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Abstract 

Background: Oils and bioproducts extracted from cultivated algae can be used as sustainable feedstock for fuels, 

nutritional supplements, and other bio-based products. Discovery and isolation of new algal species and their 

subsequent optimization are needed to achieve economical feasibility for industrial applications. Here we describe 

and validate a workflow for in situ analysis of algal lipids through confocal Raman microscopy. We demonstrate its 

effectiveness to characterize lipid content of algal strains isolated from the environment as well as algal cells screened 

for increased lipid accumulation through UV mutagenesis combined with Fluorescence Activated Cell Sorting (FACS).

Results: To establish and validate our workflow, we refined an existing Raman platform to obtain better discrimina-

tion in chain length and saturation of lipids through ratiometric analyses of mixed fatty acid lipid standards. Raman 

experiments were performed using two different excitation lasers (λ = 532 and 785 nm), with close agreement 

observed between values obtained using each laser. Liquid chromatography coupled with mass spectrometry (LC–

MS) experiments validated the obtained Raman spectroscopic results. To demonstrate the utility and effectiveness of 

the improved Raman platform, we carried out bioprospecting for algal species from soil and marine environments in 

both temperate and subtropical geographies to obtain algal isolates from varied environments. Further, we carried 

out two rounds of mutagenesis screens on the green algal model species, Chlamydomonas reinhardtii, to obtain cells 

with increased lipid content. Analyses on both environmental isolates and screened cells were conducted which 

determined their respective lipids. Different saturation states among the isolates as well as the screened C. reinhardtii 

strains were observed. The latter indicated the presence of cell-to cell variations among cells grown under identical 

condition. In contrast, non-mutagenized C. reinhardtii cells showed no significant heterogeneity in lipid content.

Conclusions: We demonstrate the utility of confocal Raman microscopy for lipid analysis on novel aquatic and soil 

microalgal isolates and for characterization of lipid-expressing cells obtained in a mutagenesis screen. Raman micros-

copy enables quantitative determination of the unsaturation level and chain lengths of microalgal lipids, which are 

key parameters in selection and engineering of microalgae for optimal production of biofuels.
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Background
New algal isolates displaying interesting lipid pheno-

types have been targets of biofuel production efforts. For 

example, a recently isolated cold-tolerant lipid producing 

green–yellow algae, Heterococcus sp. DN1 accumulates 

lipids to up to 55 % of its dry weight and produces eicos-

apentaenoic acid (EPA) at near freezing temperatures 

[1]. A high-lipid strain of Scenedesmus sp. strain R-16, 

which accumulates lipids at 43.4 % of its dry weight, was 

selected for heterotrophic lipid production by screening 

a group of 88 field isolates using ultrasonic assisted Nile 

red lipid staining [2].

Following strain isolation, mutant selection and engi-

neering can increase lipid production. �e lipid output, 

which can be as high as 80 % of the dry mass of the cell 

[3], often depends on various nutritional stresses such as 

nitrogen or phosphorous starvation [4] which should be 

investigated and optimized. Additionally, metabolic engi-

neering and genetic modification can lead to the maxi-

mization of lipid or other metabolite production. Genetic 

knockouts, transformations or UV mutagenesis can alter 

the expression of lipids or other metabolites of interest. 

Because of the ease of UV mutagenesis, it is an attrac-

tive and quick initial genetic modification technique that 

can be applied on different algal isolates to perturb their 

lipid production. For example, Vigeolas et al. [5] used UV 

mutagenesis to increase the lipid production of Chlorella 

sorokiniana and Scenedesmus obliquus isolates. Follow-

ing UV mutagenesis, they used Nile red dye to screen 

for increased lipid production among the mutants and 

showed that certain mutants had an obvious increase in 

lipid production without a noticeable change in growth 

rate [5].

One automated lipid screening approach is through 

sorting mutants based on lipid production using fluo-

rescence activated cell sorting (FACS). FACS allows for 

automatic sorting on a single cell based on the fluores-

cence of a dyed cell. It is a non-invasive and non-lethal 

method that allows great flexibility in sorting. In FACS, 

the fluorescence signal of heterogeneous cell mixtures 

is read one cell at a time, and that signal determines the 

charge that will be induced onto the cell. �e charged 

cells are then deflected into separate wells, ultimately 

resulting in sorting based on a fluorescence characteris-

tic. Besides fluorescence, cells can be sorted based on size 

or complexity or a combination of size, complexity and 

fluorescence parameters.

Given a genetic or metabolic change to algal lipid pro-

duction, technological advancements will require the 

development of methods to precisely identify and quan-

tify the lipids generated by microalgae and to correlate 

the generated lipids to the various genetic manipulation 

strategies and/or growth conditions [6, 7]. Availability 

of such techniques would enable selection of microalgae 

necessary for the optimal production of biofuels based 

on chemical characteristics in addition to lipid produc-

tion quantities. Analytical techniques used to investi-

gate lipids in algal research include GCMS [8], LCMS 

[9], NMR [10], FTIR [11], and Raman spectroscopy [12]. 

Raman spectroscopy is advantageous in that it allows 

the label-free, rapid characterization of biological cells 

[7, 12]. Unlike most other methods of lipidomics, it does 

not require extraction of lipids from the cells and can be 

applied for in vivo analyses [13]. In Raman spectroscopy, 

high intensity monochromatic radiation, usually from 

a laser, is shined on a sample and the scattered radia-

tion is analyzed in terms of the energies (frequencies) 

of the scattered photons. Micro-Raman spectroscopy 

yields information on a single cell level and is useful for 

studying cellular dynamics. �e scope of Raman spec-

troscopy is further expanded by advances such as surface 

enhanced Raman spectroscopy (SERS) [14, 15], coher-

ent anti-stokes Raman scattering (CARS) [16, 17], reso-

nance Raman spectroscopy (RRS) [18, 19] and confocal 

Raman microscopy (CRM) [20, 21]. CARS is a non-linear 

technique that overcomes the problem of Raman effect 

being a non-resonant phenomena. It allows for a much 

faster 3-D imaging but is limited by the spectral band-

width available. Confocal Raman spectroscopy on the 

other hand, allows access to full spectral information 

with high spatial resolution. Combination of confocal 

optical microscopy with Raman spectroscopy resulting in 

3-D spatial characterization of the samples has resulted 

in Confocal Raman microscopy becoming the method of 

choice for label-free and real-time monitoring of various 

biological samples and living cells investigations [12, 22]. 

Using direct or serial imaging techniques (e.g., point and 

line mapping) confocal Raman microscopy enables fast 

spectral data acquisition, at a reasonable spatial resolu-

tion of ~300 nm.

In algal research, Raman spectroscopy has been used 

for the analysis of pigments, carbohydrates, and lipids 

[23, 24]. Huang et al. [25] used confocal Raman micros-

copy for the compositional analysis of microalgae. �e 

investigators collected Raman spectra using 532 nm laser 

and found strong fluorescence background with time-

dependent behavior. Raman spectroscopy has also been 

used in single cell resolution analysis of microalgae. �e 

prediction of nutrient status of single microalgal cells by 

Raman spectroscopy is reported by Heraud et  al. [26]. 

Kaczor et  al. [27] have reported imaging of astaxanthin 

in a single microalgal cell by in situ Raman imaging with 

1064 nm laser. Recently, Wu et  al. [7] developed a laser 

trapping Raman spectroscopy (LTRS) method, a combi-

nation of laser trapping and micro-Raman spectroscopy, 

to analyze the lipid composition in microalgae on a single 
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cell basis. In addition, Hosokawa et al. [28] used the con-

focal Raman microscopy technique for quantitative mon-

itoring of lipids on a single cell basis. A concise summary 

of the developments in Raman spectroscopy based algal 

research is provided in two recently published review 

articles [29, 30]. Accordingly, the ratiometric method of 

lipid analysis has been established with a sound footing, 

though fine-tuning of acquisition parameters is necessary 

for improved data collection and more accurate analysis.

Results and discussion
Experimental work�ow

Bioprospecting and mutagenesis are two important 

strategies in algal-based biofuel development. Opti-

mization of biofuel production using these strategies 

requires the sorting and analysis of a large number of 

algal isolates in terms of their triacylglycerol (TAG) con-

tents. FACS and ratiometric Raman analysis are ideally 

suited for this purpose and we demonstrate the applica-

tion of both in an integrated workflow for screening of 

microalgae after bioprospecting and UV mutagenesis. 

Isolation of novel algae from field samples may be fol-

lowed by UV mutagenesis to perturb and improve lipid 

production. Following UV mutagenesis, FACS can select 

for mutant populations and strains that have a change 

in lipid production. Central to this workflow, confocal 

Raman microscopy can characterize lipids produced by 

the sorted and selected algal cells in situ rapidly without 

the need to extract lipids from the cells (Fig. 1). Optical 

micrographs using 50×  objective are recorded to locate 

single cells and forwarded for a controlled photo-bleach 

at λ  =  532  nm (excitation). �e approximate locations 

of lipid-rich regions are identified by Raman hyperspec-

tral imaging with low pixel density (10  ×  10 spectra/

image at 0.5 s integration time). �ese parameters enable 

a faster acquisition of Raman hyper spectral images. �e 

selection of suitable filters helps to locate high lipid con-

centration regions. �e size of the lipid-rich regions is 

reduced until the scanning area ~(1 × 1) µm2 is obtained. 

Single spectrum is extracted at highest integrated peak 

location by z-focus tuning. As a rapid process, this work-

flow offers better spatial resolution and characterization 

of around 10 cells per hour (Additional file 1). To validate 

this workflow, field isolation is demonstrated on six iso-

lated strains, while UV mutagenesis and FACS screening 

is demonstrated on C. reinhardtii (CC-503). Confocal 

Raman microscopy is then applied to samples to charac-

terize the lipid contents.

Raman spectroscopy of algae

Essential to any algal lipid bioproduction endeavor is the 

ability to rapidly characterize accumulating algal lipids. 

Confocal Raman microscopy can fulfill this role on a 

single cell and high throughput basis. Hyperspectral imag-

ing using confocal Raman microscopy was used to locate 

lipid-rich regions within microalgae cells with a high spa-

tial resolution. Integrated peak intensity corresponding to 

the most intense Raman band (2800–3000 rel cm−1 when 

using the green laser for excitation and 1440 rel cm−1 

when using the near infra-red {NIR} laser for excitation) 

used as a signature peak to locate lipid-rich regions within 

the cells (Additional file  1). We note that the ratiomet-

ric method of analysis is applicable for the characteriza-

tion of free fatty acids as well as triacylglycerides (TAGs) 

and that the accumulated algal lipids are expected to be 

in the form of TAGs [31]. When used for the analysis of 

TAGs, it provides an estimate of the average number of 

C=C bonds per fatty acid residue and the average chain 

length of the fatty acid residues incorporated in the TAGs. 

We used two different excitation lasers, 532 and 785 nm, 

with a close agreement observed between the two meas-

urements. �ese two lasers differ in terms of the excita-

tion of the fluorophores present in microalgae as well 

as their cross sections for the excitation of lipid Raman 

bands. Laser-induced autofluorescence is strong with the 

532 nm laser but the Raman excitation power of the laser 

is ~5 times higher than that of the 785 nm laser. For the 

532  nm laser excitation, optimized spectral conditions 

for photobleaching of algal cells were developed to obtain 

fluorescence-free Raman spectra. Spectral data acquisi-

tion and imaging were tuned for optimal integration time 

and number of accumulations, resulting in significantly 

improved lipids signal to noise ratios. Calibration of quan-

titation using fatty acids standards and ratiometric analy-

sis of Raman spectra obtained through this technique to 

determine the number of C=C bonds and the hydrocar-

bon chain length of the lipid molecules are described in 

the following sections.

Raman spectra of fatty acid standards

We selected a series of eleven pure fatty acids as calibra-

tion standards for the ratiometric method of determina-

tion of lipid composition. �ese even-numbered fatty 

acids are commonly found in micro-algal lipid extracts 

and are characterized by differences in their aliphatic 

chain lengths and the number of C=C bonds (Additional 

file 2). Figure 2, shows the Raman spectra of these stand-

ards with decreasing degrees of unsaturation. �e domi-

nant peaks for the 532 nm excitation (Fig. 2a) are due to 

–CH2 symmetric and asymmetric stretching vibrations, 

centered at 2800–3000  cm−1, whereas the dominant 

peaks for the 785  nm excitation (Fig.  2b) are the –CH2 

bending peaks at 1440 cm−1. �e absolute peak intensi-

ties of the dominant peaks for spectra obtained with 

532  nm excitation are roughly an order of magnitude 

higher than those obtained using the 785 nm excitation. 
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Peaks at 1260 cm−1 (=C–H cis stretch), 1650 cm−1(C=C 

stretch), and 3023  cm−1 (=C–H stretch) are the mark-

ers of unsaturation whereas peaks at 1300  cm−1 (–CH2 

twist), 1440  cm−1 (–CH2 bend), and  ~2800–3000  cm−1 

(CH2 symmetric and asymmetric stretches) correspond 

to the aliphatic chains of fatty acids [7].

Raman spectra for C. reinhardtii (CC-503) were 

recorded for 532 and 785  nm excitation wavelengths 

(Additional file  3) after background correction. �ese 

data describe Lorentzian peak curve fitting for the oleic 

acid and the reference microalgae C. reinhardtii (CC-

503) in the lipid-rich region at 1445 and 1650 cm−1 and 

Fig. 1 The workflow employed in lipid characterization of microalgae. Bioprospecting of aquatic and soil algae, as well as mutagenesis of algal cells, 

such as C. reinhardtii, are carried out to generate algal samples with potentially desirable lipid characteristics. Mutagenized cells are sorted by FACS, 

based on fluorescence of a lipophilic dye to isolate cells with increased lipid accumulation phenotypes. The obtained environmental samples and 

screened mutants are then analyzed by confocal Raman microscopy. This method, once optimized, allows for rapid in situ characterization of lipids 

through ratiometric analysis of Raman spectra. As a rapid process, this workflow offers better spatial resolution and characterization of about 10 cells 

per hour. The spectra yield information about the number of C=C bonds and the hydrocarbon chain length of the lipid molecules. The workflow 

allows rapid characterization of algae for molecular traits that are suitable for use in production of biofuels
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evaluation of their intensity ratios I1650/I1440. �e Raman 

band at 1650 cm−1 could overlap with the amide (I) band 

from proteins. In these measurements, we have made 

sure that the spectra selected for analysis were free from 

other characteristic protein bands such as δ(N–H) and 

ν(N–C) bands (amide (III) bands) at 1220–1300  cm−1, 

disulfide peaks at 550 cm−1 and characteristics peaks of 

aromatic amino acids near 1004 cm−1 [7]. Moreover, Lor-

entzian peaks curve fitting were performed for olefinic 

(=C–H stretch) band at 3003 cm−1 that appears imme-

diately after –CH2 stretch ~2800 cm−1. �e curve fitting 

data for this characterization are included in Additional 

file 3. A comparison of the intensity ratios I1650/I1440 and 

I3003/I1440, is found to be satisfactory as both intensity 

ratios, I1650/I1440 and I3003/I1440, corresponding to CC-503 

(row 3) are close to the values obtained for the same fatty 

acid standard (oleic acid, row 2). �us, both methods of 

analysis are in good agreement with respect to number of 

C=C bonds and CH2:C=C ratio of the algal lipids.

In addition to the lipid bands mentioned before, peaks 

in the 1400–1500  cm−1 spectral range were seen due 

to C–C stretching in chlorophyll a, as well as CH2 and 

CH3 deformation modes from β-carotene and chloro-

phyll a. �e bands 1000–1200  cm−1 are due to C–O 

stretching vibrations of chlorophyll and sharp bands at 

1155 and 1006  cm−1 could be indexed to C–H stretch-

ing in β-carotene. NCC and CCC in-plane bending of 

chlorophyll appeared around 800–1000  cm−1, whereas 

OCO and CH deformation are found below 800  cm−1. 

Excitation with 785  nm laser resulted in enhanced 

β-carotene bands. Increase in β-carotene bands due to 

NIR excitation is usually associated with π-electron/

phonon coupling mechanism consistent with previous 

reports [32, 33].

Quanti�cation of standards and microalgal lipids

Ratiometric analysis was used for quantitative analy-

sis of lipids since absolute spectral intensities with low 

variation are not easily obtainable in Raman spectros-

copy. �is is especially true for complex samples such 

as lipids in cellular environments because of the back-

ground from fluorescence and other optical phenom-

ena. Specifically, the ratios of integrated peak intensities 

at 1440 and 1650  cm−1, (I1650/I1440), corresponding to 

the –CH2 bending and C=C stretch, respectively, in the 

lipid-dominated region were used for compositional 

analysis. For lipids, the ratio of I1650/I1440 has been shown 

to be linearly correlated with both the number of C=C 

bonds and NC=C/NCH2, where NCH2 is the number of ali-

phatic –CH2– groups [7]. Figure 3a, b show the calibra-

tion plots for intensity ratios of I1650/I1440 recorded using 

532 and 785  nm laser with number of C=C bonds and 

NC=C/NCH2 in standard lipids. Increasing the degree of 

unsaturation led to a linear increase in intensity ratio, 

which is in agreement with Wu et  al. [7]. �e ratio of 

I1650/I1440 also exhibits a non-linear correlation with the 

melting points of lipids (Fig.  3c). Calibration plots for 

even-numbered fatty acid standards with the integer 

a b

Fig. 2 Raman spectra of fatty acid standards and microalgal lipids a green excitation (532 nm laser) and b NIR excitation (785 nm laser). Raman 

spectra are listed with decreasing degree of unsaturation of fatty acid standards from top to bottom and show a gradual decrease in the inten-

sity of Raman band at 1650 rel cm−1 (C=C stretching mode) compared to that of 1440 rel cm−1 band (CH2 bending mode). Raman peaks in the 

2800–3000 rel cm−1 (CH2 symmetric and asymmetric stretches) are scaled in intensity to allow visualization. These modes are more intense than the 

peaks at 1440 and 1650 rel cm−1 when using the green excitation and much weaker than the peaks at 1440 and 1650 rel cm−1 when using the NIR 

excitation
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values for the degree of unsaturation are linear, but in 

our current investigation, the intensity ratios calculated 

for micro-algal lipids from these plots are non-integers. 

�e non-integer values suggest the presence of a mixture 

of fatty acids with different chain lengths and degree of 

unsaturation in the algal samples. In order to obtain the 

exact proportion of fatty acids and intermediate values 

of C=C or NC=C/NCH2 in the calibration plot, we needed 

to obtain Raman spectra for mixtures of these fatty acids. 

For example, two fatty acids with similar physical char-

acteristics could be mixed in different weight fractions. 

�e idea of using mixtures of standard lipids can lead to 

improved accuracy of the data analysis. Hence, we mixed 

two standard fatty acids, oleic and palmitoleic acid, in dif-

ferent proportions and intermediate values of intensity 

ratios were obtained and included in the calibration plot 

(Additional file 4), the results thus obtained with mixed 

standard lipids are consistent with the unmixed calibra-

tion plots.

Veri�cation and analysis of C. reinhardtii strain CC-503 lipid 

content

Single cell Raman spectra were collected from C. rein-

hardtii, the reference strain (CC-503) microalgal species 

using 532 and 785  nm lasers. Prior to spectral acquisi-

tion, the cells were photobleached using optimized laser 

power values (see “Methods”), to minimize the autofluo-

rescence from the sample area. Peak assignment informa-

tion for the recorded spectra can be found in Additional 

file  5. Before photobleaching, the spectrum was domi-

nated by the fluorescence of pigments as well as the reso-

nance Raman peaks of carotenoids. Carotenoids are lipid 

soluble and can give rise to intense resonance Raman 

peaks even at low concentrations. �e carotenoid peaks 

are present near the unsaturation and saturation marker 

locations (Additional file  5) and could introduce error 

in measurement. �erefore, controlled photobleaching 

was performed until the intensities of the most domi-

nant carotenoid peak (1520  cm−1) decreased to levels 

far below the lipid analysis peaks (1440 and 1650 cm−1). 

After photobleaching, Raman hyperspectral imaging was 

performed to locate an area with the maximum lipid con-

tribution to Raman spectra, as described in “Methods” 

(see also Additional file 1). �e analysis volume contains 

mostly lipid-dominated regions in the confocal focus and 

is characterized by a Raman spectrum that is almost sim-

ilar to that of the standard lipids. �us, our guided scan 

locates lipid droplets with high precision and results in 

better quality spectra.

Calibration plots were obtained with visible and NIR 

laser excitations along with the analysis of C. reinhardtii 

(CC-503) lipids as a reference microalgae (Fig.  3). �e 

intensity ratio (I1650/I1440) calculated for 532 and 785 nm 

a

b

c

Fig. 3 Calibration curves for quantitative assessment of extracted 

micro-algal lipids. Integrated peak intensities obtained from Raman 

spectra of fatty acid standards were used to calculate the intensity 

ratio I1650/I1440. a shows the linear variation of intensity ratio with the 

degree of unsaturation (i.e., C=C bonds), b shows the linear variation 

of intensity ratio with NC=C/NCH2 (i.e., ratio of the number of C=C 

bonds with the number of –CH2– units), and c shows the sigmoidal 

variation of intensity ratio with melting points of fatty acid standards. 

Black line (1) represents curve-fit to the data obtained using 532 nm 

excitation and blue line (2) represents curve-fit to the data obtained 

using 785 nm excitation. Results of the ratiometric analysis of lipids 

expressed in C. reinhardtii (CC-503) using the two lasers are shown by 

red and green circles on the respective calibration curves
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excitation were found to be 0.52 and 0.30, respectively. 

In Fig. 3a, the corresponding number of C=C bonds are 

found to be 0.80 and 0.66, respectively. �e ratio of C=C 

bonds with –CH2 stretching (NC=C/NCH2) (Fig.  3b) are 

found to be 0.07 and 0.06, respectively. �erefore, the 

number of C=C and NC=C/NCH2 calculated by 532 and 

785  nm laser are in good agreement with each other. 

�is result demonstrates that rigorous, quantitative 

comparison of spectral data can be obtained regardless 

of the excitation source. For this well-characterized spe-

cies, i.e., C. reinhardtii, our measured values are consist-

ent with those reported in the literature which report the 

occurrence of saturated and monosaturated lipids pre-

dominantly, with a variation in the relative concentration 

depending on the growth conditions [34–37]. Addition-

ally, the melting point for the algal sample, C. reinhardtii, 

CC-503, obtained from the sigmoidal plot, was also 

quantitatively consistent with the results obtained for the 

standard fatty acids (Fig.  3c). �e melting point of this 

lipid was found to be 10 (±2)  °C. We performed liquid 

chromatography–mass analysis (LC–MS) for independ-

ent validation of the Raman analysis. As shown in the 

supplementary information section (Additional file 6) the 

major component of the extract is oleic acid, which con-

firms the results of ratiometric Raman analysis.

Isolation of novel aquatic and soil microalgal strains

To demonstrate the applicability of our workflow to a 

range of novel algae that might be isolated through bio-

prospecting expeditions, we isolated algae from a num-

ber of different environments including temperate and 

subtropical geographies (Fig.  4a). Genomic DNA was 

extracted and sequenced from most of the isolates. Fol-

lowing a draft de novo assembly, phylogenetic assign-

ments were carried out based on sequence alignment of 

the Ribulose-1,5-bisphosphate carboxylase/oxygenase 

(RuBisCo) large subunit, RbcL (Fig. 4b, “Methods”).

Two novel species of Chlamydomonas were isolated 

from soil samples from New York City, USA (Chla-

mydomonas sp. KSA1) and the outskirts of Abu Dhabi, 

UAE (Chlamydomonas sp. HC1). �e isolated Chla-

mydomonas strains were more similar (with regards 

to nucleotide sequence of key taxonomic regions) to 

Chlamydomonas reinhardtii than the majority of other 

Chlamydomonas strains except for Chlamydomonas 

orbicularis and Chlamydomonas globosa (Fig.  4b). Five 

strains were isolated from aquatic samples: two strains 

were isolated from coastal seawater samples of the UAE 

and San Francisco bay area (USA), one strain was iso-

lated from the southwestern desert of Abu Dhabi (UAE), 

one strain was isolated from a saline mangrove sample 

from the Abu Dhabi Mangroves, and one strain was iso-

lated from fountain water on the Abu Dhabi Corniche 

(Fig.  4a). Of the four UAE-isolated strains, Dunaliella 

sp. DN1 was isolated from hot desert mud after a rare 

rainfall in the region, Picochloris sp. DN1 was isolated in 

coastal Arabian Gulf waters, and Chloroidium sp. DN1 

was isolated from municipal water in downtown Abu 

Dhabi (Fig. 4a–c).

Picochloris sp. DN1 was found to be a picoeukaryotic 

alga of the prasinophyte lineage, cells ranged from 1 to 

3 µm in diameter with noticeable lipid bodies observed 

upon staining (Fig.  4c). Dunaliella sp. DN1 shared sev-

eral characteristics with other Dunaliella species such 

as high-salt tolerance, swimming gametes, and cellular 

morphology (Fig. 4c). RSSF, isolated from brackish waters 

in the San Francisco Bay, was found to accumulate lipids 

to a fairly high extent. Lipids from RSSF appeared to 

leave the intercellular space quite easily and were often 

found in the extracellular space. Chloroidium sp. DN1, 

exhibited either spherical or ovoid cell morphology and 

ranged between 3 and 7  µm in diameter (Fig.  4c). A 

high degree of lipid accumulation was observed in sev-

eral of the strains although no special treatments such 

as nitrogen-free media inoculation or UV mutagenesis 

was applied. To visualize the distribution of major cellu-

lar components, optical micrograph and Raman hyper-

spectral image of the reference C. reinhardtii (CC-503) 

microalgae is shown in Fig. 4d. Raman image of proteins 

(1003  cm−1), carotenoid components (1520  cm−1) and 

lipid bodies (1445 cm−1) were also constructed (Fig. 4d-

3–d-5) [28]. Protein and carotenoid components are 

locally different than lipid bodies. �e combination of 

these cellular components displayed in Fig. 4d-6 showed 

that protein and carotenes components were more domi-

nating than the lipid bodies in the sample. �is Raman 

hyperspectral imaging allows the localization of intact 

lipids stored in control microalgae sample without labe-

ling or extraction.

Lipid content analyses of environmental isolates

Typical aquatic and soil/fresh water microalgae spectra 

recorded using 532  nm excitation after photobleach-

ing are shown in Fig.  4e, f. In both spectra, significant 

lipid signature (i.e., the presence of 1440 and 1650 cm−1 

peaks) along with strong multiple lipid and carbohy-

drate peaks centered at 2800–3000 cm−1 were observed. 

Similar to standard fatty acids, spectra recorded for algal 

lipids with 532 nm excitation were dominated by 2800–

3000  cm−1 peaks. Both fresh water and marine algal 

lipids also demonstrated smaller peaks around 1008 and 

1520 cm−1, revealing carotenoid contributions. �is is in 

agreement with previous investigations reported by Wu 

et al. [38], Wood et al. [39] and Heraud et al. [26, 40]. In 

our experiments, appearance of carotenoid bands in the 

Raman spectra were minimized using our refined Raman 
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workflow, which offers the proper focusing and precise 

positioning of spectral acquisition locations after con-

trolled photobleach. �e algal isolates differ greatly in 

terms of the cell characteristics such as cell size as well as 

the pigments profile and the resulting fluorescence back-

ground. Yet, the ratiometric Raman method can remark-

ably differentiate between these diverse lipids from 

unrelated strains with diverse fluorescent backgrounds. 

�e complete set of intensity ratios, number of C=C and 

NC=C/NCH2 for various algal lipids were evaluated. �e 

latter showed the highest values for RSSF (lineage not 

determined) and Chlamydomonas sp. HC1 compared to 

other algal isolates (Table 1).

Mutagenesic screen for increased lipid content and single 

cell lipid analyses

We subjected C. reinhardtii cells to two rounds of UV-irra-

diation and isolated cells with increased lipid production 

using FACS based on fluorescence of BODIPY 505/515 

(Fig. 5a, b). BODIPY505/515 has a high oil/water partition 

coefficient, which allows it to easily cross cell and organelle 

membranes and distinctively labels the lipid components 

of live cells without killing the cells [41, 42]. �e sorting 

of the stained cell populations by FACS allowed us to col-

lect sub-populations enriched for lipid production. �is 

technique has been used to select for mutations in several 

pathways unrelated to starch metabolism [43, 44].

In FACS experiments, measured forward scatter (FSC), 

is proportional to cell size or cell volume, while side scat-

ter (SSC) is to the complexity of the cell. SSC intensity is 

affected by cell morphology, and especially by intracellu-

lar structures that are determined by chemical composi-

tion (e.g., starch, lipid content). A cell with higher level of 

cytoplasmic granularity, will results in higher SSC inten-

sity [45]. �e highest emission intensity of BODIPY is in 

the green fluorescence bandwidth range (FITC-A and 

AmCyan-A). Higher fluorescence emission in the FITC-

A and AmCyan-A indicates high emission intensity of 

BODIPY as a result of its binding to neutral lipids in the 

cell. Hence, cell complexity (SSC) was subsequently plot-

ted against cell size (FSC) and the fluorescence emission in 

the FITC-A channel. Two different cell populations were 

observed, in AmCyan-A vs. FITC-A plot (Fig. 5a, b). Cells 

forming a distinct cluster, which are highlighted in red 

in Fig.  5b (indicated as population P1), were sorted and 

used for Raman analysis. In order to qualitatively confirm 

the increase in mutants’ lipid content, confocal micros-

copy was used for detecting fluorescent label in BODIPY 

505/515-stained potential mutants. Lipid bodies in 

unmutagenized C. reinhardtii (CC-503) and UV-induced 

mutants could be visualized and observed in a confocal 

microscope (Fig.  5c, d). �e confocal microscope images 

show that the mutants have more lipid bodies and higher 

lipid content than the parental C. reinhardtii (CC-503).

(See figure on previous page.) 

Fig. 4 Bioprospecting and characterization of isolated algal strains. a Explored areas for isolation of selected algae strains in the UAE are shown in 

the map (Map of the UAE is adapted and modified from Google Maps). b Phylogenetic tree of novel algal isolates. The tree was reconstructed using a 

1400 nt region of the RbcL gene from novel algal isolates and NCBI-cataloged species are shown. Maximum likelihood phylogenies are inferred. Evo-

lutionary distances were measured using a Jukes-Cantor method with 1000 bootstrap replicates. c Brightfield and fluorescence micrographs of algal 

isolates, (i) Chlamydomonas sp. KSA1, (ii) Chlamydomonas sp. HC1, (iii) Chloroidium sp. DN1, (iv) Dunaliella sp. DN1, (v) MG8 (unknown lineage), (vi) 

RSSF (unknown lineage) and (vii) Picochloris sp. DN. Fluorescence micrographs are dyed with Nile red or BODIPY 505/515 to highlight lipid bodies. d 

Optical micrograph (1) and Raman hyperspectral image (2), of reference C. reinhardtii (CC-503) microalgae and constructed Raman images of proteins 

(1003 cm−1) (3), carotenoid components (1520 cm−1) (4), lipid bodies (1445 cm−1) (5), and combination of these components (6). e Raman single 

spectrum collected for C. reinhardtii (CC-503) strain and isolated soil microalgae and f isolated aquatic microalgae. Spectra were recorded using 

532 nm laser as excitation source after performing controlled photobleaching to reduce the fluorescence background; the algal strain designations 

are the same as in panel c

Table 1 Comparison of algal isolates in terms of the intensity ratios of 1650 and 1440 rel cm−1 spectral peaks

Microalgae Intensity ratios Measured C=C bonds Measured NC=C/NCH2

Chloroidium sp. DN1 0.55 0.86 0.08

Dunaliella sp. DN1 0.57 0.89 0.08

MG8, unknown lineage 0.48 0.74 0.07

Picochloris sp. DN1 0.75 1.17 0.11

RSSF, unknown lineage 1.07 1.70 0.15

Chlamydomonas sp. KSA1 0.79 1.30 0.11

Chlamydomonas reinhardtii 503 0.52 0.80 0.07

Chlamydomonas sp. HC1 1.04 1.66 0.15
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Cell-to-cell analysis of variation in structural features 

of expressed lipids was done by assaying C. reinhardtii 

(CC-503) mutants screened for increased lipid produc-

tion. Confocal Raman microscopy technique permits 

live, single cell observations in diverse populations, 

which can facilitate the observation of cell-to-cell vari-

ation and screening of cell populations for variation in 

expression of different TAGs. �is capability provides 

a powerful means to explore a range of phenotypes 

that might be expressed within a mutagenized popu-

lation. We interrogated a sample of 30 cells from the 

round 2 mutagenized cells, as well as wild-type cells. 

Cell-to-cell variation in terms of N(C=C) bonds and cell 

numbers were observed (Fig.  5e, f ). In this case, three 

distinct sub-populations could be identified: (a) cells 

that produce mostly saturated fatty acid lipids, (b) cells 

that produce mostly monounsaturated lipids, and (c) 

cells that produce a mixture of the two types. In con-

trast, only one type of population could be identified 

in the wild-type population, consisting of cells that 

express monounsaturated lipids only (Fig.  3c). �ese 

results demonstrate the utility of the developed method 

for effective screening of cells within populations with 

diversity in their TAG content.

a b c

f

e

d

Fig. 5 Mutagenic screen for increased lipid production. a, b Dot plot relating cell size (FSC-A) with the inner cell complexity (SSC-A) of cells and 

SSC-A with emission intensity of BODIPY in the green fluorescence bandwidth range (FITC-A and AmCyan-A) for CC-503 (a) and cells selected 

during the second round of screen (b). Bright field and fluorescence microscope images of cells stained with BODIPY for CC-503 wild-type (c) and 

UV-treated cells and selected during the second round of screen (d). Raman analysis of screened population (e, f). Raman analysis of a sample of 30 

different mutants. e The results of ratiometric characterization for 30 different cells on calibration plot (red squares, some overlapping). f The spread 

of respective values
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Conclusions
New isolates of algae or mutants of existing strains are 

potential candidates for production of industrially rel-

evant lipids [46, 47]. However, lipid profiles of algae strains 

tend to be highly variable with over 76 different fatty acid 

species documented [48]. Bio-prospecting efforts could 

yield hundreds of new and uncharacterized algal species 

with unknown lipid profiles [49] and mutagenesis pro-

cedures often produce several hundreds to thousands of 

algae mutants [50, 51]. Current approaches, including 

analysis of lipids by GC–MS, LC–MS or HPLC tend be 

labor-intensive and time-consuming and hence not prac-

tical for analyzing numerous strains that may result from 

typical bioprospecting and mutagenesis screen endeav-

ors. Our results demonstrate the utility of confocal Raman 

microscopy for rapid in situ analysis of lipids produced in 

microalgae. We benchmarked our Raman analysis through 

interrogating the well-studied reference microalgae, C. 

reinhardtii (CC-503) and cross-validated the obtained 

measurements with LC–MS experiments. �e presented 

workflow and obtained results demonstrate efficient anal-

ysis of microalgal lipids on a single cell basis that can be 

useful in screening and monitoring, as well as metabolic 

engineering of the microalgae for the optimal production 

of biofuels. From a broader perspective, the ability to mon-

itor lipid-based cellular processes in a label-free, quantita-

tive manner should be broadly applicable to a variety of 

applications in the emerging field of lipidomics.

Methods
Algal strains and culture conditions

�e freshwater Chlorophyte Chlamydomonas reinhardtii, 

strain CC-503 cw92 mt+  was obtained as a stab culture 

from the Chlamydomonas Resource Center (http://chla-

mycollection.org), based at the University of Minnesota 

(USA). CC-503 was grown on tris-acetate-phosphate (TAP) 

agar plates until a thick green lawn was formed. Cells were 

grown at 25  °C and under 400 µE of illumination. Local 

aquatic strains from the United Arab Emirates were iso-

lated from areas shown in Fig. 4a. Liquid samples were col-

lected in 50 mL collection tubes, and sampling of the gulf 

waters was conducted at both surface and benthic zones. 

Seawater samples were centrifuged at 3000g for 10 min. �e 

resultant pellets were resuspended in f/2 liquid media and 

allowed to incubate at 25 °C with 400 µE illumination for 

approximately 3 days. Two hundred microliters of suspen-

sions were then plated onto f/2 agar plates and single green 

colonies were isolated. Isogenic cultures were then trans-

ferred to f/2 media agar plates and harvested once a thick 

green lawn had formed. Soil algae, Chlamydomonas sp. 

HC1, from Abu Dhabi (Mussaffah area), UAE, and strain 

Chlamydomonas sp. KSA1, New York City (Washington 

Square area), NY, USA, were isolated as above except that 

the initial centrifugation was omitted and soil samples were 

initially incubated in Sager-Granick liquid medium [52] 

and subsequently spread on TAP-agar plates.

Fluorescent microscopy

Cells were observed with an Olympus BX53 microscope 

using an UPlanFL N 100×/1.30 Oil Ph 5 UIS 2 objective 

(Japan) using either bright field display or fluorescence. 

An X-cite series 120 Q fluorescent illumination source 

(Lumen Dynamics, Ontario, Canada) was used to visu-

alize Nile red and BODIPY-505/515 stained cells. Lipid 

staining was performed as follows: 1 µL of 10  mg/mL 

Nile red or BODIPY-505/515 was added to 100 µl of cells 

(concentration of appx. 1 × 106) and allowed to incubate 

at room temperature in the dark for 1 h. If fluorescence 

quenching was too rapid to allow for imaging, cells were 

incubated with the dye for longer periods.

Confocal microscopy for BODIPY-lipid visualization

Cells were observed with an Olympus Fluoview 1000 

confocal laser-scanning microscope (Tokyo, Japan) 

equipped with 488 nm laser to visualize BODIPY 505/515 

stained cells. A photo-multiplier tubes (PMT) detector 

was used to collect the light and the spectral filter was 

set from 520 to 580  nm. BODIPY staining was done as 

described above.

Sequencing and phylogenetic tree reconstruction

Sequence data was obtained for the algal species using 

the Ion Torrent PGM (for Chlamydomonas species) and 

Illumina HiSeq 2500 platforms. Genomic DNA was iso-

lated from the isolated species using Plant DNA Maxi kit 

(Qiagen) according to the manufacturer’s specifications. 

Libraries were prepared using the standard kits (Ion 

Express, Life Technologies) for Ion Torrent sequencing, 

and TrueSeq (Illumina) for HiSeq 2500 platform, accord-

ing to the sequencing platform used.

�e majority of sequence analysis was done using the 

CLC Genomics Workbench (CLC Bio, Qiagen). Fastq 

files of paired-end reads from the Ilumina flow cell lane 

were imported into CLC, followed by trimming of lower 

quality bases from reads (cutoff = 0.25). Trimmed reads 

were used for assembly. Assembly parameters were set 

as default except for the following: Reads were allowed to 

be re-mapped back to contigs, k-mer length was changed 

to a static 45 bp, and contigs less than 1000 bp in length 

were not allowed. Ribulose-1,5-bisphosphate carboxy-

lase/oxygenase large subunit (RbcL) sequences were 

identified by a BLAST search of the sequenced genomes 

with reference sequences obtained from NCBI. Phy-

logenetic trees were reconstructed using a maximum-

likelihood method using a Jukes-Cantor model with 

1000 bootstrap replicates. �e RbcL sequences used 

http://chlamycollection.org
http://chlamycollection.org
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for phylogenetic analyses were deposited into Genbank 

under the accession numbers KP202851 (Chloroidium sp. 

DN1), KP202853 (Dunaliella sp. DN1), KP202854, (Pico-

chloris sp. DN1), KP202855 (Chlamydomonas sp. HC1), 

and KP202852 (Chlamydomonas sp. KSA1).

UV mutagenesis and FACS screen for increased lipid 

productivity

C. reinhardtii CC-503 cells were grown using TAP liquid 

media. 325 million cells per milliliter were transferred to 

TAP agar plates exposed to ultraviolet (UV) light at a dis-

tance of 30 cm (253.7 nm, 100 µW/cm2, 60 Hz, NuAire 

safety cabinets Class II Type A2 NU-425-400, http://

www.nuaire.com) for 2  min under sterile conditions 

modified from Luck et  al. [53]. �e plates were subse-

quently kept in dark for 1 day to prevent photo reactiva-

tion. �e plates were then allowed to grow under light for 

approximately a week [54] �e resulting colonies were 

suspended in TAP liquid media and stained by BODIPY 

505/515 for cells containing neutral lipids, which were 

then sorted using BD FACS Aria III instrument. �e 

sorted cells were grown in liquid TAP media until they 

reached the same initial concentration, a second round 

of mutagenesis and sorting was done subsequently. �e 

sorted cells from the second round of mutagenesis and 

sorting were used for the Raman analysis.

Single cell confocal Raman microscopy

Confocal Raman Microscopy experiments were carried 

out using a combined Confocal Raman Imaging System, 

alpha300 RA WiTec GmbH, Germany. We used a 50× air 

objective with a numerical aperture of 0.8 to collect the scat-

tered light. Accordingly, the laser spot sizes for the green 

(λ = 532 nm) and the NIR lasers (λ = 532 nm) are 0.811 

and 1.197 µm, respectively. �eoretical (diffraction limited) 

lateral and axial resolutions are 0.279 and 0.971 µm, respec-

tively, for the green (λ = 532 nm) laser. Corresponding val-

ues for the NIR (λ = 785 nm) laser are 0.412 and 1.433 µm, 

respectively. �e sample was scanned using a piezoelectric 

scan table consisting of a 3-axis stage with integrated capac-

itive position feedback sensor to scan the sample for all 

modes of operation. Spectra were recorded with 600 groves/

mm grating in the range of 0–3400  cm−1 with a spectral 

resolution of 3 cm−1. WiTec control software 16.0.3.3 ver-

sion (WiTec Company, Germany) was used to record single 

spectra as well as spectral images.

Algal cells were washed three times with de-ionized water 

using centrifugation–redispersion cycles. Washed micro-

algal cells were collected and transferred to clean quartz 

slides for Raman characterization. Fatty acid standards were 

analyzed by placing small droplets (for liquid samples) or 

specks (for solid samples) on clean quartz slides.

Characterization of algae lipids were carried out using, 

two lasers, 532 and 785 nm, respectively. Laser power (8 

mW@532 nm and 75 mW@785 nm) and exposure times 

were optimally chosen through a series of control experi-

ments to ensure that there is no laser-induced damage (i.e., 

formation of amorphous carbonaceous chars). Influence 

of fluorescence in the recorded spectrum for the 532 nm 

laser was eliminated by bleaching the samples for an opti-

mized duration (30–75  s). Detailed procedure of Raman 

spectral acquisition is explained in Additional file 1.

For fatty acid standards and algal lipids, we used accu-

mulation times ranging from 1 to 4  s and number of 

accumulations ranging from 10 to 25, respectively, to 

obtain signals with good signal to noise ratio. All points 

plotted on the calibration plots were obtained under 

the same acquisition conditions. �e spectral and image 

datasets were post processed by using WiTec project 

plus software (WiTec Company Germany). Background 

resulting from cell autofluorescence, water Raman peaks, 

and instrumental noise was removed by using a moving 

average background subtraction. �e filter parameters 

were maintained constant for both the standard lipids 

and the algal samples. �e implementation of uniform 

constant filters had helped to retain the same level of 

residual peak distortion in all the samples. All the spec-

tra (i.e., algal and standard lipids) presented in this paper 

were background corrected using the above described 

procedure. Lorentz multi curve fitting  ≥99.9  % in area 

modules were used to de-convolute the measured spectra 

at various peak positions, namely, 1440 cm−1 peak (–CH2 

stretching), 1650 cm−1 (C=C stretch), 2800 cm−1 (hydro-

carbon peak), 3003  cm−1 peak (olefinic (=C–H stretch) 

stretching).
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CARS: coherent anti-stokes Raman scattering; EPA: eicosapentaenoic acid; 
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analysis; LTRS: laser trapping Raman spectroscopy; NIR: near infra-red; TAG: tria-
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