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Abstract

Paired-end sequencing is a common approach for identifying structural variation (SV) in genomes. Discrepancies
between the observed and expected alignments indicate potential SVs. Most SV detection algorithms use only one
of the possible signals and ignore reads with multiple alignments. This results in reduced sensitivity to detect SVs,
especially in repetitive regions. We introduce GASVPro, an algorithm combining both paired read and read depth
signals into a probabilistic model that can analyze multiple alignments of reads. GASVPro outperforms existing
methods with a 50 to 90% improvement in specificity on deletions and a 50% improvement on inversions.
GASVPro is available at http://compbio.cs.brown.edu/software.

Background
Structural variation, including duplications, deletions

and rearrangements of large blocks of DNA sequence, is

now recognized as an important contributor to the

genetic differences between individual humans and the

somatic differences between normal and cancer cells

[1-7]. It is also prevalent in other organisms, including

many model organisms [8-10]. Knowledge about the

extent of structural variation has increased rapidly in

the past few years with improvements in DNA microar-

ray and sequencing technologies. In particular, sequen-

cing approaches identify all types of structural variation,

including copy number variants and balanced rearrange-

ments like inversions and reciprocal translocations

[11-13]. While next generation sequencing technologies

are now widely used to assess both genetic variation in

normal genomes [14-21] and somatic structural varia-

tion in cancer genomes [4,7,22,23], the short reads and

short inserts of these technologies make the identifica-

tion of many structural variants (SVs) non-trivial. Since

de novo assembly of mammalian genomes from next-

generation sequencing technologies remains a challenge

[24,25], many SVs are identified using a resequencing

approach where sequence reads from an individual gen-

ome are aligned to a reference human genome assembly.

The resequencing approach thus leverages the extensive

finishing efforts employed in the generation of the

human reference genome.

Many strategies have been employed to predict struc-

tural variation using the resequencing approach [11-13].

First, read depth (RD), the density of mapped reads to an

interval of the reference genome, has been used success-

fully to identify copy number variants [26-31]. However,

RD is unable to detect copy neutral variants such as

inversions and balanced translocations. Second, paired

read (PR) approaches have been used to identify all types

of SVs, both copy number variants and copy-neutral var-

iants [16,28,32-35]. These approaches analyze the collec-

tion of PR mappings and find clusters of aberrantly

mapped PRs that suggest SVs distinguishing the two gen-

omes. Third, split read (SR) methods have been

employed to directly identify sequence reads that contain

breakpoints of SVs [36]. However, the short reads pro-

duced by current second-generation sequencing technol-

ogies have limited the use of SRs for SV detection; for

example, Ye et al. [36] rely on anchoring the search for

SRs using a full-length alignment of one read from a PR.

While there has been extensive development of meth-

ods for structural variation prediction, there remains

room for improvement. First, most existing methods

for SV prediction use only one of the possible signals

(RD, PR or SR). A few methods employ a second signal in

later post-processing of predictions. Such a post hoc

approach may improve specificity, but it does not increase

sensitivity by combining multiple, weak signals. Although

a few recent methods have begun to consider both RD

* Correspondence: Suzanne_Sindi@Brown.edu; braphael@cs.brown.edu
1Center for Computational Molecular Biology, Brown University, Box 1910,
Providence, RI 02912, USA
Full list of author information is available at the end of the article

Sindi et al. Genome Biology 2012, 13:R22

http://genomebiology.com/2012/13/3/R22

© 2012 Sindi et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:Suzanne_Sindi@Brown.edu
mailto:braphael@cs.brown.edu
http://creativecommons.org/licenses/by/2.0


and PR signals [37,38], these methods have focused only

on copy number variants. Second, most methods for struc-

tural variation prediction used only reads with unique

high-confidence alignments to the reference genome,

ignoring reads with lower quality alignments or multiple

possible alignments [32,33,39]. As such, these methods

have very low sensitivity to detect repeat-associated rear-

rangements. Since many SVs are associated with repetitive

sequences, including segmental duplications [40], and

mobile elements [2], a substantial improvement in sensi-

tivity may be possible by including reads with multiple

alignments. More recently, a few methods have been intro-

duced that consider multiple or lower quality alignments

of reads relying on various criteria to select among possi-

ble candidate alignments [34,41,42]. While these methods

may predict more true variants, this increased sensitivity

often comes at the cost of reduced specificity as these

methods produce many false positive predictions. Thus,

there is a need for additional improvements in sensitivity

and specificity for SV prediction. For example, the pilot

study of the 1000 Genomes Project did not report inver-

sion SVs [43] even though such variants have been pre-

viously shown to be abundant in normal genomes [16].

Here, we introduce GASVPro, an algorithm for SV iden-

tification that integrates both RD and PR signals into a

unified probabilistic model. We find that the likelihood of

a predicted variant under our probabilistic model provides

a better criteria for prioritizing predictions than the num-

ber of supporting PRs, a common heuristic for ranking

predictions. In addition to combining both RD and PR sig-

nals, GASVPro explicitly reports uncertainty in each pre-

dicted breakpoint, which is useful information for

identification of SRs or designing assays for experimental

validation. This breakpoint localization is obtained using a

computational geometric algorithm, Geometric Analysis

of Structural Variants (GASV) [33], that represents all pos-

sible breakpoints, or breakends, that are consistent with

the aligned reads as a polygon in two-dimensional genome

space. By carefully clustering only those PRs that genuinely

support the same breakends, GASV avoids over-collapsing

fragments into the same SV prediction, a problem demon-

strated in other methods (see Results) and reports coordi-

nates consistent with the true variant points.

Moreover, GASVPro exploits this explicit representa-

tion of the breakends to incorporate a subtle signal of

highly localized drops in coverage at the variant break-

ends. We call this signal breakend read depth (beRD),

and it occurs for both copy number variants as well as

copy-neutral SVs. Using this signal, GASVPro predicts

whether a generic breakend is a homozygous or a hetero-

zygous variant, even when relatively few PRs support the

variant. Thus, GASVPro is the first method to utilize RD

to predict generic SVs, including inversions and recipro-

cal translocations, and not just copy number variants.

For deletions, GASVPro uses the stronger signal of RD

across the entire deleted interval, and this combination of

PR and RD leads to highly sensitive and specific deletion

predictions. GASVPro also considers reads with multiple

possible alignments, using a Markov chain Monte Carlo

(MCMC) approach to sample over the space of possible

mappings for each paired-end sequenced fragment. In

this way, GASVPro does not select only a single ‘best’

alignment for each fragment, but rather computes a pos-

terior probability of each variant over all possible align-

ments of each read.

We demonstrate the advantages of GASVPro on simu-

lated data and Illumina sequencing data from two

sequenced human genomes, NA18507 [14] and NA12878

[44] (1000 Genomes Project). We compare predictions to

known variants with a novel metric, the ‘double uncer-

tainty’ metric, developed to allow for unambiguous com-

parisons when there is uncertainty in the breakpoint

locations. For deletions, GASVPro outperformed com-

peting methods by attaining equal or greater sensitivity

while making at least 50% and up to 90% fewer predic-

tions. In addition, on a subset of deletions with known

ploidy, GASVPro successfully classifies over 85% as

homozygous or heterozygous. For inversions, GASVPro

is up to twice as specific at maximum sensitivity than

existing methods. In particular, because of GASVPro’s

use of the beRD signal, it is the only method to attain

optimal specificity and sensitivity on our simulated data

set. In other cases, GASVPro’s use of the beRD signal at

inversion breakpoints results in equal or better specificity

than competing methods despite considering a larger set

of possible alignments.

Results
A probabilistic model of structural variant breakends

Identifying structural variants from paired-read sequencing

data

In PR mapping, fragments from a test genome are

sequenced from both ends and the resulting PRs are

aligned to a reference genome. The goal of the alignment

process is to determine the correct mapping of the frag-

ment, that is, the corresponding position of the fragment

in the reference genome (Figure 1a). For now, we assume

that all reads have a single high-quality alignment to the

reference, which corresponds to its mapping, and consider

the problem of reads with multiple alignments later.

Although the length of each individual fragment is gen-

erally unknown, the size selection that is performed dur-

ing the construction of the sequencing library yields an

approximate distribution of fragment lengths. We assume

that fragment lengths are between Lminand Lmax; these

values can be derived from the empirical distribution of

mapped fragments. Fragments with both ends mapping

uniquely to the reference with ‘convergent orientation’
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and with mapped distance in the range [Lmin, Lmax] are

called concordant fragments because their mapping indi-

cates concordance (no SV) between the test and refer-

ence genome. (We note that the definition of convergent

orientation depends on sequencing technology. For

example, with Illumina paired-end data, the reads are

obtained from opposite DNA strands and thus conver-

gent orientation is defined as reads with opposite orienta-

tion, with the left read forward and the right reversed

(+/-). With SOLiD paired-end data, reads are obtained

from the same DNA strand and thus should have the

same orientation. In this case, convergent orientation is
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Figure 1 Signals of structural variation from paired-end sequencing. (a) Fragments (black arches) from a test genome are sequenced from
both ends and the resulting paired reads are mapped to a reference genome. Fragments containing the breakpoint of a structural variant (black
arches with arrows) have a discordant mapping (red). (b) The GASV program [33] efficiently clusters discordant fragments supporting the same
variant and provides precise information about the localization of the adjacency, (a,b), created by the rearrangement. For example, on the left a

deletion of the interval [a1 + 1, b1 − 1] from the reference creates a novel adjacency (a1, b1) of breakends a1 and b1 . GASV represents

the novel adjacency as a breakend polygon (shaded red trapezoid) where the left and right breakends of the variant must lie within the
breakend polygon. In this example, we show breakend polygons for a deletion (left) and an inversion (right), each supported by two discordant
fragments. (c) The presence of a structural variant is also indicated by changes in the depth of coverage of concordant mappings. For the
deletion (left) the depth of coverage is low throughout the entire region, while for the inversion (right) the depth of coverage drops only near
the breakends.
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defined as reads with positive orientation when the first

sequenced has smallest mapped coordinate (+/+) and

negative orientation when the first sequenced read has

largest mapped coordinate (-/-).) The remaining discor-

dant fragments indicate potential SVs or sequencing/

alignment errors.

Although researchers typically focus on common

classes of SVs, such as deletions and inversions, more

generally a SV corresponds to a rearrangement creating

one or more novel adjacencies between pairs of loca-

tions in the reference genome. That is, two locations a

and b, which were originally separated in the reference

genome, are now adjacent in the test genome. For

example, a deletion creates one novel adjacency while

an inversion creates two (Figure 1a). Following the ter-

minology of VCF (Variant Call Format) version 4.1 [45],

we refer to locations a and b individually as breakends

and as mated breakends when paired at either end of a

SV created by a rearrangement.

We define a predicted SV V as a pair V = (F, B)

where F = {f1, f2, . . . , fk} is a set of k discordant frag-

ments containing the novel adjacency, and B is the

breakend polygon, a region describing all possible mated

breakends (a,b) determined by the discordant fragment

mappings (Figure 1b). The breakend polygon is defined

by the positions of the mapped ends of each fragment

and the minimum (Lmin) and maximum (Lmin) length

of fragments. If V is a true SV, then there is an ordered

pair (a, b) ∈ B corresponding to a novel adjacency cre-

ated by the rearrangement. That is, there is a (a, b) ∈ B

such that a and b are the breakends of the SV in the

reference genome. (See Materials and methods and [33]

for more information on how the breakend polygon is

defined.)

Discordant and concordant fragments provide comple-

mentary information about a variant. Discordant frag-

ments define the breakend polygon B while concordant

fragments (or lack thereof) provide additional informa-

tion about the precise location of the breakends within

the polygon. If a and b represent mated breakends cre-

ated by a deletion, inversion or other rearrangement in

the reference genome, we should see a decrease in the

coverage by concordant fragments at these points. The

type of signal we expect to see depends on the type of SV

present (Figure 1c). For a deletion, we expect a drop in

the coverage of concordant fragments throughout the

genomic interval [a,b]. This is commonly known as the

RD signal and has previously been exploited to reveal

copy number variants [38]. For an inversion or reciprocal

translocation, we expect a sharp drop in coverage in the

regions immediately surrounding a and b as many of the

fragments containing a or b in the test genome are dis-

cordant when mapped to the reference. However, there is

no drop in coverage ‘inside’ the inversion or transloca-

tion. We define this highly local drop in coverage as the

breakend read depth (beRD) signal.

We develop a probabilistic model based upon the

mapped locations of all fragments, concordant and dis-

cordant, in the test genome. By doing so we integrate

both the presence of discordant fragments (PR signal)

and concordant coverage (RD signal) into a single prob-

abilistic method, GASVPro. In addition, GASVPro

directly estimates the location of the breakends a and b

for a SV V and classifies the prediction as homozygous

or heterozygous. We first present our model in the

restricted context where every fragment has a unique

mapping to the reference genome. Then, we extend our

model to fragments with multiple alignments by using

an MCMC approach to sample over the possible map-

pings for each fragment.

Probability of a structural variant

We determine the probability of a potential SV V by

considering the number, k, of discordant fragments as

well as the beRD, the depth of coverage at each candi-

date breakend. By doing so, we directly estimate the

novel adjacency created by V by considering all possible

mated breakends consistent with the discordant frag-

ments. Since our formulation depends only on the pro-

cess of sampling fragments from the test genome, and

not on the class of variant, our probabilistic model is

applicable to generic rearrangements.

We follow the Langer-Waterman model [46] of

sequencing and assume that the starting positions of the

fragments are sampled from the test genome uniformly

so that the left positions of fragments follow a Poisson

process with parameter l. If all sequenced fragments

had fixed length L, the number of fragments containing

an arbitrary point p from the test genome, called the

coverage of p, would simply be the number of fragments

sampled with left endpoint in the interval [p - L + 1,p].

According to the Poisson process, the coverage of a

point p follows a Poisson distribution with mean lL. In

general, we do not know the size of any particular frag-

ment and thus we use the average fragment length, Lavg ,

and model the coverage of p by a Poisson distribution

with mean λc = λLavg .

If p is sufficiently far from all sites of structural varia-

tion, we expect all sequenced fragments containing p to

be concordant with respect to the reference genome.

However, if p is the breakend of an SV, coverage will be

reduced, as there will be fewer concordant fragments

containing the breakend. In particular, the distribution

of the number of fragments containing a breakend p is

approximated by a Poisson distribution with mean

λd = (Lavg − 2 × readlength)λ (see Materials and meth-

ods and Figure A1 in Additional file 1).
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Consider a candidate SV V = (F, B) . If V is a true SV,

then there is an ordered pair, (a, b) ∈ B , corresponding

to a novel adjacency in the test genome created by the

rearrangement. As such, the number of concordant frag-

ments containing a or b should be lower than expected

for an arbitrary point in the reference genome. Alterna-

tively, if V is not a true SV, then the coverage of points

a and b by concordant fragments will follow the Poisson

distribution with mean λc . We next describe the prob-

ability of a variant V by conditioning on the choice of

breakends and number of copies of the novel adjacency

(a,b) in the test genome. Specifically, for a candidate

novel adjacency (a, b) ∈ B , let C(a,b) = {0,1,2} indicate

the number of copies of the novel adjacency in the test

genome. (Here we are considering only copy-neutral or

copy number loss events (for example, deletions) and

not duplications. The extension to the latter case is

future work.) We consider three events: (1) a and b are

breakends of a homozygous SV, (C(a,b) = 2); (2) a and

b are breakends of a heterozygous SV (C(a,b) = 1); (3) a

and b are not SV breakends (C(a,b) = 0).

For a candidate breakend p, we define the breakend

read depth (beRD), n(p), to be the number of mapped

fragments containing p. In the case that a and b are end-

points of a homozygous SV, we expect n(a) = n(b) = 0;

that is, any concordant fragment containing a or b repre-

sents a mapping error. We assume that mapping errors

are independent and the probability, perr , of an erroneous

mapping is the same for all fragments. In addition, the

number, k, of discordant fragments in F is drawn from a

Poisson distribution with parameter λd . Thus, condi-

tional on a choice of breakends (a,b), the probability that

V represents a homozygous SV (that is, C(a,b) = 2) is

given by:

P(V|C(a, b) = 2) =
(

p
n(a)+n(b)
err

)

Pois(λd; k) (1)

where Pois(λ; k) = λk exp(−λ)/k! is the probability

density function for the Poisson distribution with mean

l. One could explicitly define the unconditional prob-

ability that V is a homozygous variant by examining the

likelihood that each pair (a, b) ∈ B are the true mated

breakends. Instead, we make a simplification by taking

the maximum probability over all possible breakend

pairs:

P(V|C(B) = 2) = max
(a,b)∈B

P(V|C(a, b) = 2) (2)

where by C(B) = 2 we mean the breakpoint region B
defines a homozygous SV.

Similarly, if (a, b) ∈ B are mated breakends of a het-

erozygous variant, C(a,b) = 1, we expect the number of

concordant fragments that contain a or b to follow a

Poisson distribution with mean λc/2 and the number of

discordant fragments that contain the novel adjacency

(a,b) to follow a Poisson distribution with mean λc/2,

respectively. Thus, conditional on the choice of break-

ends (a,b), the probability that V represents a heterozy-

gous SV is given by:

P(V|C(a, b) = 1) = Pois

(
λc

2
; n(a)

)

Pois

(
λc

2
; n(b)

)

Pois

(
λd

2
; k

)

(3)

As before, we define the unconditional probability that

V represents a heterozygous variant by:

P(V|C(B) = 1) = max
(a,b)∈B

P(V|C(a, b) = 1) (4)

Finally, if a and b, (a, b) ∈ B , are not breakends of a

SV, C(a,b) = 0, we expect the number of concordant

fragments containing the breakpoints n(a) and n(b) to

follow Poisson distributions with mean lc and all k dis-

cordant fragments to be mapping errors, each occurring

independently with probability perr . Thus, conditional

on a choice of (a,b), the probability that V does not

represent a SV is given by:

P(V|C(a, b) = 0) = Pois
(

λc; n(a)
)

Pois
(

λc; n(b)
)

perr
k (5)

As before, we define the unconditional probability that

V is not a variant by:

P(V|C(B) = 0) = max
(a,b)∈B

P(V|C(a, b) = 0) (6)

For each candidate variant we decide between alterna-

tives using a likelihood ratio. That is, we compare the

probability that V represents a SV (homozygous or

heterozygous) with the probability that V is an error as

follows:

�(V) = max
(a,b)∈B

max{P(V|C(a, b) = 2), P(V|C(a, b) = 1)}

P(V|C(a, b)) = 0
(7)

In practice we report variants V where log �(V)

exceeds a prescribed threshold. In addition to assigning

a likelihood to a SV, our formulation determines a max-

imum likelihood estimate for the novel adjacency (a,b)

and if a variant is homozygous or heterozygous.

Probability of a deletion

The model in the previous section presented considers

only coverage at the breakends a and b. However,

deletions have a stronger signal of reduced coverage,

as shown in Figure 1c. That is, for a true deletion cov-

erage by concordant fragments should be reduced

throughout the entire deleted segment. Let V = (F, B)

be a predicted deletion supported by k discordant

Sindi et al. Genome Biology 2012, 13:R22

http://genomebiology.com/2012/13/3/R22

Page 5 of 25



fragments and define amax = arg max
a

{(a, b) ∈ B} and

bmin = arg min
b

{(a, b) ∈ B}. Then, for any choice of

mated breakends (a, b) ∈ B , the interval

I(B) = [amax, bmin] must be deleted. As before, we

expect the number n(I) of concordant fragments whose

mappings overlap the interval I(B) to be Poisson dis-

tributed with mean:

λI = λ
(

(bmin − amax) + Lavg

)

Let C(B) = {0,1,2} be the number of copies of the var-

iant in the test genome. We consider the probability of

three events:

P
(

V|C(B) = 2
)

=
(

p
n(I)
err

)

Pois(λd; k)

P
(

V|C(B) = 1
)

= Pois
(

λI/2; n(I)
)

Pois
(

λd/2; k
)

P
(

V|C(B) = 0
)

= Pois
(

λI; n(I)
)
(

pk
err

)

and finally the likelihood of a deletion compared to a

mapping error:

�(V) =
max

{

P
(

V|C(B) = 2
)

, P
(

V|C(B) = 1
)}

P
(

V|C(B) = 0
) (8)

There are several additional factors we consider when

using our model on sequencing data. First, there are fac-

tors other than SVs that can impact the coverage of con-

cordant fragments over an interval. As such, to adjust for

differences in the ability to map reads throughout the

genome, in our model for deletions we scale the number

of concordant fragments by the local mapability of the

putative deleted interval. Second, since in this study we

are primarily interested in inversion and deletion SVs, in

practice we utilize a heuristic to eliminate regions of the

genome with extremely high coverage by concordant

fragments. Further information on these practical details

are given in the Materials and methods section.

Selecting a mapping for each fragment

In the previous sections, we assumed that there was a

single high-quality alignment for all reads and therefore

one high-quality alignment for each fragment. However,

some reads may have multiple high-quality alignments

due to repetitive sequences in the reference or sequen-

cing errors in the reads. Selecting one of the possible

alignments for each read from the pair defines an align-

ment of the fragment. Since each fragment represents a

unique contiguous region of the test genome, at most

one alignment is the correct one and we refer to this as

the mapping of the fragment.

Selecting a mapping for each fragment defines the set

of concordant and discordant fragments and an asso-

ciated set of SVs that could be evaluated using the model

in the previous section. Although any such selection

defines a fragment configuration consistent with the data,

each selection has a different probability. Thus, rather

than selecting a mapping for each fragment in advance,

we consider the space of all possible mappings for all

fragments and use a MCMC approach to sample from

the space of possible mappings in proportion to their

probability.

With these distinctions, we now revisit our notions of

‘concordant’ and ‘discordant’ from above. A concordant

fragment is a fragment whose unique mapping is con-

cordant. That is, both reads have a single high-quality

alignment to the reference and the alignments are con-

cordant with respect to the sequencing process. A dis-

cordant fragment is a fragment whose entire set of

alignments are discordant. (Note, this formulation

ignores any fragment with multiple alignments, at least

one of which is concordant.)

Let F =
{

f1, f2, . . . , fm
}

be the set of all discordant

fragments. Suppose that the two reads from a fragment

f ∈ F map to s and t locations, respectively. An align-

ment of a fragment corresponds to selecting an align-

ment for each read, and thus we define A(f ) = {(xi, yj)}

where i = 1,2,...s and j = 1,2,...t as the set of all align-

ments for a fragment f , only one of which may be the

true mapping. Let A =
{(

A(f1
)

, A(f2), . . . , A(fm)
}

be the

set of alignments for all fragments.

Let V = {V1, V2, . . . , Vn} be a set of candidate SVs

supported by A , as before Vi = (Fi, Bi) . V is computed

by clustering discordant pairs that support the same var-

iant. (In the results below, we use GASV [33] to obtain

the breakpoint polygon associated with each Vi ; how-

ever, this step could be replaced by a different clustering

method.) We represent the set of all possible SVs sup-

ported by A with an m×n binary (0-1 valued) alignment

matrix, A = [aij] , with rows corresponding to fragments
{

f1, f2, . . . , fm
}

and columns corresponding to possible

SVs {V1, V2, . . . , Vn} . Here aij = 1 if fragment fi sup-

ports SV Vj (that is, there is an element of A(fi) that

supports variant Vj and thus fi ∈ Fj ) and aij = 0 other-

wise (Figure 2).

We assume that a discordant fragment supports at

most one SV. Thus, our goal is to select the single ‘cor-

rect’ mapping for each fragment, according to some cri-

terion. Such a selection corresponds to a binary m × n

mapping matrix M =
[

mij

]

, where mij = 1 if fragment fi

is assigned to SV Vj . M satisfies the following:

1. mij ≤ aij ; that is, mij = 1 only if aij = 1 ,

2.

∑

i

mij ≤ 1for all i; that is, each row in M has at

most one non-zero entry.

Sindi et al. Genome Biology 2012, 13:R22

http://genomebiology.com/2012/13/3/R22

Page 6 of 25



Finally, as before, the probability of variants depends

on the associated copy number, C(B) , of a variant. We

explicitly distinguish between homozygous and hetero-

zygous SVs by including a binary vector

C = (C1, C2, . . . , Cn) where Cj = C(Bj) . If any discor-

dant fragments are assigned to Vj , we require Cj > 0 .

Together C and M define the differences between the

test and reference genome.

Probability of a mapping matrix

Our data D consists of a set F of discordant fragments, a

set A of alignments, a set V of possible SVs, and the

positions of all concordant mappings in the genome. We

next generalize our probability model from the previous

section to the probability of a mapping matrix based on

the generation of the data D from a given genome.

For a mapping matrix M and discordant fragment fi ,

let γi(M) denote the column index of the 1 in the i-th

row, or 0 if fi is not assigned. For a mapping matrix M

and a variant Vj , let Rj(M) be the set of rows with a 1

in column j. The support, Sj(M) , of variant j is defined

as the number of assigned discordant fragments:

Sj(M) =
∣
∣Rj(M)

∣
∣ =

∑

i

mij

Finally, we define the total number of variants V(M)

predicted by M :

V(M) =
∣
∣{j : Sj(M) > 0}

∣
∣ .

Given an alignment matrix A , the probability of a

mapping matrix M is a function of the number of frag-

ments supporting each variant with positive support.

We assume that the number of variants with positive

support follows an exponential distribution with para-

meter η > 0 . Finally, if a discordant fragment is

assigned to none of the SVs, then this fragment repre-

sents a mapping error, an event with probability perr .

Thus, we have:

P(M, C|A) ∝ ηe−ηV(M)
∏

j:Sj(M)>0

P(Vj(M)|Cj(M))
∏

i:γi(M)=0

perr (9)

where Vj(M) = (Fj(M), Bj(M)) is the SV in column j

supported by fragments Fj(M) , corresponding

Mapping Matrix M
Alignment Matrix A

aij = 1 if alignment of 
fi supports Vj

Align paired reads 
to reference genome

Concordant
Coverage

Sequencing
Errors

V1 V2 V3

Sample from 
Pr(M|A) 
(MCMC)

Length 
Distribution

of Fragments

X

V4
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Figure 2 Overview of the GASVPro. Fragments F from a test genome are sequenced and the resulting paired reads are aligned to the
reference. A fragment may either have a unique mapping or be ambiguous with multiple alignments to the reference. Following clustering of
alignments (with GASV), the set V of possible structural variants and the fragments whose alignments support these variants are recorded in
the alignment matrix A. As each fragment originates from a single location in the test genome, a fragment supports at most one structural
variant. Thus, the mapping matrix M records the ‘true’ mapping for each fragment. GASVPro scores mapping matrices according to a generative
probabilistic model that incorporates concordant mappings. GASVPro utilizes an MCMC procedure to efficiently sample over the space of
possible mapping matrices defined by the alignment matrix A. The underlying probabilistic model can be easily generalized to consider
additional features indicative of a ‘true’ mapping, such as the empirical fragment length distribution or probability of sequencing errors.
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breakpoint region Bj(M) and Cj(M) = C(Bj(M)) . As

above, we utilize a different model for predicting dele-

tions that also includes read depth inside the putative

deleted interval. Finally, we define P(M|A) by defining

C by selecting the most likely copy number Cj for

each j:

P(M|A) = max
C

P(M, C|A). (10)

Note that M specifies a unique mapping for each frag-

ment supporting a variant; thus, one solution would be to

consider P(M|A) over all possible mapping matrices.

However, because the number of possible mapping

matrices M grows exponentially with the number of frag-

ments, we use a MCMC procedure to efficiently sample

from the space possible mapping matrices M (Figure 2;

Section A2 and Figures A2, A3 in Additional file 1). Our

MCMC procedure converges to the unique stationary dis-

tribution given in Equation 10.

Although the space of mapping matrices has high

dimension, our MCMC procedure remains computation-

ally tractable because our sampling procedure may be

performed on disjoint sets of fragment mappings and the

variants they support. Thus, our MCMC samples inde-

pendently on each such component and the combination

of these samples converges to the same stationary distri-

bution as sampling over the complete space. See Figure 3

for a schematic. In the Materials and methods section,

we provide a complete description of our MCMC

sampling procedure and provide further discussion in

Additional file 1.

Deriving the predicted structural variants

Our MCMC procedure samples mapping matrices in

proportion to their probability P(M|A) ; however, our

ultimate goal is to report a final set of SV predictions.

One approach to SV prediction is to select a single M
according to some criteria; for example, the M that

minimizes the total number of SVs predicted. This

approach is used by a number of SV detection methods

that consider multiple assignments for fragments, such

as VariationHunter [42] and Hydra [34]. We instead

predict SVs by considering the entire space of mapping

matrices M according to P(M|A) as described in the

Materials and methods. In practice, we found only

minor differences in the receiver operating characteristic

(ROC) curves for the different reporting methods we

considered (Figure A4 in Additional file 1).

Results on sequenced data

We applied GASVPro to simulated paired-end data on

the Venter Genome (HuRef) [47], as well as two pre-

viously sequenced human genomes, NA18507 [14] and a

European individual, NA12878, from the 1000 Genomes

study [44]. We also compared results from GASVPro to

two previously published methods, Hydra [34] and

BreakDancer [32], as well as the original GASV. (We

also performed some comparisons with VariationHunter

[42]. Since results were strikingly similar to Hydra, as

previously noted in [34], and we were unable to process

the full datasets for NA12878 and NA18507 using the

current publicly available distribution of VariantionHun-

ter, we present only the results for Hydra.) Finally, we

compare to CNVer, a method combining RD and PR to

detect copy number variants [38].

These methods, and other similar SV prediction pro-

grams, typically employ several steps, including align-

ment of reads to the reference genome, predicting SVs

from alignments, post-processing predictions (for exam-

ple, pruning a set of predicted SVs to remove redun-

dancy) and comparison to known variants. In an effort

to directly compare the performance of the SV predic-

tion algorithms, rather than the specific pre- and post-

processing steps, we standardized the alignment, post-

processing and comparison steps. In particular, we used

the same read alignments for all methods. (Note this

involved modifying the source code for Breakdancer to

consider only a user-specified set of discordant frag-

ments.) For GASVPro and Hydra, the methods that

allow fragments to have multiple possible alignments,

we realigned reads to the reference genome with Novoa-

lign [48] and distinguish results on the full set of align-

ments (GASVPro and Hydra) from results on only the

high-quality unique alignments (GASVPro-HQ or

Hydra-HQ). Before comparing results, redundant pre-

dictions were removed with the same pruning procedure

for each method (see Materials and methods).

We compare predictions to a known set of variants

using the double uncertainty metric, a novel metric

developed to represent uncertainties in the breakpoint

locations for both the predictions and the known var-

iants (see Materials and methods; Figures A5 and A6 in

Additional file 1). We use a ROC type analysis to show

the number of novel predictions and true positives for

each method as a function of the number of supporting

fragments (Hydra, Breakdancer, GASV), the predicted

depth of coverage (CNVer) or the likelihood of a pre-

dicted variant (GASVPro). Note that in the results

shown below, GASVPro-HQ and GASV consider the

same set of high quality unique alignments and utilize

the same clustering algorithm. As such, both methods

have the same maximum sensitivity, but GASVPro-HQ

has higher specificity due to our probabilistic model. On

the other hand, GASVPro uses a larger set of align-

ments, including lower quality and ambiguous align-

ments, and as such GASVPro can achieve higher

sensitivity than GASVPro-HQ and GASV.
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Simulated data

We first test GASVPro on simulated data generated

from the Venter genome [47]. We produced a synthetic

dataset by inserting the list of annotated SVs on chro-

mosome 17 of Venter’s genome (8,801 deletions, 8,572

insertions and 4 inversions) into the human reference

f1 f2 f3 f4 f5
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Figure 3 Sampling over connected components of alignments. The probabilistic model P(M|A) used by GASVPro allows for efficient
decomposition of the original space of mapping matrices M into independent components. Thus, we sample using MCMC on each component
independently and merge the results.

Sindi et al. Genome Biology 2012, 13:R22

http://genomebiology.com/2012/13/3/R22

Page 9 of 25



genome (hg18). These SVs varied in length from one to

several thousands of bases. We simulated 100× coverage

of this chromosome by 50-bp PRs with a mean fragment

length of 200 bp and a standard deviation of 20 bp

using the SAMtools wgsim program [49]. For all meth-

ods, the resulting sets of predictions were pruned and

compared to known variants with the double uncer-

tainty metric with reference uncertainty set to 0 (see

Materials and methods).

The lengths of deletions that are readily predicted

from PRs depend on fragment size [11]. To mirror the

procedures used on the sequenced genomes, we only

considered fragments with mapped length ≥2 × Lmax

(where Lmax = 293) as potential deletions. We compared

predictions from all methods to the 124 deletions with

length ≥125 bp. Figure 4 compares all methods on this

data set; compared with GASV, Breakdancer and Hydra,

GASVPro is over 50% more specific at maximum

sensitivity.

All methods had greater sensitivity than CNVer, which

made 218 predictions but detected only 3 deletions with

the double uncertainty metric. The lower sensitivity of

CNVer can be explained in part by internal filtering: the

published code of CNVer reports only copy-number

events that are larger then 1 kb, which eliminates all but

9 out of 124 simulated deletions. In addition, the

reported coordinates from CNVer lie farther from true

breakends, although the predicted deletion interval

typically contains the true deletion. We note that 16 of

218 CNVer predictions completely contained a true

deletion, including 5 of 9 deletions larger than 1 kb.

Thus, some of the difficulties with CNVer result from

how it merges potential copy-number variants before

reporting a final set of predictions (Section A3 in Addi-

tional file 1).

We next discuss GASV compared with Breakdancer,

Hydra and Hydra-HQ. Before removing redundant pre-

dictions by pruning, GASV predicts 648 deletions with

at least one supporting fragment, which detects 60 Ven-

ter deletions. Thus, the maximum sensitivity is 48%. A

common method to increase specificity is to increase

the minimum number of supporting fragments for a

prediction. As discussed previously, however, many pre-

dictions from SV methods overlap. Removing these

overlapping predictions (see Materials and methods)

improves performance more than increasing the number

of supporting fragments. For GASV, restricting the set

of predictions to those with at least two supporting frag-

ments results in 244 predictions but detects only 46

deletions. In comparison, pruning the 648 predicted

deletions with at least one fragment retains 347 predic-

tions that detect 57 true deletions. In comparison,

Hydra-HQ and Hydra had slightly lower sensitivity, pre-

dicting only 44 deletions at maximum sensitivity, but

had similar overall performance to GASV. Breakdancer

had similar performance throughout with slightly higher
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Figure 4 Simulated Venter chromosome 17. ROC curves comparing deletion predictions for Breakdancer, GASV, GASVPro-HQ, Hydra-HQ,
CNVer, GASVPro and Hydra to the 124 deletions from Venter chromosome 17 with minimum deletion length 125 bp. All methods analyzed the
same set of high-quality unique mappings; in addition, GASVPro and Hydra considered a set of lower-quality alignments, including ambiguous
fragments with multiple alignments. Predictions of all methods were post-processed in an identical fashion and the resulting predictions were
compared to the known coordinates for the Venter deletions according to the double uncertainty metric (see Methods).
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sensitivity than Hydra/Hydra-HQ and GASV and equal

specificity.

The integrative probabilistic model used by GASVPro

greatly improves specificity. Analyzing only high quality

unique mappings, GASVPro-HQ predicts only 64 dele-

tions with positive log likelihood, log �(V)> 0, which

include 50 true deletions. Note that these 64 predictions

are a subset of those predicted by GASV. Thus, com-

pared to GASV, GASVPro-HQ has a substantially lower

false positive rate at highest sensitivity. The improved

specificity of GASVPro-HQ over GASV is evidence that

our likelihood statistic is a better predictor of true var-

iants than the number of supporting fragments (see also

Figure A7 in Additional file 1 for a comparison). Includ-

ing low-quality and ambiguous alignments increases the

space of possible variants substantially without signifi-

cantly increasing the number of detectable deletions.

That is, the full set of possible alignments suggest 1,051

potential deletion events that overlap, at most, 61 out of

124 true deletions. However, GASVPro has similar per-

formance to GASVPro-HQ throughout. This suggests

that the MCMC sampling method is able to successfully

eliminate many false positive predictions even with a

much larger number of initially possible variants.

Finally, we compared the ability of all methods to

identify the four inversions on Venter chromosome 17

(Table 1). On this simulated data our probabilistic for-

mulation and MCMC sampling method proved benefi-

cial. GASVPro-HQ identified three inversions with four

predictions while GASVPro identified all four inversions

with no false positive predictions. Notably, the addi-

tional inversion identified by GASVPro had breakends

within a segmental duplication. In this case a total of

170 fragments had two possible alignments, each of

which corresponded to a potential inversion SV, but

only one of which is the true inversion. The beRD signal

used by GASVPro allowed the algorithm to successfully

distinguish between the true and false prediction. The

MCMC algorithm used by GASVPro assigned a greater

likelihood to the true prediction because 23 concordant

fragments map to the breakend polygon for the false

prediction. In comparison, Hydra requires ten predic-

tions to detect all four inversions. GASV and Breakdan-

cer are slightly less sensitive, detecting only three

quarters of known inversions. Thus, GASVPro is the

only method to attain optimal sensitivity and specificity

on the inversion data set.

Sequencing data

NA12878 deletions We next compared the methods on

Illumina sequencing data of a CEU individual,

NA12878, from the 1000 Genomes Project. There are

two sets of validated SVs available for this individual.

First, deletions and inversions were validated from a

previously published fosmid study [16] and deletions

were separately validated as part of the 1000 Genomes

Project [44]. In addition, the validated deletions from

the 1000 Genomes data set were also annotated as

homozygous or heterozygous.

Individual NA12878 was sequenced in both Pilot 1

(≈4× coverage) and Pilot 2 (≈40× coverage) of the 1000

Genomes Project. For Pilot 1, a single library was

sequenced with a read length of 37 bp and an average

fragment size of 230 bp. For Pilot 2, multiple libraries

were sequenced with read lengths from 37 to 52 bp and

an average fragment size of 150 to 350 bp. Thus, we

analyzed both datasets to examine the effect of different

coverage on the ability of methods to predict SVs.

In Figure 5 we plot ‘ROC curves’ comparing the pre-

dictions of GASV, GASVPro, GASVPro-HQ, Hydra,

Hydra-HQ, CNVer and Breakdancer on data from Pilot

2 (Figure 5a,b) and Pilot 1 (Figure 5c,d) to both sets of

validated deletions. Since CNVer could only be run on a

single library, we consider CNVer results on Pilot 1 data

alone. Because the complete list of true SVs in the gen-

ome is not yet known, we cannot compute the number

of false positives/negatives. Thus, we plot the number of

novel predictions compared to true positives. We also

considered only predictions with at least two supporting

fragments and plot these results as GASVPro-Min2. As

before, to assess the difference due to low quality and

Table 1 Comparison of performance of methods with respect to identifying the four inversions on Venter

chromosome 17

Method Minimum number to detect 3 Minimum number to detect 4

High quality alignments

Breakdancer 3 NA

GASV 3 NA

GASVPro-HQ 3 NA

Hydra-HQ 4 NA

All alignments

GASVPro 3 4

Hydra 5 10

GASVPro is the only method with perfect specificity and sensitivity, detecting all four inversions with no false positive predictions. NA, not applicable.
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ambiguous mappings, we plot both Hydra and Hydra-

HQ; the latter is Hydra run on only high-quality

uniquely mapped fragments.

We first consider the results on the higher coverage

Pilot 2 data (Figure 5a,b). Four curves represent methods

run on only uniquely mapped fragments: GASV, GASV-

Pro-HQ, Hydra-HQ and Breakdancer. Breakdancer has

slightly improved performance compared to Hydra-HQ

and GASV, attaining equal sensitivity with up to 200

fewer predictions throughout. However, this may be an

artifact of Breakdancer’s aggressive clustering procedure

(discussed in Section A3 of Additional file 1). GASVPro-

HQ has the best overall performance with over a 85%

reduction in novel predictions at highest sensitivity com-

pared to Breakdancer, GASV and Hydra.

Of the three methods that use all alignments (GASVPro,

GASVPro-Min2 and Hydra), GASVPro has the highest

sensitivity, detecting 119 of 139 true deletions with 19,715

novel predictions on the set of validated deletions from

the 1000 Genomes study. By increasing the minimum like-

lihood threshold, and thus reducing the number of predic-

tions, GASVPro predicts 114 of 139 true deletions with

only 907 novel predictions; this represents a 95% decrease

in the number of novel predictions with only a 3%

decrease in true positives. GASVPro-Min2 has higher

specificity than GASVPro, making around 200 fewer pre-

dictions than GASVPro at equal sensitivity. Notice the

addition of ambiguous mappings alone does not greatly

improve performance as the behavior of Hydra and

Hydra-HQ is very similar, with Hydra being slightly more

sensitive. Thus, regardless of whether unique or ambigu-

ous fragments are used, combining both read depth and

PRs with our probabilistic model (GASVPro-HQ, GASV-

Pro-Min2 or GASVPro) results in significant improve-

ments to sensitivity and specificity.

In addition to improving the ability to successfully pre-

dict true deletions, our probabilistic model also accu-

rately classifies these variants as homozygous or

heterozygous. GASVPro-HQ correctly classified 104 out

of the 119 known deletions with highest likelihood as

homozygous or heterozygous according to the annota-

tions in the 1000 Genomes data set. Remarkably, all

28 homozygous variants in this set were correctly classi-

fied even though some had fewer supporting discordant

fragments than many correctly classified heterozygous

variants.

On Pilot 1 data, we also compare the performance of

CNVer, which uses both discordant mappings and read

depth to predict copy number variants. In contrast to the

simulated data set above, all known deletions analyzed
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Figure 5 An ‘ROC curve’ comparing the number of known deletions that were correctly predicted (true positives) and the number of

novel deletion predictions using sequencing data and validated deletions from the individual NA12878 in Pilot 1 and Pilot 2 of the

1000 Genomes Project. (As discussed in the Methods section, we separately considered two sets of validated deletions [16,44].)
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here are larger than 1 kb and thus CNVer attains similar

sensitivity to PR methods, like Hydra, GASV and Break-

dancer. However, the number of discordant fragments

per prediction, the criteria used to rank results for PR

methods, provides a better trade off between true and

false positive predictions than the estimated depth of

coverage, which we use to rank CNVer predictions.

Even with the reduced coverage, compared to Pilot 2,

the benefits of our probabilistic models are evident, and

GASVPro outperforms all competing methods. GASV-

Pro-HQ and GASVPro-Min2 have improved perfor-

mance compared to Hydra, Hydra-HQ, Breakdancer and

GASV. Note that the specificity for GASVPro drops

below all other methods at the highest likelihood thresh-

old (Figure 5c,d). This drop in performance is due to

many predictions of GASVPro consisting of only a single

discordant fragment mapping to a large region with very

few concordant fragments. While it is possible these are

true variants, it is more likely that most of them are false

positives and, as such, eliminating these predictions

(GASVPro-Min2) restores performance to that obtained

by GASVPro-HQ. On this dataset, GASVPro-HQ cor-

rectly classifies 84 out of the 102 known deletions with

highest likelihood as homozygous or heterozygous. As in

the Pilot 2 data set, all 26 of 102 homozygous deletions

were correctly classified, 3 of which have fewer than 3

supporting fragments.

We next evaluate the effect of increased coverage on

each method by comparing the results from Pilot 2

(Figure 5a,b) with Pilot 1 (Figure 5c,d). For the methods

utilizing only discordant mappings (Hydra, Hydra-HQ,

GASV, and Breakdancer) performance is similar between

Pilot 1 and Pilot 2 data. In contrast, performance of our

probabilistic methods, GASVPro-HQ, GASVPro-Min2

and GASVPro, increases substantially with coverage. The

maximum sensitivity of GASV Pro and GASVPro-HQ

increases by about 20% on both data sets, from 97 to 119

and 96 to 114, respectively, for the fosmid validated set

and 100 to 119 and 103 to 120 on the 1000 Genomes

validated set. This improved performance results from

integration of both discordant fragments (PR signal) and

concordant fragments (RD signal). Increasing the sequen-

cing coverage increases both discordant and concordant

mappings throughout the genome. However, higher dis-

cordant coverage contributes to both true and false pre-

dictions, and thus methods that analyze only discordant

fragments are less able to leverage the increased coverage

to distinguish true from false predictions. In contrast,

increased coverage by concordant fragments leads to

sharper delineations between normal and deleted regions

in the genome. Although it is possible that CNVer results

would have also improved with the higher coverage data,

a comparison was not possible as multiple libraries are

not supported in the published CNVer implementation.

Finally, we remark on a practical difficulty in assessing

the performance of methods on sequenced genomes. As

indicated above, the complete set of SVs on these gen-

omes is unknown. Thus, it is possible that predictions

classified as ‘novel predictions’ could in fact be true, but

yet unknown, variants. In addition, the set of validated

variants that we use as true positives may not be repre-

sentative of all SVs in these genomes. For example, we

attained significant improvements in specificity for both

inversions and deletions on NA12878 when we used a

‘homozygous-only” model in GASVPro (Figure A8 in

Additional file 1). This suggests that the set of known

variants may underrepresent heterozygous deletions and

inversions, which are presumably more difficult to detect

and validate.

NA18507 deletions We next compare all methods on

previously published Illumina data [14] for the YRI indi-

vidual NA18507. This genome was sequenced to high

coverage (35 bp reads, ≈200 bp fragment length, 30×

coverage) and, as for NA12878, there were two available

validated sets of deletions and one set of inversions. In

Figure 6, we show the results for previously validated

fosmid deletions (Figure 6a) and validated deletions

from the 1000 Genomes Project (Figure 6b). Since

CNVer published their predictions on this data set, we

compare directly to their previously reported results.

As above, employing our integrative probabilistic

model for discordant fragments with unique mappings,

GASVPro-HQ greatly improves performance compared

to the original GASV. Using GASV alone, at maximum

sensitivity we predict 55 of 93 deletions from the fosmid

study with 2,240 novel predictions. In comparison,

GASVPro-HQ successfully predicts the same 55 of 93

deletions with only 573 novel predictions. Similarly, for

the 1000 Genomes deletions, at maximum sensitivity

GASV predicts 95 of 118 deletions with 2,201 novel pre-

dictions while GASVPro-HQ attains the same sensitivity

with only 1,372 novel predictions. Thus, using our prob-

abilistic framework provides a two-fold increase in speci-

ficity at equal sensitivity. On the fosmid validated

deletions, CNVer attains higher sensitivity than other

methods and has overall higher specificity than GASV or

Hydra at equal sensitivity (Figure 6a). However, this per-

formance is not maintained on both sets of validated

deletions (Figure 6b).

Overall, methods that analyze only unique mappings

(Breakdancer, GASV, GASVPro-HQ, Hydra-HQ) outper-

formed those considering lower quality and ambiguous

mappings. For this data set, including the full set of map-

pings (GASVPro and Hydra) greatly increases the num-

ber of predictions while, at best, modestly increasing the

number of validated deletions that are correctly pre-

dicted. Indeed, running Hydra on only the unique map-

pings yields an ‘ROC curve’ similar to GASV alone.

Sindi et al. Genome Biology 2012, 13:R22

http://genomebiology.com/2012/13/3/R22

Page 13 of 25



Although both GASVPro and original GASV match 70 of

93 variants from the fosmid study and 95 of 118 from

1000 Genomes Project, this is at the expense of predict-

ing thousands of novel deletions on each data set, 5,535

and 21,523, respectively. We attain improved perfor-

mance on the ambiguous data set by considering predic-

tions with more than one supporting fragment,

GASVPro-Min2; however, these results are still worse

than GASV alone.

The decreased performance of GASVPro and Hydra on

this data set, compared to NA12878 above, cannot be

solely attributed to the read length as in both cases the

sequenced reads were, on average, the same length,

37 bp. The differences seem likely due to difficulties in

mapping uniquely to the reference. For NA12878, 31% of

all mappings were unique while for NA18507, less than

1.5% of mappings were. In addition, there were more dis-

cordant fragments considered for NA18507, but fewer

validated SVs. This combination may explain the sub-

stantial increase in ‘novel’ predictions, as compared to

known deletions.

Inversions In comparison to deletions, inversion SVs are

more difficult to analyze for three reasons. First, there is

no difference in read depth across the inversion, but

only a change in read depth at the break ends (break

end read depth). Second, there are few known inversion
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Figure 6 An ‘ROC curve’ comparing the number of known deletions and novel deletion predictions for NA18507. (As for individual
NA12878, we separately considered two sets of validated deletions [16,44].)
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variants available for testing. Indeed, the 1000 Genomes

SV paper [43] reports thousands of deletions but no

inversions. Third, inversion SVs are known to have

breakpoints with segmental duplications or other repeti-

tive sequences, and aligning reads to these regions is

complicated.

Even with these limitations we demonstrate the bene-

fit of beRD in improving inversion prediction. As noted

previously, on the simulated data set the beRD signal

allowed GASVPro to correctly assign fragments to the

true prediction when there were two choices possible.

We now illustrate the beRD signal is beneficial on the

real data. In Figure 7, we show the beRD for two inver-

sions identified in NA18507 by GASVPro-HQ. As

expected, in both cases there is a noticeable drop in

coverage near the potential breakends, demonstrating

the benefit of a model that utilizes beRD in addition to

discordant fragments.

We compared predicted inversions for all methods to a

set of validated inversions from a previous fosmid study

[16] (see Materials and methods). The number of vali-

dated inversions is significantly smaller than the number

of validated deletions; 23 inversions were validated in

NA12878 and 10 in NA18507. All methods were far less

sensitive in identifying inversions than deletions; maxi-

mum sensitivity over all methods was less than 20% on

NA12878 and 70% on NA18507.

For all methods, we show the minimum number of

inversion predictions needed to identify 1, 2 and 3 out of

23 inversions for NA12878 Pilot 1 and Pilot 2 data

(Table 2). On Pilot 1 data our probabilistic models

GASVPro and GASVPro-HQ attained improved sensitiv-

ity compared to GASV when detecting one and two

inversions. In the case of the first inversion, the specifi-

city increased by over 50% for GASVPro and over 80%

for GASVPro-HQ. In almost all cases the higher coverage

from Pilot 2 improved performance as the same number

of inversions are detectable with fewer predictions. How-

ever, unlike for deletions, our probabilistic models do not

always attain highest specificity. Over all methods, GASV

was able to detect 2 inversions with the minimum num-

ber of predictions, while GASVPro-HQ detected 1 and 3

inversions with the minimum number of predictions.

Finally, including lower quality mappings on this dataset

did not yield improved performance; although GASVPro

was able to attain highest sensitivity, detecting 4 of 23

inversions, this came at the price of thousands of more

predictions.

Lastly, we analyze inversion results for NA18507

(Table 3). A total of two out of ten inversions are pre-

dicted from unique discordant mappings alone. All

methods are able to predict these inversions, but Hydra-

HQ is able to do so with only 43 predictions, the mini-

mum number across all methods. As in the simulated

Venter data, a third true inversion is detected with the

inclusion of ambiguous mappings. In this case, GASV-

Pro and GASVPro-Min2 detect three of ten inversions

with 60% fewer predictions than Hydra. Thus, while the

probabilistic model used by GASVPro is beneficial in

some cases, unlike for deletion variants, it does not

result in improved specificity for all cases.

Discussion
We introduce GASVPro, a method for SV detection that:

(1) integrates both the RD signal (including the more

localized beRD) and PR signal of structural variation into
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Figure 7 Concordant coverage per position for two known inversions successfully predicted by GASVPro. (a) A prediction with 99
discordant fragments overlaps a chromosome 4 inversion with left breakend uncertainty of 89.040 to 89.069 Mb and right breakend uncertainty
of 89.075 to 89.108 Mb. (b) A prediction with 15 discordant fragments overlaps a chromosome 6 inversion with left breakend uncertainty of
107.245 to 107.283 Mb and right breakend uncertainty of 107.277 to 107.315 Mb. For both predictions, a thick red line indicates the minimum
and maximum mapped ends (x,y) for all supporting discordant fragments.
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a single probabilistic model; (2) analyzes multiple possi-

ble read alignments using an MCMC procedure; and (3)

explicitly defines uncertainty in the breakends of a var-

iant. GASVPro is the first method to utilize a probabilis-

tic formulation to identify generic SVs and not only copy

number variants. We demonstrated that, compared to

the previously published methods Breakdancer, Hydra

and GASV, GASVPro has significantly higher specificity

at equal or greater sensitivity in detecting known var-

iants. Finally, our method is easily generalized to include

additional signals predictive of variants.

The increased specificity and sensitivity of GASVPro

demonstrates the benefit of integrating multiple signals of

structural variation into a probabilistic model. In particu-

lar, read depth provides a strong signal to detect deletions

and classify them as homozygous or heterozygous. As pre-

viously noted, GASVPro-HQ successfully classifies 104 of

119 deletions with known ploidy on NA12878. In contrast,

methods that consider only discordant fragments, includ-

ing Breakdancer, GASV and Hydra, yield more false posi-

tive predictions than GASVPro. In addition, we show that

beRD is useful in increasing specificity for predicting

copy-neutral inversions. Finally, our likelihood formulation

provides more useful criteria for prioritizing predictions

than the commonly used heuristic of the number of sup-

porting fragments. We anticipate that including SRs will

also aid in eliminating false positive predictions. In parti-

cular, the breakend polygon and beRD signal will suggest

the sequence content of SRs. Thus, it will be possible to

examine the data for SRs based on their sequence without

exhaustive re-alignments to the reference.

The results of GASVPro demonstrate improved sensi-

tivity when including reads with multiple possible align-

ments to the reference genome. However, this gain in

sensitivity comes at a cost of reduced specificity as

GASVPro makes many more predictions. On its surface,

this is not too surprising as the inclusion of the additional

lower quality alignments greatly increases the space of

possible variants. The MCMC algorithm used in GASV-

Pro is able to overcome the added ambiguity in part, with

increased specificity over naïve inclusion of ambiguous

alignments, but there remains a trade-off in improved

sensitivity versus reduced specificity. An important

caveat of this conclusion is that it is not possible to com-

pute the actual specificity for the two sequenced human

genomes, as the set of experimentally validated SVs is

Table 2 Inversion prediction in individual NA12878

Method Minimum number to detect 1 Minimum number to detect 2 Minimum number to detect 3

High quality alignments

Breakdancer 47 (37) 80 (221) NA (NA)

GASV 34 (158) 76 (298) 5,028 (NA)

GASVPro-HQ 11 (20) 116 (102) 206 (346)

Hydra-HQ 61 (139) 108 (246) 284 (NA)

All alignments

GASVPro 28 (59) 394 (286) 550 (504)

GASVPro-Min2 28 (59) 160 (334) NA (NA)

Hydra 159 (258) NA (470) NA (NA)

We report the results on both Pilot 2 and Pilot 1, with the Pilot 1 results in parentheses. In most cases the sensitivity of inversion detection increases with

coverage with more methods correctly predicting three inversions in the higher coverage Pilot 2 data. In some cases, true inversions identified by the uniquely

mapped data are lost with the addition of ambiguous alignments. These alignments result in substantially more predictions, which can cause true inversions to

be eliminated in the pruning process. The benefit of our probabilistic method and inclusion of the beRD signal is evident as higher specificity is attained by

GASVPro and GASVPro-HQ compared to GASV, when predicting the top inversion. NA, not applicable.

Table 3 Inversion prediction in individual NA18507

Method Minimum number to detect 2 Minimum number to detect 3

High quality alignments

Breakdancer 138 NA

GASV 72 NA

GASVPro-HQ 61 NA

Hydra-HQ 43 NA

All alignments

GASVPro 141 286

GASVPro-Min2 141 286

Hydra 551 752

We report the minimum number of predictions required to predict two or three known inversions from a set of ten previously validated inversions [16]. NA, not

applicable.
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likely not to be the complete list of SVs in these genomes.

In particular, the SVs with breakpoints in repetitive

regions - those where we expect GASVPro to have some

advantage - are also the hardest to predict and experi-

mentally validate, and are thus likely greatly underrepre-

sented in the list of experimentally validated predictions.

As the lists of validated SVs become more complete, it

will be possible to perform more complete benchmarking

of the sensitivity and specificity of prediction methods.

The increased specificity attained by GASVPro demon-

strates the benefit of including concordant coverage. An

important consideration when using concordant map-

pings is that distinct regions of the genome will have

reduced coverage for reasons unrelated to structural

variation. As discussed in the Materials and methods

section, repetitive sequences in the reference genome will

reduce the ability of alignment software to align concor-

dant fragments. In addition, as previously noted, there is

a bias in Illumina sequencing related to the GC content

of a region [14]. For the probabilistic model for deletions,

we found that scaling concordant coverage according to

the local mapability from the Rosetta Uniqueness Track

improved sensitivity for detection. However, the use of a

specific track is not essential for our model; indeed, the

GASVPro code is modular and allows the user to substi-

tute alternative models for concordant coverage and scal-

ing. Finally, it has been previously suggested that RD is

better modeled by distributions other than Poisson [50]

and these could be used in place of the Poisson distribu-

tion in Equations 1 to 9.

The probabilistic method of GASVPro is formulated

for a ‘generic breakend’ and is thus applicable to any SV

class since we expect a drop in the coverage by concor-

dant fragments at the breakends of the SV. Although

deletion SVs have a stronger signal of decreased cover-

age throughout the region, by carefully considering the

uncertainty in the location of mated breakends we iden-

tify the subtle signal of highly local drops in concordant

coverage consistent with copy neutral variants such as

inversions and reciprocal translocations. In this formula-

tion, we assume ‘clean’ breaks in the genome, meaning

there is no gain or loss of additional bases at the rear-

rangement junction. In practice, however, ambiguity in

breakend location is likely to cause difficulties in esti-

mating the true location and likelihood of a variant. For

example, on the simulated Venter genome, coverage

around the true variant breakends was significantly

reduced by short indels.

As presented, our probabilistic model considered only

concordant and discordant mappings; however, the

model is easily generalized to include additional informa-

tion about the alignments of PRs. As stated above, the SR

signal can be included as part of the expected coverage

around a breakend. The distribution of fragment lengths

can be included when computing the likelihood of mated

breakends (a,b) as each choice imposes a length on the

supporting discordant fragments. Similarly, the mapping

quality (or alignment score) of each mapped fragment

can be incorporated into the probability function by con-

sidering the probability a chosen mapping is the correct

one. We experimented with including quality scores on

our simulated Illumina data set, but found this had a

marginal effect on the results. However, with the addition

of third-generation sequencing technologies with differ-

ent error models [51], quality scores may be important.

Finally, because our probabilistic model is based on the

generative processes of sequencing genomes, our model

can be adapted to more general settings, such as detect-

ing structural variation in cancer genomes. However, the

extension to cancer genomes is non-trivial. In particular,

to accurately analyze cancer genomes one would need to

consider sample heterogeneity as the sequenced genomes

are inevitably a mixture of normal and cancer genomes

and possibly tumor subpopulations. In addition, our

probabilistic model would need to incorporate aneu-

ploidy by allowing more than two copies of the genomic

region.

Conclusions
Structural variation - including duplications, deletions,

insertions, inversions and translocations - is an important

component of genetic variation in both human and cancer

genomes. Current methods for SV detection typically con-

sider only one of several signals from resequencing data

when predicting structural variation. We introduced

GASVPro, a probabilistic model for identification of struc-

tural variation integrating both RD and PR signals of SVs.

Compared to existing methods, GASVPro has high sensi-

tivity in predicting known variants while reducing the

number of false positives by up to 90% for deletions and

50% for inversions.

Materials and methods
Defining breakpoint regions with GASV

GASVPro clusters discordant PRs using the previously

published program GASV [33]. The GASV algorithm

explicitly represents uncertainty in the location of the end-

points of the SV, the mated breakends, by a polygon and

clusters discordantly mapped fragments by utilizing a

computational geometric approach for intersecting poly-

gons. We briefly overview the approach used in GASV; for

a more detailed discussion of the GASV algorithm, refer

to [33].

A discordant mapping indicates a SV in the test gen-

ome defined by a novel adjacency (a,b), where positions

a and b are adjacent in the test genome, but not in the

reference genome (Figure 1). A single fragment alone

does not uniquely specify the pair of breakends (a,b)
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defining the rearrangement, but rather defines uncer-

tainty in the location of the breakends. Formally, if we

assume that a discordant fragment corresponds to

exactly one SV, then the mapped locations, x and y, of

the fragment endpoints (without loss of generality we

restrict x <y), and the breakends a and b satisfy:

Lmin ≤ sign(x)(a − x) + sign(y)(b − y) ≤ Lmax (11)

where sign(x) and sign(y) are 1 if the reads align to the

positive strand and have convergent orientation and -1

otherwise. Here we assume convergent orientation is

when reads have opposite orientation with the left read

forward and the right read reversed as in the case for

Illumina sequencing technology. The inequality (Equa-

tion 11) defines a trapezoid in the plane; discordant

fragments corresponding to the same SV will have over-

lapping trapezoids and their intersection can be used to

further refine the uncertainty in breakend location as in

Figure 1b.

Concordant coverage and mapability

We consider concordant mappings when computing the

likelihood of a variant because statistically significant

changes in coverage indicate the presence of rearrange-

ments relative to the reference genome. However, in

addition to SVs, several local factors will affect coverage

by concordant fragments.

Reads originating from duplications present in both the

test and reference genome cannot be mapped to a unique

position. Thus, such regions will have low coverage due

to restrictions in local mapability. To adjust for variable

mapability throughout, in the deletion model we scaled

the number of concordantly mapped fragments using

The Rosetta Uniqueness Track. The Rosetta Uniqueness

Track, created by John Castle at Rosetta Inpharmatics

(Merck; UCSC Genome Browser), quantifies mapability

by considering a 35-bp tiling of the genome and deter-

mining which 35-mers will have a unique mapping to the

reference genome with the Burrows-Wheeler aligner

(BWA) mapping tool.

For an interval I , let R(I) be the fraction of uniquely

mapable bases in I according to the Rosetta Uniqueness

Track and n(I) be the number of observed concordant

fragments whose mappings overlap I . In our analysis we

consider the scaled concordant coverage n̂(I) , where:

n̂(I) =
n(I)

α + βR(I)
, (12)

where we use α = 0.3 and β = 0.7 . Notice, when the

interval I does not have compromised mapability, that

is, R(I) = 1, we do not adjust the number of observed

fragments, n̂(I) = n(I) .

Note that in our analysis we do not scale the number

of discordant fragments. In practice we found an abun-

dance of discordant fragments mapping to regions of

very low-mapability and scaling the number of discor-

dant fragments led to an abundance of false positive

predictions. Finally, we utilized a heuristic when com-

puting the likelihood of SVs. If the concordant coverage

for a breakpoint or interval was in the top 0.01% accord-

ing to the Poisson model, we automatically assigned

C(B) = 0 . Since under the Poisson model extremely

high coverage by concordant fragments occurs with low

probability, this threshold further restricts the region

considered to represent SV endpoints. In such cases, we

expect coverage by concordant fragments to be

decreased compared to the rest of the genome.

Prediction uncertainty and the double uncertainty metric

Most studies determine if predictions match a known

variant by overlapping a predicted genomic interval with

the interval reported for the known variant. However,

the criteria for ‘overlap’ differs among methods. For

example, Chen et al. [32] considered a match when the

intersection of the intervals is at least 50% of the union

of the two or if the predicted interval entirely contains

the known variant. While Hormozdiari F et al. [42]

reported a deletion as matching a known variant if they

had 50% reciprocal overlap and considered any overlap

between an inversion and known variant. Although

these criteria do eliminate some types of spurious iden-

tification, the inherent weakness of these metrics is that

they do not unambiguously represent the underlying

uncertainty in the predicted or reported variants.

We introduce a criteria for overlap, the ‘double uncer-

tainty’ metric, that explicitly represents uncertainty in

both the coordinates of known variants, reference uncer-

tainty, and predictions, prediction uncertainty. We say a

prediction and known variant overlap if the pairs of inter-

vals specifying uncertainty in their coordinates do. For-

mally, ∈≥ 0 specifies the prediction uncertainty and

δ ≥ 0 is the reference uncertainty. That is, for the pre-

dicted SV, the left breakend is predicted to lie in the

interval [x− ∈, x+ ∈] and the right breakend in the inter-

val [y− ∈, y+ ∈] ; similarly, the reported known variant

has left breakend in the interval, [a − δ, a + δ] and right

breakend in the interval [b − δ, b + δ] . A predicted SV

overlaps a known variant in the double uncertainty

metric if both of the following are satisfied:

1. [x− ∈, x+ ∈] ∩ [a − δ, a + δ] �= ∅

2. [y− ∈, y+ ∈] ∩ [b − δ, b + δ] �= ∅

We provide illustrations of the double uncertainty

metric in Additional file 1. We illustrate the conversion

from output formats from different SV programs to use
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in the comparison in Figure A4 and overlap in the dou-

ble uncertainty metric in Figure A5 in Additional file 1.

In practice, the reference uncertainty, δ , and predic-

tion uncertainty, ∈ , reflect limitations on the technology

used, such as fragment size, but may also include ambi-

guity inherent in a breakend within a repetitive region.

We use prediction uncertainty ∈= Lmax/2 to reflect the

sequencing process. We base the reference uncertainty

on the specific data set and technology used to obtain

the known variants. For the Venter simulated deletions,

reference uncertainty is 0 because these variants are spe-

cified to the breakpoint. For variants from fosmid map-

pings of NA12878 or NA18507 we use fosmid mappings

reported by Kidd et al. [16] to determine the breakend

polygon with GASV, and use the uncertainty directly

from these polygons.

Markov chain Monte Carlo procedure

Given an alignment matrix A, we define a Markov chain

M over the space of mapping matrices M that has

P(M|A) as its stationary distribution. We use the

Metropolis Hastings algorithm to define transition prob-

abilities between matrices M and M′ , p(M, M′) . The

probability of transitioning between states depends on

two terms: proposing a move with proposal distribution

q(M, M′) and accepting this move with probability

α(M, M′) . That is:

p(M, M′) = q(M, M′)α(M, M′).

If the proposal distribution q(M, M′) yields an irredu-

cible and aperiodic Markov chain, then using the accep-

tance probability of the Metropolis Hastings procedure:

α(M, M′) = min

{

1,
q(M′, M)P(M′|A)

q(M, M′)P(M|A)

}

(13)

results in convergence of M to the stationary distri-

bution P(M|A) . The first step in our MCMC procedure

(Figure A2 in Additional file 1) is to stay at the same

mapping matrix M with probability 1/2. This self-edge

guarantees aperiodicity, but irreducibility depends on

the set Ŵ of possible moves. We developed several

classes of moves (Figure A3 in Additional file 1) to

explore the space of mapping matrices that yield irredu-

cibility. The first move consists of naively moving a frag-

ment from one mapping to another:

Naive (N):

Select a row i with uniform probability:

If there is a j such that mij = 1 set mij = 0 . If there

exists k ≠ j such that aik = 1 , then with probability

(1 − perr) select a k uniformly and set mij = 1 . Other-

wise, leave mik = 0 for all k.

If mij = 0 for all j, with uniform probability select a j

where aij = 1 and set mij = 1 .

Notice that the Naive (N) move always changes the

mapping matrix. If Ŵ consists of only class N moves,

then the chain M(Ŵ) satisfies irreducibility because any

two mapping matrices M and M′ may be reached from

one another by a series of class N moves. Thus, the Mar-

kov chain M(Ŵ) with Ŵ equal to the all class N moves

will yield the stationary distribution P(M|A) . However,

we found empirically that the mixing time of a Markov

chain with only a class N move was long (Section A2 in

Additional file 1). Thus, we define three additional

moves, which empirically yielded improved mixing times.

(Recall from the main text that, for an assignment matrix

A and associated mapping matrix M , V(M) is the num-

ber of SVs with positive support, Rj(A) is the set of rows

in A with a 1 in the column j and Sj(M) =
∣
∣Rj(M)

∣
∣ is

the total support for a variant j.)

Remove a single column (Z): this move zeroes out a

column of M:

With probability
1

V(M)
, select a non-zero column j.

For all i ∈ Rj(A) :

If mij = 1 , set mij = 0 . If there exists k ≠ j such that

aik = 1 , with probability (1 − perr) uniformly select a

column k and set mik = 1. Otherwise, leave mik = 0 for

all k.

Revive a zero column (Z̄ ): This move adds support to

a zero column of A:

With probability
1

(

n − V(M)
) , where n is the total

number of variants in V, select a zero column j, that is,

a column j with Sj(M) = 0 .

While mij = 0 for all i ∈ Rj(A) :

For each i, with probability 1/2, set mij = 1 and

mik = 0 for all k ≠ j.

Swap columns (S): this move swaps some entries of

two columns of A:

Let Rjk(A) = Rj(A) ∩ Rk(A) . With probability:

∣
∣Rij(A)

∣
∣

∑

j′

∑

k′:k′>j′

∣
∣Rj′k′ (A)

∣
∣
,

select a pair of columns (j, k) conditional on at least

one column having non-zero entries.

For all i ∈ Rij(A) :

If mij = 1 or mik = 1, then with probability 1/2, swap
mij and mik .
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Repeat if necessary to ensure at least one entry is

swapped between columns j and k.

The last step in formalizing the Markov chain is to

compute the acceptance probabilities. As described

above, the acceptance probability depends on the propo-

sal distribution and the probability of the mapping

matrix. In fact, since the acceptance probability depends

on only the ratio
P(M′|A)

P(M|A)
, the computation is simplified

to considering only the columns (variants) and rows

(fragments) that differ between the matrices. This ratio

is simple for class N and S moves since a Naive move

alters exactly one row and at most two columns and a

Swap move alters exactly two columns. Although in the

worst case Z and Z̄ may alter every row and column of

the mapping matrix, this is quite rare in practice.

In order to compute the proposal distribution, we

need to consider all ways to transition between mapping

matrices M′ and M . First, note that all move classes

result in a new matrix M′ . Thus, the probability of a

self-loop is always fixed at 1/2. Second, note that in

many cases different move types will create the same

resulting mapping matrix. For example, a class Z move

on a variant with only a single supporting fragment is

the same as a class N move on that supporting frag-

ment. Thus, the proposal distribution q(M′, M) and

q(M, M′) must consider all possible move types. We

use qN, qS, qZ and qZ̄ to distinguish between the propo-

sal distribution conditional on a move class.

A class N move alters the assignment of exactly one

row. Let F be the number of rows (that is, discordant

fragments), then probability of proposing M′ with a

class N move will be one of the following values:

1. If the altered row had only one possible non-zero

entry in A, that is
∣
∣Ri(A)

∣
∣ = 1, qN(M, M′) = (1/F),

2. If mij = 1 and m′
ik = 1 for mij ∈ M and m′

ik ∈ M′ ,

then qN(M, M′) = (1/F)

(

1 − perr

)

∣
∣Ri(A)

∣
∣ − 1

,

3. If mij = 1 and m′
ik = 0 for mij ∈ M and m′

ik ∈ M′

for all k, then qN(M, M′) = (1/F)perr ,

4. If mij = 0 and m′
ik = 1 for mij ∈ M for all i and

m′
ik ∈ M′ , then qN(M, M′) =

(

1/F
)

∣
∣Ri(A)

∣
∣
,

and 0 if no class N move is possible.

A class Z move results in a single empty variant. Let

V(M) be the number of non-empty columns. The pro-

posal distribution of a class Z move depends on select-

ing the column, with probability 1/V(M) and

reassigning the rows to either errors, with probability

perr , or another mapping, with probability
(1 − perr)

∣
∣Ri(A)

∣
∣ − 1

.

Let x be the number of rows moved to an error, when

another mapping is possible, and y be the set of rows

moved to another mapping given that at least two map-

pings are possible, then:

qZ(M, M′) =
1

V(M)
px

err

|y|
∏

i=1

(
(1 − perr)

|Ry(i)(A)| − 1

)

(14)

and 0 if no class Z move is possible.

In a class Z̄ move, all altered rows are moved to the

same originally empty column. A class Z̄ move depends

on selecting an empty column to add to, with probabil-

ity 1/(n − V(M)), and moving entries from other col-

umns. Let j be the column that was selected to be

added to, then
∣
∣Rj(A)

∣
∣ is the total number of rows that

could be assigned to j. We first select the number of

entries k to move to column j, conditional on at least

one entry changing. Then, the proposal distribution is

given by:

qZ(M, M′) =
Prob(Moving k entries)
(

|Rj(A)|

k

)

(n − V(M))

,
(15)

and 0 if no class Z̄ move is possible.

The proposal distribution for a class S move is nearly

identical to the class Z̄ move, except we need only con-

sider the probability of picking the two columns instead

of picking a single non-empty column. As before we

define qS(M, M′) = 0 if no class S move is possible.

Finally, for the full proposal distribution:

q(M, M′) = χ(M, M′)
(

qN(M, M′) + qZ(M, M′) + qZ(M, M′) + qS(M, M′)
)

, (16)

where χ(M, M′) is an appropriate weighting factor

based on which moves are possible. For example, if the

transition from M to M′ is possible with all move

types, then χ(M, M′) = 1/4 .

We now formally demonstrate our Markov chain con-

verged to P(M|A) given in Equation 10. As described

above, our chain is aperiodic and irreducible, since there

is a nonzero probability of moving from any one state

to any other state in a finite number of steps. A finite

state, irreducible and aperiodic Markov chain has a

unique stationary distribution π and this distribution

satisfies the detailed balance condition:

π(M)p(M, M′) = π(M′)p(M′, M) (17)

Here, transition probability p(M, M′) depends on two

terms, proposing a move from state M to M′ with propo-

sal distribution q(M, M′) and accepting this move with

probability α(M, M′) : p(M, M′) = q(M, M′)α(M, M′) . We
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show that the acceptance probability satisfies the detailed

balance condition in Equation 17. Without loss of general-

ity assume α(θ , θ ′) =
q(θ ′, θ)π(θ ′)

q(θ , θ ′)π(θ)
, then α(θ ′, θ) = 1 .

Thus:

π(θ)p(θ , θ ′) = π(θ)q(θ , θ ′)α(θ , θ ′)

= π(θ)q(θ , θ ′)
q(θ ′, θ)π(θ ′)

q(θ , θ ′)π(θ)

= q(θ ′, θ)π(θ ′)

= π(θ ′) q(θ ′, θ)

1
︷ ︸︸ ︷

α(θ ′, θ)
︸ ︷︷ ︸

p(θ ′,θ)

= π(θ ′)p(θ ′, θ)

Efficient sampling of mapping matrices

A practical difficulty in sampling from the space of map-

ping matrices is the high dimension of the sampling space

with millions of discordant fragments and hundreds of

thousands of potential variants in the genomes in this

study. However, we are still able to efficiently explore the

space of mapping matrices by subdividing potential var-

iants and discordant fragments into independent subsets

and sampling instead over sub-matrices of M (Figure 3).

Let G be a bi-partite graph defined by disjoint sets of

vertices corresponding to the fragments, F , and variants

V . There is an edge from a vertex f ∈ F to V ∈ V if

there is a mapping of f that supports the SV V . A con-

nected component c of G corresponds to a sub-matrix

Ac of A and Mc of M. The moves employed in our

MCMC procedure only modify assignments belonging

to a single connected component of G. Further, since:

∏

c

P(Mc|Ac) = P(M|A), (18)

we subdivide our sampling by separately considering

each connected component in G (Figure 3). Sampling

separately over mapping sub-matrices Mc for each c

and combining results is equivalent to sampling over

the full space of mapping matrices because each move

in the former has an equivalent move with equal prob-

ability in the latter and vice versa. Further, because we

never compute P(M|A) alone, but only the ratio P(M’|

A)/P(M|A) for a proposed mapping matrix M’, Equation

18 is more general than needed. Thus, we instead verify

the following sufficient condition:

∏

c
P(M′

c|Ac)

∏

c
P(Mc|Ac)

=
P(M′|A)

P(M|A)
(19)

As stated above, each move only affects one connected

component. Let c′ be the component affected by the

move, then the ratio on the left hand side of Equation

19 becomes P
(

M′
c′ |Ac′

)

/P (Mc′ |Ac′) , since c’ is the only

component changed. Thus, we replace the left hand side

in Equation 19:

P(M′
c′ |Ac′)

P(Mc′ |Ac′)
=

P(M′|A)

P(M|A)
(20)

To see that Equation 20 holds as equality, recall that

P(M’|A)/P(M|A) is computed over rows and columns of

M and M’ except the term ηe−ηV(M), which only

depends on the total number of variants with positive

support. Again, let c’ be the component affected by the

move. Thus, when computing P(M′|A)/P(M|A) , every

term corresponding to rows or columns that belong to

components other than c’ are cancelled. Moreover the

ratio
ηe−ηV(M′)

ηe−ηV(M)
= e−η(V(M)−V(M′)) depends on only the

number of columns whose support changes. Thus, this

ratio also depends on only the columns affected by the

move. Therefore, P(M′|A)/P(M|A) also becomes

P(M′
c′ |Ac′ )/P(Mc′ |Ac′) and Equation 20 is satisfied.

Defining the predicted variants

As indicated in the main text, we considered several dif-

ferent procedures for reporting a final set of predictions

from the mapping matrices M sampled during the

MCMC procedure. The simplest method is to consider

a single mapping matrix that maximizes P(M|A) as the

truth and report the resulting variants. However, we

found a useful procedure was to consider the entire set

of mapping matrices sampled during the Markov chain

M .

We first consider a variant-based method for analyz-

ing the Markov chain M . We note that the likelihood

ratio, Λ, was a useful test statistic to prioritize variants

when the set of mappings was fixed. We generalize

�(V, M) to be the likelihood ratio of a variant accord-

ing to a specified mapping matrix and seek the likeli-

hood of a variant over the entire space of mapping

matrices:

�(V) =
∑

�(V, M)P(M|A) (21)

Assuming the Markov chain M has converged, we

can approximate Λ(V) from the chain:

�(V) ≈
1

N

N
∑

i=1

�(V, Mi) (22)
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We also analyzed a fragment-based approach by con-

sidering each fragment independently over each map-

ping matrix M sampled in the Markov chain M . For

each fragment i and mapping j we define the average

support for this mapping as:

m̄ij = P(mi,j = 1|A). (23)

(Note that m̄ij is directly determined during the

MCMC sampling procedure.) If a fragment has the

same assigned mapping for a majority of the Markov

chain (that is, m̄ij ≥ 0.5 ), we are inclined to label that

alignment the ‘true mapping’. That is, we define a

matrix M̄(τ) = [m̄τ
ij] where:

m̄
τ

ij

{

1, if m̄ij ≥ τ , for some τ > 0.5

0, otherwise

Notice that M̄(τ) has two favorable properties: we

consider at most one mapping for each fragment, and

we exclude fragments that do not strongly support a

single SV. In the results we present we define our final

set of predictions by M̄(τ) = [m̄τ
ij] and report variants

based on their likelihood ratio Λ according to this map-

ping matrix. However, over all datasets studied, we

found only minor differences in the ROC curves for

three different sets of predictions (see Figure A4 in

Additional file 1 for a comparison).

Mapping reads

We analyzed alignments to two human genomes

(NA18507 and NA12878) and a simulated human chro-

mosome. In all cases, we used two sets of alignment

data: a high quality data set and a low quality data set.

The high quality data set consisted of fragments with a

clear and unique mapping to the reference genome. For

human genomes NA18507 and NA12878, the reported

mappings (from [14] and [44], respectively), were taken

as the high-quality set. For the simulated data for Ven-

ter chromosome 17, we mapped reads to the reference

chromosome 17 with BWA [52] to determine the high

quality unique mappings.

The low quality alignments were obtained by using

NovaAlign [48] to realign reads not belonging to a

uniquely mapped pair. We allowed up to 100 alignments

per read, but to eliminate fragments from highly repeti-

tive data, we removed all fragments with more than 100

alignments genome-wide. Although our low quality

alignments contained ambiguous fragments, many were

low quality unique mappings. For NA18507, 516,941 out

of 888,868 fragments included in the low quality set had

unique mappings. For NA12878, 69,388 out of 157,842

fragments had unique mappings. For both sets of

alignments, we removed concordant fragments, and

retained all alignments with mapped distance ≤500 kb

and with mapping quality >10.

For Breakdancer and GASV, results were only given

on the high quality mappings. For GASVPro and Hydra,

the suffix ‘-HQ’ specifies results on the high quality

datasets; results without the suffix were on the com-

bined high and low quality datasets.

Running GASVPro

Runtime analysis We now discuss details of the GASV-

Pro algorithm; after identifying the set of discordant and

concordant mappings, there are three steps in the pipe-

line of GASVPro: (1) clustering discordant mappings

with GASV (O(nlogn) in the number of discordant frag-

ments); (2) determining concordant coverage over each

breakend polygon, (O(ClogC) where C the number of

concordant fragments); and (3) running the MCMC

sampling procedure.

When running the MCMC procedure on each con-

nected component (Figure 3), we utilize a fixed number

of burn-in iterations (105) and sampling steps (9 × 105)

based on heuristics developed in analyzing the simulated

data. The complexity of the MCMC depends on select-

ing a move and deciding whether to accept the pro-

posed move, each of which depends on the size of the

connected component considered. With m discordant

fragments and n variants in a connected component, the

time to select a move, over all possible move types, is

O(m + n + n2) . Determining if a move is accepted

depends on the number of altered variants and frag-

ments; in the worst case all variants and fragments

could be altered O(n+m), but in practice the total num-

ber of modified cases is quite small.

MCMC parameters and considerations The parameter

l varied with the coverage of the data; we used l = 0.3

for the simulated Venter chromosome and NA12878,

and l = 0.6 for NA18507. Our final results were not

sensitive to the exponential prior on the number of var-

iants. However, this term may be useful in other ana-

lyses. As discussed in Additional file 1, when h is large,

P(M|A) is dominated by the exponential distribution

ηe−ηV(M) , which is maximized when the number of var-

iants is minimized. In addition, for the genomes we stu-

died we further restricted the space of mapping matrices

by fixing the mapping for fragments with a unique

assignment in the genome. As such, the MCMC proce-

dure would transition between possible mappings for

only truly fragments with multiple possible alignments.

Such a heuristic greatly reduces the computation time

of the MCMC by significantly reducing the total space

to sample.

Finally, additional considerations were made in the

analysis of NA18507. A combination of high coverage
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and short reads (37 bp) resulted in nearly half a million

predicted deletions and several extremely large con-

nected components ≥2 × 105 clusters with over 106 frag-

ments. Because of computational difficulties in analyzing

these clusters, along with difficulties in determining con-

vergence of the MCMC procedure, we eliminated all

mappings to the centromeres and retained only map-

pings that indicated a deletion larger than 1,000 bp. (In

the results discussed in the main text, all methods were

compared on this same reduced set of fragments.) After

these measures, there remained six connected compo-

nents where the number of edges in the graph exceeded

106. In analyzing these connected components, we sim-

ply assigned fragments with unique mappings.

Pruning predicted structural variants

Results from all methods were pruned in a post-processing

step to eliminate redundant predictions. First, predictions

from all methods were converted to intervals. For GASV,

a breakend polygon B was converted into an interval

I(B) = [amax, bmin] , where amax = arg max
a

{(a, b) ∈ B} and

bmin = arg min
b

{(a, b) ∈ B}. For Breakdancer we consid-

ered the reported interval [x,y] and for Hydra we consid-

ered the interval [IE,OS] (Figure A5 in Additional file 1).

Two predictions were said to be redundant if the

intersection of their intervals was at least 50% of the

union or if one interval contained the other. In such

cases, for GASV, Breakdancer and Hydra, the prediction

with more supporting fragments was retained. For

GASVPro, the prediction with greater likelihood accord-

ing to the respective model was retained.

Known variants

As discussed in the text, we compared predictions to

sets of known SVs with the double uncertainty metric.

Importantly, this metric considers uncertainty in the

location of both the prediction and known variant.

For the simulated Venter genome, we compare predic-

tions to the set of deletions and inversions detailed in

[47]; there were 4 inversions and we used the 124 dele-

tions with length ≥125 bp. When comparing predictions

to known variants, we use reference uncertainty δ = 0

because the true location of the breakpoints is known

exactly.

For both genomes, NA12878 and NA18507, we com-

pared predictions from each method to two sets of vali-

dated variants. The first was from a fosmid sequencing

study [16] and the second from the 1000 Genomes Pro-

ject pilot study [44]. Although the combined set of var-

iants likely contained duplicates, to maximize sensitivity

we did not attempt to reduce these sets by eliminating

predictions reported by both studies.

A fosmid sequencing study validated hundreds of

inversions and deletions [16]. We considered only the

subset of predictions that were validated in the same

individuals (NA18507, NA12878). As previously

reported, several of the predictions from the original

study did not have a common breakpoint region defined

by fosmid mappings [33]. Thus, we restricted the vali-

dated set to the 93 deletions and 10 inversions for

NA18507 and 151 deletions and 23 inversions for

NA12878 that corresponded to clusters of at least two

fosmids. In comparisons, we utilized the inherent uncer-

tainty in breakend polygons [33] as the reference

uncertainty.

The 1000 Genomes Project pilot study reported vali-

dated deletion variants as well as the individuals to

whom they belonged [44]. (Note that the pilot study did

not report inversion SVs.) We separated validated var-

iants that were identified by PR mapping and restricted

to deletions that were larger than 5 kb. The final set

represented a total of 118 deletions for NA18507 and

139 deletions for NA12878. Because many next-genera-

tion sequencing libraries were used in predicting these

variants, we used δ = 200 as an approximation for the

prediction uncertainty in these variants.

Additional material

Additional file 1: An Appendix containing additional figures,

discussion of MCMC properties and comparison of clustering

methods.
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