for predicting function, dissecting protein complexes into functional
pathways, and exploring the mechanistic underpinnings of common human diseases. Synthetic sickness and lethality are
the most studied types of genetic interactions in yeast. However, even in yeast, only a small proportion of gene pairs have
been tested for genetic interactions due to the large number of possible combinations of gene pairs. To expand the set of
known synthetic lethal (SL) interactions, we have devised an integrative, multi-network approach for predicting these
interactions that significantly improves upon the existing approaches. First, we defined a large number of features for
characterizing the relationships between pairs of genes from various data sources. In particular, these features are
independent of the known SL interactions, in contrast to some previous approaches. Using these features, we developed a
non-parametric multi-classifier system for predicting SL interactions that enabled the simultaneous use of multiple
classification procedures. Several comprehensive experiments demonstrated that the SL-independent features in
conjunction with the advanced classification scheme led to an improved performance when compared to the current
state of the art method. Using this approach, we derived the first yeast transcription factor genetic interaction network, part
of which was well supported by literature. We also used this approach to predict SL interactions between all non-essential
gene pairs in yeast (http://sage.fhcrc.org/downloads/downloads/predicted_yeast_genetic_interactions.zip). This integrative
approach is expected to be more effective and robust in uncovering new genetic interactions from the tens of millions of
unknown gene pairs in yeast and from the hundreds of millions of gene pairs in higher organisms like mouse and human, in
which very few genetic interactions have been identified to date.
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Introduction

Genetic interactions occur when a combination of mutations

results in a surprising phenotype. These interactions capture

functional redundancy, and thus are important for predicting

function [1,2], dissecting protein complexes into functional

pathways [3] and exploring the sources underlying complex

inherited human diseases [1].

In yeast, the systematic deletion of all genes (,6000) has been

instrumental in delineating the non-essential genes that in

combination with other gene mutations may lead to a loss of

viability. However, testing all pair-wise combinations of these

genes for genetic interactions under many different conditions is

still prohibitive in terms of time and materials. Synthetic sickness

and lethality (SSL) are the most studied types of genetic

interactions in yeast. However, only a small portion of all possible

SSL interactions have been uncovered under the limited contexts

in which interactions were assessed [1].

To expand the set of known SSL interactions, several efforts

have been undertaken to build models that predict genetic

interactions, particularly SSL ones, in yeast and other organisms

[4,5,6,7,8,9,10,11]. The multiple network decision tree (MNDT)

approach [8] represents the most comprehensive work to predict

SSL interactions with a high precision. MNDT first extracted both

SSL-dependent features (referred to as 2-hop features with at least

one of the two networks being the known SSL interaction

network), and SSL-independent features (the known SSL network

is not involved) to train a decision tree-based classifier. Given two

networks characterizing relationships between genes, a 2-hop

feature for two genes A and B is used to represent whether there is

a 2-step path between A and B through a third gene C with two

links (A–C and B–C) in different networks [8]. For example, the
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physical-SSL relationship, where one link is from the protein

interaction network and the other from the SSL interaction

network, is an SSL-dependent feature since it involves the known

SSL interactions. The results of MNDT showed that the most

effective features differentiating SSL and non-SSL interactions

were the 2-hop features derived from the overlay of the multiple

networks, particularly when one of the networks was the known

SSL network. However, the use of only SSL-independent features

in this study led to a true positive rate that was less than 40% at a

false positive rate of 20%. Given that only a small fraction of the

total set of gene pairs in various organisms have been tested for

SSL interactions, the SSL-dependent features will not be available

for many of the remaining gene pairs, and thus, the prediction of

those new pairs is expected to be made with a low accuracy. This

problem will be exacerbated in higher organisms for which very

few genetic interactions have been identified to date. Chipman

and Singh extended the MNDT approach by utilizing the existing

SL data, as well as several features from gene expression, protein

interaction and GO functional annotation data, to predict SSL

interactions among S. cerevisiae and C. elegans genes [4]. However,

the primary focus of this work was to demonstrate that random

walks on networks produced more effective features than 2-hop

features for this prediction problem, and thus it did not help

address the problem of dependence on SSL data for making novel

SSL predictions. Particular emphasis was also not placed on how

to best use the other features for addressing this problem.

In a more specialized approach, Qi et al. focused on the network

of SSL interactions between genes in S. cerevisiae, and used diffusion

kernels defined on this network within an SVM classifier to predict

several novel SSL interactions [7]. They also predicted several

pairs of functionally associated genes that have a high likelihood of

belonging to the same complexes, pathways and GO functional

classes. However, this approach faces the same challenge as Wong

et al.’s approach that it may not be effective for predicting genetic

(SSL) interactions between genes that may not be well represented

in the known SSL network. Among other efforts, Paladugu et al.

focused on extracting multiple features only from protein

interaction networks, and used them within an SVM classifier to

predict SSL interactions [11]. Zhong and Sternberg [9] predicted

genetic interactions between C. elegans genes using a machine

learning approach. However, due to the limited amount of

genome-wide data available for C. elegans, they also integrated

features of orthologous gene pairs in yeast and fly. Although they

made predictions for several C. elegans genes, they only provided

estimates of the accuracy of their predictor using examples of

specific pathways and biological systems, thus making a compre-

hensive estimation of the utility of biological features from C.

elegans itself (organism-specific features) difficult. Overall, MNDT

[8] remains one of the most extensive and effective organism-

specific approach in the literature for extracting and integrating a

wide variety of biological features for predicting genetic interac-

tions and has been the basis for validating new algorithms [9].

In this paper, we build upon the existing approaches by

developing a Multi-Network and Multi-Classifier (MNMC)

framework that predicts SL interactions in yeast more effectively.

The enhanced accuracy of the predictions is achieved by

incorporating a more comprehensive set of SL-independent

features that capture the relationships between genes, and

simultaneously employing multiple classification procedures, thus

leveraging the strengths of each while reducing the effects of their

respective weaknesses. Since our method is based on SL-

independent features, it is more appropriate for settings where

very few gene pairs have been tested, including higher organisms

where large-scale genetic interaction screens are not yet feasible.

We further applied this approach to predict the genetic

interactions between the known transcription factors (TFs) in S.

cerevisiae and uncovered a number of novel SL interactions between

TFs, which were well supported by the available knowledge about

these TFs. We further expanded this effort by predicting genetic

interactions among approximately 7.5 million pairs of non-

essential S. cerevisiae genes, the results of which are available at

http://sage.fhcrc.org/downloads/downloads/predicted_yeast_-

genetic_interactions.zip. The details of these results and the

materials and methods used can be found in the subsequent

sections. However, before that discussion, we would like to note

that while we have focused on the prediction of SL interactions, we

demonstrate that our approach is also capable of predicting other

categories of genetic interactions, like synthetic sickness.

Results

The first step in building a classifier to predict SL pairs is the

identification of a set of features to treat as variables in the

prediction procedure. The ideal features in this case are those that

capture information about the relationships between genes.

Towards that end, we extracted 152 SL-independent features

(no known SL interaction is involved) from a number of sources,

including multiple gene expression studies [12,13,14,15], protein-

protein interaction databases (www.yeastgenome.org as of Sept

2007), transcription factor binding databases [16], functional

annotations as defined in the Gene Ontology (www.yeastgenome.

org as of May 2008), and gene network modules and clique

communities [16]. Among the 152 features identified, 62 were

intended to capture the likelihood of two genes being directly

related to each other (e.g., co-regulated in gene expression studies,

protein/DNA sequence similarity, and direct physical interactions

in the PPI network). The other 90 features were derived by

overlaying pairs of networks (individual features) using a

methodology similar to that used for deriving binary 2-hop

features in the previously described MNDT approach [8]. In

MNDT, the overlay (2-hop) features essentially capture binary

Author Summary

Genetic interactions occur when a combination of
mutations results in a surprising phenotype. These
interactions capture functional redundancy, and thus are
important for predicting function, dissecting protein
complexes into functional pathways, and exploring the
mechanistic underpinnings of common human diseases.
Due to the large number of possible combinations of
genes, only a small portion of gene pairs in yeast and only
a few pairs in higher organisms like mouse and human
have been tested. Therefore, predicting genetic interac-
tions has received significant attention in the past several
years. The existing methods primarily rely on the known
genetic interactions, and thus are far less effective in
classifying most gene pairs not well connected with
known genetic interactions. Here we developed a non-
parametric multi-classifier system for predicting genetic
interactions based on a large number of novel features
independent of the known genetic interactions. This
approach led to an improved performance when com-
pared to the current state-of-the-art method. Using this
approach, we derived the first yeast transcription factor
genetic interaction network, part of which was well
supported by literature. This integrative approach is
expected to be more effective and robust in uncovering
new genetic interactions in yeast and other species.
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transitive relationships between gene pairs. We extended this

approach by computing weights for the edges of the overlaid

networks via an exhaustive search for the strongest transitive link

(maximum of the product of weights for any two input edges) over

a set of weighted networks, as shown in Figure 1. Therefore, our

‘‘overlay’’ feature is a generalization of the 2-hop one, since it

involves finding the strongest link connecting two genes, as

opposed to finding ‘‘any’’ link in the 2-hop feature. Such a

generalization makes use of more information in the weighted

networks being overlaid, and thus overlay features are expected to

be more effective for predicting genetic interactions. For more

details about how to compute overlay features, see the Materials

and Methods section. A complete list of the features used in our

study can be found in Table S1 in Text S1.

Datasets and classification method
To characterize the extent to which these features could

differentiate the SL and non-SL classes, we collected 9,994 SL

interactions and 125,509 non-SL interactions from the SGD

database (www.yeastgenome.org, as of May 2008). Note that some

of the interactions in SGD labeled as SL may be actually synthetic

sick (SS) interactions, stemming from some of the SS interactions

having been referred to as ‘synthetic lethal’ in the original

publications [2,17]. However, these (SS) interactions are still

expected to have strong effects, and thus should exhibit similar

characteristics as synthetic lethal interactions for learning and

classification. For simplicity, we refer to all of these interactions as

SL in this paper. The SL network thus prepared comprised of

9994 SL interactions covering 2502 genes and on the average,

each gene had 8 connections, while the overall data set, referred to

as SGD-SL, consisted of 135,503 interactions.

We first employed the Kolmogorov-Smirnov (KS) test to

capture the difference of the distributions of a feature in the sets

of positive (SL) and negative (non-SL) examples [11]. The D-

statistic from the KS test is then used as the measure of the

discriminative power of each feature. Figure 2 shows the

distribution of the 6 most discriminative features for the two

classes, along with their D-statistic values, and Figure S1 in Text

S1 shows the ratio of the frequencies of these features. Table S1 in

Text S1 presents a complete ranking of all the 152 SL-

independent features and the 15 SL-dependent ones (the known

SL interactions are involved) considered in this study. Not

surprisingly, features derived from physical protein interactions

and functional annotations are among the most discriminative,

which is consistent with previous findings [8,18].

Using the above set of features, we developed an integrative

classification system for predicting whether a given gene pair is

synthetic lethal or not. As the first step, the negative (majority) class

(non-SL, 92.9% of the set) is randomly under-sampled to produce

a set of negative examples of the same size as the positive

(minority) class (SL, 7.1% of the set) for handling the rare class

problem [19] with our data set. This balanced combination of

these two sets is used to train a non-parametric multi-classifier

system that enabled the simultaneous use of multiple classification

procedures, such as SVM, neural networks and decision trees.

Such a multi-classifier combination (henceforth referred to as

ensemble or MNMC) is desirable for complex problems like SL

prediction involving noisy inputs, since precise solutions with a

high coverage are often difficult to achieve by a single classification

procedure [20] (see Materials and Methods for details). Note that

the under-sampling is applied only to the training set, while the

true ratio of the number of positive to negative examples is

maintained in the test set. Thus, the results presented below are

unbiased and comparable with other methods.

Validation
We tested each of the individual classifiers and the ensemble

(MNMC) on our SGD-SL dataset. Figure 3(A) shows the receiver

operating characteristic (ROC) curves of the seven classifiers based

on 10-fold cross-validation. As one can observe from this figure,

the ensemble consistently outperformed the individual classifiers,

with the SVM classifier performing the best among the individual

classifiers and k-NN performing the worst. At a false positive rate

of 20%, the true positive rate of the ensemble was roughly 55%,

2% higher than the best individual classifier (SVM). In addition,

the prediction precision (fraction of the number of true SL

predictions to the size of the complete set of SL predictions) of the

ensemble was as high as 49% vis-a-vis a recall (fraction of the

Figure 1. Computing overlay features. One feature is overlaid with another feature to generate an overlay feature. Each feature is treated as an
undirected network with the genes as the nodes, and the value of the feature for a gene pair becomes the weight of the edge connecting them.
Given two weighted networks N1 and N2 , corresponding to two features respectively, the value of the overlay feature for two nodes A and B, is the
strongest (max of product of weights of the two edges) transitive link, i.e., max

i
(w(A,Ci) � w(B,Ci)), where (A,Ci) [ N1 and (Ci ,B) [ N2 or vice versa.

doi:10.1371/journal.pcbi.1000928.g001
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Figure 2. The 6 most discriminative SL-independent features used in our MNMC prediction approach. The Kolmogorov-Smirnov (KS)
test is used to capture the difference of the distributions of a feature in the SL and non-SL classes. The D-statistics and p-values of the KS test are
shown here. The features from the left to the right and top to bottom are: (A) Pathway Comembership — the number of pathways that two genes
belong to, (B) SemanSim BP— similarity of two genes using their annotations to GO Biological Process terms and the semantic similarity between the
terms, (C) PPI Community Comembership — the number of PPI communities that two genes belong to, (D) O(PPI, SemanSim BP) — an overlay
feature from the PPI and SemanSim BP based networks, (E) Common Functions — the number of common functions that two genes belong to, (F)
SemanSim CC — similarity of two genes using their annotations to GO Cellular Component terms and the semantic similarity between the terms. A
description of all the features used in our study can be found in Table S1 in Text S1.
doi:10.1371/journal.pcbi.1000928.g002
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number of true SL predictions to the size of complete set of known

SL examples) of 16.6% at a classification score threshold of 0.2.

This type of high precision is important for predicting new SL

interactions with high confidence. We also tested the performance

of the ensemble based on an expanded feature set including the

152 SL-independent features and an additional set of 15 SL-

dependent features (for details, see Materials and Methods). As

shown in Figure 3(B), we observed a 15% increase in the true

positive rate at a false positive rate of 20% using the expanded

feature set (MNMC.all), as against the SL-independent set

(MNMC.slif), thus demonstrating that the ensemble is indeed able

to make effective use of the information provided by the features.

A similar advantage of the SL-dependent features is also reflected

in the precision-recall results of this experiment (Figure 3(C)).

To further evaluate the importance of the SL-independent

feature set for predicting SL pairs, we constructed a positive test set

from the 337 least-connected SL pairs in the network of the 9,994

known SL interactions, as well as a positive training set of 9,129

positive SL examples that did not share any gene with this test set.

The connectivity of an SL pair in the SL network was defined as

the minimum of the degrees of the two genes comprising the pair.

Therefore, for these 337 least-connected pairs, the SL-dependent

features based on network overlay are either missing or less

effective than those for the well-connected pairs. The 337 SL gene

pairs covered 283 unique genes, giving rise to 199 pairs that were

included as non-SL interactions in our original data set and used

here as a negative test set. The negative training set was comprised

of 125,310 non-SL interactions obtained by removing this negative

Figure 3. Classification on our SL dataset. (A) Receiver operating characteristic (ROC) curves of six individual classifiers and the ensemble
(MNMC) using SL-independent features. (B) ROC curves for the ensemble classifier for our data set using all features (MNMC.all; AUC= 0.837) and SL-
independent features (MNMC.slif; AUC=0.741). (C) Precision-recall curves using all features (MNMC.all) and SL-independent features (MNMC.slif). The
corresponding ROC and precision-recall curves for a random classifier are also shown.
doi:10.1371/journal.pcbi.1000928.g003
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test set from the original 125,509 non-SL interactions in our data

set. Predictions were then carried out for these test sets using the

ensemble classifier trained using the training sets. The overall

performance for the SL-independent and SL-dependent features

was evaluated in terms of the respective ROC and precision-recall

curves. As shown in Figure 4(A), the performance of the predictor

based on the SL-independent feature set (MNMC.slif) is

consistently better than that of the SL-dependent feature set

(MNMC.all). For example, at a false positive rate of 20%, the SL-

independent features lead to a true positive rate of 75%, 5%

higher than that obtained from the SL-dependent features. Note

that the difference in performance of the two sets of features is not

as large as expected, since we allow Weka (our implementation

platform) to impute missing values, and thus all the SL-dependent

features were not absent for the training and test set examples.

However, in the strictest case where this imputation is not allowed,

the gap is expected to be much larger. This difference in

performance is likely due to the overfitting that results with some

classifiers using the latter feature set. In conclusion, this

experiment showed that SL-independent features were more

effective in predicting new SL interactions that were weakly

connected in the known SL interaction network. Given that only a

small fraction of all the gene pairs have been experimentally tested

for SL interactions between them, and given that the majority of

the untested pairs are expected to be weakly or not connected to

the known SL network, the SL-independent features in conjunc-

tion with the multi-classifier approach is expected to lead to more

robust and accurate predictions, and can thus largely reduce the

burden of experiments.

Another test of the performance of our approach was based on

an independent test set constructed from 730 new SL interactions

added to the SGD interaction database between May and

November 2008. These interactions formed the positive test set

for this experiment, while a negative test set of 5163 non-SL

interactions between the genes constituting this positive test set was

extracted from the non-SL interactions in our original data set.

The ensemble classifier was then trained using the 9994 positive

and 120346 ( = 125509-5163) negative examples in our original

data set. This trained classifier was then used to make predictions

for this new test set, and the results were evaluated using ROC

curves. Differences in the performance of the different classifiers

(shown in Figure 4(E)) are similar to those discussed above. Here,

we see that at a false positive rate of 10%, SL-independent features

produce a 5% higher true positive rate than the SL-dependent

features.

The advantage of SL-independent features becomes much

clearer in the corresponding precision-recall curves, as shown in

Figure 4(B) and 4(F). Take the result of the unseen data as an

example (Figure 4(F)), where the precision of MNMC.slif is 10%

higher than that of MNMC.all at a recall of 20% and the

difference in precision becomes even larger (30%) at a recall of

10%. This provides additional evidence that for the currently

unscreened gene pairs, SL-independent features can provide more

accurate predictions due to their lower dependence on the

currently known SL pairs.

Although MNMC.slif outperforms MNMC.all at recall less than

45% for the unseen samples, the precision of MNMC.slif is still not

high, as shown in Figure 4(F). The low performance results from the

fact that many of the most discriminative features based on our data

are not available for most of the 730 SL pairs. For example, the

Pathway Comembership and Common Functions features are

available only for 3% and 30% of the 730 pairs respectively, while

the numbers are 5% and 40% for our 9994 SL pairs. Moreover, the

most discriminative features based on our data are not most

discriminative for the 730 unseen samples. On the contrary, the

much less discriminative features in the whole dataset become

highly discriminative for the unseen samples. For example, the top

three most discriminative features, O(SemanSim CC, Brem Abs

TOM), O(SemanSim CC, SemanSim BP) and O(SemanSim MF,

SemanSim BP) have much larger D-statistics (0.92, 0.88 and 0.85

respectively) for the unseen data set than those (0.03, 0.09 and 0.07

respectively) for the whole SGD-SL data set. These interesting

observations actually point out a future research direction for

predicting genetic interactions: we can first partition the samples

into distinct groups based on the discriminative utility of the features

available and then train individual classifiers for each group.

Comparison with the MNDT and other approaches
To evaluate the effectiveness of our overall prediction approach,

i.e., the set of features and the multi-classifier predictive model, we

performed a direct comparison of our approach to the current

state of the art algorithm MNDT [8], using the SSL dataset used

in the latter study. This dataset was comprised of 3,866 SSL

examples and 688,045 non-SSL examples [8]. This number is

slightly different from that of Wong et al.’s data set due to our use

of ORF names instead of SGD IDs and the deletion of duplicates

in our version of the data set. Figure 4(C) shows the four ROC

curves that result from a four-fold cross-validation procedure,

corresponding to MNMC based on all the features (MNMC.all),

MNMC based on the SL-independent features (MNMC.slif),

MNDT based on all the features (MNMC.all), and MNDT based

on the SL-independent features (MNDT.slif), in addition to a

curve corresponding to a random classifier. Note that the feature

sets used by MNDT [8] are different from those used by MNMC.

Not surprisingly, both methods show better performance when all

the features, including SL-dependent and –independent features,

are used. It can be seen that the precision-recall and the ROC

curves for MNMC.all are higher than those of MNDT.all for most

of the range of the score threshold, and this is also reflected in the

higher AUC score for the former (0.897 vs 0.862). Although this

difference is agreeably not very high, it indicates the advantage of

our under-sampling and our multi-classifier prediction technique.

On the other hand, our MNMC.slif (AUC=0.805) outperforms

MNDT.slif (AUC=0.598) substantially, which shows that our

approach is able to make much better use of SL-independent

features for SL prediction, and the performance of MNDT largely

comes from SL-dependent features. For example, at an FPR of

20%, MNMC.slif leads to a TPR of 65%, 28% higher than that

produced by MNDT.slif using their SL-independent features, and,

at an FPR 30%, the gap between the two TPRs becomes even

larger (31%). Similar observations can be made form the

precision-recall curves for this experiment (Figure 4(D)). These

results demonstrates the advantage of our approach over existing

approaches, which arises from the facts that 1) we employ an

extended set of features to characterize gene pairs, and 2) we

employ under-sampling and a multi-classifier ensemble to carry

out the training and predictions.

We also compared these results with those produced by the PPI-

SVM method proposed by Paradugu et al [11]. When SL-

independent features are used, MNMC.slif outperforms PPI-SVM

on this dataset. For example, at an FPR of 18%, the highest TPR

of PPI-SVM w/o 2Hop is 52.4% while MNMC.slif leads to a TPR

of 62.4%.

Discovery of novel SL interactions between transcription
factors
Given the accuracy of SL predictions provided by our

approach, we applied it to study functional redundancy within

Predicting Genetic Interactions
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the yeast transcriptional regulatory network. Knock-out studies in

yeast have revealed a surprising robustness to single deletions,

particularly among transcription factors, where the rate of gene

essentiality is 8% compared to the genome background rate of

17% [21]. Expression profiling experiments have revealed that

putative targets change relatively little in their expression even

upon deletion of the corresponding regulators, which provides

further evidence for the robustness of the transcriptional network

or at least suggests limitations of our current understanding of the

transcriptional network [22]. We hypothesized that the predicted

SL interactions between transcription factors (TFs) might provide

insights into the genetic relationships underlying this redundancy.

Towards this end, we generated a test set of 6,903 TF pairs from

the currently available 118 TFs in yeast (except MATA1) [16], of

which 8 are known to have SL interactions and 5 are known not to

have SL interactions. We used the ensemble classifier trained on

our SGD-SL data set to make predictions for the remaining 6,890

TF gene pairs using our SL-independent feature set. Among these

6,890 pairs, we predicted 467 SL interactions based on a

classification score threshold of 0.2, which achieved a precision

of 49% at a recall of 14% as determined by 10-fold cross-

validation on our collected SGD-SL dataset. Since at the threshold

of 0.2, the precision of MNMC.slif is 41% at a recall of 14% for

the 730 new SL interactions (unseen data set), we estimate that the

precision of the predicted TF SL network will lie between 41%

and 49% at a recall of about 14%. Fourteen TF pairs were

predicted to be synthetic lethal with classification scores above 0.4.

The top five TF SL interactions in terms of their classification

scores were GZF3:DAL80, NRG1:AZF1, HAP3:HAP5, SWI5:ACE

and YHP1:YOX1. Figure 5(A) shows the network of the 467

predicted and 8 known SL interactions between 106 transcription

factors. Table S2 in Text S1 lists the 475 TF SL interactions and

Table S3 in Text S1 shows the degree of each transcription factor

in this network. On the average, each of the 106 TFs participates

in 9 SL interactions, slightly more than observed in the known SL

interaction network (8 interactions per gene). Six TFs (FKH1,

AZF1, GZF3, STP1, REB1 and CHA4) are involved in over 25

synthetic lethal interactions each.

Some of the predicted SL interactions among transcription

factors are actually well supported by literature. Recent studies

have revealed the functions of the YAP family of transcription

factors (YAP1, YAP2 (CAD1), YAP3, YAP4 (CIN5), YAP6-8) as a

response to stress induced by drug treatments, oxidative stress,

metal detoxification, and DNA damage, among others

[23,24,25,26]. These studies have also suggested that the YAP

TFs have overlapping but distinct functions, although the

relationships among them are still not well understood. In

particular, there has been no systematic study of genetic

interactions among the YAP transcription factors to date.

Figure 5(B) shows a sub-network of the predicted SL interactions

involving the YAP transcription factors. This network is comprised

of 56 links among 36 TFs, including 7 YAP TFs (YAP1-7). YAP5

has the highest number of interactions (14), followed by YAP6 (12),

YAP2 (11), YAP1 (9), YAP3 (7) and YAP4 (6), while YAP7 only has a

single SL interaction with REB1. As shown in Figure 5(B), there

are four synthetic interactions among the YAP TFs, namely

YAP1:YAP2, YAP1:YAP3, YAP1:YAP5 and YAP4:YAP6. Previous

clustering analyses of YAP protein sequences [23] and YAP DNA

binding sequences [26] revealed that the YAP TFs could be

grouped into three related subfamilies: 1) YAP1 and YAP2, 2) YAP4

and YAP6, and 3) YAP5 and YAP7. Here, we predict that the genes

in two of the three subfamilies have synthetic lethal interactions

between them. In particular, YAP1 was predicted to have SL

interactions with YAP2, YAP3 and YAP5. YAP1 plays a central role

in the response to oxidative stress and regulates the response to

H2O2-induced stress, cadmium, and drug stress, while YAP2

responds only to cadmium stress [27]. Thus, the SL interaction

between YAP1 and YAP2 implies a loss of the ability to respond to

cadmium stress when both the TFs are deleted, consistent with the

previous finding that the double mutant yap1yap2 is more

sensitive to cadmium [27]. As another example, consider the

predicted SL interaction between YAP4 and YAP6. Although YAP4

and YAP6 both regulate osmotic stress, only the yap4 null mutant

shows impaired growth when exposed to hyperosmolarity [28].

However, the double mutant yap4yap6 strain displays further

reduction of glycerol metabolism and accumulation, which is

crucial to osmo-tolerance [27]. All together, these analyses imply

condition-specific SL interactions between YAP1 and YAP2, and

between YAP4 and YAP6. Finally, it is known that the YAP

proteins, as part of the class of basic leucine zipper (bZIP) proteins,

have DNA-binding domains similar to the true yeast AP-1 factor

GCN4 [23,27]. GCN4 and MET28 are also part of a group of 14

known bZIP proteins [23]. The predicted TF SL interaction

network includes SL interactions between YAP1 and GCN4, and

YAP5 and MET28.

We also surveyed predicted SL interactions among HAP TFs,

shown as a network in Figure 5(C). Interestingly, the four HAPs (2,

3, 4 and 5) form a fully connected clique except for a missing link

between HAP2 and HAP4, while HAP1 does not interact with any

of the other HAP TFs. Not surprisingly, HAP2, HAP3, HAP4, and

HAP5 share the CCAAT-binding factor (CBF) and form a protein-

protein and protein-DNA interaction complex [29]. The fact that

the assembly of Hap2p, Hap3p, and Hap5p requires all three

subunits simultaneously suggests condition-specific SL interactions

among all the three TFs. Furthermore, the previously identified

interaction between Hap4p and the Hap2p/Hap3p/Hap5p-DNA

complex [29] was also supported by our predictions.

In summary, the exploration of a small part of the predicted TF

SL interaction network already leads to some interesting findings.

Thus, the predicted TF SL interactions are expected to be useful

not only for studying the specific functions of TFs but also for

understanding general mechanisms underlying robustness in

regulatory networks.

Prediction of genetic interactions between all non-
essential yeast genes
In order to expand the utility of genetic interactions, we used

our approach to make predictions for synthetic lethal interactions

between all pairs of non-essential genes in S. cerevisiae. For this

Figure 4. Receiver operating characteristic (ROC) curves of our ensemble based on SL-dependent (MNMC.all) and –independent
features (MNMC.slif). (A) ROC curves (AUC of MNMC.all = 0.819 and MNMC.slif = 0.851) and (B) Precision-recall curves for classification of the 337
least connected SL and 199 corresponding non-SL interactions using our SL-independent and SL-dependent features; (C) ROC curves (AUC of
MNDT.all = 0.862, MNMC.all = 0.897, MNDT.slif = 0.598 and MNMC.slif = 0.805) and (D) Precision-recall curves for classification on Wong et al.’s SSL
dataset [8] using MNMC and MNDT based on on either all the features (all) or the SL-independent features (slif); (E) ROC curves (AUC of
MNMC.all = 0.616 and MNMC.slif = 0.633) and (F) Precision-recall curves for classification on an independent test set constructed from the SGD
interaction database using MNMC.all and MNMC.slif. The corresponding ROC and precision-recall curves for a random classifier applied to all these
prediction problems are also shown.
doi:10.1371/journal.pcbi.1000928.g004
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endeavor, we adopted the list of 3885 non-essential genes used in

the construction of the SGA arrays [30] and derived all possible

gene pairs from this set. After excluding the 135,503 gene pairs in

our SGD-SL data set, we obtained 7,471,681 gene pairs that could

potentially encode genetic interactions. Next, MNMC.slif, trained

using our SGD-SL data set, was employed to compute the

classification scores denoting the likelihood of these 7.5 million

unseen gene pairs to encode genetic interactions. Applying a

threshold of 0.2 to the scores, as done for the results above,

wepredicted 50,210 SL interactions between 3477 genes, thus

demonstrating the wide gene coverage of our predictions. The

prediction scores and the predicted classes (SL or non-SL) at a

threshold of 0.2 for the 7.5 million pairs are available

at http://sage.fhcrc.org/downloads/downloads/predicted_yeast

_genetic_interactions.zip. We expect that this valuable resource

will be useful for computational and experimental biologists

aiming to understand and utilize synthetic lethal interactions in

yeast.

Effect of under-sampling
An important characteristic of our approach is the under-

sampling of the non-SL class to construct the training set.

Although the results presented in this paper were generated using

a perfectly balanced training set (1:1 ratio between the number of

examples in the positive and negative classes), we did observe a

dependence of the results on the sampling ratio. Table 1 lists the

Figure 5. A network of the predicted synthetic lethal interactions between yeast transcription factors (TFs). (A) A global TF SL
interaction network including 467 predicted and 8 experimentally verified interactions from SGD (highlighted in red). (B) YAP-TF related synthetic
lethal interactions; C) HAP-TF related synthetic lethal interactions.
doi:10.1371/journal.pcbi.1000928.g005

Table 1. Dependence of the AUC scores of the ensemble
classifiers trained using SSL-dependent and SSL-independent
features on the sampling ratio used to generated the training
set for Wong et al’s SSL data set [8].

Sampling Ratio SSL-dependent SSL-independent

1 0.8972 0.8053

1.5 0.9024 0.8083

2 0.8978 0.8120

3 0.8928 0.8045

5 0.8827 0.7831

7 0.8745 0.7711

10 0.8627 0.7607

20 0.7977 0.6268

50 0.6370 0.5542

doi:10.1371/journal.pcbi.1000928.t001
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AUC scores of the ensemble classifiers constructed using SL-

dependent and SL-independent features of a previously described

SSL data set [8] after varying the ratio between the number of

positive and negative examples in the training set. As expected, the

performance of both the classifiers deteriorates as the imbalance

between the two classes increases, although the performance is

quite stable up to a ratio of 10. Thus, even though our results are

not very sensitive to reasonable skewing between the sizes of the

classes, the determination of the optimal sampling ratio for a given

data set may be difficult.

Effect of the size of positive training samples
We also tested how the amount of available SL interactions

(positive examples) for training affected our combined classifier’s

performance. Different portions (10%, 20%, 30%,…, 100%) of the

9994 SL examples in our SGD-SL data set were used in a 10-fold

cross-validation procedure to test the efficacy of the resultant

predictor. Table 2 shows the AUCs obtained from each of these

prediction experiments. It can be seen from this table that the

performance of our classifier is quite robust to the amount of

training SL examples available, with the AUC varying in a narrow

range of ,0.7–0.74.

Comparing PPI-only and non-PPI features for predicting
genetic interactions
We further investigated the performance of PPI-only and non-

PPI features for predicting genetic interactions. In this experiment,

we split our 152 SL-independent features into two sets: (1) the set

of PPI-only features which are derived only from the PPI network

and (2) the set of non-PPI features which don’t involve the PPI

network. Note that the PPI-related overlay features, which involve

the PPI network and other networks, were excluded from both the

feature sets. The two feature sets were then used to train and test

our multi-classifier on our SGD-SL data set. Figure 6 shows their

performance in terms of ROC and precision-recall curves. As

expected, the non-PPI feature set substantially outperforms the

PPI-only one. At an FPR of 20%, the TPR of the non-PPI features

is 16.6% higher than that of the PPI-only features (53.4% versus

36.8%). At a recall of 20%, the precision of the non-PPI features is

18.9% higher than that of the PPI-only features is (36.7% versus

17.8%) and at a recall of 30%, the precision of the non-PPI

features is 15.7% higher than that of the PPI-only features is

(29.9% versus 14.2%).

Table 2. Dependence of the prediction performance on the
size of positive training sample set.

Percentage (%) of positive training examples AUC of MNMC.slif

100 0.7298

90 0.7332

80 0.7289

70 0.7328

60 0.7261

50 0.7211

40 0.7187

30 0.7051

20 0.7125

10 0.7019

Different portions (10% to 100%) of the 9994 SL examples in our data set were
used in a 10-fold cross-validation procedure to test the efficacy of the resultant
predictor.
doi:10.1371/journal.pcbi.1000928.t002

Figure 6. The performance of PPI-only and non-PPI features for predicting genetic interactions. In this experiment, we split our 152 SL-
independent features into two sets: (1) the set of PPI-only features which are derived only from the PPI network and (2) the set of non-PPI features
which don’t involve the PPI network. The two feature sets were then used to train and test our multi-classifier on our SGD-SL data set. (A) ROC curves
of our ensemble based on the PPI-only (AUC= 0.605) and non-PPI (AUC=0.731) feature sets. (B) Precision-recall curves of our ensemble based on the
PPI-only and non-PPI feature sets. The corresponding ROC and precision-recall curves for a random classifier are also shown.
doi:10.1371/journal.pcbi.1000928.g006
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This difference in performance results from two factors: (1) the

non-PPI features, such as GO annotations, microrarray data etc.,

form a much richer source of information than just a physical

interaction between the proteins corresponding to two genes for

measuring the strength of association between them, and (2) the

PPI-only features generally have a much smaller coverage. We

believe that the performance of the PPI-only features can be

potentially improved by including other PPI-based features, such

as those from Paladugu et al.’s study [11] (some of them are already

included in our PPI-only features), but the non-PPI features will

still be valuable for predicting genetic interactions, as also shown

by others [8].

In summary, the results presented in this section demonstrated

the utility of our MNMC approach for predicting novel SL

interactions, particularly using only SL-independent features.

Discussion

We devised an integrative, multi-network approach for

predicting synthetic lethal (SL) interactions, which extends the

previously proposed MNDT approach [8]. In this approach, we

first defined a large number of features for characterizing the

relationships between pairs of genes, and then developed a multi-

classifier system for predicting whether a given gene pair belongs

to the SL or non-SL class. Comprehensive experiments on several

data sets demonstrated that these features, in conjunction with the

advanced classification scheme, led to an improved performance

when compared to the current state of the art method. In

particular, a large number of features we identified were

independent of the known SL interactions (in contrast to MNDT),

and these were shown to be more effective for making predictions

for gene pairs that are not well connected with the known SL

interactions.

Application of this approach to the known transcription factor

pairs led to the first TF SL interaction network. Several of the

predicted synthetic lethal interactions between transcription

factors are well supported by literature. It is of note that all the

SL data used in this paper was obtained in rich media, therefore

most of the predicted SL interactions are expected to refer to rich

media conditions. However, here we showed that some condition-

specific SL interactions can also be predicted by our approach.

This may reflect the fact that some features such as functional

annotation, gene expression signatures, and sequence similarity

can help identify such condition-specific interactions.

Our approach is expected to be effective for uncovering new

genetic interactions among millions of gene pairs in yeast and

hundreds of millions of gene pairs in higher organisms like mouse

and human that have not been tested for these interactions. In

addition, this type of predictor could have utility even after

comprehensive empirical screens have been carried out, given that

the effects leading to genetic interactions may very well be context-

dependent and it may not be feasible to experimentally assess all

interactions under all contexts.

Given the difficulty of the problem of predicting genetic

interactions, even the best classification methods suffer low

precision and low coverage. On the other hand, this also opens

the door for exploring new methods. The fact that the features

independent of the known genetic interaction (GI) network can

better predict gene pairs less connected in the GI network while

the whole features including both GI dependent and independent

features lead to better performance on the pairs well connected in

the GI network, suggests a new avenue to further improve the

prediction performance: use the connectivity of each candidate

gene pair in the known GI network to select an appropriate

classifier. More generally, we can partition GI interactions into

different groups based on features characterizing gene pairs and

then train a classifier for each group. Such ideas are worth

exploring in future work on this important problem.

Materials and Methods

Data sources
For the purpose of feature extraction, we compiled four yeast

microarray datasets [12,13,14,15], protein-protein interaction

databases (www.yeastgenome.org as of Sept 2007), transcription

factor binding databases [16], functional annotations as defined in

the Gene Ontology (www.geneontology.org as of May 2008),

mutant phenotype data (www.yeastgenome.org as of May 2008),

phylogenetic profiles of proteins [31], KEGG pathway member-

ships of genes [32], BLAST sequence similarity scores for yeast

genes and proteins [33] and gene network modules and clique

communities [16].

In addition, we prepared a dataset of 9994 SL and 125,509 non-

SL interactions from the SGD interaction database (www.

yeastgenome.org as of May 2008). The SL interactions were

directly extracted from this database. To maintain consistency,

non-SL interactions were identified as those between the

corresponding bait and prey proteins that were determined not

to have SL interactions in the corresponding studies. This dataset,

which we named SGD-SL, or its minor variants, were used for our

cross-validation experiments, as well as the training set for making

novel predictions.

Feature extraction
In order to build a classifier for predicting SL pairs, the first step

is to construct a set of features that describe various characteristics

of gene pairs. We used two types of features in our study, namely

features derived from individual data sets and features derived by

overlaying pairs of data sets. Details of these features follow.

Features derived from individual data sets
Here, we used several types and sources of data to derive the

likelihood of two genes being related to each other in different

forms. These relationships were captured using various measures,

such as the degree of co-expression in four different microarray

data sets, direct and indirect links in protein interaction and other

types of networks, similarity in evolution patterns using the mutual

information between the phylogenetic profiles of the two genes,

similarity of functional labels assigned to the two genes in Gene

Ontology, and several others. We also included several measures

of importance of the gene pair itself by computing the betweenness

of the corresponding interaction in protein interaction and

Bayesian networks. This computation gave us a set of 62 features,

the details of which are provided in Table S1 in Text S1. Below,

we discuss in detail some of the novel features used in our study

that were found to be among the most discriminative between the

nonSL and SL classes.

Number of shared GO biological process functions
A straightforward way to measure the functional similarity of

two genes is to count how many of their functions are shared.

However, in the case of assignments to functional classes from the

GO ontologies, this count can be biased by the general classes to

which almost all genes are assigned. Thus, we used only the 138

most populated GO biological process terms that Myers et al. have

suggested to be useful for functional analyses and prediction

studies [34]. We use the number of shared annotations over these

functions as one of the features for our data set. However, this
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computation could not be carried out for the other two GO

ontologies, since such a list of functions was not available. Thus,

we also used a more extensive method of calculating the functional

similarity of two genes, as described below.

Functional similarity using semantic similarity of GO
functional classes
We also computed the similarity of the functions of two genes on

the basis of the entire hierarchical structures of the three ontologies

in GO. More specifically, we first compute the similarity of two

functional classes in one of the GO ontologies using Lin’s semantic

similarity measure [35], which is defined as

linsim(c1,c2)~
2| log pms(c1,c2)½ �

log p(c1)z log p(c2)

Here, c1 and c2 are the classes (or nodes) between which similarity

is being calculated, while p(c) denotes the probability of a

protein being annotated with class c, and is estimated from

the available set of GO annotations for an organism. Also,

pms(c1,c2)~ min
c[S(c1,c2)

p(c), where S(c1,c2) is the set of common

ancestors of c1 and c2. Thus, pms(c1,c2) denotes the probability of

occurrence of the minimum subsumer of c1 and c2. Intuitively,

Lin’s measure measures the semantic similarity of c1 and c2 in

terms of the contents of their minimum subsumer node in the

ontology, and has been used extensively for quantifying relation-

ships between functional classes in the GO ontologies [36,37,38].

Now, given the set of annotations of two genes in the entire

ontology, namely groups A and B, the functional similarity

between these two genes can be computed using Tao et al.’s

approach [37] as follows. For each annotation in group A, the

most similar annotation is found in group B, and vice versa. Next,

the set P of the mutually most similar pairs of annotations are

found between groups A and B, and the functional similarity of the

two genes is computed as

FunctionalSim(A,B)~

2|
P

(ai ,bi )[P

linsim(ai,bi)

DADzDBD

Such a similarity measure takes the specificity and relative

positioning of the annotations into account more robustly than a

simple count of common functional annotations, due to the

complexity of the annotations made to the three GO ontologies.

Tao et al. [37] demonstrated that this measure computes the

similarity of the set of annotations of two genes more accurately

than other measures, such as the all-pair average similarity used in

other studies [36].

Using this measure, we created three features for the functional

similarity of each gene pair, each corresponding to one of the three

GO ontologies, namely Biological Process, Molecular Function

and Cellular Component. We also used these features for

computing additional features using network overlays, as described

below.

Features derived by overlaying pairs of data sets
(Network Overlay Features)
Previous work suggested an interesting set of 2-hop features for

gene pairs [8]. There, several of the individual features are

‘‘overlaid’’ with other individual features to generate a transitive

feature. In our formulation of such overlay features, we treat each

of the input features as an undirected network, with the genes as

the nodes, and the value of the feature for a gene pair as the weight

of the edge connecting them. Then the value of the feature

obtained by overlaying two such networks N1 and N2 is computed

as max½w(g1,c)|w(c,g2)�, where (g1,c) [N1 and (c,g2) [N2 or

vice versa. A missing value is placed if either of the edges does not

exist in both the networks. An illustration of this computation is

shown in Figure 1.

We used this approach to derive overlay features for gene pairs

by using fourteen input networks that had the maximum coverage

over the gene pairs in our SGD-SL data set, and computing an

overlay feature using each pair of networks (no self-overlays, which

have been captured in the individual features). These input

networks included correlation and topological overlap measure-

ments from two microarray data sets, the number of common

mutant phenotypes, direct links in the protein interaction network,

semantic similarity-based relationships from the three GO

ontologies, sequence similarity scores using the BLAST e-value

for both the gene and protein sequences, and the co-causality

measure in the Bayesian network. These input networks were

chosen so that each of them covered a substantial fraction of all the

non-essential yeast genes and also had reasonably high individual

discriminative power. Also, several of these networks had to be

sparsified using pre-specified thresholds (list of networks and the

corresponding thresholds are provided in Table S2 in Text S1) in

order to make the computation feasible. In particular, only the

edges (gene pairs) carrying weights higher than the positive

threshold or lower than the negative threshold (if any) were

retained in the sparsified network. Also, we used a more flexible

formulation of the overlay features, wherein the maximum value

of the product of the two scores constituting the overlay is assigned

as the value for a gene pair, as compared just trying to find any

such path, as done by Wong et al. [8]. Thus, in this study, we were

able to expand the set of features overlaid, as well as use a more

flexible formulation, leading to good results. Note that the overlay

feature constructed using the semsim_mf and semsim_cc features

was not used for any of the data sets due to prohibitive time

requirements for computing this feature for thousands of gene

pairs. Also, we generated 14 additional overlay features, using the

known SL interaction network as one of the input networks, and

the above mentioned fourteen networks, and a 15th one by

overlaying the SL network with itself. Note that these additional

features were computed in a fair manner, with only the positive SL

examples in the training set being used.

We differentiate between two sets of features in the rest of the

study, depending on whether the set of features include features

whose computation depends on the known SL interactions or not

(referred to as SL-dependent and SL-independent features

respectively). In total, our feature sets included 152 SL-

independent features, and 15 SL-dependent features. Descriptions

of all these features can be found in Table S1 in Text S1. Note that

the combination of 167 SL-dependent and SL-independent

features is referred to as ‘‘all’’ features in the discussion of the

results.

Under-sampling
As mentioned before, our data set is significantly skewed, with

only a small fraction of the examples belonging to the positive (SL)

class, and the rest to the negative (non-SL) class. It is well-known

that standard classification algorithms are ideally designed for

balanced classes [39,40]. Thus, an integral part of our overall

methodology is the under-sampling of the majority (negative) class,

wherein we randomly under-sample negative examples from the

complete set so that their number is equal to that of the positive
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ones [19]. All our classifiers are then trained on this more balanced

set. Note that no such under-sampling is carried out for the test set,

thus ensuring that the evaluation results are unbiased and

comparable with other methods.

Training and classification
Once the features of the gene pairs under consideration had

been computed, we adopted a multi-classifier system for predicting

whether a given gene pair is synthetic lethal or not. A balanced

combination of the positive and negative training sets (described

above) was used to train a non-parametric multi-classifier system

that enabled the simultaneous use of multiple classification

procedures, namely SVM, neural network, RIPPER (rule-based

classifier), random forest, k-nearest neighbor and decision tree.

The combination strategy was based on the noisy-AND function,

denoted by the following formula:

p(x)~ P

N

i~1
pi(x){ P

N

i~1
(1{pi(x)), ð1Þ

where x is a given gene pair and pi(x) represents the probability

that x is predicted as SL by classifier i. Thus, this score simply

computes a difference between the products of the probabilities of

the example belong to the SL and non-SL classes from each of the

classifiers, and the higher this score, the more likely that the test

example denotes an SL interaction between the constituent genes.

The probabilities pi(x) are obtained for each individual classifier

from the Weka machine learning suite [41] using which our entire

classification methodology was implemented.

This classification methodology is used within an n-fold cross-

validation framework on our SGD-SL and Wong et al.’s datasets.

n21 of the randomly constructed n folds are treated as the

training set, on which an under-sampling procedure is executed to

obtain a more balanced training set. The ensemble classifier

system is then trained on this revised training set, and predictions

are then made for the test examples in the remaining fold using the

score discussed above. Repeating this procedure n times with each

fold treated once as a test set produces a score for each example in

the data set. This collection is then evaluated using a ROC curve

and the corresponding AUC score. In addition, we conducted

experiments on an independent test constructed from the SGD

interaction database (www.yeastgenome.org), where our data set is

treated as the training set on which the classifiers are trained. In a

similar setting, we used our dataset as the training set to make

predictions of SL interactions between 118 transcription factors

and between all pairs of non-essential genes in yeast.

Supporting Information

Text S1 Supplementary figures and tables.

Found at: doi:10.1371/journal.pcbi.1000928.s001 (0.22 MB PDF)
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